1
|
Masalova OV, Lesnova EI, Kalsin VA, Klimova RR, Fedorova NE, Kozlov VV, Demidova NA, Yurlov KI, Konoplyannikov MA, Nikolaeva TN, Pronin AV, Baklaushev VP, Kushch AA. Human Mesenchymal Stem Cells Modified with the NS5A Gene of Hepatitis C Virus Induce a Cellular Immune Response Exceeding the Response to DNA Immunization with This Gene. BIOLOGY 2023; 12:792. [PMID: 37372076 DOI: 10.3390/biology12060792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023]
Abstract
Hepatitis C virus (HCV) is one of the basic culprits behind chronic liver disease, which may result in cirrhosis and hepatocarcinoma. In spite of the extensive research conducted, a vaccine against HCV has not been yet created. We have obtained human mesenchymal stem cells (hMSCs) and used them for expressing the HCV NS5A protein as a model vaccination platform. Sixteen hMSC lines of a different origin were transfected with the pcNS5A-GFP plasmid to obtain genetically modified MSCs (mMSCs). The highest efficiency was obtained by the transfection of dental pulp MSCs. C57BL/6 mice were immunized intravenously with mMSCs, and the immune response was compared with the response to the pcNS5A-GFP plasmid, which was injected intramuscularly. It was shown that the antigen-specific lymphocyte proliferation and the number of IFN-γ-synthesizing cells were two to three times higher after the mMSC immunization compared to the DNA immunization. In addition, mMSCs induced more CD4+ memory T cells and an increase in the CD4+/CD8+ ratio. The results suggest that the immunostimulatory effect of mMSCs is associated with the switch of MSCs to the pro-inflammatory phenotype and a decrease in the proportion of myeloid derived suppressor cells. Thus, the possibility of using human mMSCs for the creation of a vaccine against HCV has been shown for the first time.
Collapse
Affiliation(s)
- Olga V Masalova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Ekaterina I Lesnova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Vladimir A Kalsin
- Federal Research Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency of the Russian Federation, 115682 Moscow, Russia
| | - Regina R Klimova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Natalya E Fedorova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Vyacheslav V Kozlov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Natalya A Demidova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Kirill I Yurlov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Mikhail A Konoplyannikov
- Federal Research Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency of the Russian Federation, 115682 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Tatyana N Nikolaeva
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Alexander V Pronin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Vladimir P Baklaushev
- Federal Research Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency of the Russian Federation, 115682 Moscow, Russia
| | - Alla A Kushch
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| |
Collapse
|
2
|
Agostini F, Vicinanza C, Biolo G, Spessotto P, Da Ros F, Lombardi E, Durante C, Mazzucato M. Nucleofection of Adipose Mesenchymal Stem/Stromal Cells: Improved Transfection Efficiency for GMP Grade Applications. Cells 2021; 10:cells10123412. [PMID: 34943920 PMCID: PMC8700287 DOI: 10.3390/cells10123412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Nucleofection (NF) is a safe, non-viral transfection method, compatible with Good Manufacturing Practice guidelines. Such a technique is useful to improve therapeutic effectiveness of adipose tissue mesenchymal stem cells (ASC) in clinical settings, but improvement of NF efficiency is mandatory. Supernatant rich in growth factors (SRGF) is a clinical-grade medium additive for ASC expansion. We showed a dramatically increased NF efficiency and post-transfection viability in ASC expanded in presence of SRGF (vs. fetal bovine serum). SRGF expanded ASC were characterized by increased vesicle endocytosis but lower phagocytosis properties. SRGF increased n-6/n-3 ratio, reduced membrane lipid raft occurrence, and lowered intracellular actin content in ASC. A statistical correlation between NF efficiency and lipid raft availability on cell membranes was shown, even though a direct relationship could not be demonstrated: attempts to selectively modulate lipid rafts levels were, in fact, limited by technical constraints. In conclusion, we reported for the first time that tuning clinical-grade compatible cell culture conditions can significantly improve ASC transfection efficiency by a non-viral and safe approach. A deep mechanistic characterization is extremely complex, but we can hypothesize that integrated changes in membrane structure and intracellular actin content could contribute to explain SRGF impact on ASC NF efficiency.
Collapse
Affiliation(s)
- Francesco Agostini
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
- Correspondence: ; Tel.: +39-0434-659095
| | - Carla Vicinanza
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
| | - Gianni Biolo
- Unit of Internal Medicine, Clinica Medica, Department of Medical Surgical and Health Sciences, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy;
| | - Paola Spessotto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy;
| | - Francesco Da Ros
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
| | - Elisabetta Lombardi
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
| | - Cristina Durante
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
| | - Mario Mazzucato
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
| |
Collapse
|
3
|
M T, A P, H D, H NM. Optimizing Lipofectamine LTX Complex and G-418 Concentration for Improvement of Transfection Efficiency in Human Mesenchymal Stem Cells. ARCHIVES OF RAZI INSTITUTE 2021; 76:1315-1325. [PMID: 35355771 PMCID: PMC8934093 DOI: 10.22092/ari.2021.354659.1645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/28/2021] [Indexed: 01/25/2023]
Abstract
Conventional cancer therapies, including surgery, radiotherapy, and chemotherapy, are not tumor site-specific and have cytotoxic and harmful side effects for normal cells. Mesenchymal stem cells (MSCs), due to their tumor-tropism migration property, are a promising alternative to deliver and produce antitumor agents. However, MSCs are difficult-to-transfect cells, and introducing the exogenous therapeutic gene into MSCs is challenging yet needs improvement. Transfection using chemical reagents, including Lipofectamine, is more convenient and less cytotoxic compared with different methods of introducing exogenous DNA into MSCs. Nonetheless, the major limitation of Lipofectamine is low transfection efficiency in MSCs. Therefore, the purpose of this study was to evaluate and suggest the optimum quantities of lipoplex components to enhance the transfection efficiency of human adipose tissue-derived MSCs (hASCs). Finding the best transgene expression time point and the optimum concentration of G-418 for antibiotic-based selection was another goal of this study. hASCs were transfected in a series of experiments with altering the quantities of Lipofectamine LTX® (Lip-LTX), the related "PLUS" reagent, and a plasmid DNA (pDNA) expressing the enhanced green fluorescent protein (eGFP). After transfection, the percentage of eGFP-expressing cells was evaluated using fluorescence microscopy and ImageJ software in 12-hour intervals for 48 hours. Also, the viability of hASCs exposed to different concentrations of G-418 was measured using an MTT assay. The results demonstrated that a combination of 2 µL Lip-LTX, 0.75 µL of its "PLUS" reagent, and 0.75 g pDNA (6484 bp) improve the transfection efficiency of hASCs (23.75%), and the best period for evaluation of fluorescence for these cells is 12 to 24h post-transfection. Also, the optimum concentration of G-418 for antibiotic-based selection of hASCs was 0.25mg/mL. In conclusion, this study indicates that the setting up of optimized quantities of lipoplex components and the golden time of evaluation for transgene expression could increase the possibility of transgene expression in hASCs before beginning research and clinical application. Also, the definition of optimal dose of selection antibiotic for purification of transfected hASCs seems to be necessary for maximum transgene expression effects in the cell population.
Collapse
Affiliation(s)
- Taghavi M
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parham A
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran,
Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 91779-48974, Iran
| | - Dehghani H
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran,
Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 91779-48974, Iran
| | - Naderi-Meshkin H
- Stem Cells and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture, and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran,
Welcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
4
|
Endothelial nitric oxide synthase-engineered mesenchymal stromal cells induce anti-inflammation in experimental immune models. Cytotherapy 2021; 24:262-271. [PMID: 34836820 DOI: 10.1016/j.jcyt.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) remain an area of interest in the field of regenerative medicine. Although there is clear evidence of safety, a lack of substantial efficacy has led to many MSC-based clinical trials to stall in phase 1. Therefore, potentiating MSCs with biologically relevant messenger RNA (mRNA) transcripts presents a relatively safe and efficient way to increase functionality. METHODS In this study, human bone marrow-derived MSCs were transfected with endothelial nitric oxide synthase (eNOS) mRNA and evaluated for transfection efficiency and immunosuppressive ability. To assess MSC-eNOS functionality, T-cell proliferation assays and mouse models of experimental autoimmune encephalomyelitis and graft-versus-host disease were used. RESULTS The authors found that MSC-eNOS retained MSC characteristics and exhibited significantly enhanced immunosuppressive effects compared with naive MSCs in both in vitro and in vivo models. CONCLUSIONS It is feasible to pursue eNOS mRNA transfection to potentiate the immunomodulatory capacity of MSCs for clinical applications in the future.
Collapse
|
5
|
Genetic Modification of Mesenchymal Stem Cells for Neurological Disease Therapy: What Effects Does it Have on Phenotype/Cell Behavior, Determining Their Effectiveness? Mol Diagn Ther 2021; 24:683-702. [PMID: 32926348 DOI: 10.1007/s40291-020-00491-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells are a promising tool in regenerative medicine, and their functions can be enhanced through genetic modification. Recent advances in genetic engineering provide several methods that enable gene delivery to mesenchymal stem cells. However, it remains to be decided whether genetic modification of mesenchymal stem cells by vectors carrying reporter or therapeutic genes leads to adverse effects on morphology, phenotypic profiles, and viability of transplanted cells. In this regard, we focus on the description of genetic modification methods of mesenchymal stem cells, their effectiveness, and the impact on phenotype/cell behavior/proliferation and the differentiation ability of these cells in vitro and in vivo. Furthermore, we compare the main effects of genetically modified mesenchymal stem cells with native mesenchymal stem cells when applied in the therapy of neurological diseases.
Collapse
|
6
|
Anvari S, Foroughi F, Azad M, Maali A, Alizadeh S, Ahmadi MH. Cloning and expressing of interleukine 2 in amniotic membrane-derived mesenchymal stem cells, as a potent feeder layer. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2021; 10:63-71. [PMID: 34316493 PMCID: PMC8310657 DOI: 10.22099/mbrc.2021.38845.1566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The application of mesenchymal stem cells (MSCs) is rapidly expanding due to their unique properties in cell therapy, especially as the feeder layer in the ex-vivo expansion of immune cells. Also, Interleukin 2 (IL-2) is an essential human cytokine in the expansion of hematopoietic precursors and progenitors, i.e., NK cells and T cells, while there is no endogenous expression of IL-2 in MSCs. This study aimed to examine the potency of amniotic membrane (AM)-MSCs as the IL-2 secretory cells. IL-2-containing pCMV3-C-GFPspark shuttle vector was transformed in E.coli DH5-alpha. After cloning, the plasmid DNA was extracted and transfected in isolated AM-MSCs, by lipofectamine-2000. Then, the RNA and protein expression levels of exogenous IL-2 were evaluated 3 to 15 days after transfection, using ELISA and qRT-PCR. Fluorescent microscopy and flowcytometry assays were used for evaluating the GFP-positivity of transfected AM-MSCs, as IL-2 expression control. There was a significant increase in RNA expression of exogenous IL-2 in transfected AM-MSCs in 3 to 15 days after transfection. (p<0.001) Also, IL-2 concentration released in the medium was increased in 3rd day after transfection (611 pg/ml). However, the RNA and protein expression of IL-2 was reduced through passing the time. The results show AM-MSC is a suitable host for the expression and secretion of IL-2 as a critical cytokine in the ex-vivo expansion of hematopoietic precursors and progenitors, i.e., NK cells and T cells. Also, the survival time of IL-2 expression in AM-MSCs was long enough for use as a feeder layer.
Collapse
Affiliation(s)
- Saeid Anvari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farshad Foroughi
- Department of Immunology, School of Medicine, Qazvin University of Medical Sciences
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhosein Maali
- Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - SafarAli Alizadeh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Hossein Ahmadi
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
7
|
Flanagan M, Pathak I, Gan Q, Winter L, Emnet R, Akel S, Montaño AM. Umbilical mesenchymal stem cell-derived extracellular vesicles as enzyme delivery vehicle to treat Morquio A fibroblasts. Stem Cell Res Ther 2021; 12:276. [PMID: 33957983 PMCID: PMC8101245 DOI: 10.1186/s13287-021-02355-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mucopolysaccharidosis IVA (Morquio A syndrome) is a lysosomal storage disease caused by the deficiency of enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS), which results in the accumulation of the glycosaminoglycans (GAGs), keratan sulfate, and chondroitin-6-sulfate in the lysosomes of all tissues causing systemic dysfunction. Current treatments include enzyme replacement therapy (ERT) which can treat only certain aspects of the disease such as endurance-related biological endpoints. A key challenge in ERT is ineffective enzyme uptake in avascular tissues, which makes the treatment of the corneal, cartilage, and heart valvular tissue difficult. The aim of this study was to culture human umbilical mesenchymal stem cells (UMSC), demonstrate presence of GALNS enzyme activity within the extracellular vesicles (EVs) derived from these UMSC, and study how these secreted EVs are taken up by GALNS-deficient cells and used by the deficient cell's lysosomes. METHODS We obtained and cultured UMSC from the umbilical cord tissue from anonymous donors from the Saint Louis Cord Blood Bank. We characterized UMSC cell surface markers to confirm phenotype by cell sorting analyses. In addition, we confirmed that UMSC secrete GALNS enzyme creating conditioned media for co-culture experiments with GALNS deficient cells. Lastly, we isolated EVs derived from UMSC by ultracentrifugation to confirm source of GALNS enzyme. RESULTS Co-culture and confocal microscopy experiments indicated that the lysosomal content from UMSC migrated to deficient cells as evidenced by the peak signal intensity occurring at 15 min. EVs released by UMSC were characterized indicating that the EVs contained the active GALNS enzyme. Uptake of GALNS within EVs by deficient fibroblasts was not affected by mannose-6-phosphate (M6P) inhibition, suggesting that EV uptake by these fibroblasts is gradual and might be mediated by a different means than the M6P receptor. CONCLUSIONS UMSC can deliver EVs containing functional GALNS enzyme to deficient cells. This enzyme delivery method, which was unaffected by M6P inhibition, can function as a novel technique for reducing GAG accumulation in cells in avascular tissues, thereby providing a potential treatment option for Morquio A syndrome.
Collapse
Affiliation(s)
- Michael Flanagan
- Department of Pediatrics, School of Medicine, Saint Louis University, 1100 South Grand Blvd., Room 313, St. Louis, MO, 63104, USA
| | - Isha Pathak
- School of Medicine, Saint Louis University, Saint Louis, Missouri, USA
| | - Qi Gan
- Department of Pediatrics, School of Medicine, Saint Louis University, 1100 South Grand Blvd., Room 313, St. Louis, MO, 63104, USA
| | - Linda Winter
- Department of Pediatrics, School of Medicine, Saint Louis University, 1100 South Grand Blvd., Room 313, St. Louis, MO, 63104, USA
| | - Ryan Emnet
- St. Louis Cord Blood Bank, SSM Cardinal Glennon Children's Medical Center, St Louis, MO, USA
| | - Salem Akel
- St. Louis Cord Blood Bank, SSM Cardinal Glennon Children's Medical Center, St Louis, MO, USA
| | - Adriana M Montaño
- Department of Pediatrics, School of Medicine, Saint Louis University, 1100 South Grand Blvd., Room 313, St. Louis, MO, 63104, USA.
- Department of Biochemistry and Molecular Biology, School of Medicine, Saint Louis University, Saint Louis, Missouri, USA.
| |
Collapse
|
8
|
Azuaje-Hualde E, Rosique M, Calatayud-Sanchez A, Benito-Lopez F, M de Pancorbo M, Basabe-Desmonts L. Continuous monitoring of cell transfection efficiency with micropatterned substrates. Biotechnol Bioeng 2021; 118:2626-2636. [PMID: 33837978 DOI: 10.1002/bit.27783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/19/2021] [Accepted: 04/07/2021] [Indexed: 11/09/2022]
Abstract
The effect of cell-cell contact on gene transfection is mainly unknown. Usually, transfection is carried out in batch cell cultures without control over cellular interactions, and efficiency analysis relies on complex and expensive protocols commonly involving flow cytometry as the final analytical step. Novel platforms and cell patterning are being studied to control cellular interactions and improve quantification methods. In this study, we report the use of surface patterning of fibronectin for the generation of two types of mesenchymal stromal cell patterns: single-cell patterns without cell-to-cell contact, and small cell-colony patterns. Both scenarios allowed the integration of the full transfection process and the continuous monitoring of thousands of individualized events by fluorescence microscopy. Our results showed that cell-to-cell contact clearly affected the transfection, as single cells presented a maximum transfection peak 6 h earlier and had a 10% higher transfection efficiency than cells with cell-to-cell contact.
Collapse
Affiliation(s)
- Enrique Azuaje-Hualde
- Microfluidics Cluster UPV/EHU, BIOMICs microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Melania Rosique
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Alba Calatayud-Sanchez
- Microfluidics Cluster UPV/EHU, BIOMICs microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Leioa, Spain.,Bioaraba Health Research Institute, Microfluidics Cluster UPV/EHU, Vitoria-Gasteiz, Spain.,BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHU, BIOMICs microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Microfluidics Cluster UPV/EHU, Vitoria-Gasteiz, Spain.,BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Spain.,Basque Foundation of Science, IKERBASQUE, María Díaz Haroko Kalea, Bilbao, Spain
| |
Collapse
|
9
|
Thapa RK, Diep DB, Tønnesen HH. Nanomedicine-based antimicrobial peptide delivery for bacterial infections: recent advances and future prospects. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00525-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Abstract
Background
Antimicrobial peptides (AMPs) have gained wide interest as viable alternatives to antibiotics owing to their potent antimicrobial effects and the low propensity of resistance development. However, their physicochemical properties (solubility, charge, hydrophobicity/hydrophilicity), stability issues (proteolytic or enzymatic degradation, aggregation, chemical degradation), and toxicities (interactions with blood components or cellular toxicities) limit their therapeutic applications.
Area covered
Nanomedicine-based therapeutic delivery is an emerging concept. The AMP loaded nanoparticles have been prepared and investigated for their antimicrobial effects. In this review, we will discuss different nanomedicine-based AMP delivery systems including metallic nanoparticles, lipid nanoparticles, polymeric nanoparticles, and their hybrid systems along with their future prospects for potent antimicrobial efficacy.
Expert opinion
Nanomedicine-based AMP delivery is a recent approach to the treatment of bacterial infections. The advantageous properties of nanoparticles including the enhancement of AMP stability, controlled release, and targetability make them suitable for the augmentation of AMP activity. Modifications in the nanomedicine-based approach are required to overcome the problems of nanoparticle instability, shorter residence time, and toxicity. Future rigorous studies for both the AMP loaded nanoparticle preparation and characterization, and detailed evaluations of their in vitro and in vivo antimicrobial effects and toxicities, are essential.
Collapse
|
10
|
Gantenbein B, Tang S, Guerrero J, Higuita-Castro N, Salazar-Puerta AI, Croft AS, Gazdhar A, Purmessur D. Non-viral Gene Delivery Methods for Bone and Joints. Front Bioeng Biotechnol 2020; 8:598466. [PMID: 33330428 PMCID: PMC7711090 DOI: 10.3389/fbioe.2020.598466] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Viral carrier transport efficiency of gene delivery is high, depending on the type of vector. However, viral delivery poses significant safety concerns such as inefficient/unpredictable reprogramming outcomes, genomic integration, as well as unwarranted immune responses and toxicity. Thus, non-viral gene delivery methods are more feasible for translation as these allow safer delivery of genes and can modulate gene expression transiently both in vivo, ex vivo, and in vitro. Based on current studies, the efficiency of these technologies appears to be more limited, but they are appealing for clinical translation. This review presents a summary of recent advancements in orthopedics, where primarily bone and joints from the musculoskeletal apparatus were targeted. In connective tissues, which are known to have a poor healing capacity, and have a relatively low cell-density, i.e., articular cartilage, bone, and the intervertebral disk (IVD) several approaches have recently been undertaken. We provide a brief overview of the existing technologies, using nano-spheres/engineered vesicles, lipofection, and in vivo electroporation. Here, delivery for microRNA (miRNA), and silencing RNA (siRNA) and DNA plasmids will be discussed. Recent studies will be summarized that aimed to improve regeneration of these tissues, involving the delivery of bone morphogenic proteins (BMPs), such as BMP2 for improvement of bone healing. For articular cartilage/osteochondral junction, non-viral methods concentrate on targeted delivery to chondrocytes or MSCs for tissue engineering-based approaches. For the IVD, growth factors such as GDF5 or GDF6 or developmental transcription factors such as Brachyury or FOXF1 seem to be of high clinical interest. However, the most efficient method of gene transfer is still elusive, as several preclinical studies have reported many different non-viral methods and clinical translation of these techniques still needs to be validated. Here we discuss the non-viral methods applied for bone and joint and propose methods that can be promising in clinical use.
Collapse
Affiliation(s)
- Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Shirley Tang
- Department of Biomedical Engineering and Department of Orthopaedics, Spine Research Institute Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Julien Guerrero
- Tissue Engineering for Orthopaedics and Mechanobiology, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering and Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Ana I Salazar-Puerta
- Department of Biomedical Engineering and Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Andreas S Croft
- Tissue Engineering for Orthopaedics and Mechanobiology, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Devina Purmessur
- Department of Biomedical Engineering and Department of Orthopaedics, Spine Research Institute Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
11
|
Efficient Non-Viral Gene Modification of Mesenchymal Stromal Cells from Umbilical Cord Wharton's Jelly with Polyethylenimine. Pharmaceutics 2020; 12:pharmaceutics12090896. [PMID: 32971730 PMCID: PMC7559368 DOI: 10.3390/pharmaceutics12090896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stromal cells (MSC) derived from human umbilical cord Wharton’s jelly (WJ) have a wide therapeutic potential in cell therapy and tissue engineering because of their multipotential capacity, which can be reinforced through gene therapy in order to modulate specific responses. However, reported methodologies to transfect WJ-MSC using cationic polymers are scarce. Here, WJ-MSC were transfected using 25 kDa branched- polyethylenimine (PEI) and a DNA plasmid encoding GFP. PEI/plasmid complexes were characterized to establish the best transfection efficiencies with lowest toxicity. Expression of MSC-related cell surface markers was evaluated. Likewise, immunomodulatory activity and multipotential capacity of transfected WJ-MSC were assessed by CD2/CD3/CD28-activated peripheral blood mononuclear cells (PBMC) cocultures and osteogenic and adipogenic differentiation assays, respectively. An association between cell number, PEI and DNA content, and transfection efficiency was observed. The highest transfection efficiency (15.3 ± 8.6%) at the lowest toxicity was achieved using 2 ng/μL DNA and 3.6 ng/μL PEI with 45,000 WJ-MSC in a 24-well plate format (200 μL). Under these conditions, there was no significant difference between the expression of MSC-identity markers, inhibitory effect on CD3+ T lymphocytes proliferation and osteogenic/adipogenic differentiation ability of transfected WJ-MSC, as compared with non-transfected cells. These results suggest that the functional properties of WJ-MSC were not altered after optimized transfection with PEI.
Collapse
|
12
|
Tu GXE, Ho YK, Ng ZX, Teo KJ, Yeo TT, Too HP. A facile and scalable in production non-viral gene engineered mesenchymal stem cells for effective suppression of temozolomide-resistant (TMZR) glioblastoma growth. Stem Cell Res Ther 2020; 11:391. [PMID: 32917269 PMCID: PMC7488524 DOI: 10.1186/s13287-020-01899-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) serve as an attractive vehicle for cell-directed enzyme prodrug therapy (CDEPT) due to their unique tumour-nesting ability. Such approach holds high therapeutic potential for treating solid tumours including glioblastoma multiforme (GBM), a devastating disease with limited effective treatment options. Currently, it is a common practice in research and clinical manufacturing to use viruses to deliver therapeutic genes into MSCs. However, this is limited by the inherent issues of safety, high cost and demanding manufacturing processes. The aim of this study is to identify a facile, scalable in production and highly efficient non-viral method to transiently engineer MSCs for prolonged and exceptionally high expression of a fused transgene: yeast cytosine deaminase::uracil phosphoribosyl-transferase::green fluorescent protein (CD::UPRT::GFP). METHODS MSCs were transfected with linear polyethylenimine using a cpg-free plasmid encoding the transgene in the presence of a combination of fusogenic lipids and β tubulin deacetylase inhibitor (Enhancer). Process scalability was evaluated in various planar vessels and microcarrier-based bioreactor. The transfection efficiency was determined with flow cytometry, and the therapeutic efficacy of CD::UPRT::GFP expressing MSCs was evaluated in cocultures with temozolomide (TMZ)-sensitive or TMZ-resistant human glioblastoma cell lines. In the presence of 5-fluorocytosine (5FC), the 5-fluorouracil-mediated cytotoxicity was determined by performing colometric MTS assay. In vivo antitumor effects were examined by local injection into subcutaneous TMZ-resistant tumors implanted in the athymic nude mice. RESULTS At > 90% transfection efficiency, the phenotype, differentiation potential and tumour tropism of MSCs were unaltered. High reproducibility was observed in all scales of transfection. The therapeutically modified MSCs displayed strong cytotoxicity towards both TMZ-sensitive and TMZ-resistant U251-MG and U87-MG cell lines only in the presence of 5FC. The effectiveness of this approach was further validated with other well-characterized and clinically annotated patient-derived GBM cells. Additionally, a long-term suppression (> 30 days) of the growth of a subcutaneous TMZ-resistant U-251MG tumour was demonstrated. CONCLUSIONS Collectively, this highly efficient non-viral workflow could potentially enable the scalable translation of therapeutically engineered MSC for the treatment of TMZ-resistant GBM and other applications beyond the scope of this study.
Collapse
Affiliation(s)
- Geraldine Xue En Tu
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Yoon Khei Ho
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore.
| | - Zhi Xu Ng
- Division of Neurosurgery, Department of General Surgery, Khoo Teck Puat Hospital, Singapore, 768828, Singapore
| | - Ke Jia Teo
- Division of Neurosurgery, Department of General Surgery, National University Hospital, National University Health Systems, Singapore, Singapore
| | - Tseng Tsai Yeo
- Division of Neurosurgery, Department of General Surgery, National University Hospital, National University Health Systems, Singapore, Singapore
| | - Heng-Phon Too
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| |
Collapse
|
13
|
Hamann A, Kozisek T, Broad K, Pannier AK. Glucocorticoid Priming of Nonviral Gene Delivery to hMSCs Increases Transfection by Reducing Induced Stresses. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:713-722. [PMID: 32913879 PMCID: PMC7452153 DOI: 10.1016/j.omtm.2020.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are under study for cell and gene therapeutics because of their immunomodulatory and regenerative properties. Safe and efficient gene delivery could increase hMSC clinical potential by enabling expression of transgenes for control over factor production, behavior, and differentiation. Viral delivery is efficient but suffers from safety issues, while nonviral methods are safe but highly inefficient, especially in hMSCs. We previously demonstrated that priming cells with glucocorticoids (Gcs) before delivery of DNA complexes significantly increases hMSC transfection, which correlates with a rescue of transfection-induced metabolic and protein synthesis decline, and apoptosis. In this work, we show that transgene expression enhancement is mediated by transcriptional activation of endogenous hMSC genes by the cytosolic glucocorticoid receptor (cGR) and that transfection enhancement can be potentiated with a GR transcription-activation synergist. We demonstrate that the Gc-activated cGR modulates endogenous hMSC gene expression to ameliorate transfection-induced endoplasmic reticulum (ER) and oxidative stresses, apoptosis, and inflammatory responses to prevent hMSC metabolic and protein synthesis decline, resulting in enhanced transgene expression after nonviral gene delivery to hMSCs. These results provide insights important for rational design of more efficient nonviral gene delivery and priming techniques that could be utilized for clinical hMSC applications.
Collapse
Affiliation(s)
- Andrew Hamann
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0726, USA
| | - Tyler Kozisek
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0726, USA
| | - Kelly Broad
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0726, USA
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0726, USA
| |
Collapse
|
14
|
Gao C, Li Z, Zou J, Cheng J, Jiang K, Liu C, Gu G, Tao W, Song J. Mechanical Effect on Gene Transfection Based on Dielectric Elastomer Actuator. ACS APPLIED BIO MATERIALS 2020; 3:2617-2625. [PMID: 35025395 DOI: 10.1021/acsabm.9b01199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gene transfection has been widely applied in genome function and gene therapy. Although many efforts have been focused on designing carrier materials and transfection methods, the influence of mechanical stimulation on gene transfection efficiency has rarely been studied. Herein, dielectric elastomer actuator (DEA)-based stimulation bioreactors are designed to generate tensile and contractile stress on cells simultaneously. With the example of the EGFP transfection, cells with high membrane tension in the stretching stimulation regions had lower transfection efficiency, while the transfection efficiency of cells in the compressing regions tended to increase. Besides, the duty cycle and loading frequency of the applied stress on cells were also important factors that affect gene transfection efficiency. Furthermore, the pathways of cell endocytosis with the effect of mechanical stimulation were explored on the mechanism for the change of EGFP transfection efficiency. This design of the DEA-based bioreactor, as a strategy to study gene transfection efficiency, could be helpful for developing efficient transfection methods.
Collapse
Affiliation(s)
- Chao Gao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhichao Li
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jiang Zou
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jin Cheng
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Kai Jiang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Changrun Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Guoying Gu
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wei Tao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| |
Collapse
|
15
|
Bianchi A, Velot É, Kempf H, Elkhoury K, Sanchez-Gonzalez L, Linder M, Kahn C, Arab-Tehrany E. Nanoliposomes from Agro-Resources as Promising Delivery Systems for Chondrocytes. Int J Mol Sci 2020; 21:E3436. [PMID: 32414043 PMCID: PMC7279141 DOI: 10.3390/ijms21103436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
Investigations in cartilage biology have been hampered by the limited capacity of chondrocytes, especially in rats and humans, to be efficiently transfected. Liposomes are a promising delivery system due to their lipid bilayer structure similar to a biological membrane. Here we used natural rapeseed lecithin, which contains a high level of mono- and poly-unsaturated fatty acids, to evaluate the cytocompatibility of these phospholipids as future potential carriers of biomolecules in joint regenerative medicine. Results show that appropriate concentrations of nanoliposome rapeseed lecithin under 500 µg/mL were safe for chondrocytes and did not induce any alterations of their phenotype. Altogether, these results sustain that they could represent a novel natural carrier to deliver active substances into cartilage cells.
Collapse
Affiliation(s)
- Arnaud Bianchi
- Faculté de Médecine, Biopôle de l’Université de Lorraine, Campus Brabois-Santé, Laboratoire UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, F-54505 Vandœuvre-Lès-Nancy, France; (É.V.); (H.K.)
| | - Émilie Velot
- Faculté de Médecine, Biopôle de l’Université de Lorraine, Campus Brabois-Santé, Laboratoire UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, F-54505 Vandœuvre-Lès-Nancy, France; (É.V.); (H.K.)
- Campus Brabois-Santé, Laboratoire de Travaux Pratiques de Physiologie, Faculté de pharmacie, Université de Lorraine, F-54505 Vandœuvre-Lès-Nancy, France
| | - Hervé Kempf
- Faculté de Médecine, Biopôle de l’Université de Lorraine, Campus Brabois-Santé, Laboratoire UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, F-54505 Vandœuvre-Lès-Nancy, France; (É.V.); (H.K.)
| | - Kamil Elkhoury
- Laboratoire d’ingénierie des Biomolécules, Université de Lorraine, F-54505 Vandœuvre-Lès-Nancy, France; (K.E.); (L.S.-G.); (M.L.); (C.K.)
| | - Laura Sanchez-Gonzalez
- Laboratoire d’ingénierie des Biomolécules, Université de Lorraine, F-54505 Vandœuvre-Lès-Nancy, France; (K.E.); (L.S.-G.); (M.L.); (C.K.)
| | - Michel Linder
- Laboratoire d’ingénierie des Biomolécules, Université de Lorraine, F-54505 Vandœuvre-Lès-Nancy, France; (K.E.); (L.S.-G.); (M.L.); (C.K.)
| | - Cyril Kahn
- Laboratoire d’ingénierie des Biomolécules, Université de Lorraine, F-54505 Vandœuvre-Lès-Nancy, France; (K.E.); (L.S.-G.); (M.L.); (C.K.)
| | - Elmira Arab-Tehrany
- Laboratoire d’ingénierie des Biomolécules, Université de Lorraine, F-54505 Vandœuvre-Lès-Nancy, France; (K.E.); (L.S.-G.); (M.L.); (C.K.)
| |
Collapse
|
16
|
Hamann A, Thomas AK, Kozisek T, Farris E, Lück S, Zhang Y, Pannier AK. Screening a chemically defined extracellular matrix mimetic substrate library to identify substrates that enhance substrate-mediated transfection. Exp Biol Med (Maywood) 2020; 245:606-619. [PMID: 32183552 DOI: 10.1177/1535370220913501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nonviral gene delivery, though limited by inefficiency, has extensive utility in cell therapy, tissue engineering, and diagnostics. Substrate-mediated gene delivery (SMD) increases efficiency and allows transfection at a cell-biomaterial interface, by immobilizing and concentrating nucleic acid complexes on a surface. Efficient SMD generally requires substrates to be coated with serum or other protein coatings to mediate nucleic acid complex immobilization, as well as cell adhesion and growth; however, this strategy limits reproducibility and may be difficult to translate for clinical applications. As an alternative, we screened a chemically defined combinatorial library of 20 different extracellular matrix mimetic substrates containing combinations of (1) different sulfated polysaccharides that are essential extracellular matrix glycosaminoglycans (GAGs), with (2) mimetic peptides derived from adhesion proteins, growth factors, and cell-penetrating domains, for use as SMD coatings. We identified optimal substrates for DNA lipoplex and polyplex SMD transfection of fibroblasts and human mesenchymal stem cells. Optimal extracellular matrix mimetic substrates varied between cell type, donor source, and transfection reagent, but typically contained Heparin GAG and an adhesion peptide. Multiple substrates significantly increased transgene expression (i.e. 2- to 20-fold) over standard protein coatings. Considering previous research of similar ligands, we hypothesize extracellular matrix mimetic substrates modulate cell adhesion, proliferation, and survival, as well as plasmid internalization and trafficking. Our results demonstrate the utility of screening combinatorial extracellular matrix mimetic substrates for optimal SMD transfection towards application- and patient-specific technologies. Impact statement Substrate-mediated gene delivery (SMD) approaches have potential for modification of cells in applications where a cell-material interface exists. Conventional SMD uses ill-defined serum or protein coatings to facilitate immobilization of nucleic acid complexes, cell attachment, and subsequent transfection, which limits reproducibility and clinical utility. As an alternative, we screened a defined library of extracellular matrix mimetic substrates containing combinations of different glycosaminoglycans and bioactive peptides to identify optimal substrates for SMD transfection of fibroblasts and human mesenchymal stem cells. This strategy could be utilized to develop substrates for specific SMD applications in which variability exists between different cell types and patient samples.
Collapse
Affiliation(s)
- Andrew Hamann
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Alvin K Thomas
- B CUBE - Center for Molecular Bioengineering, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 41, Dresden 01307, Germany
| | - Tyler Kozisek
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Eric Farris
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Steffen Lück
- B CUBE - Center for Molecular Bioengineering, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 41, Dresden 01307, Germany
| | - Yixin Zhang
- B CUBE - Center for Molecular Bioengineering, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 41, Dresden 01307, Germany
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| |
Collapse
|
17
|
Zhen S, Liu Y, Lu J, Tuo X, Yang X, Chen H, Chen W, Li X. Human Papillomavirus Oncogene Manipulation Using Clustered Regularly Interspersed Short Palindromic Repeats/Cas9 Delivered by pH-Sensitive Cationic Liposomes. Hum Gene Ther 2020; 31:309-324. [PMID: 31973584 DOI: 10.1089/hum.2019.312] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) technology enables targeted gene editing, but cancer gene therapy with this approach requires improvements to enable safe and efficient delivery of CRISPR/Cas9 to tumors. We developed and evaluated a self-assembled liposome to selectively deliver CRISPR/Cas9 to cancer tissues. Our CRISPR/Cas9 system effectively inhibited proliferation of human papillomavirus (HPV) 16-positive cervical cancer cells and induced apoptosis by inactivating the HR-HPV16E6/E7 oncogene. Based on this system, we prepared a long-circulating pH-sensitive cationic nano-liposome complex with a high cell targeting and gene knockout rate. Intratumoral injection of cationic liposomes targeted to splicing HPV16 E6/E7 in nude mice significantly inhibited tumor growth without significant toxicity in vivo. Liposomes that targeted HPV16 E6/E7 splicing were established as a basis for treatment of HPV16-positive cervical cancer drug candidates. Our study demonstrates that this liposome offers an efficient delivery system for nonviral gene editing, adding to the armamentarium of gene editing tools to advance safe and effective precision medicine-based cancer therapeutics.
Collapse
Affiliation(s)
- Shuai Zhen
- Center for Translational Medicine, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R China.,Medical Heredity Research Center, Northwest Women's and Children's Hospital, Shaanxi, P.R. China
| | - Yan Liu
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Jiaojiao Lu
- Center for Translational Medicine, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R China
| | - Xiaoqian Tuo
- Center for Translational Medicine, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R China
| | - Xiling Yang
- Center for Translational Medicine, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R China
| | - Hong Chen
- Center for Translational Medicine, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R China
| | - Wei Chen
- Center for Translational Medicine, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R China
| | - Xu Li
- Center for Translational Medicine, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R China.,Medical Heredity Research Center, Northwest Women's and Children's Hospital, Shaanxi, P.R. China
| |
Collapse
|
18
|
Attia N, Mashal M. Mesenchymal Stem Cells: The Past Present and Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1312:107-129. [PMID: 33159306 DOI: 10.1007/5584_2020_595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The biomedical applications of mesenchymal stem cells (MSCs) have gained expanding attention over the past three decades. MSCs are easily obtained from various tissue types (e.g. bone marrow, fat, cord blood, etc.), are capable of self-renewal, and could be induced to differentiate into several cell lineages for countless biomedical applications. In addition, when transplanted, MSCs are not detected by immune surveillance, thus do not lead to graft rejection. Moreover, they can home towards affected tissues and induce their therapeutic effect in a cell-base and/or a cell-free manner. These properties, and many others, have made MSCs appealing therapeutic cell candidates (for cell and/or gene therapy) in myriad clinical conditions. However, similar to any other therapeutic tool, MSCs still have their own limitations and grey areas that entail more research for better understanding and optimization. Herein, we present a brief overview of various pre-clinical/clinical applications of MSCs in regenerative medicine and discuss limitations and future challenges.
Collapse
Affiliation(s)
- Noha Attia
- Department of Basic Sciences, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda. .,The Center of research and evaluation, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda. .,Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt. .,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
| | - Mohamed Mashal
- The Center of research and evaluation, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
19
|
Makowski M, Silva ÍC, Pais do Amaral C, Gonçalves S, Santos NC. Advances in Lipid and Metal Nanoparticles for Antimicrobial Peptide Delivery. Pharmaceutics 2019; 11:E588. [PMID: 31717337 PMCID: PMC6920925 DOI: 10.3390/pharmaceutics11110588] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) have been described as excellent candidates to overcome antibiotic resistance. Frequently, AMPs exhibit a wide therapeutic window, with low cytotoxicity and broad-spectrum antimicrobial activity against a variety of pathogens. In addition, some AMPs are also able to modulate the immune response, decreasing potential harmful effects such as sepsis. Despite these benefits, only a few formulations have successfully reached clinics. A common flaw in the druggability of AMPs is their poor pharmacokinetics, common to several peptide drugs, as they may be degraded by a myriad of proteases inside the organism. The combination of AMPs with carrier nanoparticles to improve delivery may enhance their half-life, decreasing the dosage and thus, reducing production costs and eventual toxicity. Here, we present the most recent advances in lipid and metal nanodevices for AMP delivery, with a special focus on metal nanoparticles and liposome formulations.
Collapse
Affiliation(s)
| | | | | | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal; (M.M.); (Í.C.S.); (C.P.d.A.)
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal; (M.M.); (Í.C.S.); (C.P.d.A.)
| |
Collapse
|
20
|
Timin AS, Peltek OO, Zyuzin MV, Muslimov AR, Karpov TE, Epifanovskaya OS, Shakirova AI, Zhukov MV, Tarakanchikova YV, Lepik KV, Sergeev VS, Sukhorukov GB, Afanasyev BV. Safe and Effective Delivery of Antitumor Drug Using Mesenchymal Stem Cells Impregnated with Submicron Carriers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13091-13104. [PMID: 30883080 DOI: 10.1021/acsami.8b22685] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An important area in modern malignant tumor therapy is the optimization of antitumor drugs pharmacokinetics. The use of some antitumor drugs is limited in clinical practice due to their high toxicity. Therefore, the strategy for optimizing the drug pharmacokinetics focuses on the generation of high local concentrations of these drugs in the tumor area with minimal systemic and tissue-specific toxicity. This can be achieved by encapsulation of highly toxic antitumor drug (vincristine (VCR) that is 20-50 times more toxic than widely used the antitumor drug doxorubicin) into nano- and microcarriers with their further association into therapeutically relevant cells that possess the ability to migrate to sites of tumor. Here, we fundamentally examine the effect of drug carrier size on the behavior of human mesenchymal stem cells (hMSCs), including internalization efficiency, cytotoxicity, cell movement, to optimize the conditions for the development of carrier-hMSCs drug delivery platform. Using the malignant tumors derived from patients, we evaluated the capability of hMSCs associated with VCR-loaded carriers to target tumors using a three-dimensional spheroid model in collagen gel. Compared to free VCR, the developed hMSC-based drug delivery platform showed enhanced antitumor activity regarding those tumors that express CXCL12 (stromal cell-derived factor-1 (SDF-1)) gene, inducing directed migration of hMSCs via CXCL12 (SDF-1)/CXCR4 pathway. These results show that the combination of encapsulated antitumor drugs and hMSCs, which possess the properties of active migration into tumors, is therapeutically beneficial and demonstrated high efficiency and low systematic toxicity, revealing novel strategies for chemotherapy in the future.
Collapse
Affiliation(s)
- Alexander S Timin
- Research School of Chemical and Biomedical Engineering , National Research Tomsk Polytechnic University , Lenin Avenue 30 , 634050 Tomsk , Russia
- First I.P. Pavlov State Medical University of St. Petersburg , Lev Tolstoy Street, 6/8 , 197022 Saint Petersburg , Russia
| | - Oleksii O Peltek
- RASA Center , Peter the Great St. Petersburg Polytechnic University , Polytechnicheskaya, 29 , 195251 Saint Petersburg , Russia
| | - Mikhail V Zyuzin
- Faculty of Physics and Engineering , ITMO University , Lomonosova 9 191002 Saint Petersburg , Russia
| | - Albert R Muslimov
- First I.P. Pavlov State Medical University of St. Petersburg , Lev Tolstoy Street, 6/8 , 197022 Saint Petersburg , Russia
- Nanobiotechnology Laboratory , St. Petersburg Academic University , 194021 Saint Petersburg , Russia
| | - Timofey E Karpov
- RASA Center , Peter the Great St. Petersburg Polytechnic University , Polytechnicheskaya, 29 , 195251 Saint Petersburg , Russia
| | - Olga S Epifanovskaya
- First I.P. Pavlov State Medical University of St. Petersburg , Lev Tolstoy Street, 6/8 , 197022 Saint Petersburg , Russia
| | - Alena I Shakirova
- First I.P. Pavlov State Medical University of St. Petersburg , Lev Tolstoy Street, 6/8 , 197022 Saint Petersburg , Russia
| | - Mikhail V Zhukov
- Faculty of Physics and Engineering , ITMO University , Lomonosova 9 191002 Saint Petersburg , Russia
| | - Yana V Tarakanchikova
- RASA Center , Peter the Great St. Petersburg Polytechnic University , Polytechnicheskaya, 29 , 195251 Saint Petersburg , Russia
- Nanobiotechnology Laboratory , St. Petersburg Academic University , 194021 Saint Petersburg , Russia
| | - Kirill V Lepik
- First I.P. Pavlov State Medical University of St. Petersburg , Lev Tolstoy Street, 6/8 , 197022 Saint Petersburg , Russia
| | - Vladislav S Sergeev
- First I.P. Pavlov State Medical University of St. Petersburg , Lev Tolstoy Street, 6/8 , 197022 Saint Petersburg , Russia
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science , Queen Mary University of London , Mile End Road , London E1 4NS , United Kingdom
| | - Boris V Afanasyev
- First I.P. Pavlov State Medical University of St. Petersburg , Lev Tolstoy Street, 6/8 , 197022 Saint Petersburg , Russia
| |
Collapse
|
21
|
Moku G, Layek B, Trautman L, Putnam S, Panyam J, Prabha S. Improving Payload Capacity and Anti-Tumor Efficacy of Mesenchymal Stem Cells Using TAT Peptide Functionalized Polymeric Nanoparticles. Cancers (Basel) 2019; 11:cancers11040491. [PMID: 30959908 PMCID: PMC6521160 DOI: 10.3390/cancers11040491] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) accumulate specifically in both primary tumors and metastases following systemic administration. However, the poor payload capacity of MSCs limits their use in small molecule drug delivery. To improve drug payload in MSCs, we explored polymeric nanoparticles that were functionalized with transactivator of transcription (TAT) peptide. Paclitaxel loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles (15–16% w/w paclitaxel; diameter of 225 ± 7 nm; and zeta potential of −15 ± 4 mV) were fabricated by emulsion-solvent evaporation method, followed by TAT-conjugation to the surface of nanoparticles via maleimide-thiol chemistry. Our studies demonstrated that TAT functionalization improved the intracellular accumulation and retention of nanoparticles in MSCs. Further, nano-engineering of MSCs did not alter the migration and differentiation potential of MSCs. Treatment with nano-engineered MSCs resulted in significant (p < 0.05) inhibition of tumor growth and improved survival (p < 0.0001) in a mouse orthotopic model of lung cancer compared to that with free or nanoparticle encapsulated drug. In summary, our results demonstrated that MSCs engineered using TAT functionalized nanoparticles serve as an efficient carrier for tumor specific delivery of anticancer drugs, resulting in greatly improved therapeutic efficacy.
Collapse
Affiliation(s)
- Gopikrishna Moku
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Buddhadev Layek
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Lana Trautman
- Breck School, 123 Ottawa Ave N, Golden Valley, MN 55422, USA.
| | - Samuel Putnam
- Breck School, 123 Ottawa Ave N, Golden Valley, MN 55422, USA.
| | - Jayanth Panyam
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Swayam Prabha
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
22
|
Hamann A, Nguyen A, Pannier AK. Nucleic acid delivery to mesenchymal stem cells: a review of nonviral methods and applications. J Biol Eng 2019; 13:7. [PMID: 30675180 PMCID: PMC6339289 DOI: 10.1186/s13036-019-0140-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated and expanded from many tissues, and are being investigated for use in cell therapies. Though MSC therapies have demonstrated some success, none have been FDA approved for clinical use. MSCs lose stemness ex vivo, decreasing therapeutic potential, and face additional barriers in vivo, decreasing therapeutic efficacy. Culture optimization and genetic modification of MSCs can overcome these barriers. Viral transduction is efficient, but limited by safety concerns related to mutagenicity of integrating viral vectors and potential immunogenicity of viral antigens. Nonviral delivery methods are safer, though limited by inefficiency and toxicity, and are flexible and scalable, making them attractive for engineering MSC therapies. Main text Transfection method and nucleic acid determine efficiency and expression profile in transfection of MSCs. Transfection methods include microinjection, electroporation, and nanocarrier delivery. Microinjection and electroporation are efficient, but are limited by throughput and toxicity. In contrast, a variety of nanocarriers have been demonstrated to transfer nucleic acids into cells, however nanocarrier delivery to MSCs has traditionally been inefficient. To improve efficiency, plasmid sequences can be optimized by choice of promoter, inclusion of DNA targeting sequences, and removal of bacterial elements. Instead of DNA, RNA can be delivered for rapid protein expression or regulation of endogenous gene expression. Beyond choice of nanocarrier and nucleic acid, transfection can be optimized by priming cells with media additives and cell culture surface modifications to modulate barriers of transfection. Media additives known to enhance MSC transfection include glucocorticoids and histone deacetylase inhibitors. Culture surface properties known to modulate MSC transfection include substrate stiffness and specific protein coating. If nonviral gene delivery to MSCs can be sufficiently improved, MSC therapies could be enhanced by transfection for guided differentiation and reprogramming, transplantation survival and directed homing, and secretion of therapeutics. We discuss utilized delivery methods and nucleic acids, and resulting efficiency and outcomes, in transfection of MSCs reported for such applications. Conclusion Recent developments in transfection methods, including nanocarrier and nucleic acid technologies, combined with chemical and physical priming of MSCs, may sufficiently improve transfection efficiency, enabling scalable genetic engineering of MSCs, potentially bringing effective MSC therapies to patients.
Collapse
Affiliation(s)
- Andrew Hamann
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE 68583-0726 USA
| | - Albert Nguyen
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE 68583-0726 USA
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE 68583-0726 USA
| |
Collapse
|
23
|
Yang Y, Wang X, Hu X, Kawazoe N, Yang Y, Chen G. Influence of Cell Morphology on Mesenchymal Stem Cell Transfection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1932-1941. [PMID: 30571082 DOI: 10.1021/acsami.8b20490] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gene transfection has broad applications in bioengineering and biomedical fields. Although many gene carrier materials and transfection methods have been developed, it remains unclear how cell morphology including cell spreading and elongation affects gene transfection. In this study, human bone marrow-derived mesenchymal stem cells (hMSCs) were cultured on micropatterns and transfected with cationic pAcGFP1-N1 plasmid complexes. The relationship between the cell morphology of hMSCs and gene transfection was investigated using micropatterning techniques. Spreading and elongation of hMSCs were precisely controlled by micropatterned surfaces. The results showed that well-spread and elongated hMSCs had high transfection efficiency. Analysis of the uptake of exogenous genes and DNA synthesis activity indicated that the well-spread and elongated cell morphology promoted gene transfection through enhanced uptake of the cationic complexes and accelerated DNA synthesis. The results should provide useful information for understanding of cell morphology on gene transfection and development of efficient gene transfection methods.
Collapse
Affiliation(s)
- Yingjun Yang
- Research Center for Functional Materials , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8577 , Japan
| | - Xinlong Wang
- Research Center for Functional Materials , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Xiaohong Hu
- Graduate School of Life and Environmental Science , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8571 , Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8571 , Japan
| | - Guoping Chen
- Research Center for Functional Materials , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8577 , Japan
| |
Collapse
|
24
|
Bylicky MA, Mueller GP, Day RM. Radiation resistance of normal human astrocytes: the role of non-homologous end joining DNA repair activity. JOURNAL OF RADIATION RESEARCH 2019; 60:37-50. [PMID: 30423138 PMCID: PMC6373697 DOI: 10.1093/jrr/rry084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/03/2018] [Indexed: 05/27/2023]
Abstract
Radiotherapy is a common modality for treatment of brain cancers, but it can induce long-term physiological and cognitive deficits. The responses of normal human brain cells to radiation is not well understood. Astrocytes have been shown to have a variety of protective mechanisms against oxidative stress and have been shown to protect neurons. We investigated the response of cultured normal human astrocytes (NHAs) to X-ray irradiation. Following exposure to 10 Gy X-irradiation, NHAs exhibited DNA damage as indicated by the formation of γ-H2AX foci. Western blotting showed that NHAs displayed a robust increase in expression of non-homologous end joining DNA repair enzymes within 15 min post-irradiation and increased expression of homologous recombination DNA repair enzymes ~2 h post-irradiation. The cell cycle checkpoint protein p21/waf1 was upregulated from 6-24 h, and then returned to baseline. Levels of DNA repair enzymes returned to basal ~48 h post-irradiation. NHAs re-entered the cell cycle and proliferation was observed at 6 days. In contrast, normal human mesenchymal stem cells (MSCs) failed to upregulate DNA repair enzymes and instead displayed sustained upregulation of p21/waf1, a cell cycle checkpoint marker for senescence. Ectopic overexpression of Ku70 was sufficient to protect MSCs from sustained upregulation of p21/waf1 induced by 10 Gy X-rays. These findings suggest that increased expression of Ku70 may be a key mechanism for the radioresistance of NHAs, preventing their accelerated senescence from high-dose radiation. These results may have implications for the development of novel targets for radiation countermeasure development.
Collapse
Affiliation(s)
- Michelle A Bylicky
- Department of Anatomy, Physiology, and Genetics, The Uniformed Services University of the Health Sciences, Jones Bridge Road, Bethesda, MD, USA
| | - Gregory P Mueller
- Department of Anatomy, Physiology, and Genetics, The Uniformed Services University of the Health Sciences, Jones Bridge Road, Bethesda, MD, USA
| | - Regina M Day
- Department of Pharmacology and Molecular Therapeutics, The Uniformed Services University of the Health Sciences, Jones Bridge Road, Bethesda, MD, USA
| |
Collapse
|
25
|
Efficient Nonviral Transfection of Human Bone Marrow Mesenchymal Stromal Cells Shown Using Placental Growth Factor Overexpression. Stem Cells Int 2018; 2018:1310904. [PMID: 30675166 PMCID: PMC6323439 DOI: 10.1155/2018/1310904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/28/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023] Open
Abstract
Background Human mesenchymal stromal/stem cells (hMSCs) hold great therapeutic potential due to their immunomodulatory and tissue regenerative properties. Enhancement of biological features of hMSCs by transfection has become a focus of investigation for cell- and gene-based therapies. However, many of the current transient transfection methods result in either low transfection efficiency or high cytotoxicity. Methods In order to find a transfection method that would address the current issues of low transfection efficiency and high cytotoxicity, 6 commercially available cationic lipid and polymer reagents were tested on human bone marrow-derived MSCs (hBM-MSCs) using GFP as a reporter gene. One transfection method using TransIT-2020 was selected and tested with an emphasis on cell quality (viability, identity, and yield), as well as efficacy with a human placental growth factor (PlGF) plasmid. Results TransIT-2020 yielded the highest fluorescence signal per cell out of the methods that did not decrease cell recovery. Transfecting GFP to 5 hBM-MSC donors using TransIT-2020 yielded 24-36% GFP-expressing cells with a viability of 85-96%. hBM-MSC identity was unaffected as CD90, CD105, and CD73 markers were retained (>95%+) after transfection. When this method was applied to PlGF expression, there was up to a 220-fold increase in secretion. Both growth and secretion of PlGF in overexpressing hBM-MSC were sustained over 7 days, confirming the sustainability and applicability of the TransIT-2020 transfection system. Discussion We report a simple and efficient method for transient transfection that has not been reported for hBM-MSCs, encompassing high levels of plasmid expression without significant changes to fundamental hBM-MSC characteristics.
Collapse
|
26
|
Hamann A, Broad K, Nguyen A, Pannier AK. Mechanisms of unprimed and dexamethasone-primed nonviral gene delivery to human mesenchymal stem cells. Biotechnol Bioeng 2018; 116:427-443. [PMID: 30450542 PMCID: PMC6322959 DOI: 10.1002/bit.26870] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/10/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are under intense study for applications of cell and gene therapeutics because of their unique immunomodulatory and regenerative properties. Safe and efficient genetic modification of hMSCs could increase their clinical potential by allowing functional expression of therapeutic transgenes or control over behavior and differentiation. Viral gene delivery is efficient, but suffers from safety issues, while nonviral methods are safe, but highly inefficient, especially in hMSCs. Our lab previously demonstrated that priming cells before delivery of DNA complexes with dexamethasone (DEX), an anti‐inflammatory glucocorticoid drug, significantly increases hMSC transfection success. This work systematically investigates the mechanisms of hMSC transfection and DEX‐mediated enhancement of transfection. Our results show that hMSC transfection and its enhancement by DEX are decreased by inhibiting classical intracellular transport and nuclear import pathways, but DEX transfection priming does not increase cellular or nuclear internalization of plasmid DNA (pDNA). We also show that hMSC transgene expression is largely affected by pDNA promoter and enhancer sequence changes, but DEX‐mediated enhancement of transfection is unaffected by any pDNA sequence changes. Furthermore, DEX‐mediated transfection enhancement is not the result of increased transgene messenger RNA transcription or stability. However, DEX‐priming increases total protein synthesis by preventing hMSC apoptosis induced by transfection, resulting in increased translation of transgenic protein. DEX may also promote further enhancement of transgenic reporter enzyme activity by other downstream mechanisms. Mechanistic studies of nonviral gene delivery will inform future rationally designed technologies for safe and efficient genetic modification of clinically relevant cell types.
Collapse
Affiliation(s)
- Andrew Hamann
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Kelly Broad
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Albert Nguyen
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
27
|
Mondal N, Dykstra B, Lee J, Ashline DJ, Reinhold VN, Rossi DJ, Sackstein R. Distinct human α(1,3)-fucosyltransferases drive Lewis-X/sialyl Lewis-X assembly in human cells. J Biol Chem 2018; 293:7300-7314. [PMID: 29593094 PMCID: PMC5950021 DOI: 10.1074/jbc.ra117.000775] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/23/2018] [Indexed: 12/21/2022] Open
Abstract
In humans, six α(1,3)-fucosyltransferases (α(1,3)-FTs: FT3/FT4/FT5/FT6/FT7/FT9) reportedly fucosylate terminal lactosaminyl glycans yielding Lewis-X (LeX; CD15) and/or sialyl Lewis-X (sLeX; CD15s), structures that play key functions in cell migration, development, and immunity. Prior studies analyzing α(1,3)-FT specificities utilized either purified and/or recombinant enzymes to modify synthetic substrates under nonphysiological reaction conditions or molecular biology approaches wherein α(1,3)-FTs were expressed in mammalian cell lines, notably excluding investigations using primary human cells. Accordingly, although significant insights into α(1,3)-FT catalytic properties have been obtained, uncertainty persists regarding their human LeX/sLeX biosynthetic range across various glycoconjugates. Here, we undertook a comprehensive evaluation of the lactosaminyl product specificities of intracellularly expressed α(1,3)-FTs using a clinically relevant primary human cell type, mesenchymal stem cells. Cells were transfected with modified mRNA encoding each human α(1,3)-FT, and the resultant α(1,3)-fucosylated lactosaminyl glycoconjugates were analyzed using a combination of flow cytometry and MS. The data show that biosynthesis of sLeX is driven by FTs-3, -5, -6, and -7, with FT6 and FT7 having highest potency. FT4 and FT9 dominantly biosynthesize LeX, and, among all FTs, FT6 holds a unique capacity in creating sLeX and LeX determinants across protein and lipid glycoconjugates. Surprisingly, FT4 does not generate sLeX on glycolipids, and neither FT4, FT6, nor FT9 synthesizes the internally fucosylated sialyllactosamine VIM-2 (CD65s). These results unveil the relevant human lactosaminyl glycans created by human α(1,3)-FTs, providing novel insights on how these isoenzymes stereoselectively shape biosynthesis of vital glycoconjugates, thereby biochemically programming human cell migration and tuning human immunologic and developmental processes.
Collapse
Affiliation(s)
- Nandini Mondal
- Department of Dermatology and Harvard Skin Disease Research Center, Boston, Massachusetts 02115; Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Brad Dykstra
- Department of Dermatology and Harvard Skin Disease Research Center, Boston, Massachusetts 02115; Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jungmin Lee
- Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - David J Ashline
- Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Molecular, Cellular, and Biomedical Sciences, The Glycomics Center, University of New Hampshire, Durham, New Hampshire 03828
| | - Vernon N Reinhold
- Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Molecular, Cellular, and Biomedical Sciences, The Glycomics Center, University of New Hampshire, Durham, New Hampshire 03828
| | - Derrick J Rossi
- Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Robert Sackstein
- Department of Dermatology and Harvard Skin Disease Research Center, Boston, Massachusetts 02115; Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
28
|
McMillan A, Nguyen MK, Gonzalez-Fernandez T, Ge P, Yu X, Murphy WL, Kelly DJ, Alsberg E. Dual non-viral gene delivery from microparticles within 3D high-density stem cell constructs for enhanced bone tissue engineering. Biomaterials 2018; 161:240-255. [PMID: 29421560 PMCID: PMC5826638 DOI: 10.1016/j.biomaterials.2018.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/24/2017] [Accepted: 01/02/2018] [Indexed: 01/03/2023]
Abstract
High-density mesenchymal stem cell (MSC) aggregates can be guided to form bone-like tissue via endochondral ossification in vitro when culture media is supplemented with proteins, such as growth factors (GFs), to first guide the formation of a cartilage template, followed by culture with hypertrophic factors. Recent reports have recapitulated these results through the controlled spatiotemporal delivery of chondrogenic transforming growth factor-β1 (TGF-β1) and chondrogenic and osteogenic bone morphogenetic protein-2 (BMP-2) from microparticles embedded within human MSC aggregates to avoid diffusion limitations and the lengthy, costly in vitro culture necessary with repeat exogenous supplementation. However, since GFs have limited stability, localized gene delivery is a promising alternative to the use of proteins. Here, mineral-coated hydroxyapatite microparticles (MCM) capable of localized delivery of Lipofectamine-plasmid DNA (pDNA) nanocomplexes encoding for TGF-β1 (pTGF-β1) and BMP-2 (pBMP-2) were incorporated, alone or in combination, within MSC aggregates from three healthy porcine donors to induce sustained production of these transgenes. Three donor populations were investigated in this work due to the noted MSC donor-to-donor variability in differentiation capacity documented in the literature. Delivery of pBMP-2 within Donor 1 aggregates promoted chondrogenesis at week 2, followed by an enhanced osteogenic phenotype at week 4. Donor 2 and 3 aggregates did not promote robust glycosaminoglycan (GAG) production at week 2, but by week 4, Donor 2 aggregates with pTGF-β1/pBMP-2 and Donor 3 aggregates with both unloaded MCM and pBMP-2 enhanced osteogenesis compared to controls. These results demonstrate the ability to promote osteogenesis in stem cell aggregates through controlled, non-viral gene delivery within the cell masses. These findings also indicate the need to screen donor MSC regenerative potential in response to gene transfer prior to clinical application. Taken together, this work demonstrates a promising gene therapy approach to control stem cell fate in biomimetic 3D condensations for treatment of bone defects.
Collapse
Affiliation(s)
- Alexandra McMillan
- Department of Pathology Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Minh Khanh Nguyen
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Tomas Gonzalez-Fernandez
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBERG), Trinity College Dublin and Royal College of Surgeons in Dublin, Ireland; Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Dublin, Ireland
| | - Peilin Ge
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Xiaohua Yu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA; Materials Science Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBERG), Trinity College Dublin and Royal College of Surgeons in Dublin, Ireland; Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Dublin, Ireland
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA; Department of Orthopaedic Surgery, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA; The National Center for Regenerative Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA; School of Dentistry, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
29
|
Bruter AV, Kandarakov OF, Belyavsky AV. Persistence of plasmid-mediated expression of transgenes in human mesenchymal stem cells depends primarily on CpG levels of both vector and transgene. J Gene Med 2018; 20:e3009. [DOI: 10.1002/jgm.3009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/20/2018] [Accepted: 01/20/2018] [Indexed: 01/25/2023] Open
Affiliation(s)
- Alexandra V. Bruter
- Russian Academy of Sciences; Engelhardt Institute of Molecular Biology; Moscow Russia
| | - Oleg F. Kandarakov
- Russian Academy of Sciences; Engelhardt Institute of Molecular Biology; Moscow Russia
| | | |
Collapse
|
30
|
Lamichhane N, Udayakumar TS, D'Souza WD, Simone CB, Raghavan SR, Polf J, Mahmood J. Liposomes: Clinical Applications and Potential for Image-Guided Drug Delivery. Molecules 2018; 23:molecules23020288. [PMID: 29385755 PMCID: PMC6017282 DOI: 10.3390/molecules23020288] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 01/16/2023] Open
Abstract
Liposomes have been extensively studied and are used in the treatment of several diseases. Liposomes improve the therapeutic efficacy by enhancing drug absorption while avoiding or minimizing rapid degradation and side effects, prolonging the biological half-life and reducing toxicity. The unique feature of liposomes is that they are biocompatible and biodegradable lipids, and are inert and non-immunogenic. Liposomes can compartmentalize and solubilize both hydrophilic and hydrophobic materials. All these properties of liposomes and their flexibility for surface modification to add targeting moieties make liposomes more attractive candidates for use as drug delivery vehicles. There are many novel liposomal formulations that are in various stages of development, to enhance therapeutic effectiveness of new and established drugs that are in preclinical and clinical trials. Recent developments in multimodality imaging to better diagnose disease and monitor treatments embarked on using liposomes as diagnostic tool. Conjugating liposomes with different labeling probes enables precise localization of these liposomal formulations using various modalities such as PET, SPECT, and MRI. In this review, we will briefly review the clinical applications of liposomal formulation and their potential imaging properties.
Collapse
Affiliation(s)
- Narottam Lamichhane
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | - Warren D D'Souza
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Srinivasa R Raghavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Jerimy Polf
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Javed Mahmood
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
31
|
A simple protocol for transfecting human mesenchymal stem cells. Biotechnol Lett 2018; 40:617-622. [DOI: 10.1007/s10529-018-2505-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
|
32
|
Przybylski S, Gasch M, Marschner A, Ebert M, Ewe A, Helmig G, Hilger N, Fricke S, Rudzok S, Aigner A, Burkhardt J. Influence of nanoparticle-mediated transfection on proliferation of primary immune cells in vitro and in vivo. PLoS One 2017; 12:e0176517. [PMID: 28463994 PMCID: PMC5412997 DOI: 10.1371/journal.pone.0176517] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 03/19/2017] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION One of the main obstacles in the widespread application of gene therapeutic approaches is the necessity for efficient and safe transfection methods. For the introduction of small oligonucleotide gene therapeutics into a target cell, nanoparticle-based methods have been shown to be highly effective and safe. While immune cells are a most interesting target for gene therapy, transfection might influence basic immune functions such as cytokine expression and proliferation, and thus positively or negatively affect therapeutic intervention. Therefore, we investigated the effects of nanoparticle-mediated transfection such as polyethylenimine (PEI) or magnetic beads on immune cell proliferation. METHODS Human adherent and non-adherent PBMCs were transfected by various methods (e.g. PEI, Lipofectamine® 2000, magnetofection) and stimulated. Proliferation was measured by lymphocyte transformation test (LTT). Cell cycle stages as well as expression of proliferation relevant genes were analyzed. Additionally, the impact of nanoparticles was investigated in vivo in a murine model of the severe systemic immune disease GvHD (graft versus host disease). RESULTS The proliferation of primary immune cells was influenced by nanoparticle-mediated transfection. In particular in the case of magnetic beads, proliferation inhibition coincided with short-term cell cycle arrest and reduced expression of genes relevant for immune cell proliferation. Notably, proliferation inhibition translated into beneficial effects in a murine GvHD model with animals treated with PEI-nanoparticles showing increased survival (pPEI = 0.002) most likely due to reduced inflammation. CONCLUSION This study shows for the first time that nanoparticles utilized for gene therapeutic transfection are able to alter proliferation of immune cells and that this effect depends on the type of nanoparticle. For magnetic beads, this was accompanied by temporary cell cycle arrest. Notably, in GvHD this nonspecific anti-proliferative effect might contribute to reduced inflammation and increased survival.
Collapse
Affiliation(s)
- Susanne Przybylski
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Michaela Gasch
- Translationszentrum für Regenerative Medizin (TRM), University of Leipzig, Leipzig, Germany
| | - Anne Marschner
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Marcus Ebert
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Leipzig, Germany
| | - Gisa Helmig
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Nadja Hilger
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Susanne Rudzok
- Translationszentrum für Regenerative Medizin (TRM), University of Leipzig, Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Leipzig, Germany
| | - Jana Burkhardt
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- * E-mail:
| |
Collapse
|
33
|
Nowakowski A, Andrzejewska A, Boltze J, Nitzsche F, Cui LL, Jolkkonen J, Walczak P, Lukomska B, Janowski M. Translation, but not transfection limits clinically relevant, exogenous mRNA based induction of alpha-4 integrin expression on human mesenchymal stem cells. Sci Rep 2017; 7:1103. [PMID: 28439079 PMCID: PMC5430815 DOI: 10.1038/s41598-017-01304-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/27/2017] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) represent promising resource of cells for regenerative medicine in neurological disorders. However, efficient and minimally invasive methods of MSCs delivery to the brain still have to be developed. Intra-arterial route is very promising, but MSCs are missing machinery for diapedesis through blood-brain barrier. Thus, here we have tested a mRNA-based method to induce transient expression of ITGA4, an adhesion molecule actively involved in cell extravasation. We observed that transfection with an ITGA4-mRNA construct bearing a conventional cap analogue (7-methylguanosine) failed to produce ITGA4 protein, but exogenous ITGA4-mRNA was detected in transfected MSCs. This indicates that not transfection, but rather translation being the major roadblock. Stabilization of ITGA4-mRNA with SSB proteins resulted in ITGA4 protein synthesis in HEK293 cells only, whereas in MSCs, satisfactory results were obtained only after using an anti-reverse-cap-analogue (ARCA). The presence of ITGA4 protein in MSCs was transient and lasted for up to 24 h after transfection. Membranous location was confirmed by flow cytometry of viable non-permeabilized cells using anti-ITGA4 antibody. The mRNA-based expression of itga4 transgene is potentially sufficient for diapedesis after intra-arterial delivery. To conclude, mRNA-based engineering of stem cells is a rapid and integration-free method and attractive from the perspective of potential future clinical application.
Collapse
Affiliation(s)
- Adam Nowakowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Johannes Boltze
- Fraunhofer-Institute for Cell Therapy and Immunology, Department of Cell Therapy, University of Leipzig, Leipzig, Germany.,Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany.,Fraunhofer Research Institution of Marine Biotechnology, Department of Translational Medicine and Cell Technology, Lübeck, Germany.,Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
| | - Franziska Nitzsche
- Fraunhofer-Institute for Cell Therapy and Immunology, Department of Cell Therapy, University of Leipzig, Leipzig, Germany.,Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Li-Li Cui
- Stroke Recovery Laboratory, Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Jukka Jolkkonen
- Stroke Recovery Laboratory, Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Neurology, University Hospital of Kuopio, Kuopio, Finland
| | - Piotr Walczak
- Russell H. Morgan Dept. of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, USA.,Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland. .,Russell H. Morgan Dept. of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, USA. .,Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
34
|
Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv 2016; 23:3319-3329. [PMID: 27145899 DOI: 10.1080/10717544.2016.1177136] [Citation(s) in RCA: 376] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Liposomes were the first nanoscale drug to be approved for clinical use in 1995. Since then, the technology has grown considerably, and pioneering recent work in liposome-based delivery systems has brought about remarkable developments with significant clinical implications. This includes long-circulating liposomes, stimuli-responsive liposomes, nebulized liposomes, elastic liposomes for topical, oral and transdermal delivery and covalent lipid-drug complexes for improved drug plasma membrane crossing and targeting to specific organelles. While the regulatory bodies' opinion on liposomes is well-documented, current guidance that address new delivery systems are not. This review describes, in depth, the current state-of-the-art of these new liposomal delivery systems and provides a critical overview of the current regulatory landscape surrounding commercialization efforts of higher-level complexity systems, the expected requirements and the hurdles faced by companies seeking to bring novel liposome-based systems for clinical use to market.
Collapse
|
35
|
Solovyeva VV, Kiyasov AP, Rizvanov AA. Genetically Engineered Dental Stem Cells for Regenerative Medicine. DENTAL STEM CELLS 2016. [DOI: 10.1007/978-3-319-28947-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Glucocorticoid Cell Priming Enhances Transfection Outcomes in Adult Human Mesenchymal Stem Cells. Mol Ther 2015; 24:331-341. [PMID: 26478250 DOI: 10.1038/mt.2015.195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/12/2015] [Indexed: 12/11/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are one of the most widely researched stem cell types with broad applications from basic research to therapeutics, the majority of which require introduction of exogenous DNA. However, safety and scalability issues hinder viral delivery, while poor efficiency hinders nonviral gene delivery, particularly to hMSCs. Here, we present the use of a pharmacologic agent (glucocorticoid) to overcome barriers to hMSC DNA transfer to enhance transfection using three common nonviral vectors. Glucocorticoid priming significantly enhances transfection in hMSCs, demonstrated by a 3-fold increase in efficiency, 4-15-fold increase in transgene expression, and prolonged transgene expression when compared to transfection without glucocorticoids. These effects are dependent on glucocorticoid receptor binding and caused in part by maintenance of normal metabolic function and increased cellular (5-fold) and nuclear (6-10-fold) DNA uptake over hMSCs transfected without glucocorticoids. Results were consistent across five human donors and in cells up to passage five. Glucocorticoid cell priming is a simple and effective technique to significantly enhance nonviral transfection of hMSCs that should enhance their clinical use, accelerate new research, and decrease reliance on early passage cells.
Collapse
|
37
|
Nafissi N, Foldvari M. Neuroprotective therapies in glaucoma: II. Genetic nanotechnology tools. Front Neurosci 2015; 9:355. [PMID: 26528114 PMCID: PMC4604245 DOI: 10.3389/fnins.2015.00355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/17/2015] [Indexed: 01/01/2023] Open
Abstract
Neurotrophic factor genome engineering could have many potential applications not only in the deeper understanding of neurodegenerative disorders but also in improved therapeutics. The fields of nanomedicine, regenerative medicine, and gene/cell-based therapy have been revolutionized by the development of safer and efficient non-viral technologies for gene delivery and genome editing with modern techniques for insertion of the neurotrophic factors into clinically relevant cells for a more sustained pharmaceutical effect. It has been suggested that the long-term expression of neurotrophic factors is the ultimate approach to prevent and/or treat neurodegenerative disorders such as glaucoma in patients who do not respond to available treatments or are at the progressive stage of the disease. Recent preclinical research suggests that novel neuroprotective gene and cell therapeutics could be promising approaches for both non-invasive neuroprotection and regenerative functions in the eye. Several progenitor and retinal cell types have been investigated as potential candidates for glaucoma neurotrophin therapy either as targets for gene therapy, options for cell replacement therapy, or as vehicles for gene delivery. Therefore, in parallel with deeper understanding of the specific protective effects of different neurotrophic factors and the potential therapeutic cell candidates for glaucoma neuroprotection, the development of non-invasive and highly specific gene delivery methods with safe and effective technologies to modify cell candidates for life-long neuroprotection in the eye is essential before investing in this field.
Collapse
Affiliation(s)
| | - Marianna Foldvari
- School of Pharmacy and Waterloo Institute of Nanotechnology, University of WaterlooWaterloo, ON, Canada
| |
Collapse
|
38
|
Ali Hosseini Rad SM, Bamdad T, Arefian E, Mossahebi-Mohammadi M, Sadeghizadeh M. An EBV-based plasmid can replicate and maintain in stem cells. Biotechnol Prog 2015; 31:1579-85. [PMID: 26260294 DOI: 10.1002/btpr.2153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/28/2015] [Indexed: 11/10/2022]
Abstract
Viral vectors have a wide range of applications in biology, particularly in gene therapy. Based on their integration capacity, viral vectors are classified as either integrating or non-integrating vectors. Although integrating vectors, such as lentivectors, have the ability to direct prolonged expression of exogenous genes, manipulation of the host genome is an inappropriate feature of these gene delivery tools. Non-integrating vectors, such as episomal replicating plasmids, can replicate and persist in host cells for long periods without any chromosomal interruption. These advantages made them good tools for gene induction purposes in gene therapy and basic studies. Due to the necessity of gene induction in stem cells for study of mammalian development and targeted differentiation, the use of integrating vectors for prolonged expression of genes of interest has been developed. Application of replicating plasmids can overcome some drawbacks associated with integrating vectors, although replication and maintenance of these plasmids can differ between cell types. Previously, it has been shown that such plasmids can be maintained in human embryonic stem cells for more than one month, but the rate of the plasmid replication during the host cell cycle has not been elucidated. In the present study, we showed that an EBV-based plasmid can replicate simultaneously with host in pluripotent and multipotent human and mouse stem cells and can be sustained for long time periods in dividing cells.
Collapse
Affiliation(s)
- Seyed Mohammad Ali Hosseini Rad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115-331, Iran.,Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, 1997775555, Iran
| | - Taravat Bamdad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115-331, Iran
| | - Ehsan Arefian
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, 1997775555, Iran.,Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| | - Majid Mossahebi-Mohammadi
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| |
Collapse
|
39
|
Beloor J, Ramakrishna S, Nam K, Seon Choi C, Kim J, Kim SH, Cho HJ, Shin H, Kim H, Kim SW, Lee SK, Kumar P. Effective gene delivery into human stem cells with a cell-targeting Peptide-modified bioreducible polymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2069-2079. [PMID: 25515928 DOI: 10.1002/smll.201402933] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Indexed: 06/04/2023]
Abstract
Stem cells are poorly permissive to non-viral gene transfection reagents. In this study, we explored the possibility of improving gene delivery into human embryonic (hESC) and mesenchymal (hMSC) stem cells by synergizing the activity of a cell-binding ligand with a polymer that releases nucleic acids in a cytoplasm-responsive manner. A 29 amino acid long peptide, RVG, targeting the nicotinic acetylcholine receptor (nAchR) was identified to bind both hMSC and H9-derived hESC. Conjugating RVG to a redox-sensitive biodegradable dendrimer-type arginine-grafted polymer (PAM-ABP) enabled nanoparticle formation with plasmid DNA without altering the environment-sensitive DNA release property and favorable toxicity profile of the parent polymer. Importantly, RVG-PAM-ABP quantitatively enhanced transfection into both hMSC and hESC compared to commercial transfection reagents like Lipofectamine 2000 and Fugene. ∼60% and 50% of hMSC and hESC were respectively transfected, and at increased levels on a per cell basis, without affecting pluripotency marker expression. RVG-PAM-ABP is thus a novel bioreducible, biocompatible, non-toxic, synthetic gene delivery system for nAchR-expressing stem cells. Our data also demonstrates that a cell-binding ligand like RVG can cooperate with a gene delivery system like PAM-ABP to enable transfection of poorly-permissive cells.
Collapse
Affiliation(s)
- Jagadish Beloor
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Bioengineering and Institute of Nano Science and Technology, Hanyang University, Seoul, 133-791, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Park W, Park SJ, Lee J, Na K. Recent advances in utilization of photochemical internalization (PCI) for efficient nano carrier mediated drug delivery. BIOMATERIALS AND BIOMECHANICS IN BIOENGINEERING 2015. [DOI: 10.12989/bme.2015.2.1.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Son S, Liang MS, Lei P, Xue X, Furlani EP, Andreadis ST. Magnetofection Mediated Transient NANOG Overexpression Enhances Proliferation and Myogenic Differentiation of Human Hair Follicle Derived Mesenchymal Stem Cells. Bioconjug Chem 2015; 26:1314-27. [PMID: 25685943 DOI: 10.1021/bc5005203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We used magnetofection (MF) to achieve high transfection efficiency into human mesenchymal stem cells (MSCs). A custom-made magnet array, matching well-to-well to a 24-well plate, was generated and characterized. Theoretical predictions of magnetic force distribution within each well demonstrated that there was no magnetic field interference among magnets in adjacent wells. An optimized protocol for efficient gene delivery to human hair follicle derived MSCs (hHF-MSCs) was established using an egfp-encoding plasmid, reaching approximately ∼50% transfection efficiency without significant cytotoxicity. Then we applied the optimized MF protocol to express the pluripotency-associated transcription factor NANOG, which was previously shown to reverse the effects of organismal aging on MSC proliferation and myogenic differentiation capacity. Indeed, MF-mediated NANOG delivery increased proliferation and enhanced the differentiation of hHF-MSCs into smooth muscle cells (SMCs). Collectively, our results show that MF can achieve high levels of gene delivery to MSCs and, therefore, may be employed to moderate or reverse the effects of cellular senescence or reprogram cells to the pluripotent state without permanent genetic modification.
Collapse
Affiliation(s)
| | | | | | | | | | - Stelios T Andreadis
- ∥Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14203, United States
| |
Collapse
|
42
|
Enabling nanomaterial, nanofabrication and cellular technologies for nanoneuromedicines. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:715-29. [PMID: 25652894 DOI: 10.1016/j.nano.2014.12.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 12/11/2022]
Abstract
Nanoparticulate delivery systems represent an area of particular promise for nanoneuromedicines. They possess significant potential for desperately needed therapies designed to combat a range of disorders associated with aging. As such, the field was selected as the focus for the 2014 meeting of the American Society for Nanomedicine. Regenerative, protective, immune modulatory, anti-microbial and anti-inflammatory products, or imaging agents are readily encapsulated in or conjugated to nanoparticles and as such facilitate the delivery of drug payloads to specific action sites across the blood-brain barrier. Diagnostic imaging serves to precisely monitor disease onset and progression while neural stem cell replacement can regenerate damaged tissue through control of stem cell fates. These, taken together, can improve disease burden and limit systemic toxicities. Such enabling technologies serve to protect the nervous system against a broad range of degenerative, traumatic, metabolic, infectious and immune disorders. From the clinical editor: Nanoneuromedicine is a branch of nanomedicine that specifically looks at the nervous system. In the clinical setting, a fundamental hurdle in nervous system disorders is due to an inherent inability of nerve cells to regenerate after damage. Nanotechnology can offer new approaches to overcome these challenges. This review describes recent developments in nanomedicine delivery systems that would affect stem cell repair and regeneration in the nervous system.
Collapse
|
43
|
Muroski ME, Morgan TJ, Levenson CW, Strouse GF. A gold nanoparticle pentapeptide: gene fusion to induce therapeutic gene expression in mesenchymal stem cells. J Am Chem Soc 2014; 136:14763-71. [PMID: 25198921 DOI: 10.1021/ja505190q] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSC) have been identified as having great potential as autologous cell therapeutics to treat traumatic brain injury and spinal injury as well as neuronal and cardiac ischemic events. All future clinical applications of MSC cell therapies must allow the MSC to be harvested, transfected, and induced to express a desired protein or selection of proteins to have medical benefit. For the full potential of MSC cell therapy to be realized, it is desirable to systematically alter the protein expression of therapeutically beneficial biomolecules in harvested MSC cells with high fidelity in a single transfection event. We have developed a delivery platform on the basis of the use of a solid gold nanoparticle that has been surface modified to produce a fusion containing a zwitterionic, pentapeptide designed from Bax inhibiting peptide (Ku70) to enhance cellular uptake and a linearized expression vector to induce enhanced expression of brain-derived neurotrophic factor (BDNF) in rat-derived MSCs. Ku70 is observed to effect >80% transfection following a single treatment of femur bone marrow isolated rat MSCs with efficiencies for the delivery of a 6.6 kbp gene on either a Au nanoparticle (NP) or CdSe/ZnS quantum dot (QD). Gene expression is observed within 4 d by optical measurements, and secretion is observed within 10 d by Western Blot analysis. The combination of being able to selectively engineer the NP, to colocalize biological agents, and to enhance the stability of those agents has provided the strong impetus to utilize this novel class of materials to engineer primary MSCs.
Collapse
Affiliation(s)
- Megan E Muroski
- Department of Chemistry and Biochemistry, 95 Chieftan Way, Florida State University , Tallahassee, Florida 32306-4390, United States
| | | | | | | |
Collapse
|
44
|
Abdul Halim NSS, Fakiruddin KS, Ali SA, Yahaya BH. A comparative study of non-viral gene delivery techniques to human adipose-derived mesenchymal stem cell. Int J Mol Sci 2014; 15:15044-60. [PMID: 25162825 PMCID: PMC4200830 DOI: 10.3390/ijms150915044] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/17/2014] [Accepted: 07/10/2014] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) hold tremendous potential for therapeutic use in stem cell-based gene therapy. Ex vivo genetic modification of MSCs with beneficial genes of interest is a prerequisite for successful use of stem cell-based therapeutic applications. However, genetic manipulation of MSCs is challenging because they are resistant to commonly used methods to introduce exogenous DNA or RNA. Herein we compared the effectiveness of several techniques (classic calcium phosphate precipitation, cationic polymer, and standard electroporation) with that of microporation technology to introduce the plasmid encoding for angiopoietin-1 (ANGPT-1) and enhanced green fluorescent protein (eGFP) into human adipose-derived MSCs (hAD-MSCs). The microporation technique had a higher transfection efficiency, with up to 50% of the viable hAD-MSCs being transfected, compared to the other transfection techniques, for which less than 1% of cells were positive for eGFP expression following transfection. The capability of cells to proliferate and differentiate into three major lineages (chondrocytes, adipocytes, and osteocytes) was found to be independent of the technique used for transfection. These results show that the microporation technique is superior to the others in terms of its ability to transfect hAD-MSCs without affecting their proliferation and differentiation capabilities. Therefore, this study provides a foundation for the selection of techniques when using ex vivo gene manipulation for cell-based gene therapy with MSCs as the vehicle for gene delivery.
Collapse
Affiliation(s)
| | - Kamal Shaik Fakiruddin
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), Jalan Pahang 50588, Malaysia.
| | - Syed Atif Ali
- Cluster for Oncological and Radiological Sciences, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Penang 13200, Malaysia.
| | - Badrul Hisham Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Penang 13200, Malaysia.
| |
Collapse
|
45
|
Um SH. Delivering factors for reprogramming a somatic cell to pluripotency. Int J Stem Cells 2014; 5:6-11. [PMID: 24298349 DOI: 10.15283/ijsc.2012.5.1.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2012] [Indexed: 01/20/2023] Open
Abstract
An adult cell originates from stem cell. The stem cell is usually categorized into three species including an embryonic stem cell (ESc), an adult stem cell, and an induced stem cell (iPSc). iPSc features pluripotency, which is meant to be differentiated into any types of cells. Accordingly, it is much attractive to anyone who pursuit a regenerative medicine, owing to the potential almighty. They are simply produced by reprogramming a somatic cell via a transfer of transcription factors. The efficiency and productivity of iPS are considerably subject to delivering methods of exogenous genes into a variety of targeted mammalians. Conventional and well-run gene delivery techniques have been reviewed here. This details the methods and principles of delivery factors and provides an overview of the research, with an emphasis on their potential for use as clinical therapeutic platforms.
Collapse
Affiliation(s)
- Soong Ho Um
- Department of Chemical Engineering, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
46
|
Li B, Li F, Ma L, Yang J, Wang C, Wang D, Gao C. Poly(lactide-co-glycolide)/Fibrin Gel Construct as a 3D Model to Evaluate Gene Therapy of Cartilage in Vivo. Mol Pharm 2014; 11:2062-70. [DOI: 10.1021/mp5000136] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bo Li
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Feifei Li
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lie Ma
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Junzhou Yang
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chunfen Wang
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dongan Wang
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, 637457 Singapore
| | - Changyou Gao
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
47
|
Wyse RD, Dunbar GL, Rossignol J. Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases. Int J Mol Sci 2014; 15:1719-45. [PMID: 24463293 PMCID: PMC3958818 DOI: 10.3390/ijms15021719] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/18/2013] [Accepted: 01/14/2014] [Indexed: 01/01/2023] Open
Abstract
The transplantation of mesenchymal stem cells (MSCs) for treating neurodegenerative disorders has received growing attention recently because these cells are readily available, easily expanded in culture, and when transplanted, survive for relatively long periods of time. Given that such transplants have been shown to be safe in a variety of applications, in addition to recent findings that MSCs have useful immunomodulatory and chemotactic properties, the use of these cells as vehicles for delivering or producing beneficial proteins for therapeutic purposes has been the focus of several labs. In our lab, the use of genetic modified MSCs to release neurotrophic factors for the treatment of neurodegenerative diseases is of particular interest. Specifically, glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and brain derived neurotrophic factor (BDNF) have been recognized as therapeutic trophic factors for Parkinson's, Alzheimer's and Huntington's diseases, respectively. The aim of this literature review is to provide insights into: (1) the inherent properties of MSCs as a platform for neurotrophic factor delivery; (2) the molecular tools available for genetic manipulation of MSCs; (3) the rationale for utilizing various neurotrophic factors for particular neurodegenerative diseases; and (4) the clinical challenges of utilizing genetically modified MSCs.
Collapse
Affiliation(s)
- Robert D Wyse
- Field Neurosciences Institute Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Gary L Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
| |
Collapse
|
48
|
Lai WF. In vivonucleic acid delivery with PEI and its derivatives: current status and perspectives. Expert Rev Med Devices 2014; 8:173-85. [DOI: 10.1586/erd.10.83] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
49
|
Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:561098. [PMID: 24381939 PMCID: PMC3870125 DOI: 10.1155/2013/561098] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/09/2013] [Accepted: 10/28/2013] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSCs) are currently being investigated in numerous clinical trials of tissue repair and various immunological disorders based on their ability to secrete trophic factors and to modulate inflammatory responses. MSCs have been shown to migrate to sites of injury and inflammation in response to soluble mediators including the chemokine stromal cell-derived factor-(SDF-)1, but during in vitro culture expansion MSCs lose surface expression of key homing receptors particularly of the SDF-1 receptor, CXCR4. Here we review studies on enhancement of SDF-1-directed migration of MSCs with the premise that their improved recruitment could translate to therapeutic benefits. We describe our studies on approaches to increase the CXCR4 expression in in vitro-expanded cord blood-derived MSCs, namely, transfection, using the commercial liposomal reagent IBAfect, chemical treatment with the histone deacetylase inhibitor valproic acid, and exposure to recombinant complement component C1q. These methodologies will be presented in the context of other cell targeting and delivery strategies that exploit pathways involved in MSC migration. Taken together, these findings indicate that MSCs can be manipulated in vitro to enhance their in vivo recruitment and efficacy for tissue repair.
Collapse
|
50
|
Gandra N, Wang DD, Zhu Y, Mao C. Virus-mimetic cytoplasm-cleavable magnetic/silica nanoclusters for enhanced gene delivery to mesenchymal stem cells. Angew Chem Int Ed Engl 2013; 52:11278-81. [PMID: 24038718 DOI: 10.1002/anie.201301113] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/27/2013] [Indexed: 01/03/2023]
Abstract
It does get in: Phage is made of DNA as a core and protein as a coat, and it can transfer DNA into host cells with high efficiency. Phage-mimetic gene transfer to hard-to-transfect mesenchymal stem cells (MSCs) was achieved using virus-mimetic magnetic silica nanoclusters (VMSNCs). The VMSNCs bear MSC-homing phage-borne protein on the surface and encapsulate DNA inside, promoting the transfer of DNA into MSCs.
Collapse
Affiliation(s)
- Naveen Gandra
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Room 3310, Norman, OK 73019-5300 (USA)
| | | | | | | |
Collapse
|