1
|
Shi X, Cheng X, Jiang A, Shi W, Zhu L, Mou W, Glaviano A, Liu Z, Cheng Q, Lin A, Wang L, Luo P. Immune Checkpoints in B Cells: Unlocking New Potentials in Cancer Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403423. [PMID: 39509319 DOI: 10.1002/advs.202403423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/26/2024] [Indexed: 11/15/2024]
Abstract
B cells are crucial component of humoral immunity, and their role in the tumor immune microenvironment (TME) has garnered significant attention in recent years. These cells hold great potential and application prospects in the field of tumor immunotherapy. Research has demonstrated that the TME can remodel various B cell functions, including proliferation, differentiation, antigen presentation, and antibody production, thereby invalidating the anti-tumor effects of B cells. Concurrently, numerous immune checkpoints (ICs) on the surface of B cells are upregulated. Aberrant B-cell IC signals not only impair the function of B cells themselves, but also modulate the tumor-killing effects of other immune cells, ultimately fostering an immunosuppressive TME and facilitating tumor immune escape. Blocking ICs on B cells is beneficial for reversing the immunosuppressive TME and restoring anti-tumor immune responses. In this paper, the intricate connection between B-cell ICs and the TME is delved into, emphasizing the critical role of targeting B-cell ICs in anti-tumor immunity, which may provide valuable insights for the future development of tumor immunotherapy based on B cells.
Collapse
Affiliation(s)
- Xiaoye Shi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiangshu Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road. Nangang District, Harbin, Heilongiiang, 150076, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Wenjie Shi
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, 39120, Magdeburg, Germany
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Weiming Mou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, 90123, Italy
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
2
|
Frampton S, Smith R, Ferson L, Gibson J, Hollox EJ, Cragg MS, Strefford JC. Fc gamma receptors: Their evolution, genomic architecture, genetic variation, and impact on human disease. Immunol Rev 2024; 328:65-97. [PMID: 39345014 DOI: 10.1111/imr.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Fc gamma receptors (FcγRs) are a family of receptors that bind IgG antibodies and interface at the junction of humoral and innate immunity. Precise regulation of receptor expression provides the necessary balance to achieve healthy immune homeostasis by establishing an appropriate immune threshold to limit autoimmunity but respond effectively to infection. The underlying genetics of the FCGR gene family are central to achieving this immune threshold by regulating affinity for IgG, signaling efficacy, and receptor expression. The FCGR gene locus was duplicated during evolution, retaining very high homology and resulting in a genomic region that is technically difficult to study. Here, we review the recent evolution of the gene family in mammals, its complexity and variation through copy number variation and single-nucleotide polymorphism, and impact of these on disease incidence, resolution, and therapeutic antibody efficacy. We also discuss the progress and limitations of current approaches to study the region and emphasize how new genomics technologies will likely resolve much of the current confusion in the field. This will lead to definitive conclusions on the impact of genetic variation within the FCGR gene locus on immune function and disease.
Collapse
Affiliation(s)
- Sarah Frampton
- Cancer Genomics Group, Faculty of Medicine, School of Cancer Sciences, University of Southampton, Southampton, UK
| | - Rosanna Smith
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Lili Ferson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer Sciences, University of Southampton, Southampton, UK
| | - Jane Gibson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer Sciences, University of Southampton, Southampton, UK
| | - Edward J Hollox
- Department of Genetics, Genomics and Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Jonathan C Strefford
- Cancer Genomics Group, Faculty of Medicine, School of Cancer Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
3
|
Salvà F, Saoudi N, Rodríguez M, Baraibar I, Ros J, García A, Tabernero J, Elez E. Determinants of Metastatic Colorectal Cancer With Permanent Liver- Limited Disease. Clin Colorectal Cancer 2024; 23:207-214. [PMID: 38981843 DOI: 10.1016/j.clcc.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024]
Abstract
Colorectal cancer (CRC) is a complex and genetically heterogeneous disease presenting a specific metastatic pattern, with the liver being the most common site of metastasis. Around 20%-25% of patients with CRC will develop exclusively hepatic metastatic disease throughout their disease history. With its specific characteristics and therapeutic options, liver-limited disease (LLD) should be considered as a specific entity. The identification of these patients is particularly relevant in view of the growing interest in liver transplantation in selected patients with advanced CRC. Identifying why some patients will develop only LLD remains a challenge, mainly because of a lack of a systemic understanding of this complex and interlinked phenomenon given that cancer has traditionally been investigated according to distinct physiological compartments. Recently, multidisciplinary efforts and new diagnostic tools have made it possible to study some of these complex issues in greater depth and may help identify targets and specific treatment strategies to benefit these patients. In this review we analyze the underlying biology and available tools to help clinicians better understand this increasingly common and specific disease.
Collapse
Affiliation(s)
- Francesc Salvà
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| | - Nadia Saoudi
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Marta Rodríguez
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Iosune Baraibar
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Javier Ros
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ariadna García
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Elena Elez
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
4
|
Willsmore ZN, Harris RJ, Crescioli S, Hussein K, Kakkassery H, Thapa D, Cheung A, Chauhan J, Bax HJ, Chenoweth A, Laddach R, Osborn G, McCraw A, Hoffmann RM, Nakamura M, Geh JL, MacKenzie-Ross A, Healy C, Tsoka S, Spicer JF, Papa S, Barber L, Lacy KE, Karagiannis SN. B Cells in Patients With Melanoma: Implications for Treatment With Checkpoint Inhibitor Antibodies. Front Immunol 2021; 11:622442. [PMID: 33569063 PMCID: PMC7868381 DOI: 10.3389/fimmu.2020.622442] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
The contributions of the humoral immune response to melanoma are now widely recognized, with reports of positive prognostic value ascribed to tumor-infiltrating B cells (TIL-B) and increasing evidence of B cells as key predictors of patient response to treatment. There are disparate views as to the pro- and anti-tumor roles of B cells. B cells appear to play an integral role in forming tumor-associated tertiary lymphoid structures (TLSs) which can further modulate T cell activation. Expressed antibodies may distinctly influence tumor regulation in the tumor microenvironment, with some isotypes associated with strong anti-tumor immune response and others with progressive disease. Recently, B cells have been evaluated in the context of cancer immunotherapy. Checkpoint inhibitors (CPIs), targeting T cell effector functions, have revolutionized the management of melanoma for many patients; however, there remains a need to accurately predict treatment responders. Increasing evidence suggests that B cells may not be simple bystanders to CPI immunotherapy. Mature and differentiated B cell phenotypes are key positive correlates of CPI response. Recent evidence also points to an enrichment in activatory B cell phenotypes, and the contribution of B cells to TLS formation may facilitate induction of T cell phenotypes required for response to CPI. Contrastingly, specific B cell subsets often correlate with immune-related adverse events (irAEs) in CPI. With increased appreciation of the multifaceted role of B cell immunity, novel therapeutic strategies and biomarkers can be explored and translated into the clinic to optimize CPI immunotherapy in melanoma.
Collapse
Affiliation(s)
- Zena N Willsmore
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Robert J Harris
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Khuluud Hussein
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Helen Kakkassery
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Deepika Thapa
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Anthony Cheung
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Alicia Chenoweth
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Roman Laddach
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Gabriel Osborn
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Alexa McCraw
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Ricarda M Hoffmann
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Mano Nakamura
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Jenny L Geh
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Alastair MacKenzie-Ross
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Ciaran Healy
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - James F Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Sophie Papa
- Department of Medical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.,ImmunoEngineering, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Linda Barber
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| |
Collapse
|
5
|
Abstract
The concept that progression of cancer is regulated by interactions of cancer cells with their microenvironment was postulated by Stephen Paget over a century ago. Contemporary tumour microenvironment (TME) research focuses on the identification of tumour-interacting microenvironmental constituents, such as resident or infiltrating non-tumour cells, soluble factors and extracellular matrix components, and the large variety of mechanisms by which these constituents regulate and shape the malignant phenotype of tumour cells. In this Timeline article, we review the developmental phases of the TME paradigm since its initial description. While illuminating controversies, we discuss the importance of interactions between various microenvironmental components and tumour cells and provide an overview and assessment of therapeutic opportunities and modalities by which the TME can be targeted.
Collapse
Affiliation(s)
- Shelly Maman
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Isaac P Witz
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
6
|
Abstract
The spread of cancer from a primary tumor to distant organ sites is the most devastating aspect of malignancy. Dissemination to specific organs depends upon blood flow patterns and characteristics of the distant organ environment, such as the vascular architecture, stromal cell content, and the biochemical milieu of growth factors, signaling molecules, and metabolic substrates, which can be permissive or antagonistic to metastatic colonization. Metastatic tumor cells possess intrinsic cellular properties selected for adaptation to specific organ environments, where they co-opt growth and survival signals, undergo metabolic reprogramming, and subvert resident stromal cell activities to promote extravasation, immune evasion, angiogenesis, and overt metastatic growth. Recent work and new experimental models of metastatic organotropism are uncovering crucial details of how malignant cells metastasize to specific tissues, revealing key mediators that prepare metastatic niches in specific organs and identifying new targets that offer attractive options for therapeutic intervention.
Collapse
Affiliation(s)
- Heath A. Smith
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
7
|
Abstract
Primary tumors are known to constantly shed a large number of cancer cells into systemic dissemination, yet only a tiny fraction of these cells is capable of forming overt metastases. The tremendous rate of attrition during the process of metastasis implicates the existence of a rare and unique population of metastasis-initiating cells (MICs). MICs possess advantageous traits that may originate in the primary tumor but continue to evolve during dissemination and colonization, including cellular plasticity, metabolic reprogramming, the ability to enter and exit dormancy, resistance to apoptosis, immune evasion, and co-option of other tumor and stromal cells. Better understanding of the molecular and cellular hallmarks of MICs will facilitate the development and deployment of novel therapeutic strategies.
Collapse
Affiliation(s)
- Toni Celià-Terrassa
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
8
|
Stopforth RJ, Cleary KLS, Cragg MS. Regulation of Monoclonal Antibody Immunotherapy by FcγRIIB. J Clin Immunol 2016; 36 Suppl 1:88-94. [PMID: 26922075 PMCID: PMC4891381 DOI: 10.1007/s10875-016-0247-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
Abstract
Monoclonal antibodies (mAb) are revolutionising the treatment of many different diseases. Given their differing mode of action compared to most conventional chemotherapeutics and small molecule inhibitors, they possess the potential to be independent of common modes of treatment resistance and can typically be combined readily with existing treatments without dose-limiting toxicity. However, treatments with mAb rarely result in cure and so a full understanding of how these reagents work and can be optimised is key for their subsequent improvement. Here we review how an understanding of the biology of the inhibitory Fc receptor, FcγRIIB (CD32B), is leading to the development of improved mAb treatments.
Collapse
Affiliation(s)
- Richard J Stopforth
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Kirstie L S Cleary
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Mark S Cragg
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
9
|
Tutt AL, James S, Laversin SA, Tipton TRW, Ashton-Key M, French RR, Hussain K, Vaughan AT, Dou L, Earley A, Dahal LN, Lu C, Dunscombe M, Chan HTC, Penfold CA, Kim JH, Potter EA, Mockridge CI, Roghanian A, Oldham RJ, Cox KL, Lim SH, Teige I, Frendéus B, Glennie MJ, Beers SA, Cragg MS. Development and Characterization of Monoclonal Antibodies Specific for Mouse and Human Fcγ Receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:5503-16. [PMID: 26512139 DOI: 10.4049/jimmunol.1402988] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 09/30/2015] [Indexed: 11/19/2022]
Abstract
FcγRs are key regulators of the immune response, capable of binding to the Fc portion of IgG Abs and manipulating the behavior of numerous cell types. Through a variety of receptors, isoforms, and cellular expression patterns, they are able to fine-tune and direct appropriate responses. Furthermore, they are key determinants of mAb immunotherapy, with mAb isotype and FcγR interaction governing therapeutic efficacy. Critical to understanding the biology of this complex family of receptors are reagents that are robust and highly specific for each receptor. In this study, we describe the development and characterization of mAb panels specific for both mouse and human FcγR for use in flow cytometry, immunofluorescence, and immunocytochemistry. We highlight key differences in expression between the two species and also patterns of expression that will likely impact on immunotherapeutic efficacy and translation of therapeutic agents from mouse to clinic.
Collapse
Affiliation(s)
- Alison L Tutt
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Sonya James
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Stéphanie A Laversin
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Thomas R W Tipton
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Margaret Ashton-Key
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Ruth R French
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Khiyam Hussain
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Andrew T Vaughan
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Lang Dou
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Alexander Earley
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Lekh N Dahal
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Chen Lu
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Melanie Dunscombe
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - H T Claude Chan
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Christine A Penfold
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Jinny H Kim
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Elizabeth A Potter
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - C Ian Mockridge
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Ali Roghanian
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Robert J Oldham
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Kerry L Cox
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Sean H Lim
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | | | | | - Martin J Glennie
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Stephen A Beers
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Mark S Cragg
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| |
Collapse
|
10
|
Abstract
Monoclonal antibody (mAb) immunotherapy is currently experiencing an unprecedented amount of success, delivering blockbuster sales for the pharmaceutical industry. Having experienced several false dawns and overcoming technical issues which limited progress, we are now entering a golden period where mAbs are becoming a mainstay of treatment regimes for diseases ranging from cancer to autoimmunity. In this review, we discuss how these mAbs are most likely working and focus in particular on the key receptors that they interact with to precipitate their therapeutic effects. Although their targets may vary, their engagement with Fcγ receptors (FcγRs) on numerous immune effector cells is almost universal, and here we review their roles in delivering successful immunotherapy.
Collapse
Affiliation(s)
- Lekh N Dahal
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, General Hospital, Southampton, UK
| | - Ali Roghanian
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, General Hospital, Southampton, UK
| | - Stephen A Beers
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, General Hospital, Southampton, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, General Hospital, Southampton, UK
| |
Collapse
|
11
|
Roghanian A, Cragg MS, Frendéus B. Resistance is futile: Targeting the inhibitory FcγRIIB (CD32B) to maximize immunotherapy. Oncoimmunology 2015; 5:e1069939. [PMID: 27057434 DOI: 10.1080/2162402x.2015.1069939] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 06/27/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022] Open
Abstract
Monoclonal antibodies (mAb) are central to the treatment of several types of malignancy. However, these reagents are subject to particular types of resistance. Several resistance mechanisms are regulated by the inhibitory FcγRIIB. We recently developed mAbs to block FcγRIIB and provided in vivo proof-of-concept for their ability to overcome FcγRIIB-mediated resistance.
Collapse
Affiliation(s)
- Ali Roghanian
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, USA
| | - Mark S Cragg
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital , Southampton, UK
| | - Björn Frendéus
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK; BioInvent International AB, Lund, Sweden
| |
Collapse
|
12
|
Radaelli E, Hermans E, Omodho L, Francis A, Vander Borght S, Marine JC, van den Oord J, Amant F. Spontaneous Post-Transplant Disorders in NOD.Cg- Prkdcscid Il2rgtm1Sug/JicTac (NOG) Mice Engrafted with Patient-Derived Metastatic Melanomas. PLoS One 2015; 10:e0124974. [PMID: 25996609 PMCID: PMC4440639 DOI: 10.1371/journal.pone.0124974] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/20/2015] [Indexed: 12/18/2022] Open
Abstract
Patient-derived tumor xenograft (PDTX) approach is nowadays considered a reliable preclinical model to study in vivo cancer biology and therapeutic response. NOD scid and Il2rg-deficient mice represent the "gold standard" host for the generation of PDTXs. Compared to other immunocompromised murine lines, these mice offers several advantages including higher engraftment rate, longer lifespan and improved morphological and molecular preservation of patient-derived neoplasms. Here we describe a spectrum of previously uncharacterized post-transplant disorders affecting 14/116 (12%) NOD.Cg- Prkdcscid Il2rgtm1Sug/JicTac (NOG) mice subcutaneously engrafted with patient-derived metastatic melanomas. Affected mice exhibited extensive scaling/crusting dermatitis (13/14) associated with emaciation (13/14) and poor/unsuccessful tumor engraftment (14/14). In this context, the following pathological conditions have been recognized and characterized in details: (i) immunoinflammatory disorders with features of graft versus host disease (14/14); (ii) reactive lymphoid infiltrates effacing xenografted tumors (8/14); (iii) post-transplant B cell lymphomas associated with Epstein-Barr virus reactivation (2/14). We demonstrate that all these entities are driven by co-transplanted human immune cells populating patient-derived tumor samples. Since the exploding interest in the utilization of NOD scid and Il2rg-deficient mice for the establishment of PDTX platforms, it is of uppermost importance to raise the awareness of the limitations associated with this model. The disorders here described adversely impact tumor engraftment rate and animal lifespan, potentially representing a major confounding factor in the context of efficacy and personalized therapy studies. The occurrence of these conditions in the NOG model reflects the ability of this mouse line to promote efficient engraftment of human immune cells. Co-transplanted human lymphoid cells have indeed the potential to colonize the recipient mouse initiating the post-transplant conditions here reported. On the other hand, the evidence of an immune response of human origin against the xenotransplanted melanoma opens intriguing perspectives for the establishment of suitable preclinical models of anti-melanoma immunotherapy.
Collapse
Affiliation(s)
- Enrico Radaelli
- VIB11 Center for the Biology of Disease, KU Leuven Center for Human Genetics, Leuven, Belgium
- InfraMouse, KU Leuven-VIB, Leuven, Belgium
| | - Els Hermans
- Gynaecological Oncology, UZ Leuven—Department of Oncology, KU Leuven, Leuven, Belgium
- * E-mail:
| | - Lorna Omodho
- VIB11 Center for the Biology of Disease, KU Leuven Center for Human Genetics, Leuven, Belgium
| | - Annick Francis
- VIB11 Center for the Biology of Disease, KU Leuven Center for Human Genetics, Leuven, Belgium
- InfraMouse, KU Leuven-VIB, Leuven, Belgium
| | - Sara Vander Borght
- Department of Pathology, Laboratory of Morphology and Molecular Pathology, University Hospitals of Leuven, Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB11 Center for the Biology of Disease, KU Leuven Center for Human Genetics, Leuven, Belgium
| | - Joost van den Oord
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Frédéric Amant
- Gynaecological Oncology, UZ Leuven—Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
A mouse monoclonal antibody against dengue virus type 1 Mochizuki strain targeting envelope protein domain II and displaying strongly neutralizing but not enhancing activity. J Virol 2013; 87:12828-37. [PMID: 24049185 DOI: 10.1128/jvi.01874-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dengue fever and its more severe form, dengue hemorrhagic fever, are major global concerns. Infection-enhancing antibodies are major factors hypothetically contributing to increased disease severity. In this study, we generated 26 monoclonal antibodies (MAbs) against the dengue virus type 1 Mochizuki strain. We selected this strain because a relatively large number of unique and rare amino acids were found on its envelope protein. Although most MAbs showing neutralizing activities exhibited enhancing activities at subneutralizing doses, one MAb (D1-IV-7F4 [7F4]) displayed neutralizing activities without showing enhancing activities at lower concentrations. In contrast, another MAb (D1-V-3H12 [3H12]) exhibited only enhancing activities, which were suppressed by pretreatment of cells with anti-FcγRIIa. Although antibody engineering revealed that antibody subclass significantly affected 7F4 (IgG3) and 3H12 (IgG1) activities, neutralizing/enhancing activities were also dependent on the epitope targeted by the antibody. 7F4 recognized an epitope on the envelope protein containing E118 (domain II) and had a neutralizing activity 10- to 1,000-fold stronger than the neutralizing activity of previously reported human or humanized neutralizing MAbs targeting domain I and/or domain II. An epitope-blocking enzyme-linked immunosorbent assay (ELISA) indicated that a dengue virus-immune population possessed antibodies sharing an epitope with 7F4. Our results demonstrating induction of these antibody species (7F4 and 3H12) in Mochizuki-immunized mice may have implications for dengue vaccine strategies designed to minimize induction of enhancing antibodies in vaccinated humans.
Collapse
|
14
|
Hirvinen M, Heiskanen R, Oksanen M, Pesonen S, Liikanen I, Joensuu T, Kanerva A, Cerullo V, Hemminki A. Fc-gamma receptor polymorphisms as predictive and prognostic factors in patients receiving oncolytic adenovirus treatment. J Transl Med 2013; 11:193. [PMID: 23965133 PMCID: PMC3765225 DOI: 10.1186/1479-5876-11-193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/16/2013] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Oncolytic viruses have shown potential as cancer therapeutics, but not all patients seem to benefit from therapy. Polymorphisms in Fc gamma receptors (FcgRs) lead to altered binding affinity of IgG between the receptor allotypes and therefore contribute to differences in immune defense mechanisms. Associations have been identified between FcgR polymorphisms and responsiveness to different immunotherapies. Taken together with the increasing understanding that immunological factors might determine the efficacy of oncolytic virotherapy we studied whether FcgR polymorphisms would have prognostic and/or predictive significance in the context of oncolytic adenovirus treatments. METHODS 235 patients with advanced solid tumors were genotyped for two FcgR polymorphisms, FcgRIIa-H131R (rs1801274) and FcgRIIIa-V158F (rs396991), using TaqMan based qPCR. The genotypes were correlated with patient survival and tumor imaging data. RESULTS In patients treated with oncolytic adenoviruses, overall survival was significantly shorter if the patient had an FcgRIIIa-VV/ FcgRIIa-HR (VVHR) genotype combination (P = 0,032). In contrast, patients with FFHR and FFRR genotypes had significantly longer overall survival (P = 0,004 and P = 0,006, respectively) if they were treated with GM-CSF-armed adenovirus in comparison to other viruses. Treatment of these patients with unarmed virus correlated with shorter survival (P < 0,0005 and P = 0,016, respectively). Treating FFHH individuals with CD40L-armed virus resulted in longer survival than treatment with other viruses (P = 0,047). CONCLUSIONS Our data are compatible with the hypothesis that individual differences in effector cell functions, such as NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC) and tumor antigen presentation by APCs caused by polymorphisms in FcgRs could play role in the effectiveness of oncolytic virotherapies. If confirmed in larger populations, FcgR polymorphisms could have potential as prognostic and predictive biomarkers for oncolytic adenovirus therapies to enable better selection of patients for clinical trials. Also, putative associations between genotypes, different viruses and survival implicate potentially important mechanistic issues.
Collapse
Affiliation(s)
- Mari Hirvinen
- Cancer Gene Therapy Group, Department of Pathology and Transplantation laboratory, Haartman Institute, University of Helsinki, Haartmaninkatu 3, Helsinki 00290, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
The metastasis-promoting roles of tumor-associated immune cells. J Mol Med (Berl) 2013; 91:411-29. [PMID: 23515621 DOI: 10.1007/s00109-013-1021-5] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 12/12/2022]
Abstract
Tumor metastasis is driven not only by the accumulation of intrinsic alterations in malignant cells, but also by the interactions of cancer cells with various stromal cell components of the tumor microenvironment. In particular, inflammation and infiltration of the tumor tissue by host immune cells, such as tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, have been shown to support tumor growth in addition to invasion and metastasis. Each step of tumor development, from initiation through metastatic spread, is promoted by communication between tumor and immune cells via the secretion of cytokines, growth factors, and proteases that remodel the tumor microenvironment. Invasion and metastasis require neovascularization, breakdown of the basement membrane, and remodeling of the extracellular matrix for tumor cell invasion and extravasation into the blood and lymphatic vessels. The subsequent dissemination of tumor cells to distant organ sites necessitates a treacherous journey through the vasculature, which is fostered by close association with platelets and macrophages. Additionally, the establishment of the pre-metastatic niche and specific metastasis organ tropism is fostered by neutrophils and bone marrow-derived hematopoietic immune progenitor cells and other inflammatory cytokines derived from tumor and immune cells, which alter the local environment of the tissue to promote adhesion of circulating tumor cells. This review focuses on the interactions between tumor cells and immune cells recruited to the tumor microenvironment and examines the factors allowing these cells to promote each stage of metastasis.
Collapse
|
16
|
Erez N, Coussens LM. Leukocytes as paracrine regulators of metastasis and determinants of organ-specific colonization. Int J Cancer 2011; 128:2536-44. [PMID: 21387299 DOI: 10.1002/ijc.26032] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/31/2011] [Indexed: 12/16/2022]
Abstract
It is now well recognized that tumor cell-host interactions regulate all aspects of cancer development. Amongst the various host response programs that facilitate primary cancer development, an emerging body of literature points to a critical role for leukocytes and their soluble mediators as regulating discrete events during primary tumor development and metastasis. This review focuses on the multiple aspects of leukocytes and their effector molecules as regulators of the metastatic process.
Collapse
Affiliation(s)
- Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | | |
Collapse
|