1
|
Wang S, Zhang K, Huang Q, Meng F, Deng S. TLR4 signalling in ischemia/reperfusion injury: a promising target for linking inflammation, oxidative stress and programmed cell death to improve organ transplantation outcomes. Front Immunol 2024; 15:1447060. [PMID: 39091500 PMCID: PMC11291251 DOI: 10.3389/fimmu.2024.1447060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Transplantations represent the principal therapeutic interventions for terminal organ failure, a procedure that has salvaged myriad lives annually. Ischemia/reperfusion injury (IRI) is frequently correlated with an unfavourable prognosis and is relevant for early graft dysfunction and graft survival. IRI constitutes a complex pathological state influenced by a series of factors such as oxidative stress, metabolic stress, leukocytic infiltration, programmed cell death pathways, and inflammatory immune responses. Reducing ischemia/reperfusion injury is one of the main directions of transplantation research. Toll-like receptors (TLRs) are important pattern-recognition receptors expressed on various organs that orchestrate the immune responses upon recognising PAMPs and DAMPs. Targeting the TLR4 signalling has recently been suggested as a promising approach for alleviating IRI by affecting inflammation, oxidative stress and programmed cell death (PCD). In this minireview, we summarise the role of TLR4 signalling in regulating inflammation, oxidative stress and PCD in organ transplantation and discuss their interactions during IRI. A detailed understanding of the multiple functions of TLR4 in IRI provides novel insights into developing therapies to improve organ transplantation outcomes.
Collapse
Affiliation(s)
- Sutian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kunli Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fanming Meng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Zhu Y, Chen Y, Zu Y. Leveraging a neutrophil-derived PCD signature to predict and stratify patients with acute myocardial infarction: from AI prediction to biological interpretation. J Transl Med 2024; 22:612. [PMID: 38956669 PMCID: PMC11221097 DOI: 10.1186/s12967-024-05415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Programmed cell death (PCD) has recently been implicated in modulating the removal of neutrophils recruited in acute myocardial infarction (AMI). Nonetheless, the clinical significance and biological mechanism of neutrophil-related PCD remain unexplored. METHODS We employed an integrative machine learning-based computational framework to generate a predictive neutrophil-derived PCD signature (NPCDS) within five independent microarray cohorts from the peripheral blood of AMI patients. Non-negative matrix factorization was leveraged to develop an NPCDS-based AMI subtype. To elucidate the biological mechanism underlying NPCDS, we implemented single-cell transcriptomics on Cd45+ cells isolated from the murine heart of experimental AMI. We finally conducted a Mendelian randomization (MR) study and molecular docking to investigate the therapeutic value of NPCDS on AMI. RESULTS We reported the robust and superior performance of NPCDS in AMI prediction, which contributed to an optimal combination of random forest and stepwise regression fitted on nine neutrophil-related PCD genes (MDM2, PTK2B, MYH9, IVNS1ABP, MAPK14, GNS, MYD88, TLR2, CFLAR). Two divergent NPCDS-based subtypes of AMI were revealed, in which subtype 1 was characterized as inflammation-activated with more vibrant neutrophil activities, whereas subtype 2 demonstrated the opposite. Mechanically, we unveiled the expression dynamics of NPCDS to regulate neutrophil transformation from a pro-inflammatory phase to an anti-inflammatory phase in AMI. We uncovered a significant causal association between genetic predisposition towards MDM2 expression and the risk of AMI. We also found that lidoflazine, isotetrandrine, and cepharanthine could stably target MDM2. CONCLUSION Altogether, NPCDS offers significant implications for prediction, stratification, and therapeutic management for AMI.
Collapse
Affiliation(s)
- Yihao Zhu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Yuxi Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Yao Zu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
3
|
Lasorsa F, Rutigliano M, Milella M, d’Amati A, Crocetto F, Pandolfo SD, Barone B, Ferro M, Spilotros M, Battaglia M, Ditonno P, Lucarelli G. Ischemia-Reperfusion Injury in Kidney Transplantation: Mechanisms and Potential Therapeutic Targets. Int J Mol Sci 2024; 25:4332. [PMID: 38673917 PMCID: PMC11050495 DOI: 10.3390/ijms25084332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Kidney transplantation offers a longer life expectancy and a better quality of life than dialysis to patients with end-stage kidney disease. Ischemia-reperfusion injury (IRI) is thought to be a cornerstone in delayed or reduced graft function and increases the risk of rejection by triggering the immunogenicity of the organ. IRI is an unavoidable event that happens when the blood supply is temporarily reduced and then restored to an organ. IRI is the result of several biological pathways, such as transcriptional reprogramming, apoptosis and necrosis, innate and adaptive immune responses, and endothelial dysfunction. Tubular cells mostly depend on fatty acid (FA) β-oxidation for energy production since more ATP molecules are yielded per substrate molecule than glucose oxidation. Upon ischemia-reperfusion damage, the innate and adaptive immune system activates to achieve tissue clearance and repair. Several cells, cytokines, enzymes, receptors, and ligands are known to take part in these events. The complement cascade might start even before organ procurement in deceased donors. However, additional experimental and clinical data are required to better understand the pathogenic events that take place during this complex process.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Martina Milella
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio d’Amati
- Department of Precision and Regenerative Medicine and Ionian Area-Pathology Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Felice Crocetto
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
- Department of Urology, University of L’Aquila, 67010 L’Aquila, Italy
| | - Biagio Barone
- Division of Urology, Department of Surgical Sciences, AORN Sant’Anna e San Sebastiano, 81100 Caserta, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 71013 Milan, Italy
| | - Marco Spilotros
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Michele Battaglia
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
4
|
He J, Huang L, Sun K, Li J, Han S, Gao X, Wang QQ, Yang S, Sun W, Gao H. Oleuropein alleviates myocardial ischemia-reperfusion injury by suppressing oxidative stress and excessive autophagy via TLR4/MAPK signaling pathway. Chin Med 2024; 19:59. [PMID: 38589925 PMCID: PMC11003011 DOI: 10.1186/s13020-024-00925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Myocardial ischemia/reperfusion injury (MIRI) is an important complication of reperfusion therapy, and has a lack of effective prevention and treatment methods. Oleuropein (OP) is a natural strong antioxidant with many protective effects on cardiovascular diseases, but its protective effect on MIRI has not yet been studied in depth. METHODS Tert-Butyl hydroperoxide (tBHP) was used to establish an in vitro oxidative stress model. Cell viability was detected by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) and lactate dehydrogenase (LDH). Flow cytometry and fluorescence assays were performed for evaluating the ROS levels and mitochondrial membrane potential (MMP). Immunofluorescence analysis detected the NRF2 nuclear translocation and autophagy indicators. Further, Western blotting and quantitative real-time PCR were performed to evaluate the expression levels of proteins and mRNAs. Molecular docking, CETSA, and molecular interaction analysis explored the binding between OP and TLR4. The protective effects of OP in vivo were determined using a preclinical MIRI rat model. RESULTS OP protected against tBHP-treated injury, reduced ROS levels and reversed the damaged MMP. Mechanistically, OP activated NRF2-related antioxidant pathways, inhibited autophagy and attenuated the TLR4/MAPK signaling pathway in tBHP-treated H9C2 cells with a high binding affinity to TLR4 (KD = 37.5 µM). The TLR4 inhibitor TAK242 showed a similar effect as OP. In vivo, OP could alleviate cardiac ischemia/reperfusion injury and it ameliorated adverse cardiac remodeling. Consistent with in vitro studies, OP inhibited TLR4/MAPK and autophagy pathway and activated NRF2-dependent antioxidant pathways in vivo. CONCLUSION This study shows that OP binds to TLR4 to regulate oxidative stress and autophagy for protecting damaged cardiomyocytes, supporting that OP can be a potential therapeutic agent for MIRI.
Collapse
Affiliation(s)
- Jia He
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Liting Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Kaili Sun
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Jilang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Shan Han
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Xiang Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Qin-Qin Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China
| | - Shilin Yang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China.
| | - Wen Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020, China.
| |
Collapse
|
5
|
Dawuti A, Sun S, Wang R, Gong D, Liu R, Kong D, Yuan T, Zhou J, Lu Y, Wang S, Du G, Fang L. Salvianolic acid A alleviates heart failure with preserved ejection fraction via regulating TLR/Myd88/TRAF/NF-κB and p38MAPK/CREB signaling pathways. Biomed Pharmacother 2023; 168:115837. [PMID: 37931518 DOI: 10.1016/j.biopha.2023.115837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a morbid, fatal, and common syndrome for which lack of evidence-based therapies. Salvianolic acid A (SAA), a major active ingredient of Salvia miltiorrhiza Burge, has shown potential to protect against cardiovascular diseases. This study aims to elucidate whether SAA possessed therapeutic activity against HFpEF and explore the potential mechanism. HFpEF mouse model was established infusing a combination of high-fat diet (HFD) and Nω-nitro-L-arginine methyl ester (L-NAME) for 14 weeks. After 10 weeks of feeding, HFpEF mice were given SAA (2.5, 5, 10 mg/kg) via oral gavage for four weeks. Body weight, blood pressure, blood lipids, glucose tolerance, exercise performance, cardiac systolic/diastolic function, cardiac pathophysiological changes, and inflammatory factors were assessed. Experimental results showed that SAA reduced HFpEF risk factors, such as body weight gain, glucose intolerance, lipid disorders, and increased exercise tolerance in HFpEF mice. Moreover, SAA not only relieved myocardial hypertrophy and fibrosis by reducing interventricular septal wall thickness, left ventricular posterior wall thickness, left ventricular mass, heart index, cardiomyocyte cross-sectional area and cardiac collagen content, but also improved cardiac diastolic function via reducing E/E' ratio. Finally, SAA inhibited TLR2/TLR4-mediated Myd88 activation and its downstream molecules TRAF6 and IRAK4, which decreases the release of proinflammatory cytokines and mediators through NF-κB and p38 MAPK pathways. In conclusion, SAA could attenuate cardiac inflammation and cardiac disfunction by TLR/Myd88/TRAF/NF-κB and p38MAPK/CREB signaling pathways in HFpEF mice, which provides evidence for SAA as a potential drug for treatment of HFpEF in clinic.
Collapse
Affiliation(s)
- Awaguli Dawuti
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuchan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ranran Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Difei Gong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ruiqi Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dewen Kong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Lu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shoubao Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
6
|
Luan Y, Luan Y, Jiao Y, Liu H, Huang Z, Feng Q, Pei J, Yang Y, Ren K. Broadening Horizons: Exploring mtDAMPs as a Mechanism and Potential Intervention Target in Cardiovascular Diseases. Aging Dis 2023:AD.2023.1130. [PMID: 38270118 DOI: 10.14336/ad.2023.1130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024] Open
Abstract
Cardiovascular diseases (CVDs) have been recognized as the leading cause of premature mortality and morbidity worldwide despite significant advances in therapeutics. Inflammation is a key factor in CVD progression. Once stress stimulates cells, they release cellular compartments known as damage-associated molecular patterns (DAMPs). Mitochondria can release mitochondrial DAMPs (mtDAMPs) to initiate an immune response when stimulated with cellular stress. Investigating the molecular mechanisms underlying the DAMPs that regulate CVD progression is crucial for improving CVDs. Herein, we discuss the composition and mechanism of DAMPs, the significance of mtDAMPs in cellular inflammation, the presence of mtDAMPs in different types of cells, and the main signaling pathways associated with mtDAMPs. Based on this, we determined the role of DAMPs in CVDs and the effects of mtDAMP intervention on CVD progression. By offering a fresh perspective and comprehensive insights into the molecular mechanisms of DAMPs, this review seeks to provide important theoretical foundations for developing drugs targeting CVDs.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Luan
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Yuxue Jiao
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Zhen Huang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Qi Feng
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinyan Pei
- Quality Management Department, Henan No.3 Provincial People's Hospital, Zhengzhou, China
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Zhang X, Ma L, Liu M, Zhu T, Huang Z, Xiong Y, Wang Z, Shi J. "Lifting Yang to Dredging Du Meridian Manipulation" acupuncture alleviates cerebral ischemia-reperfusion injury by mediating the NF-κB pathway. Brain Res 2023; 1816:148477. [PMID: 37414270 DOI: 10.1016/j.brainres.2023.148477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Ischemic stroke is a permanent neurological impairment resulting from the narrowing or blockage of blood vessels in the brain. The effectiveness of "Lifting Yang to Dredging Du Meridian Manipulation" (LYDD) acupuncture in clinical treatment of ischemic stroke patients has been well-established. Nevertheless, its mechanism is still uncertain. METHODS MCAO/R rat models at different time points of reperfusion (24, 36, 48 and 72 h) were constructed, and LYDD acupuncture treatment was performed. Zea-Longa score and TTC staining were used for assessing neurological impairment and cerebral infarct in rats, respectively. The pathological changes of cerebral tissue in each group were observed by HE and Nissl's staining. Cerebral tissue from each group was subjected to RNA-seq, and differentially expressed genes (DEGs) were performed for GO and KEGG enrichment analysis, and hub gene was identified based on the String database and MCODE algorithm. RESULTS LYDD acupuncture treatment significantly reduced Zea-Longa score, dry-wet weight ratio, infarct area, inflammatory factor levels (IL-1β and TNF-α), cerebral lesions, number of Nissl body and neuronal apoptosis in the MCAO/R model at different time points of reperfusion. A total of 3518 DEGs were identified in the MCAO/R model compared to the control group, and 3461 DEGs were present in the treatment group compared to the MCAO/R model, and they may be implicated in neurotransmitter transmission, synaptic membrane potential, cell junctions, inflammatory response, immune response, cell cycle, and ECM. The expression trends of BIRC3, LTBR, PLCG2, TLR4 and TRADD mRNAs in the Hub gene were consistent with the RNA-seq results, and LYDD acupuncture treatment significantly inhibited MCAO/R-induced p65 nuclear translocation. CONCLUSIONS LYDD acupuncture ameliorates cerebral ischemia-reperfusion injury by inhibiting NF-κB pathway activity.
Collapse
Affiliation(s)
- Xiahui Zhang
- Department of Acupuncture, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, No.120 Guanghua Street, Kunming, Yunnan Province 650021, China
| | - Lei Ma
- Department of Acupuncture, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, No.120 Guanghua Street, Kunming, Yunnan Province 650021, China
| | - Meifang Liu
- Department of Acupuncture, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, No.120 Guanghua Street, Kunming, Yunnan Province 650021, China
| | - Tao Zhu
- College of Acupuncture and Massage, Yunnan University of Traditional Chinese Medicine, No.1076 Yuhua Road, Kunming, Yunnan Province 650500, China
| | - Zhilin Huang
- College of Acupuncture and Massage, Yunnan University of Traditional Chinese Medicine, No.1076 Yuhua Road, Kunming, Yunnan Province 650500, China
| | - Youlong Xiong
- Department of Acupuncture, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, No.120 Guanghua Street, Kunming, Yunnan Province 650021, China
| | - Ziyi Wang
- Department of Acupuncture, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, No.120 Guanghua Street, Kunming, Yunnan Province 650021, China
| | - Jing Shi
- Department of Acupuncture, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, No.120 Guanghua Street, Kunming, Yunnan Province 650021, China.
| |
Collapse
|
8
|
Wu X, Dayanand KK, Thylur Puttalingaiah R, Punnath K, Norbury CC, Gowda DC. Different TLR signaling pathways drive pathology in experimental cerebral malaria vs. malaria-driven liver and lung pathology. J Leukoc Biol 2023; 113:471-488. [PMID: 36977632 DOI: 10.1093/jleuko/qiad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/30/2023] Open
Abstract
Malaria infection causes multiple organ-specific lethal pathologies, including cerebral malaria, and severe liver and lung pathologies by inducing strong inflammatory responses. Gene polymorphism studies suggest that TLR4 and TLR2 contribute to severe malaria, but the roles of these signaling molecules in malaria pathogenesis remain incompletely understood. We hypothesize that danger-associated molecular patterns produced in response to malaria activate TLR2 and TLR4 signaling and contribute to liver and lung pathologies. By using a mouse model of Plasmodium berghei NK65 infection, we show that the combined TLR2 and TLR4 signaling contributes to malaria liver and lung pathologies and mortality. Macrophages, neutrophils, natural killer cells, and T cells infiltrate to the livers and lungs of infected wild-type mice more than TLR2,4-/- mice. Additionally, endothelial barrier disruption, tissue necrosis, and hemorrhage were higher in the livers and lungs of infected wild-type mice than in those of TLR2,4-/- mice. Consistent with these results, the levels of chemokine production, chemokine receptor expression, and liver and lung pathologic markers were higher in infected wild-type mice than in TLR2,4-/- mice. In addition, the levels of HMGB1, a potent TLR2- and TLR4-activating danger-associated molecular pattern, were higher in livers and lungs of wild-type mice than TLR2,4-/- mice. Treatment with glycyrrhizin, an immunomodulatory agent known to inhibit HMGB1 activity, markedly reduced mortality in wild-type mice. These results suggest that TLR2 and TLR4 activation by HMGB1 and possibly other endogenously produced danger-associated molecular patterns contribute to malaria liver and lung injury via signaling mechanisms distinct from those involved in cerebral malaria pathogenesis.
Collapse
Affiliation(s)
- Xianzhu Wu
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Kiran K Dayanand
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Ramesh Thylur Puttalingaiah
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Kishore Punnath
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Christopher C Norbury
- Departments of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - D Channe Gowda
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
9
|
Mehdipour M, Park S, Huang GN. Unlocking cardiomyocyte renewal potential for myocardial regeneration therapy. J Mol Cell Cardiol 2023; 177:9-20. [PMID: 36801396 PMCID: PMC10699255 DOI: 10.1016/j.yjmcc.2023.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Cardiovascular disease remains the leading cause of mortality worldwide. Cardiomyocytes are irreversibly lost due to cardiac ischemia secondary to disease. This leads to increased cardiac fibrosis, poor contractility, cardiac hypertrophy, and subsequent life-threatening heart failure. Adult mammalian hearts exhibit notoriously low regenerative potential, further compounding the calamities described above. Neonatal mammalian hearts, on the other hand, display robust regenerative capacities. Lower vertebrates such as zebrafish and salamanders retain the ability to replenish lost cardiomyocytes throughout life. It is critical to understand the varying mechanisms that are responsible for these differences in cardiac regeneration across phylogeny and ontogeny. Adult mammalian cardiomyocyte cell cycle arrest and polyploidization have been proposed as major barriers to heart regeneration. Here we review current models about why adult mammalian cardiac regenerative potential is lost including changes in environmental oxygen levels, acquisition of endothermy, complex immune system development, and possible cancer risk tradeoffs. We also discuss recent progress and highlight conflicting reports pertaining to extrinsic and intrinsic signaling pathways that control cardiomyocyte proliferation and polyploidization in growth and regeneration. Uncovering the physiological brakes of cardiac regeneration could illuminate novel molecular targets and offer promising therapeutic strategies to treat heart failure.
Collapse
Affiliation(s)
- Melod Mehdipour
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sangsoon Park
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
10
|
Li JK, Song ZP, Hou XZ. Scutellarin ameliorates ischemia/reperfusion injury‑induced cardiomyocyte apoptosis and cardiac dysfunction via inhibition of the cGAS‑STING pathway. Exp Ther Med 2023; 25:155. [PMID: 36911381 PMCID: PMC9996299 DOI: 10.3892/etm.2023.11854] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/16/2022] [Indexed: 02/19/2023] Open
Abstract
Ischemic heart disease is a common cardiovascular disease. Scutellarin (SCU) exhibits protective effects in ischemic cardiomyocytes; however, to the best of our knowledge, the protective mechanism of SCU remains unclear. The present study was performed to investigate the protective effect of SCU on cardiomyocytes after ischemia/reperfusion (I/R) injury and the underlying mechanism. Mice were intraperitoneally injected with SCU (20 mg/kg) for 7 days before establishing the heart I/R injury model. Cardiac function was detected using small animal echocardiography, apoptotic cells were visualized using TUNEL staining, the myocardial infarct area was assessed by 2,3,5-triphenyltetrazolium chloride staining, and the protein levels of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), Bcl-2, Bax and cleaved Caspase-3 were detected by western blotting. In in vitro experiments, H9c2 cells were pretreated with SCU, RU.521 (cGAS inhibitor) and H-151 (STING inhibitor), before cell hypoxia/reoxygenation (H/R) injury. The viability of H9c2 cells was detected using a Cell Counting Kit-8 assay, the rate of apoptosis was determined by flow cytometry, and the protein expression levels of cGAS, STING, Bcl-2, Bax and cleaved Caspase-3 were detected by western blotting. It was revealed that SCU ameliorated cardiac dysfunction and apoptosis, and inhibited the activation of the cGAS-STING and Bcl-2/Bax/Caspase-3 signaling pathways in I/R-injured mice. It was also observed that SCU significantly increased cell viability and decreased apoptosis in H/R-induced H9c2 cells. Furthermore, H/R increased the expression levels of cGAS, STING and cleaved Caspase-3, and decreased the ratio of Bcl-2/Bax, which could be reversed by treatment with SCU, RU.521 and H-151. The present study demonstrated that the cGAS-STING signaling pathway may be involved in the regulation of the activation of the Bcl-2/Bax/Caspase-3 signaling pathway to mediate I/R-induced cardiomyocyte apoptosis and cardiac dysfunction, which could be ameliorated by SCU treatment.
Collapse
Affiliation(s)
- Jiu-Kang Li
- Department of Infectious Diseases, The People's Hospital of Yue Chi County, Guang'an, Sichuan 638300, P.R. China
| | - Zhi-Ping Song
- Department of Cardiovascular Medicine, The People's Hospital of Yue Chi County, Guang'an, Sichuan 638300, P.R. China
| | - Xing-Zhi Hou
- Department of Cardiovascular Medicine, The People's Hospital of Yue Chi County, Guang'an, Sichuan 638300, P.R. China
| |
Collapse
|
11
|
Bajorat R, Danckert L, Ebert F, Bancken T, Bergt S, Klawitter F, Vollmar B, Reuter DA, Schürholz T, Ehler J. The Effect of Early Application of Synthetic Peptides 19-2.5 and 19-4LF to Improve Survival and Neurological Outcome in a Mouse Model of Cardiac Arrest and Resuscitation. Biomedicines 2023; 11:biomedicines11030855. [PMID: 36979834 PMCID: PMC10045145 DOI: 10.3390/biomedicines11030855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
The synthetic antimicrobial peptides (sAMPs) Pep19-2.5 and Pep19-4LF have been shown in vitro and in vivo to reduce the release of pro-inflammatory cytokines, leading to the suppression of inflammation and immunomodulation. We hypothesized that intervention with Pep19-2.5 and Pep19-4LF immediately after cardiac arrest and resuscitation (CA-CPR) might attenuate immediate systemic inflammation, survival, and long-term outcomes in a standardized mouse model of CA-CPR. Long-term outcomes up to 28 days were assessed between a control group (saline) and two peptide intervention groups. Primarily, survival as well as neurological and cognitive parameters were assessed. In addition, systemic inflammatory molecules and specific biomarkers were analyzed in plasma as well as in brain tissue. Treatment with sAMPs did not provide any short- or long-term benefits for either survival or neurological outcomes, and no significant benefit on inflammation in the CA-CPR animal model. While no difference was found in the plasma analysis of early cytokines between the intervention groups four hours after resuscitation, a significant increase in UCH-L1, a biomarker of neuronal damage and blood–brain barrier rupture, was measured in the Pep19-4LF-treated group. The theoretical benefit of both sAMPs tested here for the treatment of post-cardiac arrest syndrome could not be proven.
Collapse
Affiliation(s)
- Rika Bajorat
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
- Correspondence:
| | - Lena Danckert
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Florian Ebert
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Theresa Bancken
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Stefan Bergt
- Department of Anesthesiology and Intensive Care Medicine, MEDICLIN Müritz-Klinikum, 17192 Waren, Germany
| | - Felix Klawitter
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brigitte Vollmar
- Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Daniel A. Reuter
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Tobias Schürholz
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Johannes Ehler
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
12
|
Chang Z, Li H. KLF9 deficiency protects the heart from inflammatory injury triggered by myocardial infarction. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:177-185. [PMID: 36815257 PMCID: PMC9968950 DOI: 10.4196/kjpp.2023.27.2.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 12/26/2022] [Indexed: 02/24/2023]
Abstract
The excessive inflammatory response induced by myocardial infarction exacerbates heart injury and leads to the development of heart failure. Recent studies have confirmed the involvement of multiple transcription factors in the modulation of cardiovascular disease processes. However, the role of KLF9 in the inflammatory response induced by cardiovascular diseases including myocardial infarction remains unclear. Here, we found that the expression of KLF9 significantly increased during myocardial infarction. Besides, we also detected high expression of KLF9 in infiltrated macrophages after myocardial infarction. Our functional studies revealed that KLF9 deficiency prevented cardiac function and adverse cardiac remodeling. Furthermore, the downregulation of KLF9 inhibited the activation of NF-κB and MAPK signaling, leading to the suppression of inflammatory responses of macrophages triggered by myocardial infarction. Mechanistically, KLF9 was directly bound to the TLR2 promoter to enhance its expression, subsequently promoting the activation of inflammation-related signaling pathways. Our results suggested that KLF9 is a pro-inflammatory transcription factor in macrophages and targeting KLF9 may be a novel therapeutic strategy for ischemic heart disease.
Collapse
Affiliation(s)
- Zhihong Chang
- Department of Cardiology, Heji Hospital of Changzhi Medical College, Changzhi 046011, China
| | - Hongkun Li
- Department of Cardiology, Heji Hospital of Changzhi Medical College, Changzhi 046011, China,Correspondence Hongkun Li, E-mail:
| |
Collapse
|
13
|
Identification of the Subtypes of Renal Ischemia-Reperfusion Injury Based on Pyroptosis-Related Genes. Biomolecules 2023; 13:biom13020275. [PMID: 36830644 PMCID: PMC9952921 DOI: 10.3390/biom13020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/29/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) often occurs in the process of kidney transplantation, which significantly impacts the subsequent treatment and prognosis of patients. The prognosis of patients with different subtypes of IRI is quite different. Therefore, in this paper, the gene expression data of multiple IRI samples were downloaded from the GEO database, and a double Laplacian orthogonal non-negative matrix factorization (DL-ONMF) algorithm was proposed to classify them. In this algorithm, various regularization constraints are added based on the non-negative matrix factorization algorithm, and the prior information is fused into the algorithm from different perspectives. The connectivity information between different samples and features is added to the algorithm by Laplacian regularization constraints on samples and features. In addition, orthogonality constraints on the basis matrix and coefficient matrix obtained by the algorithm decomposition are added to reduce the influence of redundant samples and redundant features on the results. Based on the DL-ONMF algorithm for clustering, two PRGs-related IRI isoforms were obtained in this paper. The results of immunoassays showed that the immune microenvironment was different among PRGS-related IRI types. Based on the differentially expressed PRGs between subtypes, we used LASSO and SVM-RFE algorithms to construct a diagnostic model related to renal transplantation. ROC analysis showed that the diagnostic model could predict the outcome of renal transplant patients with high accuracy. In conclusion, this paper presents an algorithm, DL-ONMF, which can identify subtypes with different disease characteristics. Comprehensive bioinformatic analysis showed that pyroptosis might affect the outcome of kidney transplantation by participating in the immune response of IRI.
Collapse
|
14
|
Vallés PG, Gil Lorenzo AF, Garcia RD, Cacciamani V, Benardon ME, Costantino VV. Toll-like Receptor 4 in Acute Kidney Injury. Int J Mol Sci 2023; 24:ijms24021415. [PMID: 36674930 PMCID: PMC9864062 DOI: 10.3390/ijms24021415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
Acute kidney injury (AKI) is a common and devastating pathologic condition, associated with considerable high morbidity and mortality. Although significant breakthroughs have been made in recent years, to this day no effective pharmacological therapies for its treatment exist. AKI is known to be connected with intrarenal and systemic inflammation. The innate immune system plays an important role as the first defense response mechanism to tissue injury. Toll-like receptor 4 (TLR4) is a well-characterized pattern recognition receptor, and increasing evidence has shown that TLR4 mediated inflammatory response, plays a pivotal role in the pathogenesis of acute kidney injury. Pathogen-associated molecular patterns (PAMPS), which are the conserved microbial motifs, are sensed by these receptors. Endogenous molecules generated during tissue injury, and labeled as damage-associated molecular pattern molecules (DAMPs), also activate pattern recognition receptors, thereby offering an understanding of sterile types of inflammation. Excessive, uncontrolled and/or sustained activation of TLR4, may lead to a chronic inflammatory state. In this review we describe the role of TLR4, its endogenous ligands and activation in the inflammatory response to ischemic/reperfusion-induced AKI and sepsis-associated AKI. The potential regeneration signaling patterns of TLR4 in acute kidney injury, are also discussed.
Collapse
Affiliation(s)
- Patricia G. Vallés
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza 5500, Argentina
- IMBECU-CONICET (Instituto de Medicina y Biología Experimental de Cuyo—Consejo Nacional de Investigaciones Científicas y Técnicas), Mendoza 5500, Argentina
- Correspondence:
| | - Andrea Fernanda Gil Lorenzo
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza 5500, Argentina
| | - Rodrigo D. Garcia
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza 5500, Argentina
| | - Valeria Cacciamani
- IMBECU-CONICET (Instituto de Medicina y Biología Experimental de Cuyo—Consejo Nacional de Investigaciones Científicas y Técnicas), Mendoza 5500, Argentina
| | - María Eugenia Benardon
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza 5500, Argentina
| | - Valeria Victoria Costantino
- IMBECU-CONICET (Instituto de Medicina y Biología Experimental de Cuyo—Consejo Nacional de Investigaciones Científicas y Técnicas), Mendoza 5500, Argentina
- Área de Biología Celular, Departamento de Morfofisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza 5500, Argentina
| |
Collapse
|
15
|
Protective effect of fatty acid amide hydrolase inhibitor URB597 and monoacylglycerol lipase inhibitor KML29 on renal ischemia-reperfusion injury via toll-like receptor 4/nuclear factor-kappa B pathway. Int Immunopharmacol 2023; 114:109586. [PMID: 36700769 DOI: 10.1016/j.intimp.2022.109586] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Arachidonoyl ethanolamide (anandamide, AEA) and 2-arachidonoylglycerol (2-AG) are the most studies endocannabinoids. AEA and 2-AG are degraded by fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) enzymes, respectively. FAAH and MAGL enzymes are widely expressed in many tissues, including kidney. Recent works have depicted that AEA and 2-AG levels are associated with ischemia-reperfusion (IR) injury. In this study, we investigated the effects of MAGL inhibitor KML29 and FAAH inhibitor URB597 against kidney IR injury. METHODS The kidneys of the rats underwent ischemia for 45 min and then reperfusion for 24 h. KML29 and URB597 were administered intraperitoneally with kidney IR to two different treatment groups. RESULTS IR application increased serum blood urea nitrogen (BUN), creatinine (Cre), interleukin-18 (IL-18), neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) levels, while these parameters were decreased following KML29 and URB597 administration. KML29 and URB597 administration also reduced the increased toll-like receptor-4 (TRL-4), phosphorylated-NF-κB, phosphorylated-IκB-α, tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β), interleukin-6 (IL-6), caspase-3 levels and histopathological damage in kidney tissue. CONCLUSIONS Our results reveal that MAGL inhibitor KML29 and FAAH inhibitor URB597 have a protective effect on kidney IR injury by preventing apoptosis and inflammation. Inhibition of MAGL and FAAH may be a new therapeutic strategy to prevent kidney IR injury.
Collapse
|
16
|
Deficiency of mindin reduces renal injury after ischemia reperfusion. Mol Med 2022; 28:152. [PMID: 36510147 PMCID: PMC9743537 DOI: 10.1186/s10020-022-00578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Acute renal injury (AKI) secondary to ischemia reperfusion (IR) injury continues to be a significant perioperative problem and there is no effective treatment. Mindin belongs to the mindin/F-spondin family and involves in inflammation, proliferation, and cell apoptosis. Previous studies have explored the biological functions of mindin in liver and brain ischemic injury, but its role in AKI is unknown. METHOD To investigate whether mindin has a pathogenic role, mindin knockout (KO) and wild-type (WT) mice were used to establish renal IR model. After 30 min of ischemia and 24 h of reperfusion, renal histology, serum creatinine, and inflammatory response were examined to assess kidney injury. In vitro, proinflammatory factors and inflammatory signaling pathways were measured in mindin overexpression or knockdown and vector cells after hypoxia/reoxygenation (HR). RESULTS Following IR, the kidney mindin level was increased in WT mice and deletion of mindin provided significant protection for mice against IR-induced renal injury as manifested by attenuated the elevation of serum creatinine and blood urea nitrogen along with less severity for histological alterations. Mindin deficiency significantly suppressed inflammatory cell infiltration, TNF-α and MCP-1 production following renal IR injury. Mechanistic studies revealed that mindin deficiency inhibits TLR4/JNK/NF-κB signaling activation. In vitro, the expression levels of TNF-α and MCP-1 were increased in mindin overexpression cells compared with vector cells following HR. Moreover, TLR4/JNK/NF-κB signaling activation was elevated in the mindin overexpression cells in response to HR stimulation while mindin knockdown inhibited the activation of TLR4/JNK/ NF-κB signaling after HR in vitro. Further study showed that mindin protein interacted directly with TLR4 protein. And more, mindin protein was confirmed to be expressed massively in renal tubule tissues of human hydronephrosis patients. CONCLUSION These data demonstrate that mindin is a critical modulator of renal IR injury through regulating inflammatory responses. TLR4/JNK/NF-κB signaling most likely mediates the biological function of mindin in this model of renal ischemia.
Collapse
|
17
|
Cianci R, Franza L, Borriello R, Pagliari D, Gasbarrini A, Gambassi G. The Role of Gut Microbiota in Heart Failure: When Friends Become Enemies. Biomedicines 2022; 10:2712. [PMID: 36359233 PMCID: PMC9687270 DOI: 10.3390/biomedicines10112712] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 10/29/2023] Open
Abstract
Heart failure is a complex health issue, with important consequences on the overall wellbeing of patients. It can occur both in acute and chronic forms and, in the latter, the immune system appears to play an important role in the pathogenesis of the disease. In particular, in the forms with preserved ejection fraction or with only mildly reduced ejection fraction, some specific associations with chronic inflammatory diseases have been observed. Another interesting aspect that is worth considering is the role of microbiota modulation, in this context: given the importance of microbiota in the modulation of immune responses, it is possible that changes in its composition may somewhat influence the progression and even the pathogenesis of heart failure. In this narrative review, we aim to examine the relationship between immunity and heart failure, with a special focus on the role of microbiota in this pathological condition.
Collapse
Affiliation(s)
- Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Laura Franza
- Emergency Medicine Unit, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Raffaele Borriello
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Danilo Pagliari
- Medical Officer of the Carabinieri Corps, Health Service of the Carabinieri General Headquarters, 00197 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
18
|
Sayed AM, Gohar OM, Abd-Alhameed EK, Hassanein EHM, Ali FEM. The importance of natural chalcones in ischemic organ damage: Comprehensive and bioinformatic analysis review. J Food Biochem 2022; 46:e14320. [PMID: 35857486 DOI: 10.1111/jfbc.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
Over the last few decades, extensive research has been conducted, yielding a detailed account of thousands of newly discovered compounds of natural origin and their biological activities, all of which have the potential to be used for a wide range of therapeutic purposes. There are multiple research papers denoting the central objective of chalcones, which have been shown to have therapeutic potential against various forms of ischemia. The various aspects of chalcones are discussed in this review regarding molecular mechanisms involved in the promising anti-ischemic potential of these chalcones. The main mechanisms involved in these protective effects are Nrf2/Akt activation and NF-κB/TLR4 suppression. Furthermore, in-silico studies were carried out to discover the probable binding of these chalcones to Keap-1 (an inhibitor of Nrf2), Akt, NF-κB, and TLR4 protein molecules. Besides, network pharmacology analysis was conducted to predict the interacting partners of these signals. The obtained results indicated that Nrf2, Akt, NF-κB, and TLR4 are involved in the beneficial anti-ischemic actions of chalcones. Conclusively, the present findings show that chalcones as anti-ischemic agents have a valid rationale. The discussed studies will provide a comprehensive viewpoint on chalcones and can help to optimize their effects in different ischemia. PRACTICAL APPLICATIONS: Ischemic organ damage is an unavoidable pathological condition with a high worldwide incidence. According to the current research progress, natural chalcones have been proved to treat and/or prevent various types of ischemic organ damage by alleviating oxidative stress, inflammation, and apoptosis by different molecular mechanisms. This article displays the comprehensive research progress and the molecular basis of ischemic organ damage pathophysiology and introduces natural chalcones' mechanism in the ischemic organ condition.
Collapse
Affiliation(s)
- Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Osama M Gohar
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
19
|
Su X, Zhou M, Li Y, Zhang J, An N, Yang F, Zhang G, Yuan C, Chen H, Wu H, Xing Y. Protective effects of natural products against myocardial ischemia/reperfusion: Mitochondria-targeted therapeutics. Biomed Pharmacother 2022; 149:112893. [PMID: 35366532 DOI: 10.1016/j.biopha.2022.112893] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with ischemic heart disease receiving reperfusion therapy still need to face left ventricular remodeling and heart failure after myocardial infarction. Reperfusion itself paradoxically leads to further cardiomyocyte death and systolic dysfunction. Ischemia/reperfusion (I/R) injury can eliminate the benefits of reperfusion therapy in patients and causes secondary myocardial injury. Mitochondrial dysfunction and structural disorder are the basic driving force of I/R injury. We summarized the basic relationship and potential mechanisms of mitochondrial injury in the development of I/R injury. Subsequently, this review summarized the natural products (NPs) that have been proven to targeting mitochondrial therapeutic effects during I/R injury in recent years and related cellular signal transduction pathways. We found that these NPs mainly protected the structural integrity of mitochondria and improve dysfunction, such as reducing mitochondrial division and fusion abnormalities, improving mitochondrial Ca2+ overload and inhibiting reactive oxygen species overproduction, thereby playing a role in protecting cardiomyocytes during I/R injury. This data would deepen the understanding of I/R-induced mitochondrial pathological process and suggested that NPs are expected to be transformed into potential therapies targeting mitochondria.
Collapse
Affiliation(s)
- Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mingyang Zhou
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yingjian Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jianzhen Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Na An
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guoxia Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chao Yuan
- Dezhou Second People's Hospital, Dezhou 253000, China
| | - Hengwen Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Hongjin Wu
- Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital, Beijing 100191, China.
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
20
|
Knijff LWD, van Kooten C, Ploeg RJ. The Effect of Hypothermic Machine Perfusion to Ameliorate Ischemia-Reperfusion Injury in Donor Organs. Front Immunol 2022; 13:848352. [PMID: 35572574 PMCID: PMC9099247 DOI: 10.3389/fimmu.2022.848352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/04/2022] [Indexed: 12/23/2022] Open
Abstract
Hypothermic machine perfusion (HMP) has become the new gold standard in clinical donor kidney preservation and a promising novel strategy in higher risk donor livers in several countries. As shown by meta-analysis for the kidney, HMP decreases the risk of delayed graft function (DGF) and improves graft survival. For the liver, HMP immediately prior to transplantation may reduce the chance of early allograft dysfunction (EAD) and reduce ischemic sequelae in the biliary tract. Ischemia-reperfusion injury (IRI), unavoidable during transplantation, can lead to massive cell death and is one of the main causes for DGF, EAD or longer term impact. Molecular mechanisms that are affected in IRI include levels of hypoxia inducible factor (HIF), induction of cell death, endothelial dysfunction and immune responses. In this review we have summarized and discussed mechanisms on how HMP can ameliorate IRI. Better insight into how HMP influences IRI in kidney and liver transplantation may lead to new therapies and improved transplant outcomes.
Collapse
Affiliation(s)
- Laura W. D. Knijff
- Nephrology, Department of Internal Medicine, Leiden University Medical Centre, Leiden, Netherlands
- Transplant Centre of the Leiden University Medical Centre, Leiden University Medical Centre, Leiden, Netherlands
| | - Cees van Kooten
- Nephrology, Department of Internal Medicine, Leiden University Medical Centre, Leiden, Netherlands
- Transplant Centre of the Leiden University Medical Centre, Leiden University Medical Centre, Leiden, Netherlands
| | - Rutger J. Ploeg
- Transplant Centre of the Leiden University Medical Centre, Leiden University Medical Centre, Leiden, Netherlands
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Penna C, Comità S, Tullio F, Alloatti G, Pagliaro P. Challenges facing the clinical translation of cardioprotection: 35 years after the discovery of ischemic preconditioning. Vascul Pharmacol 2022; 144:106995. [DOI: 10.1016/j.vph.2022.106995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/17/2022] [Accepted: 04/16/2022] [Indexed: 12/19/2022]
|
22
|
Maslov LN, Popov SV, Mukhomedzyanov AV, Naryzhnaya NV, Voronkov NS, Ryabov VV, Boshchenko AA, Khaliulin I, Prasad NR, Fu F, Pei JM, Logvinov SV, Oeltgen PR. Reperfusion Cardiac Injury: Receptors and the Signaling Mechanisms. Curr Cardiol Rev 2022; 18:63-79. [PMID: 35422224 PMCID: PMC9896422 DOI: 10.2174/1573403x18666220413121730] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 11/22/2022] Open
Abstract
It has been documented that Ca2+ overload and increased production of reactive oxygen species play a significant role in reperfusion injury (RI) of cardiomyocytes. Ischemia/reperfusion induces cell death as a result of necrosis, necroptosis, apoptosis, and possibly autophagy, pyroptosis and ferroptosis. It has also been demonstrated that the NLRP3 inflammasome is involved in RI of the heart. An increase in adrenergic system activity during the restoration of coronary perfusion negatively affected cardiac resistance to RI. Toll-like receptors are involved in RI of the heart. Angiotensin II and endothelin-1 aggravated ischemic/reperfusion injury of the heart. Activation of neutrophils, monocytes, CD4+ T-cells and platelets contributes to cardiac ischemia/reperfusion injury. Our review outlines the role of these factors in reperfusion cardiac injury.
Collapse
Affiliation(s)
- Leonid N. Maslov
- Address correspondence to this author at the Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Kyevskskaya 111A, 634012 Tomsk, Russia; Tel. +7 3822 262174; E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang X, Pham A, Kang L, Walker SA, Davidovich I, Iannotta D, TerKonda SP, Shapiro S, Talmon Y, Pham S, Wolfram J. Effects of Adipose-Derived Biogenic Nanoparticle-Associated microRNA-451a on Toll-like Receptor 4-Induced Cytokines. Pharmaceutics 2021; 14:16. [PMID: 35056912 PMCID: PMC8780819 DOI: 10.3390/pharmaceutics14010016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-released nanoparticles that transfer biomolecular content between cells. Among EV-associated biomolecules, microRNAs (miRNAs/miRs) represent one of the most important modulators of signaling pathways in recipient cells. Previous studies have shown that EVs from adipose-derived mesenchymal stromal cells (MSCs) and adipose tissue modulate inflammatory pathways in macrophages. In this study, the effects of miRNAs that are abundant in adipose tissue EVs and other biogenic nanoparticles (BiNPs) were assessed in terms of altering Toll-like receptor 4 (TLR4)-induced cytokines. TLR-4 signaling in macrophages is often triggered by pathogen or damage-induced inflammation and is associated with several diseases. This study demonstrates that miR-451a, which is abundant in adipose tissue BiNPs, suppresses pro-inflammatory cytokines and increases anti-inflammatory cytokines associated with the TLR4 pathway. Therefore, miR-451a may be partially responsible for immunomodulatory effects of adipose tissue-derived BiNPs.
Collapse
Affiliation(s)
- Xinghua Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (X.W.); (A.P.); (S.A.W.); (D.I.)
| | - Anthony Pham
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (X.W.); (A.P.); (S.A.W.); (D.I.)
| | - Lu Kang
- Department of Cardiothoracic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Sierra A. Walker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (X.W.); (A.P.); (S.A.W.); (D.I.)
| | - Irina Davidovich
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel; (I.D.); (Y.T.)
| | - Dalila Iannotta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (X.W.); (A.P.); (S.A.W.); (D.I.)
| | - Sarvam P. TerKonda
- Department of Plastic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Shane Shapiro
- Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA;
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel; (I.D.); (Y.T.)
| | - Si Pham
- Department of Cardiothoracic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Joy Wolfram
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (X.W.); (A.P.); (S.A.W.); (D.I.)
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
24
|
Liu Y, Liu L, Xing W, Sun Y. Anesthetics mediated the immunomodulatory effects via regulation of TLR signaling. Int Immunopharmacol 2021; 101:108357. [PMID: 34785143 DOI: 10.1016/j.intimp.2021.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/29/2021] [Accepted: 11/07/2021] [Indexed: 11/29/2022]
Abstract
Anesthetics have been widely used in surgery and found to suppress inflammatory injury and affect the outcomes of the surgery and diseases. In contrast, anesthetics are also found to induce neuronal injury and inflammation. However, the immune-modulation mechanism of anesthetics is still not clear. Recent studies have shown that the immune-modulation of anesthetics is associated with the regulation of toll-like receptor (TLR)-mediated signaling. Moreover, the regulation of anesthetics in TLR signaling is related to modulations of non-coding RNAs (nc RNAs). Consistently, nc RNAs are mainly divided into micro RNAs (miRs) and long non-coding RNAs (lnc RNAs), which have been found to exert regulatory effects on the immune system. In this review, we summarize the immunomodulatory functions of the widely used anesthetic agents, which are associated with regulation of TLR signaling. In addition, we also focus on the roles of nc RNAs induced by anesthetics in regulations of TLR signaling.
Collapse
Affiliation(s)
- Yan Liu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Li Liu
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Wanying Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yan Sun
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
25
|
Hebbel RP, Vercellotti GM. Multiple inducers of endothelial NOS (eNOS) dysfunction in sickle cell disease. Am J Hematol 2021; 96:1505-1517. [PMID: 34331722 PMCID: PMC9292023 DOI: 10.1002/ajh.26308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022]
Abstract
A characteristic aspect of the robust, systemic inflammatory state in sickle cell disease is dysfunction of endothelial nitric oxide synthase (eNOS). We identify 10 aberrant endothelial cell inputs, present in the specific sickle context, that are known to have the ability to cause eNOS dysfunction. These are: endothelial arginase depletion, asymmetric dimethylarginine, complement activation, endothelial glycocalyx degradation, free fatty acids, inflammatory mediators, microparticles, oxidized low density lipoproteins, reactive oxygen species, and Toll‐like receptor 4 signaling ligands. The effect of true eNOS dysfunction on clinical testing using flow‐mediated dilation can be simulated by two known examples of endothelial dysfunction mimicry (hemoglobin consumption of NO; and oxidation of smooth muscle cell soluble guanylate cyclase). This lends ambiguity to interpretation of such clinical testing. The presence of these multiple perturbing factors argues that a therapeutic approach targeting only a single injurious endothelial input (or either example of mimicry) would not be sufficiently efficacious. This would seem to argue for identifying therapeutics that directly protect eNOS function or application of multiple therapeutic approaches.
Collapse
Affiliation(s)
- Robert P. Hebbel
- Division of Hematology‐Oncology‐Transplantation, Department of Medicine University of Minnesota Medical School Minneapolis Minnesota USA
| | - Gregory M. Vercellotti
- Division of Hematology‐Oncology‐Transplantation, Department of Medicine University of Minnesota Medical School Minneapolis Minnesota USA
| |
Collapse
|
26
|
Qingfeng Wang, Yongfeng Tao. Monosialoganglioside (GM1) Attenuates Spinal Cord Injury-Induced Inflammation by Inhibiting TLR4/NF-κB Pathway. NEUROCHEM J+ 2021. [DOI: 10.1134/s181971242102015x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Al-Rashed F, Sindhu S, Al Madhoun A, Ahmad Z, AlMekhled D, Azim R, Al-Kandari S, Wahid MAA, Al-Mulla F, Ahmad R. Elevated resting heart rate as a predictor of inflammation and cardiovascular risk in healthy obese individuals. Sci Rep 2021; 11:13883. [PMID: 34230580 PMCID: PMC8260607 DOI: 10.1038/s41598-021-93449-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
The role of leukocyte inflammatory markers and toll like receptors (TLRs)2/4 in pathologies associated with elevated resting heart rate (RHR) levels in healthy obese (HO) individuals is not well elucidated. Herein, we investigated the relationship of RHR with expression of leukocyte-inflammatory markers and TLRs in HO individuals. 58-obese and 57-lean participants with no history of a major medical condition, were recruited in this study. In HO individuals, the elevated-RHR correlated positively with diastolic blood pressure, cholesterol, pro-inflammatory monocytes CD11b+CD11c+CD206− phenotype (r = 0.52, P = 0.0003) as well as with activated T cells CD8+HLA-DR+ phenotype (r = 0.27, P = 0.039). No association was found between RHR and the percentage of CD16+CD11b+ neutrophils. Interestingly, elevated RHR positively correlated with cells expressing TLR4 and TLR2 (CD14+TLR4+, r = 0.51, P ≤ 0.0001; and CD14+TLR2+, r = 0.42, P = 0.001). TLR4+ expressing cells also associated positively with the plasma concentrations of proinflammatory or vascular permeability/matrix modulatory markers including TNF-α (r = 0.36, P = 0.005), VEGF (r = 0.47, P = 0.0002), and MMP-9 (r = 0.53, P ≤ 0.0001). Multiple regression revealed that RHR is independently associated with CD14+TLR4+ monocytes and VEGF. We conclude that in HO individuals, increased CD14+TLR4+ monocytes and circulatory VEGF levels associated independently with RHR, implying that RHR monitoring could be used as a non-invasive clinical indicator to identify healthy obese individuals at an increased risk of developing inflammation and cardiovascular disease.
Collapse
Affiliation(s)
- Fatema Al-Rashed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, 15462, Dasman, Kuwait
| | - Sardar Sindhu
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Dasman, Kuwait
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Dasman, Kuwait
| | - Zunair Ahmad
- Royal College of Surgeons in Ireland, Busaiteen, Bahrain
| | - Dawood AlMekhled
- School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Rafaat Azim
- Royal College of Surgeons in Ireland, Busaiteen, Bahrain
| | - Sarah Al-Kandari
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, 15462, Dasman, Kuwait
| | | | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, 15462, Dasman, Kuwait.
| |
Collapse
|
28
|
Ashayeri Ahmadabad R, Mirzaasgari Z, Gorji A, Khaleghi Ghadiri M. Toll-Like Receptor Signaling Pathways: Novel Therapeutic Targets for Cerebrovascular Disorders. Int J Mol Sci 2021; 22:ijms22116153. [PMID: 34200356 PMCID: PMC8201279 DOI: 10.3390/ijms22116153] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs), a class of pattern recognition proteins, play an integral role in the modulation of systemic inflammatory responses. Cerebrovascular diseases (CVDs) are a group of pathological conditions that temporarily or permanently affect the brain tissue mostly via the decrease of oxygen and glucose supply. TLRs have a critical role in the activation of inflammatory cascades following hypoxic-ischemic events and subsequently contribute to neuroprotective or detrimental effects of CVD-induced neuroinflammation. The TLR signaling pathway and downstream cascades trigger immune responses via the production and release of various inflammatory mediators. The present review describes the modulatory role of the TLR signaling pathway in the inflammatory responses developed following various CVDs and discusses the potential benefits of the modulation of different TLRs in the improvement of functional outcomes after brain ischemia.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
| | - Zahra Mirzaasgari
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Department of Neurology, Iran University of Medical Sciences, Tehran 1593747811, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149 Münster, Germany
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität, 48149 Münster, Germany;
- Department of Neurology, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-8355564; Fax: +49-251-8347479
| | | |
Collapse
|
29
|
Non-Coding RNAs in Kidney Diseases: The Long and Short of Them. Int J Mol Sci 2021; 22:ijms22116077. [PMID: 34199920 PMCID: PMC8200121 DOI: 10.3390/ijms22116077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Recent progress in genomic research has highlighted the genome to be much more transcribed than expected. The formerly so-called junk DNA encodes a miscellaneous group of largely unknown RNA transcripts, which contain the long non-coding RNAs (lncRNAs) family. lncRNAs are instrumental in gene regulation. Moreover, understanding their biological roles in the physiopathology of many diseases, including renal, is a new challenge. lncRNAs regulate the effects of microRNAs (miRNA) on mRNA expression. Understanding the complex crosstalk between lncRNA–miRNA–mRNA is one of the main challenges of modern molecular biology. This review aims to summarize the role of lncRNA on kidney diseases, the molecular mechanisms involved, and their function as emerging prognostic biomarkers for both acute and chronic kidney diseases. Finally, we will also outline new therapeutic opportunities to diminish renal injury by targeting lncRNA with antisense oligonucleotides.
Collapse
|
30
|
Liu Y, Zhu X, Tong X, Tan Z. Syringin protects against cerebral ischemia/reperfusion injury via inhibiting neuroinflammation and TLR4 signaling. Perfusion 2021; 37:562-569. [PMID: 33832376 DOI: 10.1177/02676591211007025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cerebral ischemia/reperfusion injury (CI/R) is associated with high mortality and remains a large challenge in the clinic. Syringin is a bioactive compound with anti-inflammation, antioxidant, as well as neuroprotective effects. Nevertheless, whether syringin could protect against CI/R injury and its potential mechanism was still unclear. METHODS Rats were randomly divided into five groups: sham group, syringin group, CI/R group, CI/R + syringin group, and CI/R + syringin + LPS (TLR4 agonist) group. The CI/R injury rat model was established by the middle cerebral artery occlusion (MCAO). The learning and memory ability of rats was estimated by the Morris water maze test. Modified neurological severity score test (mNSS) and infarct volume were detected to assess the neuroprotective effect of syringin. ELISA and RT-qPCR were used to analyze the concentration of proinflammation cytokines and the expression of TLR4. RESULTS CI/R injury induced increased mNSS scores and decreased learning and memory ability of rats. Syringin could significantly protect against CI/R injury as it decreased the cerebral damage and improved the cognitive ability of CI/R rats. Moreover, syringin also reduced neuroinflammation of CI/R injury rats. Additionally, TLR4 was significantly upregulated in CI/R injury rats, which was suppressed by syringin. The activation of TLR4 reversed the neuroprotective effect of syringin in CI/R rats. CONCLUSION Syringin decreased the inflammation reaction and cerebral damage in CI/R injury rats. The neuroprotective effect of syringin may be correlated with the inhibition of TLR4.
Collapse
Affiliation(s)
- Yan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Mudanjiang University, Mudanjiang, Heilongjiang, China
| | - Xuyao Zhu
- Department of Imaging, Hongqi Hospital affiliated to Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Xiuxia Tong
- Department of Emergency, The Second Affliated Hospital of Mudanjiang University, Mudanjiang, Heilongjiang, China
| | - Ziqiang Tan
- Department of Pharmacy, The Second Affliated Hospital of Mudanjiang University, Mudanjiang, Heilongjiang, China
| |
Collapse
|
31
|
The Protective Effect of Anthocyanins Extracted from Aronia Melanocarpa Berry in Renal Ischemia-Reperfusion Injury in Mice. Mediators Inflamm 2021; 2021:7372893. [PMID: 33551679 PMCID: PMC7846408 DOI: 10.1155/2021/7372893] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/25/2020] [Accepted: 01/08/2021] [Indexed: 12/26/2022] Open
Abstract
Background Our previous research showed the antioxidant activity of anthocyanins extracted from Aronia melanocarpa of black chokeberry in vitro. Ischemia acute kidney injury is a significant risk in developing progressive and deterioration of renal function leading to clinic chronic kidney disease. There were many attempts to protect the kidney against this progression of renal damage. Current study was designed to examine the effect of pretreatment with three anthocyanins named cyanidin-3-arabinoside, cyanidin-3-glucodise, and cyaniding-3-galactoside against acute ischemia-reperfusion injury in mouse kidney. Methods Acute renal injury model was initiated by 30 min clamping bilateral renal pedicle and followed by 24-hour reperfusion in C57Bl/6J mice. Four groups of mice were orally pretreated in 50 mg/g/12 h for two weeks with cyanidin-3-arabinoside, cyanidin-3-glucodise, and cyaniding-3-galactoside and anthocyanins (three-cyanidin mixture), respectively, sham-control group and the renal injury-untreated groups only with saline. Results The model resulted in renal dysfunction with high serum creatinine, blood urea nitrogen, and changes in proinflammatory cytokines (TNF-ɑ, IL-1β, IL-6, and MCP-1), renal oxidative stress (SOD, GSH, and CAT), lipid peroxidation (TBARS and MDA), and apoptosis (caspase-9). Pretreatment of two weeks resulted in different extent amelioration of renal dysfunction and tubular damage and suppression of proinflammatory cytokines, oxidative stress, lipid peroxidation, and apoptosis, thus suggesting that cyanidins are potentially effective in acute renal ischemia by the decrease of inflammation, oxidative stress, and lipid peroxidation, as well as apoptosis. Conclusion the current study provided the first attempt to investigate the role of anthocyanins purified from Aronia melanocarpa berry in amelioration of acute renal failure via antioxidant and cytoprotective effects.
Collapse
|
32
|
Vázquez-Carballo C, Guerrero-Hue M, García-Caballero C, Rayego-Mateos S, Opazo-Ríos L, Morgado-Pascual JL, Herencia-Bellido C, Vallejo-Mudarra M, Cortegano I, Gaspar ML, de Andrés B, Egido J, Moreno JA. Toll-Like Receptors in Acute Kidney Injury. Int J Mol Sci 2021; 22:ijms22020816. [PMID: 33467524 PMCID: PMC7830297 DOI: 10.3390/ijms22020816] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is an important health problem, affecting 13.3 million individuals/year. It is associated with increased mortality, mainly in low- and middle-income countries, where renal replacement therapy is limited. Moreover, survivors show adverse long-term outcomes, including increased risk of developing recurrent AKI bouts, cardiovascular events, and chronic kidney disease. However, there are no specific treatments to decrease the adverse consequences of AKI. Epidemiological and preclinical studies show the pathological role of inflammation in AKI, not only at the acute phase but also in the progression to chronic kidney disease. Toll-like receptors (TLRs) are key regulators of the inflammatory response and have been associated to many cellular processes activated during AKI. For that reason, a number of anti-inflammatory agents targeting TLRs have been analyzed in preclinical studies to decrease renal damage during AKI. In this review, we updated recent knowledge about the role of TLRs, mainly TLR4, in the initiation and development of AKI as well as novel compounds targeting these molecules to diminish kidney injury associated to this pathological condition.
Collapse
Affiliation(s)
- Cristina Vázquez-Carballo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
| | - Melania Guerrero-Hue
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Cristina García-Caballero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Sandra Rayego-Mateos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
| | - Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - José Luis Morgado-Pascual
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Carmen Herencia-Bellido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
| | - Mercedes Vallejo-Mudarra
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Isabel Cortegano
- Immunobiology Department, Carlos III Health Institute, 28220 Majadahonda (Madrid), Spain; (I.C.); (M.L.G.); (B.d.A.)
| | - María Luisa Gaspar
- Immunobiology Department, Carlos III Health Institute, 28220 Majadahonda (Madrid), Spain; (I.C.); (M.L.G.); (B.d.A.)
| | - Belén de Andrés
- Immunobiology Department, Carlos III Health Institute, 28220 Majadahonda (Madrid), Spain; (I.C.); (M.L.G.); (B.d.A.)
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
- Correspondence: (J.E.); (J.A.M.); Tel.: +34-915504800 (J.E.); +34-957-218039 (J.A.M.)
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 28029 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 140471 Cordoba, Spain
- Correspondence: (J.E.); (J.A.M.); Tel.: +34-915504800 (J.E.); +34-957-218039 (J.A.M.)
| |
Collapse
|
33
|
Fan X, Elkin K, Shi Y, Zhang Z, Cheng Y, Gu J, Liang J, Wang C, Ji X. Schisandrin B improves cerebral ischemia and reduces reperfusion injury in rats through TLR4/NF-κB signaling pathway inhibition. Neurol Res 2020; 42:693-702. [PMID: 32657248 DOI: 10.1080/01616412.2020.1782079] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It has been established that poor outcomes in ischemic stroke patients are associated with the post-reperfusion inflammatory response and up-regulation of TLR4. Therefore, suppression of the TLR4 signaling pathway constitutes a potential neuroprotective therapeutic strategy. Schisandrin B, a compound extracted from Schisandra chinensis, has been shown to possess anti-inflammatory and neuroprotective properties. However, the mechanism remains unclear. In the present study, the therapeutic effect of schisandrin B was assessed following cerebral ischemia and reperfusion (I/R) injury in a model of middle cerebral artery occlusion and reperfusion (MCAO/R) in rats. The effects of schisandrin B were investigated with particular emphasis on TLR4 signal transduction and on the inflammatory response. Schisandrin B treatment conferred significant protection against MCAO/R injury, as evidenced by decreases in infarct volume, neurological score, and the number of apoptotic neurons and inflammatory signaling molecules. ABBREVIATIONS I/R: schemia/reperfusion; IL: interleukin; MCAO/R: middle cerebral artery occlusion and reperfusion; NF-κB: nuclear; TLR4: Toll-like receptor 4; TNF-α: tumor necrosis factor-α.
Collapse
Affiliation(s)
- Xingjuan Fan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University , Beijing, China.,Department of Neurology, Affiliated Hospital of Nantong University , Nantong, China
| | - Kenneth Elkin
- Department of Neurosurgery, Wayne State University School of Medicine , Detroit, MI, USA
| | - Yunwei Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University , Nantong, China
| | - Zhihong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University , Nantong, China
| | - Yaqin Cheng
- Department of Neurology, Affiliated Hospital of Nantong University , Nantong, China
| | - Jingxiao Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University , Nantong, China
| | - Jiale Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University , Nantong, China
| | - Caiping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University , Nantong, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University , Beijing, China
| |
Collapse
|
34
|
Li M, Chen F, Zhang Y, Xiong Y, Li Q, Huang H. Identification of Post-myocardial Infarction Blood Expression Signatures Using Multiple Feature Selection Strategies. Front Physiol 2020; 11:483. [PMID: 32581823 PMCID: PMC7287215 DOI: 10.3389/fphys.2020.00483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
Myocardial infarction (MI) is a type of serious heart attack in which the blood flow to the heart is suddenly interrupted, resulting in injury to the heart muscles due to a lack of oxygen supply. Although clinical diagnosis methods can be used to identify the occurrence of MI, using the changes of molecular markers or characteristic molecules in blood to characterize the early phase and later trend of MI will help us choose a more reasonable treatment plan. Previously, comparative transcriptome studies focused on finding differentially expressed genes between MI patients and healthy people. However, signature molecules altered in different phases of MI have not been well excavated. We developed a set of computational approaches integrating multiple machine learning algorithms, including Monte Carlo feature selection (MCFS), incremental feature selection (IFS), and support vector machine (SVM), to identify gene expression characteristics on different phases of MI. 134 genes were determined to serve as features for building optimal SVM classifiers to distinguish acute MI and post-MI. Subsequently, functional enrichment analyses followed by protein-protein interaction analysis on 134 genes identified several hub genes (IL1R1, TLR2, and TLR4) associated with progression of MI, which can be used as new diagnostic molecules for MI.
Collapse
Affiliation(s)
- Ming Li
- Department of Cardiology, Eastern Hospital, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Fuli Chen
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Yaling Zhang
- Department of Nephrology, Eastern Hospital, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Yan Xiong
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Qiyong Li
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Hui Huang
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| |
Collapse
|
35
|
Chen H, He Y, Chen S, Qi S, Shen J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol Res 2020; 158:104877. [PMID: 32407958 DOI: 10.1016/j.phrs.2020.104877] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress and neuroinflammation are critical pathological processes in cerebral ischemia-reperfusion injury, and their intimate interactions mediate neuronal damage, blood-brain barrier (BBB) damage and hemorrhagic transformation (HT) during ischemic stroke. We review current progress towards understanding the interactions of oxidative/nitrosative stress and inflammatory responses in ischemic brain injury. The interactions between reactive oxygen species (ROS)/reactive nitrogen species (RNS) and innate immune receptors such as TLR2/4, NOD-like receptor, RAGE, and scavenger receptors are crucial pathological mechanisms that amplify brain damage during cerebral ischemic injury. Furthermore, we review the current progress of omics and systematic biology approaches for studying complex network regulations related to oxidative/nitrosative stress and inflammation in the pathology of ischemic stroke. Targeting oxidative/nitrosative stress and neuroinflammation could be a promising therapeutic strategy for ischemic stroke treatment. We then review recent advances in discovering compounds from medicinal herbs with the bioactivities of simultaneously regulating oxidative/nitrosative stress and pro-inflammatory molecules for minimizing ischemic brain injury. These compounds include sesamin, baicalin, salvianolic acid A, 6-paradol, silymarin, apocynin, 3H-1,2-Dithiole-3-thione, (-)-epicatechin, rutin, Dl-3-N-butylphthalide, and naringin. We finally summarize recent developments of the omics and systematic biology approaches for exploring the molecular mechanisms and active compounds of Traditional Chinese Medicine (TCM) formulae with the properties of antioxidant and anti-inflammation for neuroprotection. The comprehensive omics and systematic biology approaches provide powerful tools for exploring therapeutic principles of TCM formulae and developing precision medicine for stroke treatment.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Yacong He
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Suhua Qi
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China; School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
36
|
Differential gene analysis during the development of obliterative bronchiolitis in a murine orthotopic lung transplantation model: A comprehensive transcriptome-based analysis. PLoS One 2020; 15:e0232884. [PMID: 32384121 PMCID: PMC7209239 DOI: 10.1371/journal.pone.0232884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/23/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Obliterative bronchiolitis (OB) is a known issue during minor histocompatibility antigen (mHA) disparity during lung transplantation. This study evaluated gene expression in a murine orthotropic lung transplantation model using microarray analysis. METHODS Left lungs from C57BL/10(H-2b) donor mice were transplanted into mHA-mismatched C57BL/6(H-2b) recipient mice. Three groups (OB, non-OB, and sham controls) were confirmed pathologically and analyzed. Gene expression changes in the lung grafts were determined by microarray and immunohistochemical staining, and genes were verified by quantitative PCR in the lungs and mediastinal lymph nodes (LNs). RESULTS A total of 1343 genes were upregulated in the OB lungs compared to the sham group. Significant upregulation was observed for genes related to innate, e.g. Tlr2 and CCL3 and adaptive immunity, e.g. H2-ab1 and Il-21. Positive labeling for MHC class II antigen was observed in the bronchial epithelium of OB accompanied with B cells. We found increased Tlr2, Ccl3, H2-ab1, Il-21, Ighg3, Ifng, and Pdcd1 mRNA expression in the OB lung, and increased Il-21, Ighg3, and Pdcd1 expression in the OB LNs. CONCLUSIONS Adaptive and innate immune reactions were involved in OB after lung transplantation, and genetic examination of related genes could be used for detection of OB.
Collapse
|
37
|
Zhang XY, Huang Z, Li QJ, Zhong GQ, Meng JJ, Wang DX, Tu RH. Ischemic postconditioning attenuates the inflammatory response in ischemia/reperfusion myocardium by upregulating miR‑499 and inhibiting TLR2 activation. Mol Med Rep 2020; 22:209-218. [PMID: 32377693 PMCID: PMC7248531 DOI: 10.3892/mmr.2020.11104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/25/2020] [Indexed: 12/18/2022] Open
Abstract
Toll-like receptor 2 (TLR2)-mediated myocardial inflammation serves an important role in promoting myocardial ischemic/reperfusion (I/R) injury. Previous studies have shown that miR-499 is critical for cardioprotection after ischemic postconditioning (IPostC). Therefore, the present study evaluated the protective effect of IPostC on the myocardium by inhibiting TLR2, and also assessed the involvement of microRNA (miR)-499. Rat hearts were subjected to 30 min of ischemia and 2 h of reperfusion. The IPostC was 3 cycles of 30 sec of reperfusion and 30 sec of re-occlusion prior to reperfusion. In total, 90 rats were randomly divided into six groups (n=15 per group): Sham; I/R; IPostC; miR-499 negative control adeno-associated virus (AAV) vectors + IPostC; miR-499 inhibitor AAV vectors + IPostC; and miR-499 mimic AAV vectors + IPostC. It was identified that IPostC significantly decreased the I/R-induced cardiomyocyte apoptotic index (29.4±2.03% in IPostC vs. 42.64±2.27% in I/R; P<0.05) and myocardial infarct size (48.53±2.49% in IPostC vs. 66.52±3.1% in I/R; P<0.05). Moreover, these beneficial effects were accompanied by increased miR-499 expression levels (as demonstrated by reverse transcription-quantitative PCR) in the myocardial tissue and decreased TLR2, protein kinase C (PKC), interleukin (IL)-1β and IL-6 expression levels (as demonstrated by western blotting and ELISA) in the myocardium and serum. The results indicated that IPostC + miR-499 mimics significantly inhibited inflammation and the PKC signaling pathway and enhanced the anti-inflammatory and anti-apoptotic effects of IPostC. However, IPostC + miR-499 inhibitors had the opposite effect. Therefore, it was speculated that IPostC may have a miR-499-dependent cardioprotective effect. The present results suggested that miR-499 may be involved in IPostC-mediated ischemic cardioprotection, which may occur via local and systemic TLR2 inhibition, subsequent inhibition of the PKC signaling pathway and a decrease in inflammatory cytokine release, including IL-1β and IL-6. Moreover, these effects will ultimately lead to a decrease in the myocardial apoptotic index and myocardial infarct size via the induction of the anti-apoptotic protein Bcl-2, and inhibition of the pro-apoptotic protein Bax in myocardium.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zheng Huang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qing-Jie Li
- Department of Cardiology, Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guo-Qiang Zhong
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian-Jun Meng
- Department of Geriatric Health Care Center, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Dong-Xiao Wang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rong-Hui Tu
- Guangxi Key Laboratory of Precision Medicine in Cardio‑Cerebrovascular Diseases Control and Prevention, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
38
|
Ashayeri Ahmadabad R, Khaleghi Ghadiri M, Gorji A. The role of Toll-like receptor signaling pathways in cerebrovascular disorders: the impact of spreading depolarization. J Neuroinflammation 2020; 17:108. [PMID: 32264928 PMCID: PMC7140571 DOI: 10.1186/s12974-020-01785-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
Cerebral vascular diseases (CVDs) are a group of disorders that affect the blood supply to the brain and lead to the reduction of oxygen and glucose supply to the neurons and the supporting cells. Spreading depolarization (SD), a propagating wave of neuroglial depolarization, occurs in different CVDs. A growing amount of evidence suggests that the inflammatory responses following hypoxic-ischemic insults and after SD plays a double-edged role in brain tissue injury and clinical outcome; a beneficial effect in the acute phase and a destructive role in the late phase. Toll-like receptors (TLRs) play a crucial role in the activation of inflammatory cascades and subsequent neuroprotective or harmful effects after CVDs and SD. Here, we review current data regarding the pathophysiological role of TLR signaling pathways in different CVDs and discuss the role of SD in the potentiation of the inflammatory cascade in CVDs through the modulation of TLRs.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Neuroscience research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Han SJ, Lee HT. Mechanisms and therapeutic targets of ischemic acute kidney injury. Kidney Res Clin Pract 2019; 38:427-440. [PMID: 31537053 PMCID: PMC6913588 DOI: 10.23876/j.krcp.19.062] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
Acute kidney injury (AKI) due to renal ischemia reperfusion (IR) is a major clinical problem without effective therapy and is a significant and frequent cause of morbidity and mortality during the perioperative period. Although the pathophysiology of ischemic AKI is not completely understood, several important mechanisms of renal IR-induced AKI have been studied. Renal ischemia and subsequent reperfusion injury initiates signaling cascades mediating renal cell necrosis, apoptosis, and inflammation, leading to AKI. Better understanding of the molecular and cellular pathophysiological mechanisms underlying ischemic AKI will provide more targeted approach to prevent and treat renal IR injury. In this review, we summarize important mechanisms of ischemic AKI, including renal cell death pathways and the contribution of endothelial cells, epithelial cells, and leukocytes to the inflammatory response during ischemic AKI. Additionally, we provide some updated potential therapeutic targets for the prevention or treatment of ischemic AKI, including Toll-like receptors, adenosine receptors, and peptidylarginine deiminase 4. Finally, we propose mechanisms of ischemic AKI-induced liver, intestine, and kidney dysfunction and systemic inflammation mainly mediated by Paneth cell degranulation as a potential explanation for the high mortality observed with AKI.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| |
Collapse
|
40
|
Parada E, Casas AI, Palomino-Antolin A, Gómez-Rangel V, Rubio-Navarro A, Farré-Alins V, Narros-Fernandez P, Guerrero-Hue M, Moreno JA, Rosa JM, Roda JM, Hernández-García BJ, Egea J. Early toll-like receptor 4 blockade reduces ROS and inflammation triggered by microglial pro-inflammatory phenotype in rodent and human brain ischaemia models. Br J Pharmacol 2019; 176:2764-2779. [PMID: 31074003 DOI: 10.1111/bph.14703] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Ischaemic stroke is a leading cause of death, disability, and a high unmet medical need. Post-reperfusion inflammation and an up-regulation of toll-like receptor 4 (TLR4), an upstream sensor of innate immunity, are associated with poor outcome in stroke patients. Here, we identified the therapeutic effect of targeting the LPS/TLR4 signal transduction pathway. EXPERIMENTAL APPROACH We tested the effect of the TLR4 inhibitor, eritoran (E5564) in different in vitro ischaemia-related models: human organotypic cortex culture, rat organotypic hippocampal cultures, and primary mixed glia cultures. We explored the therapeutic window of E5564 in the transient middle cerebral artery occlusion model of cerebral ischaemia in mice. KEY RESULTS In vivo, administration of E5564 1 and 4 hr post-ischaemia reduced the expression of different pro-inflammatory chemokines and cytokines, infarct volume, blood-brain barrier breakdown, and improved neuromotor function, an important clinically relevant outcome. In the human organotypic cortex culture, E5564 reduced the activation of microglia and ROS production evoked by LPS. CONCLUSION AND IMPLICATIONS TLR4 signalling has a causal role in the inflammation associated with a poor post-stroke outcome. Importantly, its inhibition by eritoran (E5564) provides neuroprotection both in vitro and in vivo, including in human tissue, suggesting a promising new therapeutic approach for ischaemic stroke.
Collapse
Affiliation(s)
- Esther Parada
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Ana I Casas
- Department of Pharmacology and Personalised Medicine, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Alejandra Palomino-Antolin
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Vanessa Gómez-Rangel
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Alfonso Rubio-Navarro
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Victor Farré-Alins
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Paloma Narros-Fernandez
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Melania Guerrero-Hue
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Antonio Moreno
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juliana M Rosa
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - José M Roda
- Servicio de Neurocirugía, Hospital Universitario La Paz, Madrid, Spain
| | | | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| |
Collapse
|
41
|
Autoimmunity in acute ischemic stroke and the role of blood-brain barrier: the dark side or the light one? Front Med 2019; 13:420-426. [PMID: 30929189 DOI: 10.1007/s11684-019-0688-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023]
Abstract
This article presents a synopsis of the current data on the mechanisms of blood-brain barrier (BBB) alteration and autoimmune response in acute ischemic stroke. Most researchers confirm the relationship between the severity of immunobiochemical changes and clinical outcome of acute ischemic stroke. Ischemic stroke is accompanied by aseptic inflammation, which alters the brain tissue and exposes the co-stimulatory molecules of the immune system and the neuronal antigens. To date, BBB is not considered the border between the immune system and central nervous system, and the local immune subsystems are found within and behind the BBB. BBB disruption contributes to the leakage of brain autoantigens and induction of secondary autoimmune response to neuronal antigens and long-term inflammation. Glymphatic system function is altered and jeopardized both in hemorrhagic and ischemic stroke types. The receptors of innate immunity (toll-like receptor-2 and toll-like receptor-4) are also involved in acute ischemia-reperfusion injury. Immune response is related to the key processes of blood clotting and fibrinolysis. At the same time, the stroke-induced immune activation may promote reparation phenomena in the brain. Subsequent research on the reduction of the acute ischemic brain injury through the target regulation of the immune response is promising.
Collapse
|
42
|
Liu L, Locascio LM, Doré S. Critical Role of Nrf2 in Experimental Ischemic Stroke. Front Pharmacol 2019; 10:153. [PMID: 30890934 PMCID: PMC6411824 DOI: 10.3389/fphar.2019.00153] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/08/2019] [Indexed: 12/28/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death and long-term disability worldwide; however, effective clinical approaches are still limited. The transcriptional factor Nrf2 is a master regulator in cellular and organismal defense against endogenous and exogenous stressors by coordinating basal and stress-inducible activation of multiple cytoprotective genes. The Nrf2 network not only tightly controls redox homeostasis but also regulates multiple intermediary metabolic processes. Therefore, targeting Nrf2 has emerged as an attractive therapeutic strategy for the prevention and treatment of CNS diseases including stroke. Here, the current understanding of the Nrf2 regulatory network is critically examined to present evidence for the contribution of Nrf2 pathway in rodent ischemic stroke models. This review outlines the literature for Nrf2 studies in preclinical stroke and focuses on the in vivo evidence for the role of Nrf2 in primary and secondary brain injuries. The dynamic change and functional importance of Nrf2 signaling, as well as Nrf2 targeted intervention, are revealed in permanent, transient, and global cerebral ischemia models. In addition, key considerations, pitfalls, and future potentials for Nrf2 studies in preclinical stroke investigation are discussed.
Collapse
Affiliation(s)
- Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Logan M Locascio
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Departments of Neurology, Psychiatry, Pharmaceutics, and Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
43
|
Ochando J, Ordikhani F, Boros P, Jordan S. The innate immune response to allotransplants: mechanisms and therapeutic potentials. Cell Mol Immunol 2019; 16:350-356. [PMID: 30804476 DOI: 10.1038/s41423-019-0216-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 02/12/2019] [Indexed: 02/08/2023] Open
Abstract
Surgical trauma and ischemia reperfusion injury (IRI) are unavoidable aspects of any solid organ transplant procedure. They trigger a multifactorial antigen-independent inflammatory process that profoundly affects both the early and long-term outcomes of the transplanted organ. The injury associated with donor organ procurement, storage, and engraftment triggers innate immune activation that inevitably results in cell death, which may occur in many different forms. Dying cells in donor grafts release damage-associated molecular patterns (DAMPs), which alert recipient innate cells, including macrophages and dendritic cells (DCs), through the activation of the complement cascade and toll-like receptors (TLRs). The long-term effect of inflammation on innate immune cells is associated with changes in cellular metabolism that skew the cells towards aerobic glycolysis, resulting in innate immune cell activation and inflammatory cytokine production. The different roles of proinflammatory cytokines in innate immune activation have been described, and these cytokines also stimulate optimal T-cell expansion during allograft rejection. Therefore, early innate immune events after organ transplantation determine the fate of the adaptive immune response. In this review, we summarize the contributions of innate immunity to allograft rejection and discuss recent studies and emerging concepts in the targeted delivery of therapeutics to modulate the innate immune system to enhance allograft survival.
Collapse
Affiliation(s)
- Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Immunología de Trasplantes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Farideh Ordikhani
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Boros
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefan Jordan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
44
|
Qiu Y, Wu Y, Zhao H, Sun H, Gao S. Maresin 1 mitigates renal ischemia/reperfusion injury in mice via inhibition of the TLR4/MAPK/NF-κB pathways and activation of the Nrf2 pathway. Drug Des Devel Ther 2019; 13:739-745. [PMID: 30863013 PMCID: PMC6388965 DOI: 10.2147/dddt.s188654] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Inflammation and oxidative stress play a crucial role in the pathogenesis of renal ischemia/reperfusion injury (IRI). Maresin 1 (MaR1), which has shown strong anti-inflammatory and antioxidant effects, was recently reported to have protective properties in several different animal models. AIM The objectives of our study were to determine whether MaR1 alleviates renal IRI and to identify the underlying mechanisms. MATERIALS AND METHODS The mouse model in this study was induced by ischemia of the left kidney for 45 minutes and by nephrectomy of the right kidney. All mice were intravenously injected with a vehicle or MaR1. Renal histopathologic changes, function, proinflammatory cytokines, and oxidative stress were assessed. The expression of proteins was measured by Western blot. RESULTS The results indicated that MaR1 markedly protected against renal IRI. The protective effects were accompanied by the reduction of histologic changes and reduction of renal dysfunction. Meanwhile, MaR1 remarkably mitigated renal IRI-induced inflammation and oxidative stress. In addition, our results showed that MaR1 significantly inhibited the expression of TLR4 and the expression of phosphorylated Erk, JNK, and P38. Furthermore, MaR1 decreased the nuclear translocation of NF-κB and increased the nuclear translocation of Nrf2. CONCLUSION MaR1 protects against renal IRI by inhibiting the TLR4/MAPK/NF-κB pathways, which mediate anti-inflammation, and by activating the Nrf2 pathway, which mediates antioxidation.
Collapse
Affiliation(s)
- Yun Qiu
- Department of Emergency Medicine, The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China,
| | - Yichen Wu
- Department of Emergency Medicine, The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China,
| | - Hongmei Zhao
- Department of Emergency Medicine, The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China,
| | - Hong Sun
- Department of Emergency Medicine, The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China,
| | - Sumin Gao
- Department of Emergency Medicine, The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China,
| |
Collapse
|
45
|
Boozari M, Butler AE, Sahebkar A. Impact of curcumin on toll-like receptors. J Cell Physiol 2019; 234:12471-12482. [PMID: 30623441 DOI: 10.1002/jcp.28103] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/02/2018] [Indexed: 12/25/2022]
Abstract
Toll-like receptors (TLRs) have a pivotal role in the activation of innate immune response and inflammation. TLRs can be divided into two subgroups including extracellular TLRs that recognize microbial membrane components (TLR1, 2, 4, 5, 6, and 10), and intracellular TLRs that recognize microbial nucleic acids (TLR3, 7, 8, and 9). Curcumin is a dietary polyphenol from Curcuma longa L. that is reputed to have diverse biological and pharmacological effects. Extensive research has defined the molecular mechanisms through which curcumin mediates its therapeutic effects. One newly defined and important target of curcumin is the TLR, where it exerts an inhibitory effect. In the current study, we focus upon the TLR antagonistic effect of curcumin and curcumin's therapeutic effect as mediated via TLR inhibition. The available evidence indicates that curcumin inhibits the extracellular TLR 2 and 4 and intracellular TLR9 and thereby exerts a therapeutic effect in diseases such as cancer, inflammation, infection, autoimmune, and ischemic disease. Curcumin effectively modulates the TLR response and thereby exerts its potent therapeutic effects.
Collapse
Affiliation(s)
- Motahare Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
46
|
Balasubramanian PK, Kim J, Son K, Durai P, Kim Y. 3,6-Dihydroxyflavone: A Potent Inhibitor with Anti-Inflammatory Activity Targeting Toll-like Receptor 2. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | - Jieun Kim
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 05029 South Korea
| | - Kkabi Son
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 05029 South Korea
| | | | - Yangmee Kim
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 05029 South Korea
| |
Collapse
|
47
|
Sun X, Luan Q, Qiu S. Valsartan prevents glycerol-induced acute kidney injury in male albino rats by downregulating TLR4 and NF-κB expression. Int J Biol Macromol 2018; 119:565-571. [DOI: 10.1016/j.ijbiomac.2018.07.149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
|
48
|
Gozdzik W, Zielinski S, Zielinska M, Ratajczak K, Skrzypczak P, Rodziewicz S, Kübler A, Löfström K, Dziegiel P, Olbromski M, Adamik B, Ryniak S, Harbut P, Albert J, Frostell C. Beneficial effects of inhaled nitric oxide with intravenous steroid in an ischemia-reperfusion model involving aortic clamping. Int J Immunopathol Pharmacol 2018; 32:394632017751486. [PMID: 29376749 PMCID: PMC5851102 DOI: 10.1177/0394632017751486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
This study evaluated the effects of inhaled nitric oxide (iNO) therapy combined
with intravenous (IV) corticosteroids on hemodynamics, selected cytokines, and
kidney messenger RNA toll-like receptor 4 (mRNA TLR4) expression in
ischemia–reperfusion injury animal model. The primary endpoint was the
evaluation of circulatory, respiratory, and renal function over time. We also
investigated the profile of selected cytokines and high-mobility group box 1
(HMGB1) protein, as well as renal mRNA TLR4 activation determined by
quantitative real-time polymerase chain reaction analysis. Pigs (n = 19) under
sevoflurane AnaConDa anesthesia/sedation were randomized and subjected to
abdominal laparotomy and alternatively suprarenal aortic cross-clamping (SRACC)
for 90 min or sham surgery: Group 1 (n = 8) iNO (80 ppm) + IV corticosteroids
(25 mg ×3) started 30 min before SRACC and continued 2 h after SRACC release,
followed with decreased iNO (30 ppm) until the end of observation, Group 2
(n = 8) 90 min SRACC, Group 3 (n = 3)—sham surgery. Renal biopsies were sampled
1 hr before SRACC and at 3 and 20 h after SRACC release. Aortic clamping
increased TLR4 mRNA expression in ischemic kidneys, but significant changes were
recorded only in the control group (P = 0.016).
Treatment with iNO and hydrocortisone reduced TLR4 mRNA expression to
pre-ischemic conditions, and the difference observed in mRNA expression was
significant between control and treatment group after 3 h (P = 0.042). Moreover, animals subjected to treatment with iNO and
hydrocortisone displayed an attenuated systemic inflammatory response and
lowered pulmonary vascular resistance plus increased oxygen delivery. The
results indicated that iNO therapy combined with IV corticosteroids improved
central and systemic hemodynamics, oxygen delivery, and diminished the systemic
inflammatory response and renal mRNA TLR4 expression.
Collapse
Affiliation(s)
- Waldemar Gozdzik
- 1 Department of Anaesthesiology and Intensive Therapy, Wrocław Medical University, Wrocław, Poland
| | - Stanisław Zielinski
- 1 Department of Anaesthesiology and Intensive Therapy, Wrocław Medical University, Wrocław, Poland
| | - Marzena Zielinska
- 1 Department of Anaesthesiology and Intensive Therapy, Wrocław Medical University, Wrocław, Poland
| | - Kornel Ratajczak
- 2 Department and Clinic of Surgery, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Piotr Skrzypczak
- 2 Department and Clinic of Surgery, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Sylwia Rodziewicz
- 2 Department and Clinic of Surgery, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Andrzej Kübler
- 1 Department of Anaesthesiology and Intensive Therapy, Wrocław Medical University, Wrocław, Poland
| | - Kalle Löfström
- 3 Department of Anesthesia and Intensive Care, Danderyd Hospital, Stockholm, Sweden
| | - Piotr Dziegiel
- 4 Department of Histology and Embryology, Wrocław Medical University, Wrocław, Poland
| | - Mateusz Olbromski
- 4 Department of Histology and Embryology, Wrocław Medical University, Wrocław, Poland
| | - Barbara Adamik
- 1 Department of Anaesthesiology and Intensive Therapy, Wrocław Medical University, Wrocław, Poland
| | - Stanislaw Ryniak
- 3 Department of Anesthesia and Intensive Care, Danderyd Hospital, Stockholm, Sweden
| | - Piotr Harbut
- 3 Department of Anesthesia and Intensive Care, Danderyd Hospital, Stockholm, Sweden
| | - Johanna Albert
- 3 Department of Anesthesia and Intensive Care, Danderyd Hospital, Stockholm, Sweden
| | - Claes Frostell
- 5 Department of Clinical Sciences at Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| |
Collapse
|
49
|
Rana AK, Singh D. Targeting glycogen synthase kinase-3 for oxidative stress and neuroinflammation: Opportunities, challenges and future directions for cerebral stroke management. Neuropharmacology 2018; 139:124-136. [DOI: 10.1016/j.neuropharm.2018.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/02/2018] [Accepted: 07/05/2018] [Indexed: 12/15/2022]
|
50
|
RAGE and TLRs as Key Targets for Antiatherosclerotic Therapy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7675286. [PMID: 30225265 PMCID: PMC6129363 DOI: 10.1155/2018/7675286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/08/2018] [Indexed: 02/08/2023]
Abstract
Receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs) are the key factors indicating a danger to the organism. They recognize the microbial origin pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). The primary response induced by PAMPs or DAMPs is inflammation. Excessive stimulation of the innate immune system occurs in arterial wall with the participation of effector cells. Persistent adaptive responses can also cause tissue damage and disease. However, inflammation mediated by the molecules innate responses is an important way in which the adaptive immune system protects us from infection. The specific detection of PAMPs and DAMPs by host receptors drives a cascade of signaling that converges at nuclear factor-κB (NF-κB) and interferon regulatory factors (IRFs) and induces the secretion of proinflammatory cytokines, type I interferon (IFN), and chemokines, which promote direct killing of the pathogen. Therefore, signaling of these receptors' pathways also appear to present new avenue for the modulation of inflammatory responses and to serve as potential novel therapeutic targets for antiatherosclerotic therapy.
Collapse
|