1
|
Schehlein E, Robin A. Rho Kinase Inhibitors: Strategies in Glaucoma Treatment in Older Adults. Drugs Aging 2024; 41:399-406. [PMID: 38416395 DOI: 10.1007/s40266-024-01107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/29/2024]
Abstract
Glaucoma is a leading cause of irreversible blindness which preferentially affects older individuals. No medications or therapies which are currently in our arsenal actually treat glaucoma itself. We know that intraocular pressure (IOP) is currently the only modifiable risk factor for glaucoma. The primary treatments for glaucoma include medications, laser therapies, and surgical therapies. The Rho kinase inhibitors are the newest class of medications currently on the market and in development for topical IOP-lowering therapy. Studies have shown their ability to lower eye pressure individually and in combination with other medications. Their ability to potentially provide neuroprotective effects for disease modification also gives this class exciting potential for glaucoma treatment.
Collapse
Affiliation(s)
| | - Alan Robin
- University of Michigan, Ann Arbor, MI, USA
- Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Pagano L, Lee JW, Posarelli M, Giannaccare G, Kaye S, Borgia A. ROCK Inhibitors in Corneal Diseases and Glaucoma-A Comprehensive Review of These Emerging Drugs. J Clin Med 2023; 12:6736. [PMID: 37959203 PMCID: PMC10648286 DOI: 10.3390/jcm12216736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Rho kinase (ROCK) inhibitors have gained significant attention as emerging novel treatment options in the field of ophthalmology in recent years. The evidence supporting their efficacy in glaucoma and corneal pathology includes both in vitro and clinical studies. Among the available options, ripasudil and netarsudil have emerged as the leading ROCK inhibitors, and some countries have approved these therapeutic options as treatments for glaucoma. Various dosing regimens have been studied, including monotherapy and combination therapy, especially for patients with secondary glaucoma who are already on multiple medications. Another rising application of ROCK inhibitors includes their use as an adjunct in surgical procedures such as Descemetorhexis Without Endothelial Keratoplasty (DWEK), Descemet Stripping Only (DSO) to accelerate visual recovery, glaucoma surgeries to reduce scarring process and allow better intraocular pressure (IOP) control, or after complicated anterior segment surgery to treat corneal oedema. This article provides a comprehensive overview of the existing literature in the field, offering recommendations for prescribing ROCK inhibitors and also discussing patient selection, drug efficacy, and possible adverse effects.
Collapse
Affiliation(s)
- Luca Pagano
- Department of Biomedical Sciences, Humanitas University, 20072 Milano, Italy;
| | - Jason William Lee
- Clinical Eye Research Centre, St Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool L7 8YE, UK;
| | - Matteo Posarelli
- Department of Corneal Diseases, St. Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool L7 8YE, UK; (M.P.); (S.K.); (A.B.)
- Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Stephen Kaye
- Department of Corneal Diseases, St. Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool L7 8YE, UK; (M.P.); (S.K.); (A.B.)
| | - Alfredo Borgia
- Department of Corneal Diseases, St. Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool L7 8YE, UK; (M.P.); (S.K.); (A.B.)
- Eye Unit, Humanitas-Gradenigo Hospital, 10122 Turin, Italy
| |
Collapse
|
3
|
Muniyandi A, Hartman GD, Song Y, Mijit M, Kelley MR, Corson TW. Beyond VEGF: Targeting Inflammation and Other Pathways for Treatment of Retinal Disease. J Pharmacol Exp Ther 2023; 386:15-25. [PMID: 37142441 PMCID: PMC10289243 DOI: 10.1124/jpet.122.001563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Neovascular eye diseases include conditions such as retinopathy of prematurity, proliferative diabetic retinopathy, and neovascular age-related macular degeneration. Together, they are a major cause of vision loss and blindness worldwide. The current therapeutic mainstay for these diseases is intravitreal injections of biologics targeting vascular endothelial growth factor (VEGF) signaling. Lack of universal response to these anti-VEGF agents coupled with the challenging delivery method underscore a need for new therapeutic targets and agents. In particular, proteins that mediate both inflammatory and proangiogenic signaling are appealing targets for new therapeutic development. Here, we review agents currently in clinical trials and highlight some promising targets in preclinical and early clinical development, focusing on the redox-regulatory transcriptional activator APE1/Ref-1, the bioactive lipid modulator soluble epoxide hydrolase, the transcription factor RUNX1, and others. Small molecules targeting each of these proteins show promise for blocking neovascularization and inflammation. The affected signaling pathways illustrate the potential of new antiangiogenic strategies for posterior ocular disease. SIGNIFICANCE STATEMENT: Discovery and therapeutic targeting of new angiogenesis mediators is necessary to improve treatment of blinding eye diseases like retinopathy of prematurity, diabetic retinopathy, and neovascular age-related macular degeneration. Novel targets undergoing evaluation and drug discovery work include proteins important for both angiogenesis and inflammation signaling, including APE1/Ref-1, soluble epoxide hydrolase, RUNX1, and others.
Collapse
Affiliation(s)
- Anbukkarasi Muniyandi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Gabriella D Hartman
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Yang Song
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Mahmut Mijit
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark R Kelley
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Timothy W Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
4
|
Singh K, Singh A. Rho-kinase Inhibitors in Ocular Diseases: A Translational Research Journey. J Curr Glaucoma Pract 2023; 17:44-48. [PMID: 37228304 PMCID: PMC10203326 DOI: 10.5005/jp-journals-10078-1396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/23/2023] [Indexed: 05/27/2023] Open
Abstract
Aim This review summarizes current data on Rho-kinase (ROCK) inhibitors use in ocular diseases, primarily glaucoma. Background Translational research over the last decade culminating in the development of ROCK inhibitors has provided a much-needed shot in the arm to glaucoma pharmacopeia. ROCK pathway is intricately involved in cytoskeletal modulation with action on cell morphology, cell motility, cell adhesion, cell apoptosis, and smooth muscle contraction. This cytoskeletal modulation property has been utilized to modify trabecular meshwork (TM) resistance, resulting in the discovery of ROCK inhibitors to increase trabecular outflow. Review results Multicentric trials on ROCK inhibitors for antiglaucoma medications are summarized. The focus is on linking pharmacological action to the clinical utility of these drugs. While the Rho Kinase Elevated intraocular Pressure (IOP) Treatment (ROCKET) trials compared monotherapy with ROCK inhibitor netarsudil vs timolol, MERCURY trials compared a fixed dose combination of latanoprost and ROCK inhibitor netarsudil [fixed combination netarsudil-latanoprost (FCNL)] vs monotherapy with either and bimatoprost-timolol combination. While ROCKET trials showed ROCK inhibitors to be non-inferior to timolol, MERCURY trials showed FCNL achieving a much greater IOP reduction than monotherapy with either. Conjunctival hyperemia was the most common side effect reported with ROCK inhibitor use. Conclusion Moderate efficacy of ROCK inhibitors with a common side effect of conjunctival hyperemia, makes it an adjunctive antiglaucoma drug of choice and not a first-line therapy. Clinical significance ROCK inhibitors' action on diseased TM is more physiological compared to available antiglaucoma medications that either reduce aqueous secretion or enhance uveoscleral outflow. The property of ROCK inhibition to stabilize the endothelium of both retinal vasculature and cornea has opened a new chapter in the treatment of diabetic retinopathy and corneal decompensation. How to cite this article Singh K, Singh A. Rho-kinase Inhibitors in Ocular Diseases: A Translational Research Journey. J Curr Glaucoma Pract 2023;17(1):44-48.
Collapse
Affiliation(s)
- Kirti Singh
- Guru Nanak Eye Centre, Maulana Azad Medical College, New Delhi, India
| | - Arshi Singh
- Guru Nanak Eye Centre, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
5
|
Huang D, Qin J, Lu N, Fu Z, Zhang B, Tian S, Liu Q. Neuroprotective effects of nobiletin on cerebral ischemia/reperfusion injury rats by inhibiting Rho/ROCK signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1385. [PMID: 36660614 PMCID: PMC9843319 DOI: 10.21037/atm-22-6119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
Background Nobiletin (NOB), an active natural flavonoid component of citrus, is used in Traditional Chinese Medicine for its anti-inflammatory activity, but its efficacy in cerebral ischemia/reperfusion (I/R) injury remains unclear. Methods In a middle cerebral artery occlusion (MCAO) rat model, MCAO rats were administered (Sham group and MCAO model group treated with an equal volume of solvent, NOB group treated with 10 or 20 mg/kg NOB) once a day for 7 days before cerebral ischemia and again after reperfusion, 2,3,5-triphenyltetrazolium chloride (TTC) staining was applied to assess the infarct area. Neurological function was evaluated by the modified neurological severity score and Morris water maze. The levels of inflammatory factors, interleukin 6 (IL-6), interleukin 1β (IL-1β) and tumor necrosis factor-α (TNF-α), were examined by enzyme-linked immunosorbent assay (ELISA). Histopathological staining evaluated neuron apoptosis in brain tissue. In an oxygen-glucose deprivation PC12 cell (OGD PC12) model, the proliferation, migration and apoptosis of OGD PC12 cells were detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and cell migration assays and flow cytometry. The gene and protein expression levels of Ras homolog gene family, member A (Rho A), ras-related C3 botulinum toxin substrate 1 (Rac 1), Rho-associated kinase 1 (ROCK 1), ROCK 2 in the Rho/ROCK pathway were measured by Real-time PCR (RT-PCR), immunohistochemistry and western blot. Results In rats with cerebral I/R injury, NOB significantly decreased the infarcted area, neuron apoptosis in brain tissue and expressions of IL-6, IL-1β, and TNF-α. It also improved neurological deficits in brain tissue and enhanced learning and memory ability. Further, NOB had a protective effect on OGD PC12 cells, increasing proliferation and migration and decreasing apoptosis. The expressions of Rho A, Rac 1, ROCK 1 and ROCK 2 were high in cerebral I/R injury rats, but were downregulated by NOB in I/R injury rats' brain tissue and OGD PC12 cells. Conclusions Nobiletin had a neuroprotective effect in rats with cerebral I/R injury, and its potential mechanism is decreasing neuron apoptosis by inhibiting the Rho/ROCK signaling pathway. These results suggest NOB is a promising neuroprotective agent for patients with cerebral ischemia.
Collapse
Affiliation(s)
- Dan Huang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiaping Qin
- Department of Pharmacology, Hainan Medical University, Haikou, China
| | - Na Lu
- National Demonstration Center of Experimental Clinical Skills Education, Hainan Medical University, Haikou, China
| | - Zongjun Fu
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Bo Zhang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shuhong Tian
- School of Hainan Provincial Drug Safety Evaluation Research Center, Hainan Medical University, Haikou, China
| | - Qiang Liu
- Department of Pharmacology, Hainan Medical University, Haikou, China
| |
Collapse
|
6
|
Markan A, Neupane S, Agrawal R, Gupta V. Newer therapeutic agents for retinal diseases. EXPERT REVIEW OF OPHTHALMOLOGY 2022. [DOI: 10.1080/17469899.2022.2030709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ashish Markan
- Advanced Eye Centre, Department of Ophthalmology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Swechya Neupane
- Advanced Eye Centre, Department of Ophthalmology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rupesh Agrawal
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Sen Hospital, Novena, Singapore
| | - Vishali Gupta
- Advanced Eye Centre, Department of Ophthalmology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
7
|
Szymanska M, Mahmood D, Yap TE, Cordeiro MF. Recent Advancements in the Medical Treatment of Diabetic Retinal Disease. Int J Mol Sci 2021; 22:ijms22179441. [PMID: 34502350 PMCID: PMC8430918 DOI: 10.3390/ijms22179441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinal disease remains one of the most common complications of diabetes mellitus (DM) and a leading cause of preventable blindness. The mainstay of management involves glycemic control, intravitreal, and laser therapy. However, intravitreal therapy commonly requires frequent hospital visits and some patients fail to achieve a significant improvement in vision. Novel and long-acting therapies targeting a range of pathways are warranted, while evidence to support optimal combinations of treatments is currently insufficient. Improved understanding of the molecular pathways involved in pathogenesis is driving the development of therapeutic agents not only targeting visible microvascular disease and metabolic derangements, but also inflammation and accelerated retinal neurodegeneration. This review summarizes the current and emerging treatments of diabetic retinal diseases and provides an insight into the future of managing this important condition.
Collapse
Affiliation(s)
- Maja Szymanska
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK; (M.S.); (D.M.); (T.E.Y.)
| | - Daanyaal Mahmood
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK; (M.S.); (D.M.); (T.E.Y.)
| | - Timothy E. Yap
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK; (M.S.); (D.M.); (T.E.Y.)
| | - Maria F. Cordeiro
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK; (M.S.); (D.M.); (T.E.Y.)
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Correspondence:
| |
Collapse
|
8
|
Lebon C, Neubauer H, Berdugo M, Delaunay K, Markert E, Becker K, Baum-Kroker KS, Prestle J, Fuchs H, Bakker RA, Behar-Cohen F. Evaluation of an Intravitreal Rho-Associated Kinase Inhibitor Depot Formulation in a Rat Model of Diabetic Retinopathy. Pharmaceutics 2021; 13:pharmaceutics13081105. [PMID: 34452066 PMCID: PMC8401380 DOI: 10.3390/pharmaceutics13081105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/03/2023] Open
Abstract
Rho-associated kinase (ROCK) activation was shown to contribute to microvascular closure, retinal hypoxia, and to retinal pigment epithelium (RPE) barrier disruption in a rat model of diabetic retinopathy. Fasudil, a clinically approved ROCK inhibitor, improved retinal perfusion and reduced edema in this model, indicating that ROCK inhibition could be a promising new therapeutic approach for the treatment of diabetic retinopathy. However, due to its short intravitreal half-life, fasudil is not suitable for long-term treatment. In this study, we evaluated a very potent ROCK1/2 inhibitor (BIRKI) in a depot formulation administered as a single intravitreal injection providing a slow release for at least four weeks. Following BIRKI intravitreal injection in old Goto-Kakizaki (GK) type 2 diabetic rats, we observed a significant reduction in ROCK1 activity in the retinal pigment epithelium/choroid complex after 8 days and relocation of ROCK1 to the cytoplasm and nucleus in retinal pigment epithelium cells after 28 days. The chronic ROCK inhibition by the BIRKI depot formulation restored retinal pigment epithelial cell morphology and distribution, favored retinal capillaries dilation, and reduced hypoxia and inner blood barrier leakage observed in the diabetic retina. No functional or morphological negative effects were observed, indicating suitable tolerability of BIRKI after intravitreous injection. In conclusion, our data suggest that sustained ROCK inhibition, provided by BIRKI slow-release formulation, could be a valuable treatment option for diabetic retinopathy, especially with regard to the improvement of retinal vascular infusion and protection of the outer retinal barrier.
Collapse
Affiliation(s)
- Cecile Lebon
- Team 17: Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (C.L.); (M.B.); (K.D.)
| | - Heike Neubauer
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (H.N.); (J.P.); (H.F.); (R.A.B.)
| | - Marianne Berdugo
- Team 17: Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (C.L.); (M.B.); (K.D.)
| | - Kimberley Delaunay
- Team 17: Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (C.L.); (M.B.); (K.D.)
| | - Elke Markert
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (E.M.); (K.B.)
| | - Kolja Becker
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (E.M.); (K.B.)
| | - Katja S. Baum-Kroker
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany;
| | - Jürgen Prestle
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (H.N.); (J.P.); (H.F.); (R.A.B.)
| | - Holger Fuchs
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (H.N.); (J.P.); (H.F.); (R.A.B.)
| | - Remko A. Bakker
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (H.N.); (J.P.); (H.F.); (R.A.B.)
| | - Francine Behar-Cohen
- Team 17: Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (C.L.); (M.B.); (K.D.)
- Assistance Publique, Hôpitaux de Paris, Hôpital Cochin, Ophthalmopole, 75014 Paris, France
- Correspondence:
| |
Collapse
|
9
|
Mateos-Olivares M, García-Onrubia L, Valentín-Bravo FJ, González-Sarmiento R, Lopez-Galvez M, Pastor JC, Usategui-Martín R, Pastor-Idoate S. Rho-Kinase Inhibitors for the Treatment of Refractory Diabetic Macular Oedema. Cells 2021; 10:cells10071683. [PMID: 34359853 PMCID: PMC8307715 DOI: 10.3390/cells10071683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic macular oedema (DMO) is one of the leading causes of vision loss associated with diabetic retinopathy (DR). New insights in managing this condition have changed the paradigm in its treatment, with intravitreal injections of antivascular endothelial growth factor (anti-VEGF) having become the standard therapy for DMO worldwide. However, there is no single standard therapy for all patients DMO refractory to anti-VEGF treatment; thus, further investigation is still needed. The key obstacles in developing suitable therapeutics for refractory DMO lie in its complex pathophysiology; therefore, there is an opportunity for further improvements in the progress and applications of new drugs. Previous studies have indicated that Rho-associated kinase (Rho-kinase/ROCK) is an essential molecule in the pathogenesis of DMO. This is why the Rho/ROCK signalling pathway has been proposed as a possible target for new treatments. The present review focuses on the recent progress on the possible role of ROCK and its therapeutic potential in DMO. A systematic literature search was performed, covering the years 1991 to 2021, using the following keywords: "rho-Associated Kinas-es", "Diabetic Retinopathy", "Macular Edema", "Ripasudil", "Fasudil" and "Netarsudil". Better insight into the pathological role of Rho-kinase/ROCK may lead to the development of new strategies for refractory DMO treatment and prevention.
Collapse
Affiliation(s)
- Milagros Mateos-Olivares
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
| | - Luis García-Onrubia
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Department of Ophthalmology, St Thomas’ Hospital, London SE1 7EH, UK
| | - Fco. Javier Valentín-Bravo
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
| | - Rogelio González-Sarmiento
- Area of Infectious, Inflammatory and Metabolic Disease, Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Maribel Lopez-Galvez
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Cooperative Network for Research in Ophthalmology Oftared, National Institute of Health Carlos III, 28220 Madrid, Spain
| | - J. Carlos Pastor
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Cooperative Network for Research in Ophthalmology Oftared, National Institute of Health Carlos III, 28220 Madrid, Spain
| | - Ricardo Usategui-Martín
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Correspondence: (R.U.-M.); (S.P.-I.); Tel.: +34-983-423-559
| | - Salvador Pastor-Idoate
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Cooperative Network for Research in Ophthalmology Oftared, National Institute of Health Carlos III, 28220 Madrid, Spain
- Correspondence: (R.U.-M.); (S.P.-I.); Tel.: +34-983-423-559
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Rho kinase (ROCK) inhibitors are growing increasingly relevant in ophthalmology, and the goal of this review is to summarize their mechanisms of action and potential applications in the subspecialties of glaucoma, retina, and cornea. We will focus specifically on corneal endothelial wound healing, for which ROCK inhibition demonstrates particular promise. RECENT FINDINGS ROCK inhibition has been shown to promote corneal endothelial cell proliferation, increase intercellular adhesion, and suppress apoptosis. Topical ROCK inhibitor treatment has exhibited potential use in Fuchs endothelial dystrophy, corneal edema from acute surgical trauma and other etiologies, and tissue engineering therapy for the endothelial disease. Ripasudil and netarsudil, the two ROCK inhibitors available for ophthalmic use, are generally very well tolerated with mild and transient local side effects. SUMMARY ROCK inhibitors are revolutionizing the subspecialty of cornea, and further research is needed to compare long-term outcomes of ROCK inhibitor therapy to those of conventional endothelial keratoplasty, including visual acuity and endothelial cell density. Other possible avenues include the use of ROCK inhibitors to prolong corneal graft survival, and early data appears promising.
Collapse
|
11
|
Al-Humimat G, Marashdeh I, Daradkeh D, Kooner K. Investigational Rho Kinase Inhibitors for the Treatment of Glaucoma. J Exp Pharmacol 2021; 13:197-212. [PMID: 33664600 PMCID: PMC7921633 DOI: 10.2147/jep.s259297] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/07/2021] [Indexed: 01/27/2023] Open
Abstract
This review provides a comprehensive update on emerging ROCK inhibitors as an innovative treatment option for lowering intraocular pressure (IOP) in glaucoma and aims to describe the structure, mechanism of action, pharmaceutical characteristics, desirable ocular effects, including side effects for each agent. A literature review was conducted using PubMed, Scopus, clinicaltrials.gov, ARVO journals, Cochrane library and Selleckchem. Databases were searched using "investigational Rho kinase inhibitors," and "glaucoma" as keywords. In addition to this building block strategy, successive fractions were employed to further refine the results. Of the several ROCK inhibitors discovered, only two drugs are currently approved for glaucoma treatment; Netarsudil in the USA and Ripasudil in Japan and China. We identified and reviewed 15 agents currently in laboratory or clinical trials. These agents lower IOP mainly by decreasing outflow resistance through pharmacologic relaxation of the trabecular meshwork (TM) cells and reducing episcleral venous pressure. They have an optimistic safety profile; however, conjunctival hyperemia, conjunctival hemorrhage, pain on instillation, and corneal verticillata are common. Other properties such as neuroprotection (enhancing optic nerve blood flow and promoting axonal regeneration), anti-fibrotic activity, and endothelial cell proliferation may improve the visual prognosis and surgical outcomes in glaucoma. In addition, these agents have the potential to work synergistically with other topical glaucoma medications.
Collapse
Affiliation(s)
- Ghadeer Al-Humimat
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Ophthalmology, King Hussein Medical Center, Amman, Jordan
| | - Ibtisam Marashdeh
- Department of Ophthalmology, King Hussein Medical Center, Amman, Jordan
| | - Duaa Daradkeh
- Department of Ophthalmology, King Hussein Medical Center, Amman, Jordan
| | - Karanjit Kooner
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Ophthalmology, Veteran Affairs North Texas Health Care System Medical Center Dallas, Dallas, TX, USA
| |
Collapse
|
12
|
Gupta P, Taiyab A, Hassan MI. Emerging role of protein kinases in diabetes mellitus: From mechanism to therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 124:47-85. [PMID: 33632470 DOI: 10.1016/bs.apcsb.2020.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Diabetes mellitus has emerged as a severe burden on the medical health system across the globe. Presently, around 422 million people are suffering from diabetes which is speculated to be expanded to about 600 million by 2035. Patients with type 2 diabetes are at increased risk of developing detrimental metabolic and cardiovascular complications. The scientific understanding of this chronic disease and its underlying root cause is not yet fully unraveled. Protein kinases are well known to regulate almost every cellular process through phosphorylation of target protein in diverse signaling pathways. The important role of several protein kinases including AMP-activated protein kinase, IκB kinase and protein kinase C have been well demonstrated in various animal models. They modulate glucose tolerance, inflammation and insulin resistance in the cells via acting on diverse downstream targets and signaling pathways. Thus, modulating the activity of potential human kinases which are significantly involved in diabetes by targeting with small molecule inhibitors could be an attractive therapeutic strategy to tackle diabetes. In this chapter, we have discussed the potential role of protein kinases in glucose metabolism and insulin sensitivity, and in the pathogenesis of diabetes mellitus. Furthermore, the small molecules reported in the literature that can be potentially used for the treatment of diabetes have been discussed in detail.
Collapse
Affiliation(s)
- Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
13
|
Kumari N, Karmakar A, Chakrabarti S, Ganesan SK. Integrative Computational Approach Revealed Crucial Genes Associated With Different Stages of Diabetic Retinopathy. Front Genet 2020; 11:576442. [PMID: 33304382 PMCID: PMC7693709 DOI: 10.3389/fgene.2020.576442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022] Open
Abstract
The increased incidence of diabetic retinopathy (DR) and the legacy effect associated with it has raised a great concern toward the need to find early diagnostic and treatment strategies. Identifying alterations in genes and microRNAs (miRNAs) is one of the most critical steps toward understanding the mechanisms by which a disease progresses, and this can be further used in finding potential diagnostic and prognostic biomarkers and treatment methods. We selected different datasets to identify altered genes and miRNAs. The integrative analysis was employed to find potential candidate genes (differentially expressed and aberrantly methylated genes that are also the target of altered miRNAs) and early genes (genes showing altered expression and methylation pattern during early stage of DR) for DR. We constructed a protein-protein interaction (PPI) network to find hub genes (potential candidate genes showing a greater number of interactions) and modules. Gene ontologies and pathways associated with the identified genes were analyzed to determine their role in DR progression. A total of 271 upregulated-hypomethylated genes, 84 downregulated-hypermethylated genes, 11 upregulated miRNA, and 30 downregulated miRNA specific to DR were identified. 40 potential candidate genes and 9 early genes were also identified. PPI network analysis revealed 7 hub genes (number of interactions >5) and 1 module (score = 5.67). Gene ontology and pathway analysis predicted enrichment of genes in oxidoreductase activity, binding to extracellular matrix, immune responses, leukocyte migration, cell adhesion, PI3K-Akt signaling pathway, ECM receptor interaction, etc., and thus their association with DR pathogenesis. In conclusion, we identified 7 hub genes and 9 early genes that could act as a potential prognostic, diagnostic, or therapeutic target for DR, and a few early genes could also play a role in metabolic memory phenomena.
Collapse
Affiliation(s)
- Nidhi Kumari
- Department of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,CSIR-IICB Translational Research Unit of Excellence (TRUE), Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aditi Karmakar
- Department of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,CSIR-IICB Translational Research Unit of Excellence (TRUE), Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Saikat Chakrabarti
- Department of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,CSIR-IICB Translational Research Unit of Excellence (TRUE), Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Senthil Kumar Ganesan
- Department of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,CSIR-IICB Translational Research Unit of Excellence (TRUE), Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Zhao L, Li Y, Wang Y, Qiao Z, Miao Z, Yang J, Huang L, Tian C, Li L, Chen D, Yang S. Discovery of 4H-Chromen-4-one Derivatives as a New Class of Selective Rho Kinase (ROCK) Inhibitors, which Showed Potent Activity in ex Vivo Diabetic Retinopathy Models. J Med Chem 2019; 62:10691-10710. [DOI: 10.1021/acs.jmedchem.9b01143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Wang J, Yao Y, Liu X, Wang K, Zhou Q, Tang Y. Protective effects of lycium barbarum polysaccharides on blood-retinal barrier via ROCK1 pathway in diabetic rats. Am J Transl Res 2019; 11:6304-6315. [PMID: 31737184 PMCID: PMC6834516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Lycium barbarum polysaccharides (LBP) is commonly known as a traditional Chinese medicine, which has protective effects against diabetic complications in clinic, such as diabetic retinopathy (DR). Previous studies have revealed that Rho/ROCK pathway play an important role in DR development. However, the mechanism between LBP and DR remains unknown. This study aims to explore the clear mechanism of the protective effect of LBP in diabetic retinopathy. In this study, streptozocin (STZ, 45 mg/kg) was administered for diabetic rats modeling. Weight, blood glucose levels and blood lipid were measured to assess the metabolic changes by LBP on diabetic rats. Evans blue (EB) extravasation was determined to assess blood-retinal barrier (BRB) disruption. Hematoxylin and Eosin (HE) staining and immunohistochemistry assay were applied for retina morphology exploration. The membranous disks of retina were examined by transmission electron microscope. Further, high glucose condition was induced in choroidal-retinal endothelial cells (RF/6A). Western blotting was performed for P-Occludin, ROCK1 and P-MLC protein expression. The results indicated that the blood glucose levels, blood lipid and EB infiltration capacity were decreased while the weight was increased in LBP-treated diabetic rats compared with model rats. Moreover, LBP could thicken the overall retina, prevent the disturbance of photoreceptor cell membranous disks and inhibit pathological angiogenesis in diabetes. In addition, the decreased expression of P-Occludin and increased expression of RhoA-associated protein kinase (ROCK) or phosphorylated myosin light chain (P-MLC) were observed in retinal tissue of diabetic rats and high glucose induced by RF/6A cells, which could be rescued by LBP and/or Fasudil. LBP has the protective effects on blood-retinal barrier by regulating the Rho/ROCK signaling pathway in diabetic rats. LBP may be served as a Rho/ROCK inhibitor for the treatment of DR.
Collapse
Affiliation(s)
- Jihong Wang
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, Wuxi Hospital of Traditional Chinese MedicineWuxi 214000, Jiangsu, China
| | - Yong Yao
- Department of Ophthalmology, Affiliated Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214000, Jiangsu, China
| | - Xuezheng Liu
- Department of Anatomy, Jinzhou Medical UniversityJinzhou 121001, Liaoning, China
| | - Kelei Wang
- Department of Ophthalmology, Wuxi Hospital of Traditional Chinese MedicineWuxi 214000, Jiangsu, China
| | - Qianqian Zhou
- Department of Ophthalmology, Wuxi Hospital of Traditional Chinese MedicineWuxi 214000, Jiangsu, China
| | - Ying Tang
- Department of Ophthalmology, Wuxi Hospital of Traditional Chinese MedicineWuxi 214000, Jiangsu, China
| |
Collapse
|
16
|
Moura-Coelho N, Tavares Ferreira J, Bruxelas CP, Dutra-Medeiros M, Cunha JP, Pinto Proença R. Rho kinase inhibitors-a review on the physiology and clinical use in Ophthalmology. Graefes Arch Clin Exp Ophthalmol 2019; 257:1101-1117. [PMID: 30843105 DOI: 10.1007/s00417-019-04283-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/11/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
The Rho kinase (ROCK) signaling pathway is involved in several cellular events that include cell proliferation and cytoskeleton modulation leading to cell adhesion. The ROCK pathway in the human eye has been hypothesized to play important roles in corneal endothelial cell physiology and pathologic states. In addition, ROCK signaling has been identified as an important regulator of trabecular meshwork (TM) outflow, which is altered in glaucomatous eyes. These roles in corneal and glaucomatous disease states have led to the growing interest in the development of drugs selectively targeting this pathway (ROCK inhibitors). The authors provide a review of the literature on the pathobiology of the ROCK signaling in corneal endothelial disease, glaucoma, and vitreoretinal disease, as well as the clinical usefulness of ROCK inhibitors in Ophthalmology.
Collapse
Affiliation(s)
- Nuno Moura-Coelho
- Ophthalmology Department, Centro Hospitalar Universitário Lisboa Central (CHULC), Alameda Santo António Capuchos, 1169-050, Lisbon, Portugal. .,Faculty of Medical Sciences
- NOVA Medical School-Nova University of Lisbon (FCM
- NMS-UNL), Lisbon, Portugal. .,Instituto Português de Retina (IPR), Lisbon, Portugal. .,Associação Médica Olhar Bem (AMO Bem), Lisbon, Portugal.
| | - Joana Tavares Ferreira
- Ophthalmology Department, Centro Hospitalar Universitário Lisboa Central (CHULC), Alameda Santo António Capuchos, 1169-050, Lisbon, Portugal.,Faculty of Medical Sciences
- NOVA Medical School-Nova University of Lisbon (FCM
- NMS-UNL), Lisbon, Portugal.,Associação Médica Olhar Bem (AMO Bem), Lisbon, Portugal
| | - Carolina Pereira Bruxelas
- Faculty of Medical Sciences
- NOVA Medical School-Nova University of Lisbon (FCM
- NMS-UNL), Lisbon, Portugal.,Ophthalmology Department, Ocidental Lisbon Hospital Center (CHLO), Lisbon, Portugal
| | - Marco Dutra-Medeiros
- Ophthalmology Department, Centro Hospitalar Universitário Lisboa Central (CHULC), Alameda Santo António Capuchos, 1169-050, Lisbon, Portugal.,Faculty of Medical Sciences
- NOVA Medical School-Nova University of Lisbon (FCM
- NMS-UNL), Lisbon, Portugal.,Instituto Português de Retina (IPR), Lisbon, Portugal.,Associação Protectora dos Diabéticos de Portugal (APDP), Lisbon, Portugal
| | - João Paulo Cunha
- Ophthalmology Department, Centro Hospitalar Universitário Lisboa Central (CHULC), Alameda Santo António Capuchos, 1169-050, Lisbon, Portugal.,Faculty of Medical Sciences
- NOVA Medical School-Nova University of Lisbon (FCM
- NMS-UNL), Lisbon, Portugal.,Associação Médica Olhar Bem (AMO Bem), Lisbon, Portugal
| | - Rita Pinto Proença
- Ophthalmology Department, Centro Hospitalar Universitário Lisboa Central (CHULC), Alameda Santo António Capuchos, 1169-050, Lisbon, Portugal.,Associação Médica Olhar Bem (AMO Bem), Lisbon, Portugal.,Faculdade de Medicina de Lisboa-Universidade de Lisboa (FML-UL), Lisbon, Portugal
| |
Collapse
|
17
|
Moshirfar M, Parker L, Birdsong OC, Ronquillo YC, Hofstedt D, Shah TJ, Gomez AT, Hoopes PCS. Use of Rho kinase Inhibitors in Ophthalmology: A Review of the Literature. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2018; 7:101-111. [PMID: 30386798 PMCID: PMC6205677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The use of Rho Kinase (ROCK) inhibitors as therapeutic agents in ophthalmology has been a topic of discussion for several years, particularly in the realm of glaucoma, Fuchs' endothelial dystrophy, and diabetic retinopathy. In this review, the authors provide a detailed and comprehensive overview of the published literature on the use of Rho kinase inhibitors for the aforementioned purposes. A thorough search of several databases was conducted to find sufficient literature on ROCK inhibitors. This research found strong evidence demonstrating that inhibition of Rho kinase significantly decreases IOP, increases healing of the corneal endothelium, and decreases progression of diabetic retinopathy. The main side effect of ROCK inhibitors is conjunctival hyperemia that is often present in more than half of the patients in certain formulations. Additional clinical trials investigating the reviewed treatment options of Rho kinase inhibitors are necessary to further validate previous findings on the topic. Nonetheless, it is clear that Rho kinase inhibitors have the potential to be another potent therapeutic option for several chronic diseases in ophthalmology.
Collapse
Affiliation(s)
- Majid Moshirfar
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Utah, 50 North Medical Dr., Salt Lake City, UT 84132, USA, Utah Lions Eye Bank, Murray, UT, USA, HDR Research Center, Hoopes Vision, 11820 S. State Street Suite #200, Draper, UT 84020, USA,Correspondence to: Majid Moshirfar, MD, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Utah, 50 North Medical Dr., Salt Lake City, UT 84132, USA. E-mail:
| | - Lawsen Parker
- Utah Valley University, 800 West University Pkwy, Orem, UT, USA 84058, USA
| | - Orry C. Birdsong
- HDR Research Center, Hoopes Vision, 11820 S. State Street Suite #200, Draper, UT 84020, USA
| | - Yasmyne C. Ronquillo
- HDR Research Center, Hoopes Vision, 11820 S. State Street Suite #200, Draper, UT 84020, USA
| | - Daniel Hofstedt
- Kirksville College of Osteopathic Medicine, A.T. Still University, 800 W Jefferson St, Kirksville, MO 63501, USA
| | - Tirth J. Shah
- College of Medicine, Department of Ophthalmology, University of Arizona, Phoenix, Arizona, USA
| | - Aaron T. Gomez
- School of Medicine, University of Texas, Rio Grande Valley, Edinburg, TX, USA
| | - Phillip C Sr. Hoopes
- HDR Research Center, Hoopes Vision, 11820 S. State Street Suite #200, Draper, UT 84020, USA
| |
Collapse
|
18
|
Liu L, Tan L, Lai J, Li S, Wang DW. Enhanced Rho-kinase activity: Pathophysiological relevance in type 2 diabetes. Clin Chim Acta 2016; 462:107-110. [PMID: 27616626 DOI: 10.1016/j.cca.2016.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Accumulating evidence indicates that Rho-associated kinase (ROCK) has been involved in the pathogenesis of insulin resistance and diabetes. However, little clinical evidence for ROCK activity in diabetic patients is available. We determined whether ROCK activity is systemically enhanced in type 2 diabetic patients and associated with other components of diabetes. METHODS Seventy-eight volunteers, including 41 type 2 diabetic patients and 37 control subjects, were participated in this study. Fasting blood samples were collected to measure ROCK activity in circulating leukocyte, determined by the ratio of phosphorylation/total myosin-binding subunit (MBS), a direct downstream target of ROCK. RESULTS Compared with the control subjects, ROCK activity was significantly increased in type 2 diabetic patients (phosphorylation/total MBS ratio 0.80±0.10 vs. 0.72±0.08, P<0.01). An independent positive correlation was found between ROCK activity and HbA1c concentration in type 2 diabetic patients but not in control subjects (r=0.40, P=0.01). In multiple regression analysis, ROCK activity remains associated significantly in a positive manner with HbA1c concentration in type 2 diabetes (β=0.03, P=0.04). CONCLUSIONS These findings demonstrated that ROCK activity is significantly increased in type 2 diabetic patients and enhanced ROCK activity may reflect the progression of disease.
Collapse
Affiliation(s)
- Lei Liu
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lun Tan
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinsheng Lai
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Li
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Hollanders K, Hove IV, Sergeys J, Bergen TV, Lefevere E, Kindt N, Castermans K, Vandewalle E, van Pelt J, Moons L, Stalmans I. AMA0428, A Potent Rock Inhibitor, Attenuates Early and Late Experimental Diabetic Retinopathy. Curr Eye Res 2016; 42:260-272. [PMID: 27399806 DOI: 10.1080/02713683.2016.1183030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE Diabetic retinopathy (DR) is characterized by an early stage of inflammation and vessel leakage, and an advanced vasoproliferative stage. Also, neurodegeneration might play an important role in disease pathogenesis. The aim of this study was to investigate the effect of the Rho kinase (ROCK) inhibitor, AMA0428, on these processes. METHODS The response to ROCK inhibition by AMA0428 (1 µg) was studied in vivo using the murine model for streptozotocin (STZ)-induced diabetes, focusing on early non-proliferative DR features and the oxygen-induced retinopathy (OIR) model to investigate proliferative DR. Intravitreal (IVT) administration of AMA0428 was compared with murine anti-VEGF-R2 antibody (DC101, 6.2 µg) and placebo (H2O/PEG; 1C8). Outcome was assessed by analyzing leukostasis using fluorescein isothiocyanate coupled concanavalin A (FITC-ConA) and vessel leakage (bovine serum albumin conjugated with fluorescein isothiocyanate; FITC-BSA)/neovascularization and neurodegeneration by immunohistological approaches (hematoxylin and eosin (H&E), terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL), Brn3a). ELISA and Western blotting were employed to unravel the consequences of ROCK inhibition (1 µM AMA0428) on myosin phosphatase target protein (MYPT)-1 phosphorylation, endothelial nitric oxide synthase (eNOS) phosphorylation, and vascular endothelial growth factor (VEGF) levels in retinas of diabetic mice, on NF-κβ activity and ICAM-1 expression in endothelial cells (ECs). RESULTS In vivo, AMA0428 significantly reduced vessel leakage and neovascularization, respectively, in the STZ and OIR model, comparable to DC101 therapy. Additionally, the ROCK inhibitor decreased neurodegeneration in both models and inhibited leukostasis by 30% (p < 0.05) in the STZ model (p < 0.05), while DC101 had no positive effect on the outcome of these latter processes. ROCK activity was upregulated in the diabetic retina and AMA0428 administration resulted in decreased phospho-MYPT-1, enhanced phospho-eNOS, and reduced VEGF levels. In vitro, AMA0428 interfered with NF-κβ activity, thereby inhibiting ICAM-1 expression in ECs. CONCLUSIONS Targeting ROCK with AMA0428 effectively attenuated outcome in an early DR model (STZ) and a late vasoproliferative retinopathy model (OIR). These findings make AMA0428 a promising candidate with an additional anti-inflammatory and neuroprotective benefit for DR patients, as compared with anti-VEGF treatment.
Collapse
Affiliation(s)
- Karolien Hollanders
- a Department of Ophthalmology , KU Leuven-University of Leuven , Leuven , Belgium.,b Department of Ophthalmology , University Hospitals Ghent , Ghent , Belgium
| | - Inge Van Hove
- a Department of Ophthalmology , KU Leuven-University of Leuven , Leuven , Belgium.,c Department of Biology, KU Leuven-University of Leuven , Leuven , Belgium
| | - Jurgen Sergeys
- a Department of Ophthalmology , KU Leuven-University of Leuven , Leuven , Belgium.,c Department of Biology, KU Leuven-University of Leuven , Leuven , Belgium
| | - Tine Van Bergen
- a Department of Ophthalmology , KU Leuven-University of Leuven , Leuven , Belgium
| | - Evy Lefevere
- a Department of Ophthalmology , KU Leuven-University of Leuven , Leuven , Belgium.,c Department of Biology, KU Leuven-University of Leuven , Leuven , Belgium
| | | | | | - Evelien Vandewalle
- a Department of Ophthalmology , KU Leuven-University of Leuven , Leuven , Belgium.,e Department of Ophthalmology , University Hospitals Leuven, KU Leuven-University of Leuven , Leuven , Belgium
| | - Jos van Pelt
- f Department of Hepatology , University Hospitals Leuven, KU Leuven-University of Leuven , Leuven , Belgium
| | - Lieve Moons
- c Department of Biology, KU Leuven-University of Leuven , Leuven , Belgium
| | - Ingeborg Stalmans
- a Department of Ophthalmology , KU Leuven-University of Leuven , Leuven , Belgium.,e Department of Ophthalmology , University Hospitals Leuven, KU Leuven-University of Leuven , Leuven , Belgium
| |
Collapse
|
20
|
Celik F, Ulaş F, Ozünal ZG, Fırat T, Celebi S, Doğan U. Comparison of the effect of intravitreal bevacizumab and intravitreal fasudil on retinal VEGF, TNFα, and caspase 3 levels in an experimental diabetes model. Int J Ophthalmol 2014; 7:57-61. [PMID: 24634864 DOI: 10.3980/j.issn.2222-3959.2014.01.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/27/2013] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the influence of an intravitreal injection of bevacizumab and fasudil on the retinal vascular endothelial growth factor (VEGF), tumor necrosis factor alpha (TNFα), and caspase 3 levels in a diabetic rabbit model. METHODS The study included 6 healthy rabbits (Group 1), 6 rabbits with experimentally induced diabetes mellitus (DM) (Group 2), 7 rabbits with experimentally induced DM to which intravitreal bevacizumab was administered (Group 3), and 7 rabbits with experimentally induced DM to which intravitreal fasudil was administered (Group 4). An intravitreal injection of 1.25mg/50µL bevacizumab in the right eye of rabbits in Group 3 and an intravitreal injection of 0.0064mg/50µL fasudil in the right eye of rabbits in Group 4 were administered on day 21 after the induction of DM. The studied eyes of the rabbits were enucleated three days after the intravitreal injection. The TNFα, VEGF, and caspase 3 levels were determined using the ELISA method. RESULTS There was a statistically significant difference in the VEGF and caspase 3 levels between groups (P=0.005 and P =0.013, respectively), but the TNFα level did not differ significantly between groups (P=0.792). It was found that VEGF levels were significantly lower in Group 1 and Group 3 than in Group 2 using the Mann-Whitney U test with the Bonferroni correction (P=0.004 for both comparison). There was no statistically significant difference between other groups with regard to VEGF levels (the P value ranged between 0.015 and 0.886). Although the P values of the caspase 3 levels were 0.015 for Group 1 and Group 4, 0.038 for Group 2 and Group 3, and 0.018 for Group 3 and Group 4, these P values remained above the threshold P value of 0.0083, which was the statistically significant level for post hoc tests. CONCLUSION An intravitreal injection of bevacizumab decreased both the VEGF level, which plays a role in angiogenesis, and the caspase 3 level, which plays a role in apoptosis. Although not as effective as bevacizumab, fasudil had a beneficial effect on the VEGF levels but significantly increased the caspase 3 levels.
Collapse
Affiliation(s)
- Fatih Celik
- Department of Ophthalmology, Faculty of Medicine, Abant Izzet Baysal University, Bolu 14280, Turkey
| | - Fatih Ulaş
- Department of Ophthalmology, Faculty of Medicine, Abant Izzet Baysal University, Bolu 14280, Turkey
| | - Zeynep Güneş Ozünal
- Department of Medical Pharmacology, Faculty of Medicine, Abant Izzet Baysal University, Bolu 14280, Turkey
| | - Tülin Fırat
- Department of Histology and Embryology, Faculty of Medicine, Abant Izzet Baysal University, Bolu 14280, Turkey
| | - Serdal Celebi
- Department of Ophthalmology, Faculty of Medicine, Abant Izzet Baysal University, Bolu 14280, Turkey
| | - Umit Doğan
- Department of Ophthalmology, Faculty of Medicine, Abant Izzet Baysal University, Bolu 14280, Turkey
| |
Collapse
|
21
|
Lin G, Brownsey RW, MacLeod KM. Complex regulation of PKCβ2 and PDK-1/AKT by ROCK2 in diabetic heart. PLoS One 2014; 9:e86520. [PMID: 24466133 PMCID: PMC3896488 DOI: 10.1371/journal.pone.0086520] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/15/2013] [Indexed: 01/13/2023] Open
Abstract
Objectives The RhoA/ROCK pathway contributes to diabetic cardiomyopathy in part by promoting the sustained activation of PKCβ2 but the details of their interaction are unclear. The purpose of this study was to investigate if over-activation of ROCK in the diabetic heart leads to direct phosphorylation and activation of PKCβ2, and to determine if their interaction affects PDK-1/Akt signaling. Methods Regulation by ROCK of PKCβ2 and related kinases was investigated by Western blotting and co-immunoprecipitation in whole hearts and isolated cardiomyocytes from 12 to 14-week diabetic rats. Direct ROCK2 phosphorylation of PKCβ2 was examined in vitro. siRNA silencing was used to confirm role of ROCK2 in PKCβ2 phosphorylation in vascular smooth muscle cells cultured in high glucose. Furthermore, the effect of ROCK inhibition on GLUT4 translocation was determined in isolated cardiomyocytes by confocal microscopy. Results Expression of ROCK2 and expression and phosphorylation of PKCβ2 were increased in diabetic hearts. A physical interaction between the two kinases was demonstrated by reciprocal immunoprecipitation, while ROCK2 directly phosphorylated PKCβ2 at T641 in vitro. ROCK2 siRNA in vascular smooth muscle cells or inhibition of ROCK in diabetic hearts reduced PKCβ2 T641 phosphorylation, and this was associated with attenuation of PKCβ2 activity. PKCβ2 also formed a complex with PDK-1 and its target AKT, and ROCK inhibition resulted in upregulation of the phosphorylation of PDK-1 and AKT, and increased translocation of glucose transporter 4 (GLUT4) to the plasma membrane in diabetic hearts. Conclusion This study demonstrates that over-activation of ROCK2 contributes to diabetic cardiomyopathy by multiple mechanisms, including direct phosphorylation and activation of PKCβ2 and interference with the PDK-1-mediated phosphorylation and activation of AKT and translocation of GLUT4. This suggests that ROCK2 is a critical node in the development of diabetic cardiomyopathy and may be an effective target to improve cardiac function in diabetes.
Collapse
Affiliation(s)
- Guorong Lin
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Roger W. Brownsey
- Dept. of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Kathleen M. MacLeod
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
22
|
Abstract
This review addresses the roles of Rho/Rho-kinase (ROCK) pathway in the pathogenesis of diabetes complications. Diabetes can cause many serious complications and can result in physical disability or even increased mortality. However, there are not many effective ways to treat these complications. The small guanosine-5'-triphosphate-binding protein Rho and its downstream target Rho-kinase mediate important cellular functions, such as cell morphology, motility, secretion, proliferation, and gene expression. Recently, the Rho/Rho-kinase pathway has attracted a great deal of attention in diabetes-related research. These studies have provided evidence that the activity and gene expression of Rho-kinase are upregulated in some tissues in animal models of type 1 or type 2 diabetes and in cell lines cultured with high concentrations of glucose. Inhibitors of Rho-kinase could prevent or ameliorate the pathological changes in diabetic complications. The inhibitory effects of statins on the Rho/Rho-kinase signalling pathway may also play a role in the prevention of diabetic complications. However, the precise molecular mechanism by which the Rho/Roh-kinase pathway participates in the development or progression of diabetic complications has not been extensively investigated. This article evaluates the relationship between Rho/Roh-kinase activation and diabetic complications, as well as the roles of Roh-kinase inhibitors and statins in the complications of diabetes, with the objective of providing a novel target for the treatment of long-term diabetic complications.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Endocrinology, The Second Hospital of He Bei Medical University, Shijiazhuang, China
| | | |
Collapse
|