1
|
Yu L, Bennett CJ, Lin CH, Yan S, Yang J. Scaffold design considerations for peripheral nerve regeneration. J Neural Eng 2024; 21:041001. [PMID: 38996412 DOI: 10.1088/1741-2552/ad628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Peripheral nerve injury (PNI) represents a serious clinical and public health problem due to its high incurrence and poor spontaneous recovery. Compared to autograft, which is still the best current practice for long-gap peripheral nerve defects in clinics, the use of polymer-based biodegradable nerve guidance conduits (NGCs) has been gaining momentum as an alternative to guide the repair of severe PNI without the need of secondary surgery and donor nerve tissue. However, simple hollow cylindrical tubes can barely outperform autograft in terms of the regenerative efficiency especially in critical sized PNI. With the rapid development of tissue engineering technology and materials science, various functionalized NGCs have emerged to enhance nerve regeneration over the past decades. From the aspect of scaffold design considerations, with a specific focus on biodegradable polymers, this review aims to summarize the recent advances in NGCs by addressing the onerous demands of biomaterial selections, structural designs, and manufacturing techniques that contributes to the biocompatibility, degradation rate, mechanical properties, drug encapsulation and release efficiency, immunomodulation, angiogenesis, and the overall nerve regeneration potential of NGCs. In addition, several commercially available NGCs along with their regulation pathways and clinical applications are compared and discussed. Lastly, we discuss the current challenges and future directions attempting to provide inspiration for the future design of ideal NGCs that can completely cure long-gap peripheral nerve defects.
Collapse
Affiliation(s)
- Le Yu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Carly Jane Bennett
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Chung-Hsun Lin
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Jian Yang
- Biomedical Engineering Program, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
| |
Collapse
|
2
|
Stocco E, Barbon S, Emmi A, Tiengo C, De Caro R, Macchi V, Porzionato A. Commentary: Techniques and graft materials for repairing peripheral nerve defects. Front Neurol 2024; 15:1420324. [PMID: 38974681 PMCID: PMC11224285 DOI: 10.3389/fneur.2024.1420324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Affiliation(s)
- Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling, Onlus, Padova, Italy
| | - Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling, Onlus, Padova, Italy
| | - Aron Emmi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Cesare Tiengo
- Plastic Surgery Unit, Department of Neuroscience, University of Padova, Padova, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling, Onlus, Padova, Italy
| |
Collapse
|
3
|
Hoveizi E. Enhancement of nerve regeneration through schwann cell-mediated healing in a 3D printed polyacrylonitrile conduit incorporating hydrogel and graphene quantum dots: a study on rat sciatic nerve injury model. Biomed Mater 2023; 19:015012. [PMID: 38091624 DOI: 10.1088/1748-605x/ad1576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/13/2023] [Indexed: 12/22/2023]
Abstract
Despite recent technological advancements, effective healing from sciatic nerve damage remains inadequate. Cell-based therapies offer a promising alternative to autograft restoration for peripheral nerve injuries, and 3D printing techniques can be used to manufacture conduits with controlled diameter and size. In this study, we investigated the potential of Wharton's jelly-derived mesenchymal stem cells (WJMSCs) differentiated into schwann cells, using a polyacrylonitrile (PAN) conduit filled with fibrin hydrogel and graphene quantum dots (GQDs) to promote nerve regeneration in a rat sciatic nerve injury model. We investigated the potential of WJMSCs, extracted from the umbilical cord, to differentiate into schwann cells and promote nerve regeneration in a rat sciatic nerve injury model. WJMSCs were 3D cultured and differentiated into schwann cells within fibrin gel for two weeks. A 3 mm defect was created in the sciatic nerve of the rat model, which was then regenerated using a conduit/fibrin, conduit covered with schwann cells in fibrin/GQDs, GQDs in fibrin, and a control group without any treatment (n= 6/group). At 10 weeks after transplantation, motor and sensory functions and histological improvement were assessed. The WJMSCs were extracted, identified, and differentiated. The differentiated cells expressed typical schwann cell markers, S100 and P75.In vivoinvestigations established the durability and efficacy of the conduit to resist the pressures over two months of implantation. Histological measurements showed conduit efficiency, schwann cell infiltration, and association within the fibrin gel and lumen. Rats treated with the composite hydrogel-filled PAN conduit with GQDs showed significantly higher sensorial recovery than the other groups. Histological results showed that this group had significantly more axon numbers and remyelination than others. Our findings suggest that the conduit/schwann approach has the potential to improve nerve regeneration in peripheral nerve injuries, with future therapeutic implications.
Collapse
Affiliation(s)
- Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
4
|
Stocco E, Barbon S, Emmi A, Tiengo C, Macchi V, De Caro R, Porzionato A. Bridging Gaps in Peripheral Nerves: From Current Strategies to Future Perspectives in Conduit Design. Int J Mol Sci 2023; 24:ijms24119170. [PMID: 37298122 DOI: 10.3390/ijms24119170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In peripheral nerve injuries (PNI) with substance loss, where tensionless end-to-end suture is not achievable, the positioning of a graft is required. Available options include autografts (e.g., sural nerve, medial and lateral antebrachial cutaneous nerves, superficial branch of the radial nerve), allografts (Avance®; human origin), and hollow nerve conduits. There are eleven commercial hollow conduits approved for clinical, and they consist of devices made of a non-biodegradable synthetic polymer (polyvinyl alcohol), biodegradable synthetic polymers (poly(DL-lactide-ε-caprolactone); polyglycolic acid), and biodegradable natural polymers (collagen type I with/without glycosaminoglycan; chitosan; porcine small intestinal submucosa); different resorption times are available for resorbable guides, ranging from three months to four years. Unfortunately, anatomical/functional nerve regeneration requirements are not satisfied by any of the possible alternatives; to date, focusing on wall and/or inner lumen organization/functionalization seems to be the most promising strategy for next-generation device fabrication. Porous or grooved walls as well as multichannel lumens and luminal fillers are the most intriguing options, eventually also including the addition of cells (Schwann cells, bone marrow-derived, and adipose tissue derived stem cells) to support nerve regeneration. This review aims to describe common alternatives for severe PNI recovery with a highlight of future conduits.
Collapse
Affiliation(s)
- Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, Via Giustiniani, 2, 35128 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, 35030 Padova, Italy
| | - Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, 35030 Padova, Italy
| | - Aron Emmi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
| | - Cesare Tiengo
- Plastic Surgery Unit, Department of Neuroscience, University of Padova, 35121 Padova, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padova, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padova, Italy
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padova, Italy
| |
Collapse
|
5
|
Namhongsa M, Daranarong D, Sriyai M, Molloy R, Ross S, Ross GM, Tuantranont A, Tocharus J, Sivasinprasasn S, Topham PD, Tighe B, Punyodom W. Surface-Modified Polypyrrole-Coated PLCL and PLGA Nerve Guide Conduits Fabricated by 3D Printing and Electrospinning. Biomacromolecules 2022; 23:4532-4546. [PMID: 36169096 DOI: 10.1021/acs.biomac.2c00626] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The efficiency of nerve guide conduits (NGCs) in repairing peripheral nerve injury is not high enough yet to be a substitute for autografts and is still insufficient for clinical use. To improve this efficiency, 3D electrospun scaffolds (3D/E) of poly(l-lactide-co-ε-caprolactone) (PLCL) and poly(l-lactide-co-glycolide) (PLGA) were designed and fabricated by the combination of 3D printing and electrospinning techniques, resulting in an ideal porous architecture for NGCs. Polypyrrole (PPy) was deposited on PLCL and PLGA scaffolds to enhance biocompatibility for nerve recovery. The designed pore architecture of these "PLCL-3D/E" and "PLGA-3D/E" scaffolds exhibited a combination of nano- and microscale structures. The mean pore size of PLCL-3D/E and PLGA-3D/E scaffolds were 289 ± 79 and 287 ± 95 nm, respectively, which meets the required pore size for NGCs. Furthermore, the addition of PPy on the surfaces of both PLCL-3D/E (PLCL-3D/E/PPy) and PLGA-3D/E (PLGA-3D/E/PPy) led to an increase in their hydrophilicity, conductivity, and noncytotoxicity compared to noncoated PPy scaffolds. Both PLCL-3D/E/PPy and PLGA-3D/E/PPy showed conductivity maintained at 12.40 ± 0.12 and 10.50 ± 0.08 Scm-1 for up to 15 and 9 weeks, respectively, which are adequate for the electroconduction of neuron cells. Notably, the PLGA-3D/E/PPy scaffold showed superior cytocompatibility when compared with PLCL-3D/E/PPy, as evident via the viability assay, proliferation, and attachment of L929 and SC cells. Furthermore, analysis of cell health through membrane leakage and apoptotic indices showed that the 3D/E/PPy scaffolds displayed significant decreases in membrane leakage and reductions in necrotic tissue. Our finding suggests that these 3D/E/PPy scaffolds have a favorable design architecture and biocompatibility with potential for use in peripheral nerve regeneration applications.
Collapse
Affiliation(s)
- Manasanan Namhongsa
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Donraporn Daranarong
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Montira Sriyai
- Bioplastics Production Laboratory for Medical Applications, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Robert Molloy
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sukunya Ross
- Center of Excellence in Biomaterials, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Gareth M Ross
- Center of Excellence in Biomaterials, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Adisorn Tuantranont
- National Security and Dual-Use Technology Center, National Science and Technology Development Agency, Khlong Luang 12120, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sivanan Sivasinprasasn
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Paul D Topham
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, United Kingdom
| | - Brian Tighe
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, United Kingdom
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Nune M, Bhat M, Nagarajan A. Design of ECM Functionalized Polycaprolactone Aligned Nanofibers for Peripheral Nerve Tissue Engineering. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Purpose
Peripheral nerve injury (PNI) and its regeneration continue to remain a significant medical burden worldwide. The current treatment strategies used to treat PNI are often associated with multiple complications and yet do not achieve complete motor and sensory functions. Recently, synthetic biodegradable nerve conduits have become one the most commonly used conduits to repair small gaps in nerve injury. But they have not shown better results than nerve grafts possibly because of the lack of biological microenvironment required for axonal growth. Schwann cells play a very crucial role in peripheral nerve regeneration where activated SCs produce multiple neurotrophic factors that help in remyelination and immune modulation during nerve repair. Studies have shown that nanofibrous scaffolds have better bioactivity and more closely mimic the native structure of the extracellular matrix. Therefore, the present study was focused on designing a nanofibrous scaffold that would cover the roles of both structural support for the cells that can provide a microenvironment with biological cues for nerve growth and regeneration.
Methods
Decellularized Schwann cell ECM were spin-coated on polycaprolactone random and aligned nanofibrous scaffolds and their compatibility was evaluated using Schwann cells.
Results
Schwann cells displayed growth in the direction of the aligned PCL nanofibers and ACM treated exhibited appropriate bipolar morphology indicating that these modified fibers could provide directional cues making them highly suitable for neuronal cell growth.
Conclusion
Our results indicate that the fabricated aligned SC-ACM treated PCL scaffolds would be a potential biomaterial to treat peripheral nerve injuries and promote regeneration.
Graphical Abstract
Collapse
|
7
|
Lee HS, Jeon EY, Nam JJ, Park JH, Choi IC, Kim SH, Chung JJ, Lee K, Park JW, Jung Y. Development of a regenerative porous PLCL nerve guidance conduit with swellable hydrogel-based microgrooved surface pattern via 3D printing. Acta Biomater 2022; 141:219-232. [PMID: 35081432 DOI: 10.1016/j.actbio.2022.01.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
Peripheral nerve injury causes severe loss of motor and sensory functions, consequently increasing morbidity in affected patients. An autogenous nerve graft is considered the current gold standard for reconstructing nerve defects and recovering lost neurological functions; however, there are certain limitations to this method, such as limited donor nerve supply. With advances in regenerative medicine, recent research has focused on the fabrication of tissue-engineered nerve grafts as promising alternatives to the autogenous nerve grafts. In this study, we designed a nerve guidance conduit using an electrospun poly(lactide-co-ε-caprolactone) (PLCL) membrane with a visible light-crosslinked gelatin hydrogel. The PLCL nanoporous membrane with permeability served as a flexible and non-collapsible epineurium for the nerve conduit; the inner-aligned gelatin hydrogel paths were fabricated via 3D printing and a photocrosslinking system. The resultant gelatin hydrogel with microgrooved surface pattern was established as a conducting guidance path for the effective regeneration of axons and served as a reservoir that can incorporate and release bioactive molecules. From in vivo performance tests using a rat sciatic nerve defect model, our PLCL/gelatin conduit demonstrated successful axonal regeneration, remyelination capacities and facilitated functional recovery. Hence, the PLCL/gelatin conduit developed in this study is a promising substitute for autogenous nerve grafts. STATEMENT OF SIGNIFICANCE: Nerve guidance conduits (NGCs) are developed as promising recovery techniques for bridging peripheral nerve defects. However, there are still technological limitations including differences in the structures and components between natural peripheral nerve and NGCs. In this study, we designed a NGC composed of an electrospun poly(lactide-co-ε-caprolactone) (PLCL) membrane and 3D printed inner gelatin hydrogel to serve as a flexible and non-collapsible epineurium and a conducting guidance path, respectively, to mimic the fascicular structure of the peripheral nerve. In particular, in vitro cell tests clearly showed that gelatin hydrogel could guide the cells and function as a reservoir that incorporate and release nerve growth factor. From in vivo performance tests, our regenerative conduit successfully led to axonal regeneration with effective functional recovery.
Collapse
Affiliation(s)
- Hyun Su Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Young Jeon
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jae Jun Nam
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Ji Hun Park
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - In Cheul Choi
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Justin J Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Woong Park
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
8
|
Li Y, Fraser D, Mereness J, Van Hove A, Basu S, Newman M, Benoit DSW. Tissue Engineered Neurovascularization Strategies for Craniofacial Tissue Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:20-39. [PMID: 35014834 PMCID: PMC9016342 DOI: 10.1021/acsabm.1c00979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Craniofacial tissue injuries, diseases, and defects, including those within bone, dental, and periodontal tissues and salivary glands, impact an estimated 1 billion patients globally. Craniofacial tissue dysfunction significantly reduces quality of life, and successful repair of damaged tissues remains a significant challenge. Blood vessels and nerves are colocalized within craniofacial tissues and act synergistically during tissue regeneration. Therefore, the success of craniofacial regenerative approaches is predicated on successful recruitment, regeneration, or integration of both vascularization and innervation. Tissue engineering strategies have been widely used to encourage vascularization and, more recently, to improve innervation through host tissue recruitment or prevascularization/innervation of engineered tissues. However, current scaffold designs and cell or growth factor delivery approaches often fail to synergistically coordinate both vascularization and innervation to orchestrate successful tissue regeneration. Additionally, tissue engineering approaches are typically investigated separately for vascularization and innervation. Since both tissues act in concert to improve craniofacial tissue regeneration outcomes, a revised approach for development of engineered materials is required. This review aims to provide an overview of neurovascularization in craniofacial tissues and strategies to target either process thus far. Finally, key design principles are described for engineering approaches that will support both vascularization and innervation for successful craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Yiming Li
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - David Fraser
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Jared Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Amy Van Hove
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Sayantani Basu
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Maureen Newman
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
9
|
Gryshkov O, AL Halabi F, Kuhn AI, Leal-Marin S, Freund LJ, Förthmann M, Meier N, Barker SA, Haastert-Talini K, Glasmacher B. PVDF and P(VDF-TrFE) Electrospun Scaffolds for Nerve Graft Engineering: A Comparative Study on Piezoelectric and Structural Properties, and In Vitro Biocompatibility. Int J Mol Sci 2021; 22:11373. [PMID: 34768804 PMCID: PMC8583857 DOI: 10.3390/ijms222111373] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/19/2022] Open
Abstract
Polyvinylidene fluoride (PVDF) and its copolymer with trifluoroethylene (P(VDF-TrFE)) are considered as promising biomaterials for supporting nerve regeneration because of their proven biocompatibility and piezoelectric properties that could stimulate cell ingrowth due to their electrical activity upon mechanical deformation. For the first time, this study reports on the comparative analysis of PVDF and P(VDF-TrFE) electrospun scaffolds in terms of structural and piezoelectric properties as well as their in vitro performance. A dynamic impact test machine was developed, validated, and utilised, to evaluate the generation of an electrical voltage upon the application of an impact load (varying load magnitude and frequency) onto the electrospun PVDF (15-20 wt%) and P(VDF-TrFE) (10-20 wt%) scaffolds. The cytotoxicity and in vitro performance of the scaffolds was evaluated with neonatal rat (nrSCs) and adult human Schwann cells (ahSCs). The neurite outgrowth behaviour from sensory rat dorsal root ganglion neurons cultured on the scaffolds was analysed qualitatively. The results showed (i) a significant increase of the β-phase content in the PVDF after electrospinning as well as a zeta potential similar to P(VDF-TrFE), (ii) a non-constant behaviour of the longitudinal piezoelectric strain constant d33, depending on the load and the load frequency, and (iii) biocompatibility with cultured Schwann cells and guiding properties for sensory neurite outgrowth. In summary, the electrospun PVDF-based scaffolds, representing piezoelectric activity, can be considered as promising materials for the development of artificial nerve conduits for the peripheral nerve injury repair.
Collapse
Affiliation(s)
- Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (A.I.K.); (S.L.-M.); (S.-A.B.); (B.G.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Fedaa AL Halabi
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (A.I.K.); (S.L.-M.); (S.-A.B.); (B.G.)
| | - Antonia Isabel Kuhn
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (A.I.K.); (S.L.-M.); (S.-A.B.); (B.G.)
| | - Sara Leal-Marin
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (A.I.K.); (S.L.-M.); (S.-A.B.); (B.G.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Lena Julie Freund
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Centre for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany; (L.J.F.); (M.F.); (K.H.-T.)
| | - Maria Förthmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Centre for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany; (L.J.F.); (M.F.); (K.H.-T.)
| | - Nils Meier
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106 Braunschweig, Germany;
| | - Sven-Alexander Barker
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (A.I.K.); (S.L.-M.); (S.-A.B.); (B.G.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Centre for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany; (L.J.F.); (M.F.); (K.H.-T.)
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (A.I.K.); (S.L.-M.); (S.-A.B.); (B.G.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| |
Collapse
|
10
|
Ebhodaghe SO. Natural Polymeric Scaffolds for Tissue Engineering Applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2144-2194. [PMID: 34328068 DOI: 10.1080/09205063.2021.1958185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural polymeric scaffolds can be used for tissue engineering applications such as cell delivery and cell-free supporting of native tissues. This is because of their desirable properties such as; high biocompatibility, tunable mechanical strength and conductivity, large surface area, porous- and extracellular matrix (ECM)-mimicked structures. Specifically, their less toxicity and biocompatibility makes them suitable for several tissue engineering applications. For these reasons, several biopolymeric scaffolds are currently being explored for numerous tissue engineering applications. To date, research on the nature, chemistry, and properties of nanocomposite biopolymers are been reported, while the need for a comprehensive research note on more tissue engineering application of these biopolymers remains. As a result, this present study comprehensively reviews the development of common natural biopolymers as scaffolds for tissue engineering applications such as cartilage tissue engineering, cornea repairs, osteochondral defect repairs, and nerve regeneration. More so, the implications of research findings for further studies are presented, while the impact of research advances on future research and other specific recommendations are added as well.
Collapse
|
11
|
Rodríguez-Sánchez DN, Pinto GBA, Cartarozzi LP, de Oliveira ALR, Bovolato ALC, de Carvalho M, da Silva JVL, Dernowsek JDA, Golim M, Barraviera B, Ferreira RS, Deffune E, Bertanha M, Amorim RM. 3D-printed nerve guidance conduits multi-functionalized with canine multipotent mesenchymal stromal cells promote neuroregeneration after sciatic nerve injury in rats. Stem Cell Res Ther 2021; 12:303. [PMID: 34051869 PMCID: PMC8164252 DOI: 10.1186/s13287-021-02315-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/29/2021] [Indexed: 01/09/2023] Open
Abstract
Background Nerve injuries are debilitating, leading to long-term motor deficits. Remyelination and axonal growth are supported and enhanced by growth factor and cytokines. Combination of nerve guidance conduits (NGCs) with adipose-tissue-derived multipotent mesenchymal stromal cells (AdMSCs) has been performing promising strategy for nerve regeneration. Methods 3D-printed polycaprolactone (PCL)-NGCs were fabricated. Wistar rats subjected to critical sciatic nerve damage (12-mm gap) were divided into sham, autograft, PCL (empty NGC), and PCL + MSCs (NGC multi-functionalized with 106 canine AdMSCs embedded in heterologous fibrin biopolymer) groups. In vitro, the cells were characterized and directly stimulated with interferon-gamma to evaluate their neuroregeneration potential. In vivo, the sciatic and tibial functional indices were evaluated for 12 weeks. Gait analysis and nerve conduction velocity were analyzed after 8 and 12 weeks. Morphometric analysis was performed after 8 and 12 weeks following lesion development. Real-time PCR was performed to evaluate the neurotrophic factors BDNF, GDNF, and HGF, and the cytokine and IL-10. Immunohistochemical analysis for the p75NTR neurotrophic receptor, S100, and neurofilament was performed with the sciatic nerve. Results The inflammatory environment in vitro have increased the expression of neurotrophins BDNF, GDNF, HGF, and IL-10 in canine AdMSCs. Nerve guidance conduits multi-functionalized with canine AdMSCs embedded in HFB improved functional motor and electrophysiological recovery compared with PCL group after 12 weeks. However, the results were not significantly different than those obtained using autografts. These findings were associated with a shift in the regeneration process towards the formation of myelinated fibers. Increased immunostaining of BDNF, GDNF, and growth factor receptor p75NTR was associated with the upregulation of BDNF, GDNF, and HGF in the spinal cord of the PCL + MSCs group. A trend demonstrating higher reactivity of Schwann cells and axonal branching in the sciatic nerve was observed, and canine AdMSCs were engrafted at 30 days following repair. Conclusions 3D-printed NGCs multi-functionalized with canine AdMSCs embedded in heterologous fibrin biopolymer as cell scaffold exerted neuroregenerative effects. Our multimodal approach supports the trophic microenvironment, resulting in a pro-regenerative state after critical sciatic nerve injury in rats.
Collapse
Affiliation(s)
- Diego Noé Rodríguez-Sánchez
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Giovana Boff Araujo Pinto
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luciana Politti Cartarozzi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | | | - Ana Livia Carvalho Bovolato
- Blood Transfusion Center, Cell Engineering Laboratory, Botucatu Medical School, São Paulo State University, Botucatu, SP, Brazil
| | - Marcio de Carvalho
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Jorge Vicente Lopes da Silva
- Renato Archer Information Technology Center (CTI), Three-dimensional Technologies Research Group, Campinas, SP, Brazil
| | - Janaina de Andréa Dernowsek
- Renato Archer Information Technology Center (CTI), Three-dimensional Technologies Research Group, Campinas, SP, Brazil
| | - Marjorie Golim
- Hemocenter division of Botucatu Medical School, São Paulo State University, Botucatu, SP, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Elenice Deffune
- Blood Transfusion Center, Cell Engineering Laboratory, Botucatu Medical School, São Paulo State University, Botucatu, SP, Brazil
| | - Mathues Bertanha
- Blood Transfusion Center, Cell Engineering Laboratory, Botucatu Medical School, São Paulo State University, Botucatu, SP, Brazil
| | - Rogério Martins Amorim
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
12
|
Selim OA, Lakhani S, Midha S, Mosahebi A, Kalaskar DM. Three-Dimensional Engineered Peripheral Nerve: Toward a New Era of Patient-Specific Nerve Repair Solutions. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:295-335. [PMID: 33593147 DOI: 10.1089/ten.teb.2020.0355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reconstruction of peripheral nerve injuries (PNIs) with substance loss remains challenging because of limited treatment solutions and unsatisfactory patient outcomes. Currently, nerve autografting is the first-line management choice for bridging critical-sized nerve defects. The procedure, however, is often complicated by donor site morbidity and paucity of nerve tissue, raising a quest for better alternatives. The application of other treatment surrogates, such as nerve guides, remains questionable, and it is inefficient in irreducible nerve gaps. More importantly, these strategies lack customization for personalized patient therapy, which is a significant drawback of these nerve repair options. This negatively impacts the fascicle-to-fascicle regeneration process, critical to restoring the physiological axonal pathway of the disrupted nerve. Recently, the use of additive manufacturing (AM) technologies has offered major advancements to the bioengineering solutions for PNI therapy. These techniques aim at reinstating the native nerve fascicle pathway using biomimetic approaches, thereby augmenting end-organ innervation. AM-based approaches, such as three-dimensional (3D) bioprinting, are capable of biofabricating 3D-engineered nerve graft scaffolds in a patient-specific manner with high precision. Moreover, realistic in vitro models of peripheral nerve tissues that represent the physiologically and functionally relevant environment of human organs could also be developed. However, the technology is still nascent and faces major translational hurdles. In this review, we spotlighted the clinical burden of PNIs and most up-to-date treatment to address nerve gaps. Next, a summarized illustration of the nerve ultrastructure that guides research solutions is discussed. This is followed by a contrast of the existing bioengineering strategies used to repair peripheral nerve discontinuities. In addition, we elaborated on the most recent advances in 3D printing and biofabrication applications in peripheral nerve modeling and engineering. Finally, the major challenges that limit the evolution of the field along with their possible solutions are also critically analyzed.
Collapse
Affiliation(s)
- Omar A Selim
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Saad Lakhani
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Swati Midha
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Afshin Mosahebi
- Department of Plastic Surgery, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Deepak M Kalaskar
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London (UCL), Stanmore, United Kingdom
| |
Collapse
|
13
|
Olăreț E, Drăgușin DM, Serafim A, Lungu A, Șelaru A, Dobranici A, Dinescu S, Costache M, Boerașu I, Vasile BȘ, Steinmüller-Nethl D, Iovu H, Stancu IC. Electrospinning Fabrication and Cytocompatibility Investigation of Nanodiamond Particles-Gelatin Fibrous Tubular Scaffolds for Nerve Regeneration. Polymers (Basel) 2021; 13:polym13030407. [PMID: 33514051 PMCID: PMC7865256 DOI: 10.3390/polym13030407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
This paper reports the electrospinning fabrication of flexible nanostructured tubular scaffolds, based on fish gelatin (FG) and nanodiamond nanoparticles (NDs), and their cytocompatibility with murine neural stem cells. The effects of both nanofiller and protein concentration on the scaffold morphology, aqueous affinity, size modification at rehydration, and degradation are assessed. Our findings indicate that nanostructuring with low amounts of NDs may modify the fiber properties, including a certain regional parallel orientation of fiber segments. NE-4C cells form dense clusters that strongly adhere to the surface of FG50-based scaffolds, while also increasing FG concentration and adding NDs favor cellular infiltration into the flexible fibrous FG70_NDs nanocomposite. This research illustrates the potential of nanostructured NDs-FG fibers as scaffolds for nerve repair and regeneration. We also emphasize the importance of further understanding the effect of the nanofiller-protein interphase on the microstructure and properties of electrospun fibers and on cell-interactivity.
Collapse
Affiliation(s)
- Elena Olăreț
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.O.); (D.-M.D.); (A.S.); (A.L.); (H.I.)
| | - Diana-Maria Drăgușin
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.O.); (D.-M.D.); (A.S.); (A.L.); (H.I.)
| | - Andrada Serafim
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.O.); (D.-M.D.); (A.S.); (A.L.); (H.I.)
| | - Adriana Lungu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.O.); (D.-M.D.); (A.S.); (A.L.); (H.I.)
| | - Aida Șelaru
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (A.Ș.); (A.D.); (S.D.); (M.C.)
- Department of Immunology, National Institute for Research and Development in Biomedical Pathology and Biomedical Sciences “Victor Babes”, 050096 Bucharest, Romania
| | - Alexandra Dobranici
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (A.Ș.); (A.D.); (S.D.); (M.C.)
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (A.Ș.); (A.D.); (S.D.); (M.C.)
- The Research Institute of the University of Bucharest, 050663 Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (A.Ș.); (A.D.); (S.D.); (M.C.)
- The Research Institute of the University of Bucharest, 050663 Bucharest, Romania
| | - Iulian Boerașu
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (I.B.); (B.Ș.V.)
| | - Bogdan Ștefan Vasile
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (I.B.); (B.Ș.V.)
- National Research Center for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | | | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.O.); (D.-M.D.); (A.S.); (A.L.); (H.I.)
| | - Izabela-Cristina Stancu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.O.); (D.-M.D.); (A.S.); (A.L.); (H.I.)
- Correspondence:
| |
Collapse
|
14
|
Meena P, Kakkar A, Kumar M, Khatri N, Nagar RK, Singh A, Malhotra P, Shukla M, Saraswat SK, Srivastava S, Datt R, Pandey S. Advances and clinical challenges for translating nerve conduit technology from bench to bed side for peripheral nerve repair. Cell Tissue Res 2020; 383:617-644. [PMID: 33201351 DOI: 10.1007/s00441-020-03301-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Injuries to the peripheral nervous system remain a large-scale clinical problem. These injuries often lead to loss of motor and/or sensory function that significantly affects patients' quality of life. The current neurosurgical approach for peripheral nerve repair involves autologous nerve transplantation, which often leads to clinical complications. The most pressing need is to increase the regenerative capacity of existing tubular constructs in the repair of large nerve gaps through development of tissue-engineered approaches that can surpass the performance of autografts. To fully realize the clinical potential of nerve conduit technology, there is a need to reconsider design strategies, biomaterial selection, fabrication techniques and the various potential modifications to optimize a conduit microenvironment that can best mimic the natural process of regeneration. In recent years, a significant progress has been made in the designing and functionality of bioengineered nerve conduits to bridge long peripheral nerve gaps in various animal models. However, translation of this work from lab to commercial scale has not been achieve. The current review summarizes recent advances in the development of tissue engineered nerve guidance conduits (NGCs) with regard to choice of material, novel fabrication methods, surface modifications and regenerative cues such as stem cells and growth factors to improve regeneration performance. Also, the current clinical potential and future perspectives to achieve therapeutic benefits of NGCs will be discussed in context of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Poonam Meena
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Anupama Kakkar
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Mukesh Kumar
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Nitin Khatri
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Rakesh Kumar Nagar
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Aarti Singh
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Poonam Malhotra
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Manish Shukla
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Sumit Kumar Saraswat
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Supriya Srivastava
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Rajan Datt
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Siddharth Pandey
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India.
| |
Collapse
|
15
|
Wang J, Cheng Y, Wang H, Wang Y, Zhang K, Fan C, Wang H, Mo X. Biomimetic and hierarchical nerve conduits from multifunctional nanofibers for guided peripheral nerve regeneration. Acta Biomater 2020; 117:180-191. [PMID: 33007489 DOI: 10.1016/j.actbio.2020.09.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
Development of a functional nerve conduit to replace autografts remains a significant challenge particularly considering the compositional complexity and structural hierarchy of native peripheral nerves. In the present study, a multiscale strategy was adopted to fabricate 3D biomimetic nerve conduit from Antheraea pernyi silk fibroin (ApF)/(Poly(L-lactic acid-co-caprolactone)) (PLCL)/graphene oxide (GO) (ApF/PLCL/GO) nanofibers via nanofiber dispersion, template-molding, freeze-drying and crosslinking. The resultant conduits exhibit parallel multichannels (ϕ = 125 µm) surrounded by biomimetic fibrous fragments with tailored degradation rate and improved mechanical properties in comparison with the scaffold without GO. In vitro studies showed that such 3D biomimetic nerve scaffolds had the ability to offer an effective guiding interface for neuronal cell growth. Furthermore, these conduits showed a similarity to autografts in vivo repairing sciatic nerve defects based on a series of analysis (walking track, triceps weight, morphogenesis, vascularization, axonal regrowth and myelination). The conduits almost completely degraded within 12 weeks. These findings demonstrate that the 3D hierarchical nerve guidance conduit (NGC) with fascicle-like structure have great potential for peripheral nerve repair.
Collapse
|
16
|
Fornasari BE, Carta G, Gambarotta G, Raimondo S. Natural-Based Biomaterials for Peripheral Nerve Injury Repair. Front Bioeng Biotechnol 2020; 8:554257. [PMID: 33178670 PMCID: PMC7596179 DOI: 10.3389/fbioe.2020.554257] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/23/2020] [Indexed: 01/18/2023] Open
Abstract
Peripheral nerve injury treatment is a relevant problem because of nerve lesion high incidence and because of unsatisfactory regeneration after severe injuries, thus resulting in a reduced patient's life quality. To repair severe nerve injuries characterized by substance loss and to improve the regeneration outcome at both motor and sensory level, different strategies have been investigated. Although autograft remains the gold standard technique, a growing number of research articles concerning nerve conduit use has been reported in the last years. Nerve conduits aim to overcome autograft disadvantages, but they must satisfy some requirements to be suitable for nerve repair. A universal ideal conduit does not exist, since conduit properties have to be evaluated case by case; nevertheless, because of their high biocompatibility and biodegradability, natural-based biomaterials have great potentiality to be used to produce nerve guides. Although they share many characteristics with synthetic biomaterials, natural-based biomaterials should also be preferable because of their extraction sources; indeed, these biomaterials are obtained from different renewable sources or food waste, thus reducing environmental impact and enhancing sustainability in comparison to synthetic ones. This review reports the strengths and weaknesses of natural-based biomaterials used for manufacturing peripheral nerve conduits, analyzing the interactions between natural-based biomaterials and biological environment. Particular attention was paid to the description of the preclinical outcome of nerve regeneration in injury repaired with the different natural-based conduits.
Collapse
Affiliation(s)
- Benedetta E. Fornasari
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Giacomo Carta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| |
Collapse
|
17
|
Mantecón-Oria M, Diban N, Berciano MT, Rivero MJ, David O, Lafarga M, Tapia O, Urtiaga A. Hollow Fiber Membranes of PCL and PCL/Graphene as Scaffolds with Potential to Develop In Vitro Blood-Brain Barrier Models. MEMBRANES 2020; 10:E161. [PMID: 32708027 PMCID: PMC7464335 DOI: 10.3390/membranes10080161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022]
Abstract
There is a huge interest in developing novel hollow fiber (HF) membranes able to modulate neural differentiation to produce in vitro blood-brain barrier (BBB) models for biomedical and pharmaceutical research, due to the low cell-inductive properties of the polymer HFs used in current BBB models. In this work, poly(ε-caprolactone) (PCL) and composite PCL/graphene (PCL/G) HF membranes were prepared by phase inversion and were characterized in terms of mechanical, electrical, morphological, chemical, and mass transport properties. The presence of graphene in PCL/G membranes enlarged the pore size and the water flux and presented significantly higher electrical conductivity than PCL HFs. A biocompatibility assay showed that PCL/G HFs significantly increased C6 cells adhesion and differentiation towards astrocytes, which may be attributed to their higher electrical conductivity in comparison to PCL HFs. On the other hand, PCL/G membranes produced a cytotoxic effect on the endothelial cell line HUVEC presumably related with a higher production of intracellular reactive oxygen species induced by the nanomaterial in this particular cell line. These results prove the potential of PCL HF membranes to grow endothelial cells and PCL/G HF membranes to differentiate astrocytes, the two characteristic cell types that could develop in vitro BBB models in future 3D co-culture systems.
Collapse
Affiliation(s)
- Marián Mantecón-Oria
- Department of Chemical and Biomolecular Engineering, ETSIIyT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain; (M.M.-O.); (M.J.R.); (A.U.)
| | - Nazely Diban
- Department of Chemical and Biomolecular Engineering, ETSIIyT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain; (M.M.-O.); (M.J.R.); (A.U.)
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Cardenal H. Oria s/n, 39011 Santander, Spain; (M.T.B.); (M.L.); (O.T.)
| | - Maria T. Berciano
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Cardenal H. Oria s/n, 39011 Santander, Spain; (M.T.B.); (M.L.); (O.T.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 528031 Madrid, Spain
- Department of Molecular Biology, University of Cantabria, Cardenal H. Oria s/n, 39011 Santander, Spain
| | - Maria J. Rivero
- Department of Chemical and Biomolecular Engineering, ETSIIyT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain; (M.M.-O.); (M.J.R.); (A.U.)
| | - Oana David
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 San Sebastián, Spain;
| | - Miguel Lafarga
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Cardenal H. Oria s/n, 39011 Santander, Spain; (M.T.B.); (M.L.); (O.T.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 528031 Madrid, Spain
- Department of Anatomy and Cell Biology, University of Cantabria, Cardenal H. Oria s/n, 39011 Santander, Spain
| | - Olga Tapia
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Cardenal H. Oria s/n, 39011 Santander, Spain; (M.T.B.); (M.L.); (O.T.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 528031 Madrid, Spain
- Universidad Europea del Atlántico, Parque Científico y Tecnológico de Cantabria, Isabel Torres 21, 39011 Santander, Spain
| | - Ane Urtiaga
- Department of Chemical and Biomolecular Engineering, ETSIIyT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain; (M.M.-O.); (M.J.R.); (A.U.)
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Cardenal H. Oria s/n, 39011 Santander, Spain; (M.T.B.); (M.L.); (O.T.)
| |
Collapse
|
18
|
Murphy R, Faroni A, Wong J, Reid A. Protocol for a phase I trial of a novel synthetic polymer nerve conduit 'Polynerve' in participants with sensory digital nerve injury (UMANC). F1000Res 2020; 8:959. [PMID: 32685131 PMCID: PMC7355221 DOI: 10.12688/f1000research.19497.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Peripheral nerve injuries are common, with approximately 9,000 cases in the UK annually. Young working individuals are predominantly affected, leading to significant health and social implications. Functional recovery is often poor with impaired hand sensation, reduced motor function and pain and cold intolerance. Where a nerve gap exists, nerve grafting remains the gold-standard treatment but creates a second surgical site, sensory deficit at the donor site, possible neuroma formation and has limited availability. Current commercially available synthetic and resorbable nerve conduit alternatives are reported to be rigid and inflexible. This study will set out to examine the first-in-man use of a new nerve conduit device ‘Polynerve’ to repair small nerve gaps in digital sensory nerves of the hand. Polynerve is a degradable co-polymer of poly-ε-caprolactone and poly-l-lactic acid, which is shaped as a cylinder that has greater tensile strength, flexibility and less acidic degradation compared with current commercially available synthetic nerve conduits. In addition, it has a novel micro-grooved internal lumen that aids Schwann cell ingress and alignment to improve nerve regeneration. Methods: In total, 17 eligible participants will be recruited to undergo repair of a transected sensory nerve of the hand using the Polynerve device. All participants that receive the nerve conduit device will be followed for a period of 12 months post-surgery. The primary endpoint is safety of the device and the secondary endpoint is degree of sensory nerve regeneration through the conduit assessed using standard sensory testing (2-PD, WEST monofilament testing and locognosia). Discussion: The ‘UMANC’ trial is a single-centre UK-based, prospective, unblinded, phase I clinical trial of a novel nerve conduit device. We aim to demonstrate the safety of Polynerve as a synthetic, biodegradable nerve conduit and improve the treatment options available to patients with significant nerve injuries. Registration: Clinicaltrials.gov:
NCT02970864; EudraCT: 2016-001667-37.
Collapse
Affiliation(s)
- Ralph Murphy
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.,Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Jason Wong
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.,Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Adam Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.,Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
19
|
Stumpf TR, Tang L, Kirkwood K, Yang X, Zhang J, Cao X. Production and evaluation of biosynthesized cellulose tubes as promising nerve guides for spinal cord injury treatment. J Biomed Mater Res A 2020; 108:1380-1389. [DOI: 10.1002/jbm.a.36909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Taisa R. Stumpf
- Department of Chemical and Biological EngineeringUniversity of Ottawa Ottawa Ontario Canada
| | - Linda Tang
- Department of Chemical and Biological EngineeringUniversity of Ottawa Ottawa Ontario Canada
| | - Kathlyn Kirkwood
- Department of Chemical and Biological EngineeringUniversity of Ottawa Ottawa Ontario Canada
| | - Xiuying Yang
- Hainan Institute of Science and Technology Haikou China
| | | | - Xudong Cao
- Department of Chemical and Biological EngineeringUniversity of Ottawa Ottawa Ontario Canada
- Ottawa‐Carleton Institute of Biomedical Engineering Ottawa Ontario Canada
| |
Collapse
|
20
|
Tantalum - Poly (L-lactic acid) nerve conduit for peripheral nerve regeneration. Neurosci Lett 2020; 731:135049. [PMID: 32413537 DOI: 10.1016/j.neulet.2020.135049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/16/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
Abstract
Recently, Tantalum (Ta) has been re-explored and used with bone implants to promote bone regeneration. It has previously been extensively used as a nerve suture material; however, its use was abandoned because of the formation of scar tissue. In this study, we constructed a nerve conduit made of poly (L-lactic acid) PLA (outer layer) and tantalum Ta (inner layer) to evaluate its efficiency in the promotion of peripheral nerve regeneration. MATERIALS AND METHODS First, we conducted an in vitro study to evaluate the viability and proliferation of Schwann cells and rat pheocromocytoma (PC-12) cells on Ta-PLA sheets using Enhanced Cell Viability Assay Kit (EZ-CYTOX). An in vivo study was then performed using Sprague Dawley rats that were randomly divided into the following three groups: sham, PLA, and Ta-PLA nerve conduits. The nerve conduit was placed over a 10-mm gap of the rat sciatic nerve to promote nerve regeneration. The rats were observed over 12 wk with weekly sciatic functional index functional assessment. At the end of 12 wk, the nerve regeneration outcome was assessed through dorsal root ganglions (DRG) retrograde neurons labeling, histomorphometric analysis, and histological analysis. RESULTS The in vitro study showed significant viability and proliferation of Schwann cells in the Ta-PLA group than in the other groups. In the in vivo study, the gross findings revealed well-regenerated neural tissue in both the experimental groups with no scarring. The histological analysis showed that about 50 % of the conduits were filled with axons with a higher tendency for peripheral growth in the PLA group than for central growth within the Ta-PLA group conduits. The retrograde labeled neurons were significantly higher in Ta-PLA group than in the PLA group. Ta-PLA showed non-significant difference in the total fibers compared to the sham group. CONCLUSION Tantalum proved favorable for the growth of Schwann cells.In vivo, Ta-PLA nerve conduit induced peripheral nerve regeneration without scar tissue formation.
Collapse
|
21
|
Jang SR, Kim JI, Park CH, Kim CS. The controlled design of electrospun PCL/silk/quercetin fibrous tubular scaffold using a modified wound coil collector and L-shaped ground design for neural repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110776. [PMID: 32279813 DOI: 10.1016/j.msec.2020.110776] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/28/2022]
Abstract
Asymmetrically porous and aligned fibrous tubular conduit with selective permeability as a biomimetic neural scaffold was manufactured using polycaprolactone (PCL), silk, and quercetin by a modified electrospinning method. The outer surface of the randomly oriented fibrous scaffold had microscale pores that could prevent fibrous tissue invasion (FTI), but could permeate neurotrophic factors, nutrients, and oxygen. The inner surface of the aligned fibrous scaffold can be favorable for neurite outgrowth, because of their superior neural cell attachment, migration, and directional growth. In vitro and in vivo studies have demonstrated the therapeutic effect of Quercetin, a ubiquitous flavonoid widely distributed in plants, on neuropathy, by modulating the expression of NRF-2-dependent antioxidant responsive elements. In this study, the controlled inner and outer surface geometry of the 0.5, 1.0, and 2.0 wt% quercetin-containing electrospun PCL/silk fibrous tubular scaffold fabricated via a modified wound coil collector and L-shaped ground design (WCC-LG) was characterized by FE-SEM, TEM, FFT, FT-IR, and XRD. In addition, two types of neural cell lines, PC12 and S42, were used to evaluate the cell proliferation rate of the different amount of quercetin-loaded PCL/silk tubular scaffolds.
Collapse
Affiliation(s)
- Se Rim Jang
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jeong In Kim
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
22
|
Raza C, Riaz HA, Anjum R, Shakeel NUA. Repair strategies for injured peripheral nerve: Review. Life Sci 2020; 243:117308. [PMID: 31954163 DOI: 10.1016/j.lfs.2020.117308] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/27/2022]
Abstract
Compromised functional regains in about half of the patients following surgical nerve repair pose a serious socioeconomic burden to the society. Although surgical strategies such as end-to-end neurorrhaphy, nerve grafting and nerve transfer are widely applied in distal injuries leading to optimal recovery; however in proximal nerve defects functional outcomes remain unsatisfactory. Biomedical engineering approaches unite the efforts of the surgeons, engineers and biologists to develop regeneration facilitating structures such as extracellular matrix based supportive polymers and tubular nerve guidance channels. Such polymeric structures provide neurotrophic support from injured nerve stumps, retard the fibrous tissue infiltration and guide regenerating axons to appropriate targets. The development and application of nerve guidance conduits (NGCs) to treat nerve gap injuries offer clinically relevant and feasible solutions. Enhanced understanding of the nerve regeneration processes and advances in NGCs design, polymers and fabrication strategies have led to developing modern NGCs with superior regeneration-conducive capacities. Current review focuses on the advances in surgical and engineering approaches to treat peripheral nerve injuries. We suggest the incorporation of endothelial cell growth promoting cues and factors into the NGC interior for its possible enhancement effects on the axonal regeneration process that may result in substantial functional outcomes.
Collapse
Affiliation(s)
- Chand Raza
- Department of Zoology, Government College University, Lahore 54000, Pakistan.
| | - Hasib Aamir Riaz
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Rabia Anjum
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Noor Ul Ain Shakeel
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
23
|
Haldar S, Ghosh S, Kumar V, Roy P, Lahiri D. The Evolving Neural Tissue Engineering Landscape of India. ACS APPLIED BIO MATERIALS 2019; 2:5446-5459. [PMID: 35021543 DOI: 10.1021/acsabm.9b00567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The healthcare sector in India is witnessing unprecedented advancement. Tissue engineering has become an integral part of healthcare and medicine, particularly where treatments involve functional restoration of any injured or deceased part of the body. Not falling behind much with the progressing medical and healthcare sector of India, tissue engineering is also gaining momentum in the country. Out of several arenas of tissue engineering, India has made its mark in orthopedic and bone regeneration, cosmetic and skin regeneration, and very importantly neural regeneration. There are several articles reviewing the progress and prospects of orthopedic and skin regeneration research in India. However, there is no systematic review on progress, prospects, and pitfalls associated with neural tissue engineering in Indian context. The existing ones mainly focus on the technical advancements in the field from a global perspective. Therefore, it is worthwhile to have an organized look at the evolving neural tissue engineering landscape of India. This review will walk the readers systematically through different aspects of the topic. The review starts with an introduction to the nervous system to help readers appreciate the complexity that must be dealt with while engineering neural tissue. This is followed with a global picture of the neural tissue engineering, prominent research groups working on neural tissue engineering in India, factors that have and are currently molding the prospects of this field, and concluding with an overall perspective on present and future of neural tissue engineering in India.
Collapse
|
24
|
Houshyar S, Bhattacharyya A, Shanks R. Peripheral Nerve Conduit: Materials and Structures. ACS Chem Neurosci 2019; 10:3349-3365. [PMID: 31273975 DOI: 10.1021/acschemneuro.9b00203] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Peripheral nerve injuries (PNIs) are the most common injury types to affect the nervous system. Restoration of nerve function after PNI is a challenging medical issue. Extended gaps in transected peripheral nerves are only repaired using autologous nerve grafting. This technique, however, in which nerve tissue is harvested from a donor site and grafted onto a recipient site in the same body, has many limitations and disadvantages. Recent studies have revealed artificial nerve conduits as a promising alternative technique to substitute autologous nerves. This Review summarizes different types of artificial nerve grafts used to repair peripheral nerve injuries. These include synthetic and natural polymers with biological factors. Then, desirable properties of nerve guides are discussed based on their functionality and effectiveness. In the final part of this Review, fabrication methods and commercially available nerve guides are described.
Collapse
Affiliation(s)
- Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Amitava Bhattacharyya
- Nanoscience and Technology, Department of Electronics and Communication, PSG College of Technology, Coimbatore − 641004, India
| | - Robert Shanks
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
25
|
Jahromi M, Razavi S, Bakhtiari A. The advances in nerve tissue engineering: From fabrication of nerve conduit to in vivo nerve regeneration assays. J Tissue Eng Regen Med 2019; 13:2077-2100. [PMID: 31350868 DOI: 10.1002/term.2945] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022]
Abstract
Peripheral nerve damage is a common clinical complication of traumatic injury occurring after accident, tumorous outgrowth, or surgical side effects. Although the new methods and biomaterials have been improved recently, regeneration of peripheral nerve gaps is still a challenge. These injuries affect the quality of life of the patients negatively. In the recent years, many efforts have been made to develop innovative nerve tissue engineering approaches aiming to improve peripheral nerve treatment following nerve injuries. Herein, we will not only outline what we know about the peripheral nerve regeneration but also offer our insight regarding the types of nerve conduits, their fabrication process, and factors associated with conduits as well as types of animal and nerve models for evaluating conduit function. Finally, nerve regeneration in a rat sciatic nerve injury model by nerve conduits has been considered, and the main aspects that may affect the preclinical outcome have been discussed.
Collapse
Affiliation(s)
- Maliheh Jahromi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahnaz Razavi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Bakhtiari
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Alessandrino A, Fregnan F, Biagiotti M, Muratori L, Bassani GA, Ronchi G, Vincoli V, Pierimarchi P, Geuna S, Freddi G. SilkBridge™: a novel biomimetic and biocompatible silk-based nerve conduit. Biomater Sci 2019; 7:4112-4130. [PMID: 31359013 DOI: 10.1039/c9bm00783k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silk fibroin (Bombyx mori) was used to manufacture a nerve conduit (SilkBridge™) characterized by a novel 3D architecture. The wall of the conduit consists of two electrospun layers (inner and outer) and one textile layer (middle), perfectly integrated at the structural and functional level. The manufacturing technology conferred high compression strength on the device, thus meeting clinical requirements for physiological and pathological compressive stresses. In vitro cell interaction studies were performed through direct contact assays with SilkBridge™ using the glial RT4-D6P2T cells, a schwannoma cell line, and a mouse motor neuron NSC-34 cell line. The results revealed that the material is capable of sustaining cell proliferation, that the glial RT4-D6P2T cells increased their density and organized themselves in a glial-like morphology, and that NSC-34 motor neurons exhibited a greater neuritic length with respect to the control substrate. In vivo pilot assays were performed on adult female Wistar rats. A 10 mm long gap in the median nerve was repaired with 12 mm SilkBridge™. At two weeks post-operation several cell types colonized the lumen. Cells and blood vessels were also visible between the different layers of the conduit wall. Moreover, the presence of regenerated myelinated fibers with a thin myelin sheath at the proximal level was observed. Taken together, all these results demonstrated that SilkBridge™ has an optimized balance of biomechanical and biological properties, being able to sustain a perfect cellular colonization of the conduit and the progressive growth of the regenerating nerve fibers.
Collapse
Affiliation(s)
| | - F Fregnan
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, 10124 Torino, Italy
| | - M Biagiotti
- Silk Biomaterials Srl, 22074 Lomazzo (Co), Italy.
| | - L Muratori
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, 10124 Torino, Italy
| | - G A Bassani
- Silk Biomaterials Srl, 22074 Lomazzo (Co), Italy.
| | - G Ronchi
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, 10124 Torino, Italy
| | - V Vincoli
- Silk Biomaterials Srl, 22074 Lomazzo (Co), Italy.
| | - P Pierimarchi
- Institute of Translational Pharmacology, National Research Council, 00083 Rome, Italy
| | - S Geuna
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, 10124 Torino, Italy
| | - G Freddi
- Silk Biomaterials Srl, 22074 Lomazzo (Co), Italy.
| |
Collapse
|
27
|
Vishnoi T, Singh A, Teotia AK, Kumar A. Chitosan-Gelatin-Polypyrrole Cryogel Matrix for Stem Cell Differentiation into Neural Lineage and Sciatic Nerve Regeneration in Peripheral Nerve Injury Model. ACS Biomater Sci Eng 2019; 5:3007-3021. [DOI: 10.1021/acsbiomaterials.9b00242] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Singh A, Asikainen S, Teotia AK, Shiekh PA, Huotilainen E, Qayoom I, Partanen J, Seppälä J, Kumar A. Biomimetic Photocurable Three-Dimensional Printed Nerve Guidance Channels with Aligned Cryomatrix Lumen for Peripheral Nerve Regeneration. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43327-43342. [PMID: 30460837 DOI: 10.1021/acsami.8b11677] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Repair and regeneration of critically injured peripheral nerves is one of the most challenging reconstructive surgeries. Currently available and FDA approved nerve guidance channels (NGCs) are suitable for small gap injuries, and their biological performance is inferior to that of autografts. Development of biomimetic NGCs with clinically relevant geometrical and biological characteristics such as topographical, biochemical, and haptotactic cues could offer better regeneration of the long-gap complex nerve injuries. Here, in this study, we present the development and preclinical analysis of three-dimensional (3D) printed aligned cryomatrix-filled NGCs along with nerve growth factor (NGF) (aCG + NGF) for peripheral nerve regeneration. We demonstrated the application of these aCG + NGF NGCs in the enhanced and successful regeneration of a critically injured rat sciatic nerve in comparison to random cryogel-filled NGCs, multichannel and clinically preferred hollow conduits, and the gold standard autografts. Our results indicated similar effect of the aCG + NGF NGCs viz-a-viz that of the autografts, and they not only enhanced the overall regenerated nerve physiology but could also mimic the cellular aspects of regeneration. This study emphasizes the paradigm that these biomimetic 3D printed NGCs will lead to a better functional regenerative outcome under clinical settings.
Collapse
|
29
|
Dixon AR, Jariwala SH, Bilis Z, Loverde JR, Pasquina PF, Alvarez LM. Bridging the gap in peripheral nerve repair with 3D printed and bioprinted conduits. Biomaterials 2018; 186:44-63. [DOI: 10.1016/j.biomaterials.2018.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 01/14/2023]
|
30
|
Fei J, Wen X, Lin X, Saijilafu, Wang W, Ren O, Chen X, Tan L, Yang K, Yang H, Yang L. Biocompatibility and neurotoxicity of magnesium alloys potentially used for neural repairs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1155-1163. [DOI: 10.1016/j.msec.2017.04.106] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/18/2017] [Indexed: 01/21/2023]
|
31
|
Turunen S, Joki T, Hiltunen ML, Ihalainen TO, Narkilahti S, Kellomäki M. Direct Laser Writing of Tubular Microtowers for 3D Culture of Human Pluripotent Stem Cell-Derived Neuronal Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25717-25730. [PMID: 28697300 DOI: 10.1021/acsami.7b05536] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As the complex structure of nervous tissue cannot be mimicked in two-dimensional (2D) cultures, the development of three-dimensional (3D) neuronal cell culture platforms is a topical issue in the field of neuroscience and neural tissue engineering. Computer-assisted laser-based fabrication techniques such as direct laser writing by two-photon polymerization (2PP-DLW) offer a versatile tool to fabricate 3D cell culture platforms with highly ordered geometries in the size scale of natural 3D cell environments. In this study, we present the design and 2PP-DLW fabrication process of a novel 3D neuronal cell culture platform based on tubular microtowers. The platform facilitates efficient long-term 3D culturing of human neuronal cells and supports neurite orientation and 3D network formation. Microtower designs both with or without intraluminal guidance cues and/or openings in the tower wall are designed and successfully fabricated from Ormocomp. Three of the microtower designs are chosen for the final culture platform: a design with openings in the wall and intralumial guidance cues (webs and pillars), a design with openings but without intraluminal structures, and a plain cylinder design. The proposed culture platform offers a promising concept for future 3D cultures in the field of neuroscience.
Collapse
Affiliation(s)
- Sanna Turunen
- Biomaterials and Tissue Engineering Group, BioMediTech and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology , Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - Tiina Joki
- NeuroGroup, BioMediTech and Faculty of Medicine and Life Sciences, University of Tampere , Lääkärinkatu 1, 33520 Tampere, Finland
| | - Maiju L Hiltunen
- Biomaterials and Tissue Engineering Group, BioMediTech and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology , Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - Teemu O Ihalainen
- NeuroGroup, BioMediTech and Faculty of Medicine and Life Sciences, University of Tampere , Lääkärinkatu 1, 33520 Tampere, Finland
| | - Susanna Narkilahti
- NeuroGroup, BioMediTech and Faculty of Medicine and Life Sciences, University of Tampere , Lääkärinkatu 1, 33520 Tampere, Finland
| | - Minna Kellomäki
- Biomaterials and Tissue Engineering Group, BioMediTech and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology , Korkeakoulunkatu 3, 33720 Tampere, Finland
- BioMediTech and Faculty of Medicine and Life Sciences, University of Tampere , Lääkärinkatu 1, 33520 Tampere, Finland
| |
Collapse
|
32
|
Wang GW, Yang H, Wu WF, Zhang P, Wang JY. Design and optimization of a biodegradable porous zein conduit using microtubes as a guide for rat sciatic nerve defect repair. Biomaterials 2017; 131:145-159. [DOI: 10.1016/j.biomaterials.2017.03.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 01/06/2023]
|
33
|
Natural Occurring Silks and Their Analogues as Materials for Nerve Conduits. Int J Mol Sci 2016; 17:ijms17101754. [PMID: 27775616 PMCID: PMC5085779 DOI: 10.3390/ijms17101754] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/17/2016] [Accepted: 09/28/2016] [Indexed: 01/07/2023] Open
Abstract
Spider silk and its synthetic derivatives have a light weight in combination with good strength and elasticity. Their high cytocompatibility and low immunogenicity make them well suited for biomaterial products such as nerve conduits. Silk proteins slowly degrade enzymatically in vivo, thus allowing for an initial therapeutic effect such as in nerve scaffolding to facilitate endogenous repair processes, and then are removed. Silks are biopolymers naturally produced by many species of arthropods including spiders, caterpillars and mites. The silk fibers are secreted by the labial gland of the larvae of some orders of Holometabola (insects with pupa) or the spinnerets of spiders. The majority of studies using silks for biomedical applications use materials from silkworms or spiders, mostly of the genus Nephila clavipes. Silk is one of the most promising biomaterials with effects not only in nerve regeneration, but in a number of regenerative applications. The development of silks for human biomedical applications is of high scientific and clinical interest. Biomaterials in use for biomedical applications have to meet a number of requirements such as biocompatibility and elicitation of no more than a minor inflammatory response, biodegradability in a reasonable time and specific structural properties. Here we present the current status in the field of silk-based conduit development for nerve repair and discuss current advances with regard to potential clinical transfer of an implantable nerve conduit for enhancement of nerve regeneration.
Collapse
|
34
|
Using Stem Cells to Grow Artificial Tissue for Peripheral Nerve Repair. Stem Cells Int 2016; 2016:7502178. [PMID: 27212954 PMCID: PMC4861803 DOI: 10.1155/2016/7502178] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/17/2016] [Accepted: 03/02/2016] [Indexed: 12/17/2022] Open
Abstract
Peripheral nerve injury continues to pose a clinical hurdle despite its frequency and advances in treatment. Unlike the central nervous system, neurons of the peripheral nervous system have a greater ability to regenerate. However, due to a number of confounding factors, this is often both incomplete and inadequate. The lack of supportive Schwann cells or their inability to maintain a regenerative phenotype is a major factor. Advances in nervous system tissue engineering technology have led to efforts to build Schwann cell scaffolds to overcome this and enhance the regenerative capacity of neurons following injury. Stem cells that can differentiate along a neural lineage represent an essential resource and starting material for this process. In this review, we discuss the different stem cell types that are showing promise for nervous system tissue engineering in the context of peripheral nerve injury. We also discuss some of the biological, practical, ethical, and commercial considerations in using these different stem cells for future clinical application.
Collapse
|
35
|
Lee YS, Griffin J, Masand SN, Shreiber DI, Uhrich KE. Salicylic acid-based poly(anhydride-ester) nerve guidance conduits: Impact of localized drug release on nerve regeneration. J Biomed Mater Res A 2016; 104:975-82. [PMID: 26691691 DOI: 10.1002/jbm.a.35630] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/05/2015] [Accepted: 12/16/2015] [Indexed: 11/10/2022]
Abstract
Nerve guidance conduits (NGCs) can serve as physical scaffolds aligning and supporting regenerating cells while preventing scar tissue formation that often interferes with the regeneration process. Numerous studies have focused on functionalizing NGCs with neurotrophic factors, for example, to support nerve regeneration over longer gaps, but few directly incorporate therapeutic agents. Herein, we fabricated NGCs from a polyanhydride comprised of salicylic acid (SA), a nonsteroidal anti-inflammatory drug, then performed in vitro and in vivo assays. In vitro studies included cytotoxicity, anti-inflammatory response, and NGC porosity measurements. To prepare for implantation, type I collagen hydrogels were used as NGC luminal fillers to further enhance the axonal regeneration process. For the in vivo studies, SA-NGCs were implanted in femoral nerves of mice for 16 weeks and evaluated for functional recovery. The SA-based NGCs functioned as both a drug delivery vehicle capable of reducing inflammation and scar tissue formation because of SA release as well as a tissue scaffold that promotes peripheral nerve regeneration and functional recovery.
Collapse
Affiliation(s)
- Yong S Lee
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854
| | - Jeremy Griffin
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854
| | - Shirley N Masand
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854
| | - Kathryn E Uhrich
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854.,Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| |
Collapse
|
36
|
Abstract
Nerve injury secondary to trauma, neurological disease or tumor excision presents a challenge for surgical reconstruction. Current practice for nerve repair involves autologous nerve transplantation, which is associated with significant donor-site morbidity and other complications. Previously artificial nerve conduits made from polycaprolactone, polyglycolic acid and collagen were approved by the FDA (USA) for nerve repair. More recently, there have been significant advances in nerve conduit design that better address the requirements of nerve regrowth. Innovations in materials science, nanotechnology, and biology open the way for the synthesis of new generation nerve repair conduits that address issues currently faced in nerve repair and regeneration. This review discusses recent innovations in this area, including the use of nanotechnology to improve the design of nerve conduits and to enhance nerve regeneration.
Collapse
|
37
|
Role of inflammation and cytokines in peripheral nerve regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:173-206. [PMID: 24083435 DOI: 10.1016/b978-0-12-410499-0.00007-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter provides a review of immune reactions involved in classic as well as alternative methods of peripheral nerve regeneration, and mainly with a view to understanding their beneficial effects. Axonal degeneration distal to nerve damage triggers a cascade of inflammatory events alongside injured nerve fibers known as Wallerian degeneration (WD). The early inflammatory reactions of WD comprise the complement system, arachidonic acid metabolites, and inflammatory mediators that are related to myelin fragmentation and activation of Schwann cells. Fine-tuned upregulation of the cytokine/chemokine network by Schwann cells activates resident and hematogenous macrophages to complete the clearance of axonal and myelin debris and stimulate regrowth of axonal sprouts. In addition to local effects, immune reactions of neuronal bodies and glial cells are also implicated in the survival and conditioning of neurons to regenerate severed nerves. Understanding of the cellular and molecular interactions between the immune system and peripheral nerve injury opens new possibilities for targeting inflammatory mediators to improve functional reinnervation.
Collapse
|
38
|
Time-dependent evaluation of mechanical properties and in vitro cytocompatibility of experimental composite-based nerve guidance conduits. J Mech Behav Biomed Mater 2011; 4:1266-74. [DOI: 10.1016/j.jmbbm.2011.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/11/2011] [Accepted: 04/15/2011] [Indexed: 11/19/2022]
|
39
|
Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 2010; 93:204-30. [PMID: 21130136 DOI: 10.1016/j.pneurobio.2010.11.002] [Citation(s) in RCA: 424] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/02/2010] [Accepted: 11/23/2010] [Indexed: 01/01/2023]
Abstract
Surgical repair of severe peripheral nerve injuries represents not only a pressing medical need, but also a great clinical challenge. Autologous nerve grafting remains a golden standard for bridging an extended gap in transected nerves. The formidable limitations related to this approach, however, have evoked the development of tissue engineered nerve grafts as a promising alternative to autologous nerve grafts. A tissue engineered nerve graft is typically constructed through a combination of a neural scaffold and a variety of cellular and molecular components. The initial and basic structure of the neural scaffold that serves to provide mechanical guidance and optimal environment for nerve regeneration was a single hollow nerve guidance conduit. Later there have been several improvements to the basic structure, especially introduction of physical fillers into the lumen of a hollow nerve guidance conduit. Up to now, a diverse array of biomaterials, either of natural or of synthetic origin, together with well-defined fabrication techniques, has been employed to prepare neural scaffolds with different structures and properties. Meanwhile different types of support cells and/or growth factors have been incorporated into the neural scaffold, producing unique biochemical effects on nerve regeneration and function restoration. This review attempts to summarize different nerve grafts used for peripheral nerve repair, to highlight various basic components of tissue engineered nerve grafts in terms of their structures, features, and nerve regeneration-promoting actions, and finally to discuss current clinical applications and future perspectives of tissue engineered nerve grafts.
Collapse
Affiliation(s)
- Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, JS 226001, PR China.
| | | | | | | |
Collapse
|