1
|
Ma J, Xing B, Cao Y, He X, Bennett KE, Tong C, An C, Hojnacki T, Feng Z, Deng S, Ling S, Xie G, Wu Y, Ren Y, Yu M, Katona BW, Li H, Naji A, Hua X. Menin-regulated Pbk controls high fat diet-induced compensatory beta cell proliferation. EMBO Mol Med 2021; 13:e13524. [PMID: 33821572 PMCID: PMC8103087 DOI: 10.15252/emmm.202013524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic beta cells undergo compensatory proliferation in the early phase of type 2 diabetes. While pathways such as FoxM1 are involved in regulating compensatory beta cell proliferation, given the lack of therapeutics effectively targeting beta cell proliferation, other targetable pathways need to be identified. Herein, we show that Pbk, a serine/threonine protein kinase, is essential for high fat diet (HFD)‐induced beta cell proliferation in vivo using a Pbk kinase deficiency knock‐in mouse model. Mechanistically, JunD recruits menin and HDAC3 complex to the Pbk promoter to reduce histone H3 acetylation, leading to epigenetic repression of Pbk expression. Moreover, menin inhibitor (MI) disrupts the menin–JunD interaction and augments Pbk transcription. Importantly, MI administration increases beta cell proliferation, ameliorating hyperglycemia, and impaired glucose tolerance (IGT) in HFD‐induced diabetic mice. Notably, Pbk is required for the MI‐induced beta cell proliferation and improvement of IGT. Together, these results demonstrate the repressive role of the menin/JunD/Pbk axis in regulating HFD‐induced compensatory beta cell proliferation and pharmacologically regulating this axis may serve as a novel strategy for type 2 diabetes therapy.
Collapse
Affiliation(s)
- Jian Ma
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bowen Xing
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yan Cao
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xin He
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kate E Bennett
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chao Tong
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Chiying An
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Taylor Hojnacki
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zijie Feng
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sunbin Deng
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunbin Ling
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gengchen Xie
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yuan Wu
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yue Ren
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ming Yu
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bryson W Katona
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hongzhe Li
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ali Naji
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xianxin Hua
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
2
|
Xing B, Ma J, Jiang Z, Feng Z, Ling S, Szigety K, Su W, Zhang L, Jia R, Sun Y, Zhang L, Kong X, Ma X, Hua X. GLP-1 signaling suppresses menin's transcriptional block by phosphorylation in β cells. J Cell Biol 2019; 218:855-870. [PMID: 30792230 PMCID: PMC6400573 DOI: 10.1083/jcb.201805049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/23/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Both menin and glucagon-like peptide 1 (GLP-1) pathways play central yet opposing role in regulating β cell function, with menin suppressing, and GLP-1 promoting, β cell function. However, little is known as to whether or how GLP-1 pathway represses menin function. Here, we show that GLP-1 signaling-activated protein kinase A (PKA) directly phosphorylates menin at the serine 487 residue, relieving menin-mediated suppression of insulin expression and cell proliferation. Mechanistically, Ser487-phosphorylated menin gains increased binding affinity to nuclear actin/myosin IIa proteins and gets sequestrated from the Ins1 promoter. This event leads to reduced binding of repressive epigenetic histone modifiers suppressor variegation 3-9 homologue protein 1 (SUV39H1) and histone deacetylases 1 (HDAC1) at the locus and subsequently increased Ins1 gene transcription. Ser487 phosphorylation of menin also increases expression of proproliferative cyclin D2 and β cell proliferation. Our results have uncovered a previously unappreciated physiological link in which GLP-1 signaling suppresses menin function through phosphorylation-triggered and actin/myosin cytoskeletal protein-mediated derepression of gene transcription.
Collapse
Affiliation(s)
- Bowen Xing
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Jian Ma
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Zongzhe Jiang
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Zijie Feng
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sunbin Ling
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Katy Szigety
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Wen Su
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Longmei Zhang
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Ruirui Jia
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Yanmei Sun
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Lin Zhang
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Xiangchen Kong
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Xiaosong Ma
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Xianxin Hua
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China .,Department of Cancer Biology, Abramson Family Cancer Research Institute, Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
3
|
Abstract
OBJECTIVES Menin, a chromatin binding protein, interacts with various epigenetic regulators to regulate gene transcription, whereas forkhead box protein O1 (FOXO1) is a transcription factor that can be regulated by multiple signaling pathways. Both menin and FOXO1 are crucial regulators of β-cell function and metabolism; however, whether or how they interplay to regulate β cells is not clear. METHODS To examine whether menin affects expression of FOXO1, we ectopically expressed menin complementary DNA and small hairpin RNA targeting menin via a retroviral vector in INS-1 cells. Western blotting was used to analyze protein levels. RESULTS Our current work shows that menin increases the expression of FOXO1. Menin stabilizes FOXO1 protein level in INS-1 cells, as shown by increased half-life of FOXO1 by menin expression. Moreover, menin represses ubiquitination of FOXO1 protein and AKT phosphorylation, We found that menin stabilizes FOXO1 by repressing FOXO1 degradation mediated by S-phase kinase-associated protein 2 (Skp2), an E3 ubiquitin ligase, promoting caspase 3 activation and apoptosis. CONCLUSIONS Because FOXO1 upregulates the menin gene transcription, our findings unravel a crucial menin and FOXO1 interplay, with menin and FOXO1 upregulating their expression reciprocally, forming a positive feedback loop to sustain menin and FOXO1 expression.
Collapse
|
4
|
Khatami F, Tavangar SM. Multiple Endocrine Neoplasia Syndromes from Genetic and Epigenetic Perspectives. Biomark Insights 2018; 13:1177271918785129. [PMID: 30013307 PMCID: PMC6043927 DOI: 10.1177/1177271918785129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022] Open
Abstract
Multiple endocrine neoplasia (MEN) syndromes are infrequent inherited disorders in which more than one endocrine glands develop noncancerous (benign) or cancerous (malignant) tumors or grow excessively without forming tumors. There are 3 famous and well-known forms of MEN syndromes (MEN 1, MEN 2A, and MEN 2B) and a newly documented one (MEN4). These syndromes are infrequent and occurred in all ages and both men and women. Usually, germ line mutations that can be resulted in neoplastic transformation of anterior pituitary, parathyroid glands, and pancreatic islets in addition to gastrointestinal tract can be an indicator for MEN1. The medullary thyroid cancer (MTC) in association with pheochromocytoma and/or multiple lesions of parathyroid glands with hyperparathyroidism can be pointer of MEN2 which can be subgrouped into the MEN 2A, MEN 2B, and familial MTC syndromes. There are no distinct biochemical markers that allow identification of familial versus nonfamilial forms of the tumors, but familial MTC usually happens at a younger age than sporadic MTC. The MEN1 gene (menin protein) is in charge of MEN 1 disease, CDNK1B for MEN 4, and RET proto-oncogene for MEN 2. The focus over the molecular targets can bring some hope for both diagnosis and management of MEN syndromes. In the current review, we look at this disease and responsible genes and their cell signaling pathway involved.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathology, Doctor Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Ou K, Zhang J, Jiao Y, Wang ZV, Scherer P, Kaestner KH. Overexpression of ST5, an activator of Ras, has no effect on β-cell proliferation in adult mice. Mol Metab 2018; 11:212-217. [PMID: 29650351 PMCID: PMC6001393 DOI: 10.1016/j.molmet.2018.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE Both Type I and Type II diabetes mellitus result from insufficient functional β-cell mass. Efforts to increase β-cell proliferation as a means to restore β-cell mass have been met with limited success. Suppression of Tumorigenicity 5 (ST5) activates Ras/Erk signaling in the presence of Epidermal Growth Factor (EGF). In the pancreatic islet, Ras/Erk signaling is required for augmented β-cell proliferation during pregnancy, suggesting that ST5 is an appealing candidate to enhance adult β-cell proliferation. We aimed to test the hypothesis that overexpression of ST5 drives adult β-cell proliferation. METHODS We utilized a doxycycline-inducible bitransgenic mouse model to activate β-cell-specific expression of human ST5 in adult mice at will. Islet morphology, β-cell proliferation, and β-cell mass in control and ST5-overexpressing (ST5 OE) animals were analyzed by immunofluorescent staining, under basal and two stimulated metabolic states: pregnancy and streptozotocin (STZ)-induced β-cell loss. RESULTS Doxycycline treatment resulted in robust ST5 overexpression in islets from 12-16 week-old ST5 OE animals compared to controls, without affecting the islet morphology and identity of the β-cells. Under both basal and metabolically stimulated pregnancy states, β-cell proliferation and mass were comparable in ST5 OE and control animals. Furthermore, there was no detectable difference in β-cell proliferation between ST5 OE and control animals in response to STZ-induced β-cell loss. CONCLUSIONS We successfully derived an inducible bitransgenic mouse model to overexpress ST5 specifically in β-cells. However, our findings demonstrate that ST5 overexpression by itself has no mitogenic effect on the adult β-cell under basal and metabolically challenged states.
Collapse
Affiliation(s)
- Kristy Ou
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Jia Zhang
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Yang Jiao
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhao V Wang
- Touchstone Diabetes Center, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Phillipp Scherer
- Touchstone Diabetes Center, University of Texas Southwestern, Dallas, TX, 75390, USA.
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Feng Z, Ma J, Hua X. Epigenetic regulation by the menin pathway. Endocr Relat Cancer 2017; 24:T147-T159. [PMID: 28811300 PMCID: PMC5612327 DOI: 10.1530/erc-17-0298] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
There is a trend of increasing prevalence of neuroendocrine tumors (NETs), and the inherited multiple endocrine neoplasia type 1 (MEN1) syndrome serves as a genetic model to investigate how NETs develop and the underlying mechanisms. Menin, encoded by the MEN1 gene, at least partly acts as a scaffold protein by interacting with multiple partners to regulate cellular homeostasis of various endocrine organs. Menin has multiple functions including regulation of several important signaling pathways by controlling gene transcription. Here, we focus on reviewing the recent progress in elucidating the key biochemical role of menin in epigenetic regulation of gene transcription and cell signaling, as well as posttranslational regulation of menin itself. In particular, we will review the progress in studying structural and functional interactions of menin with various histone modifiers and transcription factors such as MLL, PRMT5, SUV39H1 and other transcription factors including c-Myb and JunD. Moreover, the role of menin in regulating cell signaling pathways such as TGF-beta, Wnt and Hedgehog, as well as miRNA biogenesis and processing will be described. Further, the regulation of the MEN1 gene transcription, posttranslational modifications and stability of menin protein will be reviewed. These various modes of regulation by menin as well as regulation of menin by various biological factors broaden the view regarding how menin controls various biological processes in neuroendocrine organ homeostasis.
Collapse
Affiliation(s)
- Zijie Feng
- Department of Cancer BiologyAbramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jian Ma
- Department of Cancer BiologyAbramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xianxin Hua
- Department of Cancer BiologyAbramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Muhammad AB, Xing B, Liu C, Naji A, Ma X, Simmons RA, Hua X. Menin and PRMT5 suppress GLP1 receptor transcript and PKA-mediated phosphorylation of FOXO1 and CREB. Am J Physiol Endocrinol Metab 2017; 313:E148-E166. [PMID: 28270438 PMCID: PMC5582886 DOI: 10.1152/ajpendo.00241.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 01/11/2017] [Accepted: 02/20/2017] [Indexed: 12/23/2022]
Abstract
Menin is a scaffold protein that interacts with several epigenetic mediators to regulate gene transcription, and suppresses pancreatic β-cell proliferation. Tamoxifen-inducible deletion of multiple endocrine neoplasia type 1 (MEN1) gene, which encodes the protein menin, increases β-cell mass in multiple murine models of diabetes and ameliorates diabetes. Glucagon-like-peptide-1 (GLP1) is another key physiological modulator of β-cell mass and glucose homeostasis. However, it is not clearly understood whether menin crosstalks with GLP1 signaling. Here, we show that menin and protein arginine methyltransferase 5 (PRMT5) suppress GLP1 receptor (GLP1R) transcript levels. Notably, a GLP1R agonist induces phosphorylation of forkhead box protein O1 (FOXO1) at S253, and the phosphorylation is mediated by PKA. Interestingly, menin suppresses GLP1-induced and PKA-mediated phosphorylation of both FOXO1 and cAMP response element binding protein (CREB), likely through a protein arginine methyltransferase. Menin-mediated suppression of FOXO1 and CREB phosphorylation increases FOXO1 levels and suppresses CREB target genes, respectively. A small-molecule menin inhibitor reverses menin-mediated suppression of both FOXO1 and CREB phosphorylation. In addition, ex vivo treatment of both mouse and human pancreatic islets with a menin inhibitor increases levels of proliferation marker Ki67. In conclusion, our results suggest that menin and PRMT5 suppress GLP1R transcript levels and PKA-mediated phosphorylation of FOXO1 and CREB, and a menin inhibitor may reverse this suppression to induce β-cell proliferation.
Collapse
Affiliation(s)
- Abdul Bari Muhammad
- Abramson Family Cancer Research Institute, Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bowen Xing
- Shenzen University School of Medicine, Institute of Diabetes Research, Shenzhen, Guangdong, China
| | - Chengyang Liu
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaosong Ma
- Shenzen University School of Medicine, Institute of Diabetes Research, Shenzhen, Guangdong, China
| | - Rebecca A Simmons
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Xianxin Hua
- Abramson Family Cancer Research Institute, Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
- Institute for Diabetes, Obesity, and Metabolism Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Gao Z, Zhang L, Xie W, Wang S, Bao X, Guo Y, Zhang H, Hu Q, Chen Y, Wang Z, Xue M, Jin G. Male Men1 heterozygous mice exhibit fasting hyperglycemia in the early stage of MEN1. J Endocrinol 2016; 230:347-55. [PMID: 27432891 DOI: 10.1530/joe-16-0090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 07/18/2016] [Indexed: 01/29/2023]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant inherited syndrome characterized by multiple tumors in the parathyroid glands, endocrine pancreas and anterior pituitary. Recent clinical studies have revealed a strong association between MEN1 syndrome and the risk of developing diabetes mellitus; however, the underlying mechanisms remain unknown. In this study, heterozygous Men1 knockout (Men1(+/-)) mice were used as MEN1 models to investigate MEN1-associated glucose metabolic phenotypes and mechanisms. Heterozygous deficiency of Men1 in 12-month-old male mice induced fasting hyperglycemia, along with increased serum insulin levels. However, male Men1(+/-) mice did not show insulin resistance, as evidenced by Akt activation in hepatic tissues and an insulin tolerance test. Increased glucose levels following pyruvate challenge and expression of key gluconeogenic genes suggested increased hepatic glucose output in the male Men1(+/-) mice. This effect could be partly due to higher basal serum glucagon levels, which resulted from pancreatic islet cell proliferation induced by heterozygous loss of Men1 Taken together, our results indicate that fasted male Men1(+/-) mice, in the early stage of development of MEN1, display glucose metabolic disorders. These disorders are caused not by direct induction of insulin resistance, but via increased glucagon secretion and the consequent stimulation of hepatic glucose production.
Collapse
Affiliation(s)
- Zhongxiuzi Gao
- Department of Basic Medical SciencesMedical College, Xiamen University, Xiamen, China
| | - Li Zhang
- Department of Basic Medical SciencesMedical College, Xiamen University, Xiamen, China
| | - Wenting Xie
- Department of Basic Medical SciencesMedical College, Xiamen University, Xiamen, China
| | - Siqi Wang
- Department of Basic Medical SciencesMedical College, Xiamen University, Xiamen, China
| | - Xiaorui Bao
- Department of Basic Medical SciencesMedical College, Xiamen University, Xiamen, China
| | - Yuli Guo
- Department of Basic Medical SciencesMedical College, Xiamen University, Xiamen, China
| | - Houjian Zhang
- Department of Basic Medical SciencesMedical College, Xiamen University, Xiamen, China
| | - Qingzhong Hu
- Department of Basic Medical SciencesMedical College, Xiamen University, Xiamen, China
| | - Yi Chen
- Department of Basic Medical SciencesMedical College, Xiamen University, Xiamen, China
| | - Zeen Wang
- Department of Basic Medical SciencesMedical College, Xiamen University, Xiamen, China
| | - Maoqiang Xue
- Department of Basic Medical SciencesMedical College, Xiamen University, Xiamen, China
| | - Guanghui Jin
- Department of Basic Medical SciencesMedical College, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Ma X, Guan Y, Hua X. Glucagon-like peptide 1-potentiated insulin secretion and proliferation of pancreatic β-cells. J Diabetes 2014; 6:394-402. [PMID: 24725840 DOI: 10.1111/1753-0407.12161] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/28/2014] [Accepted: 04/07/2014] [Indexed: 02/06/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is the primary incretin hormone secreted from the intestine upon uptake of food to stimulate insulin secretion from pancreatic β-cells. GLP-1 exerts its effects by binding to its G-protein coupled receptors and subsequently activating adenylate cyclase, leading to generation of cyclic adenosine monophosphate (cAMP). cAMP stimulates insulin secretion via activation of its effectors PKA and Epac2 in pancreatic β-cells. In addition to its insulinotropic effects, GLP-1 also preserves pancreatic β-cell mass by stimulating β-cell proliferation. Unlike the action of sulphonylureas in lowering blood glucose levels, action of GLP-1 is affected by and interplays with glucose levels. Due to such advantages, GLP-1-based therapeutics have been rapidly developed and used clinically for treatment of type 2 diabetes. However, molecular mechanisms underlying how GLP-1 potentiates diminished glucose-stimulated insulin secretion and β-cell proliferation under diabetic conditions are not well understood. Here, we review the actions of GLP-1 in regulation of insulin secretion and pancreatic β-cell proliferation.
Collapse
Affiliation(s)
- Xiaosong Ma
- Shenzhen University Diabetes Center, Shenzhen, China
| | | | | |
Collapse
|
10
|
Menin: a scaffold protein that controls gene expression and cell signaling. Trends Biochem Sci 2013; 38:394-402. [PMID: 23850066 DOI: 10.1016/j.tibs.2013.05.005] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/22/2013] [Accepted: 05/31/2013] [Indexed: 12/22/2022]
Abstract
The protein menin is encoded by the MEN1 gene, which is mutated in patients with multiple endocrine neoplasia type 1 (MEN1) syndrome. Although menin acts as a tumor suppressor in endocrine organs, it is required for leukemic transformation in mouse models. Menin possesses these dichotomous functions probably because it can both positively and negatively regulate gene expression, as well as interact with a multitude of proteins with diverse functions. Here, we review the recent progress in understanding the molecular mechanisms by which menin functions. The crystal structures of menin with different binding partners reveal that menin is a key scaffold protein that functionally crosstalks with various partners to regulate gene transcription and interplay with multiple signaling pathways.
Collapse
|