1
|
Kidd BM, Varholick JA, Tuyn DM, Kamat PK, Simon ZD, Liu L, Mekler MP, Pompilus M, Bubenik JL, Davenport ML, Carter HA, Grudny MM, Barbazuk WB, Doré S, Febo M, Candelario-Jalil E, Maden M, Swanson MS. Stroke-induced neuroplasticity in spiny mice in the absence of tissue regeneration. NPJ Regen Med 2024; 9:41. [PMID: 39706830 DOI: 10.1038/s41536-024-00386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Stroke is a major cause of disability for adults over 40 years of age. While research into animal models has prioritized treatments aimed at diminishing post-stroke damage, no studies have investigated the response to a severe stroke injury in a highly regenerative adult mammal. Here we investigate the effects of transient ischemia on adult spiny mice, Acomys cahirinus, due to their ability to regenerate multiple tissues without scarring. Transient middle cerebral artery occlusion was performed and Acomys showed rapid behavioral recovery post-stroke yet failed to regenerate impacted brain regions. An Acomys brain atlas in combination with functional (f)MRI demonstrated recovery coincides with neuroplasticity. The strength and quality of the global connectome are preserved post-injury with distinct contralateral and ipsilateral brain regions compensating for lost tissue. Thus, we propose Acomys recovers functionally from an ischemic stroke injury not by tissue regeneration but by altering its brain connectome.
Collapse
Affiliation(s)
- Benjamin M Kidd
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Justin A Varholick
- Department of Biology, College of Liberal Arts and Sciences and the Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Dana M Tuyn
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Pradip K Kamat
- Departments of Anesthesiology, Neurology, Psychology, and Pharmaceutics, Center for Translational Research in Neurodegenerative Disease, and the College of Medicine, University of Florida, Gainesville, FL, USA
| | - Zachary D Simon
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Psychiatry and the McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lei Liu
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mackenzie P Mekler
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Marjory Pompilus
- Department of Psychiatry and the McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jodi L Bubenik
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Mackenzie L Davenport
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Helmut A Carter
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Matteo M Grudny
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Psychiatry and the McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - W Brad Barbazuk
- Department of Biology, College of Liberal Arts and Sciences and the Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Departments of Anesthesiology, Neurology, Psychology, and Pharmaceutics, Center for Translational Research in Neurodegenerative Disease, and the College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Psychiatry and the McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marcelo Febo
- Department of Psychiatry and the McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Malcolm Maden
- Department of Biology, College of Liberal Arts and Sciences and the Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
2
|
Dai F, Hu C, Li X, Zhang Z, Wang H, Zhou W, Wang J, Geng Q, Dong Y, Tang C. Cav3.2 channel regulates cerebral ischemia/reperfusion injury: a promising target for intervention. Neural Regen Res 2024; 19:2480-2487. [PMID: 38526284 PMCID: PMC11090426 DOI: 10.4103/1673-5374.390966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/05/2023] [Accepted: 10/25/2023] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00028/figure1/v/2024-03-08T184507Z/r/image-tiff Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury. Various calcium channels are involved in cerebral ischemia/reperfusion injury. Cav3.2 channel is a main subtype of T-type calcium channels. T-type calcium channel blockers, such as pimozide and mibefradil, have been shown to prevent cerebral ischemia/reperfusion injury-induced brain injury. However, the role of Cav3.2 channels in cerebral ischemia/reperfusion injury remains unclear. Here, in vitro and in vivo models of cerebral ischemia/reperfusion injury were established using middle cerebral artery occlusion in mice and high glucose hypoxia/reoxygenation exposure in primary hippocampal neurons. The results showed that Cav3.2 expression was significantly upregulated in injured hippocampal tissue and primary hippocampal neurons. We further established a Cav3.2 gene-knockout mouse model of cerebral ischemia/reperfusion injury. Cav3.2 knockout markedly reduced infarct volume and brain water content, and alleviated neurological dysfunction after cerebral ischemia/reperfusion injury. Additionally, Cav3.2 knockout attenuated cerebral ischemia/reperfusion injury-induced oxidative stress, inflammatory response, and neuronal apoptosis. In the hippocampus of Cav3.2-knockout mice, calcineurin overexpression offset the beneficial effect of Cav3.2 knockout after cerebral ischemia/reperfusion injury. These findings suggest that the neuroprotective function of Cav3.2 knockout is mediated by calcineurin/nuclear factor of activated T cells 3 signaling. Findings from this study suggest that Cav3.2 could be a promising target for treatment of cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Feibiao Dai
- Graduate School, Wannan Medical College, Wuhu, Anhui Province, China
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| | - Chengyun Hu
- Graduate School, Wannan Medical College, Wuhu, Anhui Province, China
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| | - Xue Li
- Graduate School, Wannan Medical College, Wuhu, Anhui Province, China
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| | - Zhetao Zhang
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Hongtao Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| | - Wanjun Zhou
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| | - Jiawu Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| | - Qingtian Geng
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| | - Yongfei Dong
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Chaoliang Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui Province, China
| |
Collapse
|
3
|
Ding M, Han R, Xie Y, Wei Z, Xue S, Zhang F, Cao Z. Plumbagin, a novel TRPV2 inhibitor, ameliorates microglia activation and brain injury in a middle cerebral artery occlusion/reperfusion mouse model. Br J Pharmacol 2024. [PMID: 39363399 DOI: 10.1111/bph.17343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential vanilloid 2 (TRPV2) is a Ca2+-permeable non-selective cation channel. Despite the significant roles of TRPV2 in immunological response, cancer progression and cardiac development, pharmacological probes of TRPV2 remain to be identified. We aimed to discover TRPV2 inhibitors and to elucidate their molecular mechanism of action. EXPERIMENTAL APPROACH Fluorescence-based Ca2+ assay in HEK-293 cells expressing murine TRPV2 was used to identify plumbagin as a novel TRPV2 inhibitor. Patch-clamp, in silico docking and site-directed mutagenesis were applied to investigate the molecular mechanisms critical for plumbagin interaction. ELISA and qPCR were used to assess nitric oxide release and mRNA levels of inflammatory mediators, respectively. si-RNA interference was used to knock down TRPV2 expression, which was validated by western blotting. Neurological and histological analyses were used to examine brain injury of mice following middle cerebral artery occlusion/reperfusion (MCAO/R). KEY RESULTS Plumbagin is a potent TRPV2 negative allosteric modulator with an IC50 value of 0.85 μM, exhibiting >14-fold selectivity over TRPV1, TRPV3 and TRPV4. Plumbagin suppresses TRPV2 activity by decreasing the channel open probability without affecting the unitary conductance. Moreover, plumbagin binds to an extracellular pocket formed by the pore helix and flexible loop between transmembrane helices S5 and S6 of TRPV2. Plumbagin effectively suppresses LPS-induced inflammation of BV-2 microglia and ameliorates brain injury of MCAO/R mice. CONCLUSION AND IMPLICATIONS Plumbagin is a novel pharmacological probe to study TRPV2 pathophysiology. TRPV2 is a novel molecular target for the treatment of neuroinflammation and ischemic stroke.
Collapse
Affiliation(s)
- Meihuizi Ding
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rui Han
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yiming Xie
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ziyi Wei
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuwen Xue
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fan Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Mușat MI, Cătălin B, Hadjiargyrou M, Popa-Wagner A, Greșiță A. Advancing Post-Stroke Depression Research: Insights from Murine Models and Behavioral Analyses. Life (Basel) 2024; 14:1110. [PMID: 39337894 PMCID: PMC11433193 DOI: 10.3390/life14091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Post-stroke depression (PSD) represents a significant neuropsychiatric complication that affects between 39% and 52% of stroke survivors, leading to impaired recovery, decreased quality of life, and increased mortality. This comprehensive review synthesizes our current knowledge of PSD, encompassing its epidemiology, risk factors, underlying neurochemical mechanisms, and the existing tools for preclinical investigation, including animal models and behavioral analyses. Despite the high prevalence and severe impact of PSD, challenges persist in accurately modeling its complex symptomatology in preclinical settings, underscoring the need for robust and valid animal models to better understand and treat PSD. This review also highlights the multidimensional nature of PSD, where both biological and psychosocial factors interplay to influence its onset and course. Further, we examine the efficacy and limitations of the current animal models in mimicking the human PSD condition, along with behavioral tests used to evaluate depressive-like behaviors in rodents. This review also sets a new precedent by integrating the latest findings across multidisciplinary studies, thereby offering a unique and comprehensive perspective of existing knowledge. Finally, the development of more sophisticated models that closely replicate the clinical features of PSD is crucial in order to advance translational research and facilitate the discovery of future effective therapies.
Collapse
Affiliation(s)
- Mădălina Iuliana Mușat
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Bogdan Cătălin
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Aurel Popa-Wagner
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Neurology, Vascular Neurology and Dementia, University of Medicine Essen, 45122 Essen, Germany
| | - Andrei Greșiță
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
5
|
Wang J, Li Y, Qi L, Mamtilahun M, Liu C, Liu Z, Shi R, Wu S, Yang GY. Advanced rehabilitation in ischaemic stroke research. Stroke Vasc Neurol 2024; 9:328-343. [PMID: 37788912 PMCID: PMC11420926 DOI: 10.1136/svn-2022-002285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/20/2023] [Indexed: 10/05/2023] Open
Abstract
At present, due to the rapid progress of treatment technology in the acute phase of ischaemic stroke, the mortality of patients has been greatly reduced but the number of disabled survivors is increasing, and most of them are elderly patients. Physicians and rehabilitation therapists pay attention to develop all kinds of therapist techniques including physical therapy techniques, robot-assisted technology and artificial intelligence technology, and study the molecular, cellular or synergistic mechanisms of rehabilitation therapies to promote the effect of rehabilitation therapy. Here, we discussed different animal and in vitro models of ischaemic stroke for rehabilitation studies; the compound concept and technology of neurological rehabilitation; all kinds of biological mechanisms of physical therapy; the significance, assessment and efficacy of neurological rehabilitation; the application of brain-computer interface, rehabilitation robotic and non-invasive brain stimulation technology in stroke rehabilitation.
Collapse
Affiliation(s)
- Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medical, Shanghai, China
| | - Yongfang Li
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medical, Shanghai, China
| | - Lin Qi
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Muyassar Mamtilahun
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Liu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Liu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rubing Shi
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shengju Wu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Collazo A, Kuhn HG, Kurth T, Piccininni M, Rohmann JL. Rethinking animal attrition in preclinical research: Expressing causal mechanisms of selection bias using directed acyclic graphs. J Cereb Blood Flow Metab 2024:271678X241275760. [PMID: 39161264 PMCID: PMC11572016 DOI: 10.1177/0271678x241275760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024]
Abstract
Animal attrition in preclinical experiments can introduce bias in the estimation of causal treatment effects, as the treatment-outcome association in surviving animals may not represent the causal effect of interest. This can compromise the internal validity of the study despite randomization at the outset. Directed Acyclic Graphs (DAGs) are useful tools to transparently visualize assumptions about the causal structure underlying observed data. By illustrating relationships between relevant variables, DAGs enable the detection of even less intuitive biases, and can thereby inform strategies for their mitigation. In this study, we present an illustrative causal model for preclinical stroke research, in which animal attrition induces a specific type of selection bias (i.e., collider stratification bias) due to the interplay of animal welfare, initial disease severity and negative side effects of treatment. Even when the treatment had no causal effect, our simulations revealed substantial bias across different scenarios. We show how researchers can detect and potentially mitigate this bias in the analysis phase, even when only data from surviving animals are available, if knowledge of the underlying causal process that gave rise to the data is available. Collider stratification bias should be a concern in preclinical animal studies with severe side effects and high post-randomization attrition.
Collapse
Affiliation(s)
- Anja Collazo
- BIH QUEST Center for Responsible Research, Berlin Institute of Health, Berlin, Germany
- Institute of Public Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Hans-Georg Kuhn
- Institute of Public Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Institute for Neuroscience and Physiology, Department of Clinical Neuroscience, University of Gothenburg, Gothenburg, Sweden
| | - Tobias Kurth
- Institute of Public Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Piccininni
- Institute of Public Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jessica L Rohmann
- Institute of Public Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Scientific Directorate, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
7
|
Kühl F, Brand K, Lichtinghagen R, Huber R. GSK3-Driven Modulation of Inflammation and Tissue Integrity in the Animal Model. Int J Mol Sci 2024; 25:8263. [PMID: 39125833 PMCID: PMC11312333 DOI: 10.3390/ijms25158263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Nowadays, GSK3 is accepted as an enzyme strongly involved in the regulation of inflammation by balancing the pro- and anti-inflammatory responses of cells and organisms, thus influencing the initiation, progression, and resolution of inflammatory processes at multiple levels. Disturbances within its broad functional scope, either intrinsically or extrinsically induced, harbor the risk of profound disruptions to the regular course of the immune response, including the formation of severe inflammation-related diseases. Therefore, this review aims at summarizing and contextualizing the current knowledge derived from animal models to further shape our understanding of GSK3α and β and their roles in the inflammatory process and the occurrence of tissue/organ damage. Following a short recapitulation of structure, function, and regulation of GSK3, we will focus on the lessons learned from GSK3α/β knock-out and knock-in/overexpression models, both conventional and conditional, as well as a variety of (predominantly rodent) disease models reflecting defined pathologic conditions with a significant proportion of inflammation and inflammation-related tissue injury. In summary, the literature suggests that GSK3 acts as a crucial switch driving pro-inflammatory and destructive processes and thus contributes significantly to the pathogenesis of inflammation-associated diseases.
Collapse
Affiliation(s)
| | | | | | - René Huber
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (F.K.); (K.B.); (R.L.)
| |
Collapse
|
8
|
Jang E, Yu H, Kim E, Hwang J, Yoo J, Choi J, Jeong HS, Jang S. The Therapeutic Effects of Blueberry-Treated Stem Cell-Derived Extracellular Vesicles in Ischemic Stroke. Int J Mol Sci 2024; 25:6362. [PMID: 38928069 PMCID: PMC11203670 DOI: 10.3390/ijms25126362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
An ischemic stroke, one of the leading causes of morbidity and mortality, is caused by ischemia and hemorrhage resulting in impeded blood supply to the brain. According to many studies, blueberries have been shown to have a therapeutic effect in a variety of diseases. Therefore, in this study, we investigated whether blueberry-treated mesenchymal stem cell (MSC)-derived extracellular vesicles (B-EVs) have therapeutic effects in in vitro and in vivo stroke models. We isolated the extracellular vesicles using cryo-TEM and characterized the particles and concentrations using NTA. MSC-derived extracellular vesicles (A-EVs) and B-EVs were round with a lipid bilayer structure and a diameter of ~150 nm. In addition, A-EVs and B-EVs were shown to affect angiogenesis, cell cycle, differentiation, DNA repair, inflammation, and neurogenesis following KEGG pathway and GO analyses. We investigated the protective effects of A-EVs and B-EVs against neuronal cell death in oxygen-glucose deprivation (OGD) cells and a middle cerebral artery occlusion (MCAo) animal model. The results showed that the cell viability was increased with EV treatment in HT22 cells. In the animal, the size of the cerebral infarction was decreased, and the behavioral assessment was improved with EV injections. The levels of NeuN and neurofilament heavy chain (NFH)-positive cells were also increased with EV treatment yet decreased in the MCAo group. In addition, the number of apoptotic cells was decreased with EV treatment compared with ischemic animals following TUNEL and Bax/Bcl-2 staining. These data suggested that EVs, especially B-EVs, had a therapeutic effect and could reduce apoptotic cell death after ischemic injury.
Collapse
Affiliation(s)
- Eunjae Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
- Jeonnam Bioindustry Foundation Biopharmaceutical Research Center, Hwasun-gun 58141, Republic of Korea
| | - Hee Yu
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
- Jeonnam Bioindustry Foundation Biopharmaceutical Research Center, Hwasun-gun 58141, Republic of Korea
| | - Eungpil Kim
- Infrastructure Project Organization for Global Industrialization of Vaccine, Sejong-si 30121, Republic of Korea;
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
| | - Jin Yoo
- Department of Physical Education, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Jiyun Choi
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
| |
Collapse
|
9
|
Cullins MJ, Connor NP. Differential impact of unilateral stroke on the bihemispheric motor cortex representation of the jaw and tongue muscles in young and aged rats. Front Neurol 2024; 15:1332916. [PMID: 38572491 PMCID: PMC10987714 DOI: 10.3389/fneur.2024.1332916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Dysphagia commonly occurs after stroke, yet the mechanisms of post-stroke corticobulbar plasticity are not well understood. While cortical activity associated with swallowing actions is bihemispheric, prior research has suggested that plasticity of the intact cortex may drive recovery of swallowing after unilateral stroke. Age may be an important factor as it is an independent predictor of dysphagia after stroke and neuroplasticity may be reduced with age. Based on previous clinical studies, we hypothesized that cranial muscle activating volumes may be expanded in the intact hemisphere and would contribute to swallowing function. We also hypothesized that older age would be associated with limited map expansion and reduced function. As such, our goal was to determine the impact of stroke and age on corticobulbar plasticity by examining the jaw and tongue muscle activating volumes within the bilateral sensorimotor cortices. Methods Using the middle cerebral artery occlusion rat stroke model, intracortical microstimulation (ICMS) was used to map regions of sensorimotor cortex that activate tongue and jaw muscles in both hemispheres. Young adult (7 months) and aged (30 months) male F344 × BN rats underwent a stroke or sham-control surgery, followed by ICMS mapping 8 weeks later. Videofluoroscopy was used to assess oral-motor functions. Results Increased activating volume of the sensorimotor cortex within the intact hemisphere was found only for jaw muscles, whereas significant stroke-related differences in tongue activating cortical volume were limited to the infarcted hemisphere. These stroke-related differences were correlated with infarct size, such that larger infarcts were associated with increased jaw representation in the intact hemisphere and decreased tongue representation in the infarcted hemisphere. We found that both age and stroke were independently associated with swallowing differences, weight loss, and increased corticomotor thresholds. Laterality of tongue and jaw representations in the sham-control group revealed variability between individuals and between muscles within individuals. Conclusion Our findings suggest the role of the intact and infarcted hemispheres in the recovery of oral motor function may differ between the tongue and jaw muscles, which may have important implications for rehabilitation, especially hemisphere-specific neuromodulatory approaches. This study addressed the natural course of recovery after stroke; future work should expand to focus on rehabilitation.
Collapse
Affiliation(s)
- Miranda J. Cullins
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Nadine P. Connor
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
10
|
Namestnikova DD, Cherkashova EA, Gumin IS, Chekhonin VP, Yarygin KN, Gubskiy IL. Estimation of the Ischemic Lesion in the Experimental Stroke Studies Using Magnetic Resonance Imaging (Review). Bull Exp Biol Med 2024; 176:649-657. [PMID: 38733482 DOI: 10.1007/s10517-024-06086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 05/13/2024]
Abstract
In translational animal study aimed at evaluation of the effectiveness of innovative methods for treating cerebral stroke, including regenerative cell technologies, of particular importance is evaluation of the dynamics of changes in the volume of the cerebral infarction in response to therapy. Among the methods for assessing the focus of infarction, MRI is the most effective and convenient tool for use in preclinical studies. This review provides a description of MR pulse sequences used to visualize cerebral ischemia at various stages of its development, and a detailed description of the MR semiotics of cerebral infarction. A comparison of various methods for morphometric analysis of the focus of a cerebral infarction, including systems based on artificial intelligence for a more objective measurement of the volume of the lesion, is also presented.
Collapse
Affiliation(s)
- D D Namestnikova
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E A Cherkashova
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I S Gumin
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - V P Chekhonin
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I L Gubskiy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia.
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
| |
Collapse
|
11
|
Alshammari A, Pillai B, Kamat P, Jones TW, Bosomtwi A, Khan MB, Hess DC, Li W, Somanath PR, Sayed MA, Ergul A, Fagan SC. Angiotensin II Type 2 Receptor Agonism Alleviates Progressive Post-stroke Cognitive Impairment in Aged Spontaneously Hypertensive Rats. Transl Stroke Res 2024:10.1007/s12975-024-01232-1. [PMID: 38302738 DOI: 10.1007/s12975-024-01232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Hypertension and aging are leading risk factors for stroke and vascular contributions to cognitive impairment and dementia (VCID). Most animal models fail to capture the complex interplay between these pathophysiological processes. In the current study, we examined the development of cognitive impairment in 18-month-old spontaneously hypertensive rats (SHR) before and following ischemic stroke. Sixty SHRs were housed for 18 months with cognitive assessments every 6 months and post-surgery. MRI scans were performed at baseline and throughout the study. On day 3 post-stroke, rats were randomized to receive either angiotensin II type 2 receptor (AT2R) agonist Compound 21 (C21) or plain water for 8 weeks. SHRs demonstrated a progressive cognitive decline and significant MRI abnormalities before stroke. Perioperative mortality within 72 h of stroke was low. Stroke resulted in significant acute brain swelling, chronic brain atrophy, and sustained sensorimotor and behavioral deficits. There was no evidence of anhedonia at week 8. C21 enhanced sensorimotor recovery and ischemic lesion resolution at week 8. SHRs represent a clinically relevant animal model to study aging and stroke-associated VCID. This study underscores the importance of translational disease modeling and provides evidence that modulation of the AT2R signaling via C21 may be a useful therapeutic option to improve sensorimotor and cognitive outcomes even in aged animals.
Collapse
Affiliation(s)
- Abdulkarim Alshammari
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Health Care System and College of Pharmacy, University of Georgia, Augusta, GA, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Bindu Pillai
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Health Care System and College of Pharmacy, University of Georgia, Augusta, GA, USA
| | - Pradip Kamat
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Timothy W Jones
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Health Care System and College of Pharmacy, University of Georgia, Augusta, GA, USA
| | - Asamoah Bosomtwi
- Georgia Cancer Center and Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | | | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Weiguo Li
- Ralph H. Johnson Veterans Affairs Health Care System and Department of Pathology & Lab. Medicine, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29492, USA
| | - Payaningal R Somanath
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Health Care System and College of Pharmacy, University of Georgia, Augusta, GA, USA
| | | | - Adviye Ergul
- Ralph H. Johnson Veterans Affairs Health Care System and Department of Pathology & Lab. Medicine, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29492, USA.
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Health Care System and College of Pharmacy, University of Georgia, Augusta, GA, USA
| |
Collapse
|
12
|
Sahoo G, Samal D, Khandayataray P, Murthy MK. A Review on Caspases: Key Regulators of Biological Activities and Apoptosis. Mol Neurobiol 2023; 60:5805-5837. [PMID: 37349620 DOI: 10.1007/s12035-023-03433-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Caspases are proteolytic enzymes that belong to the cysteine protease family and play a crucial role in homeostasis and programmed cell death. Caspases have been broadly classified by their known roles in apoptosis (caspase-3, caspase-6, caspase-7, caspase-8, and caspase-9 in mammals) and in inflammation (caspase-1, caspase-4, caspase-5, and caspase-12 in humans, and caspase-1, caspase-11, and caspase-12 in mice). Caspases involved in apoptosis have been subclassified by their mechanism of action as either initiator caspases (caspase-8 and caspase-9) or executioner caspases (caspase-3, caspase-6, and caspase-7). Caspases that participate in apoptosis are inhibited by proteins known as inhibitors of apoptosis (IAPs). In addition to apoptosis, caspases play a role in necroptosis, pyroptosis, and autophagy, which are non-apoptotic cell death processes. Dysregulation of caspases features prominently in many human diseases, including cancer, autoimmunity, and neurodegenerative disorders, and increasing evidence shows that altering caspase activity can confer therapeutic benefits. This review covers the different types of caspases, their functions, and their physiological and biological activities and roles in different organisms.
Collapse
Affiliation(s)
- Gayatri Sahoo
- Department of Zoology, PSSJ College, Banarpal, 759128, Odisha, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Academy of Management and Information Technology (AMIT, affiliated to Utkal University), Khurda, 752057, Odisha, India
| | | | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
13
|
Wang L, Chaudhari K, Winters A, Sun Y, Berry R, Tang C, Yang SH, Liu R. Recurrent Transient Ischemic Attack Induces Neural Cytoskeleton Modification and Gliosis in an Experimental Model. Transl Stroke Res 2023; 14:740-751. [PMID: 35867329 DOI: 10.1007/s12975-022-01068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 01/28/2023]
Abstract
Transient ischemic attack (TIA) presents a high risk for subsequent stroke, Alzheimer's disease (AD), and related dementia (ADRD). However, the neuropathophysiology of TIA has been rarely studied. By evaluating recurrent TIA-induced neuropathological changes, our study aimed to explore the potential mechanisms underlying the contribution of TIA to ADRD. In the current study, we established a recurrent TIA model by three times 10-min middle cerebral artery occlusion within a week in rat. Neither permanent neurological deficit nor apoptosis was observed following recurrent TIA. No increase of AD-related biomarkers was indicated after TIA, including increase of tau hyperphosphorylation and β-site APP cleaving enzyme 1 (BACE1). Neuronal cytoskeleton modification and neuroinflammation was found at 1, 3, and 7 days after recurrent TIA, evidenced by the reduction of microtubule-associated protein 2 (MAP2), elevation of neurofilament-light chain (NFL), and increase of glial fibrillary acidic protein (GFAP)-positive astrocytes and ionized calcium binding adaptor molecule 1 (Iba1)-positive microglia at the TIA-affected cerebral cortex and basal ganglion. Similar NFL, GFAP and Iba1 alteration was found in the white matter of corpus callosum. In summary, the current study demonstrated that recurrent TIA may trigger neuronal cytoskeleton change, astrogliosis, and microgliosis without induction of cell death at the acute and subacute stage. Our study indicates that TIA-induced neuronal cytoskeleton modification and neuroinflammation may be involved in the vascular contribution to cognitive impairment and dementia.
Collapse
Affiliation(s)
- Linshu Wang
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA
| | - Kiran Chaudhari
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA
| | - Ali Winters
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA
| | - Yuanhong Sun
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA
| | - Raymond Berry
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA
| | - Christina Tang
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA
| | - Shao-Hua Yang
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA.
| | - Ran Liu
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA.
| |
Collapse
|
14
|
Sohail S, Shah FA, Zaman SU, Almari AH, Malik I, Khan SA, Alamro AA, Zeb A, Din FU. Melatonin delivered in solid lipid nanoparticles ameliorated its neuroprotective effects in cerebral ischemia. Heliyon 2023; 9:e19779. [PMID: 37809765 PMCID: PMC10559112 DOI: 10.1016/j.heliyon.2023.e19779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
The current study explores the potential of melatonin (MLT)-loaded solid lipid nanoparticles (MLT-SLNs) for better neuroprotective effects in ischemic stroke. MLT-SLNs were prepared using lipid matrix of palmityl alcohol with a mixture of surfactants (Tween 40, Span 40, Myrj 52) for stabilizing the lipid matrix. MLT-SLNs were tested for physical and chemical properties, thermal and polymorphic changes, in vitro drug release and in vivo neuroprotective studies in rats using permanent middle cerebral artery occlusion (p-MCAO) model. The optimized MLT-SLNs showed particle size of ∼159 nm, zeta potential of -29.6 mV and high entrapment efficiency ∼92%. Thermal and polymorphic studies showed conversion of crystalline MLT to amorphous form after its entrapment in lipid matrix. MLT-SLNs displayed a sustained release pattern compared to MLT dispersion. MLT-SLNs significantly enhanced the neuroprotective profile of MLT ascertained by reduced brain infarction, recovered behavioral responses, low expression of inflammatory markers and improved oxidation protection in rats. MLT-SLNs also showed reduced hepatotoxicity compared to p-MCAO. From these outcomes, it is evidenced that MLT-SLNs have improved neuroprotection as compared to MLT dispersion and thereby present a promising approach to deliver MLT to the brain for better therapeutic outcomes in ischemic stroke.
Collapse
Affiliation(s)
- Saba Sohail
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shahiq uz Zaman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Ali H. Almari
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Imran Malik
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Saifoor Ahmad Khan
- Department of Community Medicine, Nowshera Medical College, Nowshera, Pakistan
| | - Abir Abdullah Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fakhar ud Din
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
15
|
Chen B, Wei S, Low SW, Poore CP, Lee ATH, Nilius B, Liao P. TRPM4 Blocking Antibody Protects Cerebral Vasculature in Delayed Stroke Reperfusion. Biomedicines 2023; 11:biomedicines11051480. [PMID: 37239151 DOI: 10.3390/biomedicines11051480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Reperfusion therapy for acute ischemic stroke aims to restore the blood flow of occluded blood vessels. However, successful recanalization is often associated with disruption of the blood-brain barrier, leading to reperfusion injury. Delayed recanalization increases the risk of severe reperfusion injury, including severe cerebral edema and hemorrhagic transformation. The TRPM4-blocking antibody M4P has been shown to alleviate reperfusion injury and improve functional outcomes in animal models of early stroke reperfusion. In this study, we examined the role of M4P in a clinically relevant rat model of delayed stroke reperfusion in which the left middle cerebral artery was occluded for 7 h. To mimic the clinical scenario, M4P or control IgG was administered 1 h before recanalization. Immunostaining showed that M4P treatment improved vascular morphology after stroke. Evans blue extravasation demonstrated attenuated vascular leakage following M4P treatment. With better vascular integrity, cerebral perfusion was improved, leading to a reduction of infarct volume and animal mortality rate. Functional outcome was evaluated by the Rotarod test. As more animals with severe injuries died during the test in the control IgG group, we observed no difference in functional outcomes in the surviving animals. In conclusion, we identified the potential of TRPM4 blocking antibody M4P to ameliorate vascular injury during delayed stroke reperfusion. If combined with reperfusion therapy, M4P has the potential to improve current stroke management.
Collapse
Affiliation(s)
- Bo Chen
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - Shunhui Wei
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - See Wee Low
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - Charlene Priscilla Poore
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - Andy Thiam-Huat Lee
- Health and Social Sciences, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Bernd Nilius
- Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Ping Liao
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
- Health and Social Sciences, Singapore Institute of Technology, Singapore 138683, Singapore
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
16
|
Schmitt O, Eipert P, Wang Y, Kanoke A, Rabiller G, Liu J. Connectome-based prediction of functional impairment in experimental stroke models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539601. [PMID: 37205373 PMCID: PMC10187266 DOI: 10.1101/2023.05.05.539601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Experimental rat models of stroke and hemorrhage are important tools to investigate cerebrovascular disease pathophysiology mechanisms, yet how significant patterns of functional impairment induced in various models of stroke are related to changes in connectivity at the level of neuronal populations and mesoscopic parcellations of rat brains remain unresolved. To address this gap in knowledge, we employed two middle cerebral artery occlusion models and one intracerebral hemorrhage model with variant extent and location of neuronal dysfunction. Motor and spatial memory function was assessed and the level of hippocampal activation via Fos immunohistochemistry. Contribution of connectivity change to functional impairment was analyzed for connection similarities, graph distances and spatial distances as well as the importance of regions in terms of network architecture based on the neuroVIISAS rat connectome. We found that functional impairment correlated with not only the extent but also the locations of the injury among the models. In addition, via coactivation analysis in dynamic rat brain models, we found that lesioned regions led to stronger coactivations with motor function and spatial learning regions than with other unaffected regions of the connectome. Dynamic modeling with the weighted bilateral connectome detected changes in signal propagation in the remote hippocampus in all 3 stroke types, predicting the extent of hippocampal hypoactivation and impairment in spatial learning and memory function. Our study provides a comprehensive analytical framework in predictive identification of remote regions not directly altered by stroke events and their functional implication.
Collapse
Affiliation(s)
- Oliver Schmitt
- Medical School Hamburg - University of Applied Sciences, Department of Anatomy; University of Rostock, Institute of Anatomy
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
| | - Peter Eipert
- Medical School Hamburg - University of Applied Sciences, Department of Anatomy; University of Rostock, Institute of Anatomy
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
| | - Yonggang Wang
- Department of Neurological Surgery, UCSF
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
- Department of Neurological Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China, 100050
| | - Atsushi Kanoke
- Department of Neurological Surgery, UCSF
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Gratianne Rabiller
- Department of Neurological Surgery, UCSF
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
| | - Jialing Liu
- Department of Neurological Surgery, UCSF
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
| |
Collapse
|
17
|
Gohel D, Shukla S, Rajan WD, Wojtas B, Kaminska B, Singh R. Altered trafficking of miRNAs at mitochondria modulates mitochondrial functions and cell death in brain ischemia. Free Radic Biol Med 2023; 199:26-33. [PMID: 36781060 DOI: 10.1016/j.freeradbiomed.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023]
Abstract
Stroke is one of the major causes of death and disabilities worldwide. The rapid induction of cell death by necrosis and apoptosis is observed at the ischemic core, while long lasting apoptosis and brain inflammation continue in the penumbra. The emerging evidence suggests a critical role of mitochondria in acute and chronic inflammation and cell death. Mitochondrial dysfunction may result in the release of mitokines and/or mitochondrial DNA into the cytoplasm and activate multiple cytosolic pathways which in turn triggers inflammation. The role of miRNA, specifically mitochondria-associated miRNAs (mitomiRs) in the regulation of mitochondrial functions is emerging. In the current study, we hypothesized that ischemia-induced mitomiRs may modulate the mitochondrial functions and such alterations under stress conditions may lead to mitochondrial dysfunction and cell death. We have demonstrated the specific pattern of miRNAs associated with mitochondria that is altered under ischemic condition induced by transient middle artery occlusion (tMCAo) in rats. The putative targets of altered miRNAs include several mitochondrial proteins which signifies their involvement in maintaining mitochondrial homeostasis. The alteration of selected miRNAs in mitochondria was further detected in a cellular models when hypoxia was induced using a chemical agent CoCl2, in three cell lines. Two candidate mitomiRs, hsa-miR-149-3p and hsa-miR-204-5p were further analyzed for their functional role during in vitro hypoxia by transfecting mitomiR mimics into cells and determining critical mitochondrial functions and cell viability. The results here emphasize the role of certain mitomiRs as an important modulator of mitochondrial function under the ischemic condition.
Collapse
Affiliation(s)
- Dhruv Gohel
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India; Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Shatakshi Shukla
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India
| | - Wenson David Rajan
- Laboratory of Molecular Neurobiology, The Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, The Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, The Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093, Warsaw, Poland.
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India; Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
18
|
Keshavarz S, Nemati M, Saied Salehi M, Naseh M. The impact of anesthetic drugs on hemodynamic parameters and neurological outcomes following temporal middle cerebral artery occlusion in rats. Neuroreport 2023; 34:199-204. [PMID: 36789841 PMCID: PMC10516172 DOI: 10.1097/wnr.0000000000001863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/21/2022] [Indexed: 02/16/2023]
Abstract
The induction of ischemic stroke in the experimental model requires general anesthesia. One of the factors that can be effective in the size of ischemic brain lesions and neurological outcomes is the type of anesthesia. So, the current study was designed to compare the impacts of the most important and widely used anesthetics including halothane, isoflurane, and chloral hydrate on the transient middle cerebral artery occlusion (MCAO) outcomes. Adult Male Sprague-Dawley rats were randomly divided into three groups as follows: (1) MCAO + halothane group, (2) MCAO + isoflurane group, and (3) MCAO + chloral hydrate group. After 24 h, the mortality rate, infarct size, tissue swelling, neurological function, hemodynamic, and arterial blood gas parameters were assessed. Our finding showed that 60 min MCAO rats anesthetized with chloral hydrate significantly increased mortality rate, infarct size, tissue swelling, and neurological deficits compared with halothane and isoflurane anesthetics after 24 h of MCAO. Also, chloral hydrate caused a significant decrease in mean arterial pressure and arterial pO2 compared to halothane and isoflurane anesthetics. On the basis of the current data, we concluded that chloral hydrate increased cerebral infarct volume and neurological outcomes and reduced hemodynamic and metabolic parameters compared with halothane and isoflurane-anesthetized rats temporal MCAO.
Collapse
Affiliation(s)
- Somaye Keshavarz
- Histomorphometry and Stereology Research Center
- Department of Physiology
| | | | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
19
|
Fan GB, Li Y, Xu GS, Zhao AY, Jin HJ, Sun SQ, Qi SH. Propofol Inhibits Ferroptotic Cell Death Through the Nrf2/Gpx4 Signaling Pathway in the Mouse Model of Cerebral Ischemia-Reperfusion Injury. Neurochem Res 2023; 48:956-966. [PMID: 36402927 DOI: 10.1007/s11064-022-03822-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 10/29/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
Abstract
Ferroptosis is characterized by excessive accumulation of iron and lipid peroxides, which are involved in ischemia, reperfusion-induced organ injury, and stroke. Propofol, an anesthetic agent, has neuroprotective effects due to its potent antioxidant, anti-ischemic, and anti-inflammatory properties. However, the relationship between propofol and ferroptosis is still unclear. In the current study, we elucidated the role of ferroptosis in the neuroprotective effect of propofol in mouse brains subjected to cerebral ischemia reperfusion injury (CIRI). Ferroptosis was confirmed by Western blotting assays, transmission electron microscopy, and glutathione assays. Propofol regulated Nrf2/Gpx4 signaling, enhanced antioxidant potential, inhibited the accumulation of lipid peroxides in CIRI-affected neurons, and significantly reversed CIRI-induced ferroptosis. Additionally, Gpx4 inhibitor RSL3 and Nrf2 inhibitor ML385 attenuated the effects of propofol on antioxidant capacity, lipid peroxidation, and ferroptosis in CIRI-affected neurons. Our data support a protective role of propofol against ferroptosis as a cause of cell death in mice with CIRI. Propofol protected against CIRI-induced ferroptosis partly by regulating the Nrf2/Gpx4 signaling pathway. These findings may contribute to the development of future therapies targeting ferroptosis induced by CIRI.
Collapse
Affiliation(s)
- Gui-Bo Fan
- Department of Anesthesiology, The 4th Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Yan Li
- Department of Anesthesiology, The 4th Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Gao-Shuo Xu
- Department of Anesthesiology, The 4th Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - A-Yang Zhao
- Department of Anesthesiology, The 4th Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Hong-Jiang Jin
- Department of Anesthesiology, The 4th Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Si-Qi Sun
- Department of Anesthesiology, The 4th Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Si-Hua Qi
- Department of Anesthesiology, The 4th Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
20
|
Cranial electrotherapy stimulation alleviates depression-like behavior of post-stroke depression rats by upregulating GPX4-mediated BDNF expression. Behav Brain Res 2023; 437:114117. [PMID: 36116735 DOI: 10.1016/j.bbr.2022.114117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022]
Abstract
To elucidate whether cranial electrotherapy stimulation (CES) improves depression-like behavior of post-stroke depression (PSD) via regulation of glutathione peroxidase 4 (GPX4)-mediated brain-derived neurotrophic factor (BDNF) expression. Middle cerebral artery occlusion (MCAO) and chronic unpredictable mild stress (CUMS) were used to develop a rat PSD model. CES was applied, and RAS-selective lethal 3 (RSL3) was injected into the hippocampus to inhibit GPX4 in PSD rats. The depression behavior was detected by sucrose preference and forced swimming tests. The structure and morphology of the hippocampus were observed and analyzed by histopathological hematoxylin-eosin (HE) staining. The mRNA and protein expressions of GPX4 and BDNF in the hippocampus were detected by qRT-PCR, western blot and immunohistochemical analysis.The degeneration and necrosis of hippocampal neurons, the depression-like behavior were severer and the expression of BDNF in the hippocampus were decreased in PSD rats than those in MCAO and control groups. CES promoted the hippocampal neuron repair, alleviated the depression-like behavior and increased the expression of BDNF in PSD rats. The inhibition of GPX4 by RSL3 exacerbated the depression-like behavior and decreased the expression of BDNF in PSD rats. In addition, we found that RSL3 disrupted the positive effects of CES on the PSD rats. Conclusion: CES improves depression-like behavior of PSD rats through upregulation of GPX4-mediated BDNF expression in the hippocampus.
Collapse
|
21
|
Zhang LM, Wu ZY, Liu JZ, Li Y, Lv JM, Wang LY, Shan YD, Song RX, Miao HT, Zhang W, Zhang DX. Subanesthetic dose of S-ketamine improved cognitive dysfunction via the inhibition of hippocampal astrocytosis in a mouse model of post-stroke chronic stress. J Psychiatr Res 2023; 158:1-14. [PMID: 36542981 DOI: 10.1016/j.jpsychires.2022.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Post-stroke chronic stress (PSCS) is generally associated with the poorer recovery and more pronounced cognitive dysfunction. Recent evidence has implied that S-ketamine can reduce suicidal ideation in treatment-resistant depression. In this current study, we aimed to investigate whether the administration of S-ketamine ameliorated cognitive deficits under PSCS conditions, which was established by a model combining middle cerebral artery occlusion (MCAO) and chronic restraint stress. Our data suggested that mice exposed to PSCS exhibited depression-like behavior and cognitive impairment, which coincided with astrocytosis as indicated by increased GFAP-positive cells and impairment of long-time potentiation (LTP) in the hippocampal CA1. Subanesthetic doses (10 mg/kg) of S-ketamine have significantly mitigated depression-like behaviors, cognitive deficits and LTP impairment, reduced astrocytosis, excessive GABA, and inflammatory factors, including NLRP3 and IL-18 in astrocytes in the CA1. Besides, neuroprotective effects induced by S-ketamine administration were found in vitro but could be partially reversed by an agonist of the NLRP3 nigericin. Our current data also suggests that the subanesthetic doses of S-ketamine improved cognitive dysfunction via the inhibition of hippocampal astrocytosis in a mouse model of PSCS.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Zhi-You Wu
- Graduated School, Hebei Medical University, Shijiazhuang, China.
| | - Ji-Zhen Liu
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| | - Jin-Meng Lv
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Lu-Ying Wang
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Yu-Dong Shan
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Rong-Xin Song
- Graduated School, Hebei Medical University, Shijiazhuang, China.
| | - Hui-Tao Miao
- Graduated School, Hebei Medical University, Shijiazhuang, China.
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China.
| |
Collapse
|
22
|
Yabuno S, Yasuhara T, Nagase T, Kawauchi S, Sugahara C, Okazaki Y, Hosomoto K, Sasada S, Sasaki T, Tajiri N, Borlongan CV, Date I. Synergistic therapeutic effects of intracerebral transplantation of human modified bone marrow-derived stromal cells (SB623) and voluntary exercise with running wheel in a rat model of ischemic stroke. Stem Cell Res Ther 2023; 14:10. [PMID: 36691091 PMCID: PMC9872315 DOI: 10.1186/s13287-023-03236-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cell (MSC) transplantation therapy is a promising therapy for stroke patients. In parallel, rehabilitation with physical exercise could ameliorate stroke-induced neurological impairment. In this study, we aimed to clarify whether combination therapy of intracerebral transplantation of human modified bone marrow-derived MSCs, SB623 cells, and voluntary exercise with running wheel (RW) could exert synergistic therapeutic effects on a rat model of ischemic stroke. METHODS Wistar rats received right transient middle cerebral artery occlusion (MCAO). Voluntary exercise (Ex) groups were trained in a cage with RW from day 7 before MCAO. SB623 cells (4.0 × 105 cells/5 μl) were stereotactically injected into the right striatum at day 1 after MCAO. Behavioral tests were performed at day 1, 7, and 14 after MCAO using the modified Neurological Severity Score (mNSS) and cylinder test. Rats were euthanized at day 15 after MCAO for mRNA level evaluation of ischemic infarct area, endogenous neurogenesis, angiogenesis, and expression of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF). The rats were randomly assigned to one of the four groups: vehicle, Ex, SB623, and SB623 + Ex groups. RESULTS SB623 + Ex group achieved significant neurological recovery in mNSS compared to the vehicle group (p < 0.05). The cerebral infarct area of SB623 + Ex group was significantly decreased compared to those in all other groups (p < 0.05). The number of BrdU/Doublecortin (Dcx) double-positive cells in the subventricular zone (SVZ) and the dentate gyrus (DG), the laminin-positive area in the ischemic boundary zone (IBZ), and the mRNA level of BDNF and VEGF in SB623 + Ex group were significantly increased compared to those in all other groups (p < 0.05). CONCLUSIONS This study suggests that combination therapy of intracerebral transplantation SB623 cells and voluntary exercise with RW achieves robust neurological recovery and synergistically promotes endogenous neurogenesis and angiogenesis after cerebral ischemia, possibly through a mechanism involving the up-regulation of BDNF and VEGF.
Collapse
Affiliation(s)
- Satoru Yabuno
- Department of Neurological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558 Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558 Japan
| | - Takayuki Nagase
- Department of Neurological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558 Japan
| | - Satoshi Kawauchi
- Department of Neurological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558 Japan
| | - Chiaki Sugahara
- Department of Neurological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558 Japan
| | - Yosuke Okazaki
- Department of Neurological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558 Japan
| | - Kakeru Hosomoto
- Department of Neurological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558 Japan
| | - Susumu Sasada
- Department of Neurological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558 Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558 Japan
| | - Naoki Tajiri
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| | - Isao Date
- Department of Neurological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558 Japan
| |
Collapse
|
23
|
Ye Y, Xin XY, Zhang HL, Fan RW, Zhu YT, Li D. A modified mouse model of haemorrhagic transformation associated with tPA administration after thromboembolic stroke. Heliyon 2023; 9:e13102. [PMID: 36747951 PMCID: PMC9898747 DOI: 10.1016/j.heliyon.2023.e13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/04/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Objective To establish a new mouse model of haemorrhagic transformation associated with delayed tissue-type plasminogen activator (tPA) treatment to provide a novel tool to study therapeutic strategies for haemorrhagic transformation. Methods Male C57BL/6 mice were subjected to carotid artery thrombosis stimulated with ferric chloride. The thrombus was then mechanically detached to induce migration toward the intracranial circulation. To induce haemorrhagic transformation, mice were intravenously injected with 10 mg/kg tPA 4.5 h after the onset of ischaemia and were sacrificed 24 h after tPA treatment. Results In this new model, administration of tPA 4.5 h after stroke exacerbated the risk of intracerebral haemorrhage. Thrombolysis with tPA also exacerbated cerebral infarction, brain oedema, blood-brain barrier breakdown, and neurological deficits. However, cerebral blood flow was not significantly affected. Conclusion The present model is reproducible, easy to perform, and mimics the clinical situation of haemorrhagic transformation after tPA treatment in humans. This modified model can be used as a new tool to test experimental drugs for haemorrhagic transformation associated with delayed tPA administration after an ischaemic stroke.
Collapse
Affiliation(s)
- Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xi-Yan Xin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Hao-Lin Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Rui-Wen Fan
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yu-Tian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China,Corresponding author.
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China,Corresponding author.
| |
Collapse
|
24
|
Shen D, Wang H, Zhu H, Jiang C, Xie F, Zhang H, Lv Q, Liu Q, Wang Z, Qi N, Wang H. Pre-clinical efficacy evaluation of human umbilical cord mesenchymal stem cells for ischemic stroke. Front Immunol 2023; 13:1095469. [PMID: 36726973 PMCID: PMC9885855 DOI: 10.3389/fimmu.2022.1095469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Objective This study explored the underlying therapeutic mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) for ischemic stroke (IS), and determined the optimal administration time windows and dose-effect relationship. Methods The levels of SDF-1α, IL-10, IL-6, TNF-α, BDNF, IL-1β, and VEGF-A factors in serum and brain tissue lysate were measured by ELISA. The pathological status of brain tissues was evaluated by Hematoxylin-Eosin (HE) staining, and apoptosis of nerve cells was detected by tunel. The protein expression of CXCR-4, NeuN, and Nestin in the brain tissues was assessed through immunofluorescence. The balance beam, forelimb muscle strength, and limb placement were tested on MCAO rats at different time points and doses. The infarct area of the rat brain tissues was measured at the end of the experiment. Results The hUCMSC treatment during the acute phase of MCAO significantly reduced the secretion of IL-6, TNF-α, IL-1β but increased IL-10 in serum, and the levels of SDF-α and BDNF in serum and brain tissues lysate were also increased. The pathological results showed that there were more neurons in the treatment group compared to the model group. Immunofluorescence assays showed that the expression of CXCR4、Nestin、NeuN was relatively higher than that in the model group. The d4 and d7 treatment significantly improves the motor function, promotes the recovery of forelimb muscle strength, increases the forelimb placement rate and reduces the scope of cerebral infarction, but the d14 treatment group has less therapeutic effect compared to the d4 and d7 treatment. The 2×107/kg treatment showed the best therapeutic effect, followed by the 1×107/kg treatment, and the worst is 0.5×107/kg treatment from the test of balance beam, forelimb muscle strength, limb placement and the infarct area of the rat brain tissues. Conclusion The hUCMSCs can inhibit the infiltration of inflammatory cells in the brain tissue, and promote the repair of brain tissue structure and function. Early intervention by injecting high-dose of hUCMSCs can significantly improve the recovery of neurological/motor function and reduce the size of cerebral infarction in rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Nianmin Qi
- *Correspondence: Hao Wang, ; Nianming Qi,
| | - Hao Wang
- *Correspondence: Hao Wang, ; Nianming Qi,
| |
Collapse
|
25
|
Urushihata T, Takuwa H, Takahashi M, Kershaw J, Shibata S, Nitta N, Tachibana Y, Yasui M, Higuchi M, Obata T. Distribution of intraperitoneally administered deuterium-labeled water in aquaporin-4-knockout mouse brain after middle cerebral artery occlusion. Front Neurosci 2023; 16:1071272. [PMID: 36685250 PMCID: PMC9853453 DOI: 10.3389/fnins.2022.1071272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction As the movement of water in the brain is known to be involved in neural activity and various brain pathologies, the ability to assess water dynamics in the brain will be important for the understanding of brain function and the diagnosis and treatment of brain diseases. Aquaporin-4 (AQP4) is a membrane channel protein that is highly expressed in brain astrocytes and is important for the movement of water molecules in the brain. Methods In this study, we investigated the contribution of AQP4 to brain water dynamics by administering deuterium-labeled water (D2O) intraperitoneally to wild-type and AQP4 knockout (AQP4-ko) mice that had undergone surgical occlusion of the middle cerebral artery (MCA). Water dynamics in the infarct region and on either side of the anterior cerebral artery (ACA) was monitored with proton-density-weighted imaging (PDWI) performed on a 7T animal MRI. Results D2O caused a negative signal change quickly after administration. The AQP4-ko mice showed a delay of the time-to-minimum in both the contralateral and ipsilateral ACA regions compared to wild-type mice. Also, only the AQP4- ko mice showed a delay of the time-to-minimum in the ipsilateral ACA region compared to the contralateral side. In only the wild-type mice, the signal minimum in the ipsilateral ACA region was higher than that in the contralateral ACA region. In the infarct region, the signal attenuation was slower for the AQP4-ko mice in comparison to the wild-type mice. Discussion These results suggest that AQP4 loss affects water dynamics in the ACA region not only in the infarct region. Dynamic PDWI after D2O administration may be a useful tool for showing the effects of AQP4 in vivo.
Collapse
Affiliation(s)
- Takuya Urushihata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan,Department of Integrative Physiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Hiroyuki Takuwa
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan,Quantum Neuromapping and Neuromodulation Group, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Manami Takahashi
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan,Quantum Neuromapping and Neuromodulation Group, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan,Department of Quantum Biology and Molecular Imaging, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jeff Kershaw
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Sayaka Shibata
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Nobuhiro Nitta
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yasuhiko Tachibana
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Keio Advanced Research Center for Water Biology and Medicine, Tokyo, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takayuki Obata
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan,*Correspondence: Takayuki Obata,
| |
Collapse
|
26
|
Wang Y, Wang J, Zhang QF, Xiao KW, Wang L, Yu QP, Xie Q, Poo MM, Wen Y. Neural Mechanism Underlying Task-Specific Enhancement of Motor Learning by Concurrent Transcranial Direct Current Stimulation. Neurosci Bull 2023; 39:69-82. [PMID: 35908004 PMCID: PMC9849633 DOI: 10.1007/s12264-022-00901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/10/2022] [Indexed: 01/22/2023] Open
Abstract
The optimal protocol for neuromodulation by transcranial direct current stimulation (tDCS) remains unclear. Using the rotarod paradigm, we found that mouse motor learning was enhanced by anodal tDCS (3.2 mA/cm2) during but not before or after the performance of a task. Dual-task experiments showed that motor learning enhancement was specific to the task accompanied by anodal tDCS. Studies using a mouse model of stroke induced by middle cerebral artery occlusion showed that concurrent anodal tDCS restored motor learning capability in a task-specific manner. Transcranial in vivo Ca2+ imaging further showed that anodal tDCS elevated and cathodal tDCS suppressed neuronal activity in the primary motor cortex (M1). Anodal tDCS specifically promoted the activity of task-related M1 neurons during task performance, suggesting that elevated Hebbian synaptic potentiation in task-activated circuits accounts for the motor learning enhancement. Thus, application of tDCS concurrent with the targeted behavioral dysfunction could be an effective approach to treating brain disorders.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Lingang Laboratory, Shanghai, 201210, China
| | - Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qing-Fang Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ke-Wei Xiao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Liang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qing-Ping Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mu-Ming Poo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Lingang Laboratory, Shanghai, 201210, China.
| | - Yunqing Wen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
27
|
Cong D, Yu Y, Meng Y, Qi X. Dexmedetomidine (Dex) exerts protective effects on rat neuronal cells injured by cerebral ischemia/reperfusion via regulating the Sphk1/S1P signaling pathway. J Stroke Cerebrovasc Dis 2023; 32:106896. [PMID: 36395661 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
AIM To investigate the influence of dexmedetomidine (Dex) on cerebral ischemia/reperfusion (I/R)-injured rat neuronal cells by regulating the Sphk1/S1P pathway. METHODS The rats were divided into the following groups, with 18 rats in each group categorized on the basis of random number tables: sham (Sham), I/R (I/R), Dex, Sphk1 inhibitor (PF-543), and Dex together with the Sphk1 agonist phorbol-12-myristate-13-acetate (Dex+PMA). The neurological functions of the rats were assessed by the Longa scoring system at 24 h post reperfusion. The area of brain infarction was inspected using 2,3,5-triphenyltetrazolium chloride staining, and the water content of brain tissue was determined by the dry-wet weight method. The morphology of neurons in the CA1 region of the rat hippocampus was inspected using Nissl staining, while the apoptosis of neurons in this region was detected by terminal-deoxynucleotidyl transferase mediated nick end labeling staining. The Sphk1 and S1P protein levels were determined by immunofluorescence and western blotting, respectively. RESULTS Compared to the I/R group, rats in the Dex, PF-543, and Dex+PMA groups had a significantly lower neurological function score, as well as lower brain water content and a decreased infarction area. Moreover, the apoptotic index of the neurons and the Sphk1 and S1P levels in the hippocampal CA1 region were significantly lower in these groups (p<0.05). PMA, an agonist of Sphk1, was able to reverse the protective effects of Dex on I/R-induced neuronal cell injury. CONCLUSION Dex could protect cerebral I/R-induced neuronal cell injury by suppressing the Sphk1/S1P signaling pathway.
Collapse
Affiliation(s)
- Dawei Cong
- Department of Neurosurgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Yunlong Yu
- Department of Neurosurgery, Yantai Harbour Hospital, Yantai 264000, China.
| | - Yan Meng
- Yantai Comprehensive Health Service Center, Yantai 264000, China
| | - Xia Qi
- Yantai Comprehensive Health Service Center, Yantai 264000, China
| |
Collapse
|
28
|
Zhao H, Wang M, Huang X, Wu X, Xiao H, Jin F, Lv J, Cheng J, Zhao Y, Zhang C. Wasp venom from Vespa magnifica acts as a neuroprotective agent to alleviate neuronal damage after stroke in rats. PHARMACEUTICAL BIOLOGY 2022; 60:334-346. [PMID: 35171059 PMCID: PMC8863380 DOI: 10.1080/13880209.2022.2032207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/24/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT Acute ischaemic stroke (AIS) is a major cause of disability and death, which is a serious threat to human health and life. Wasp venom extracted from Vespa magnifica Smith (Vespidae) could treat major neurological disorders. OBJECTIVE This study investigated the effects of wasp venom on AIS in rats. MATERIAL AND METHODS We used a transient middle cerebral artery occlusion (MCAO) model in Sprague-Dawley rats (260-280 g, n = 8-15) with a sham operation group being treated as negative control. MCAO rats were treated with wasp venom (0.05, 0.2 and 0.6 mg/kg, i.p.) using intraperitoneal injection. After treatment 48 h, behavioural tests, cortical blood flow (CBF), TTC staining, H&E staining, Nissl staining, TUNEL assay, immunohistochemistry (IHC) and ELISA were employed to investigate neuroprotective effects of wasp venom. RESULTS Compared with the MCAO group, wasp venom (0.6 mg/kg) improved neurological impairment, accelerated CBF recovery (205.6 ± 52.92 versus 216.7 ± 34.56), reduced infarct volume (337.1 ± 113.2 versus 140.7 ± 98.03) as well as BBB permeability as evidenced by changes in claudin-5 and AQP4. In addition, function recovery of stroke by wasp venom treatment was associated with a decrease in TNF-α, IL-1β, IL-6 and inhibition activated microglia as well as apoptosis. Simultaneously, the wasp venom regulated the angiogenesis factors VEGF and b-FGF in the brain. CONCLUSIONS Wasp venom exhibited a potential neuroprotective effect for AIS. In the future, we will focus on determining whether the observed actions were due to a single compound or the interaction of multiple components of the venom.
Collapse
Affiliation(s)
- Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
- School of Medicine, Xiamen University, Xiamen, PR China
| | - Mei Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
| | - Xi Huang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
| | - Xiumei Wu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Huai Xiao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Fanmao Jin
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
| | - Jiaming Lv
- School of Medicine, Xiamen University, Xiamen, PR China
| | - Jidong Cheng
- School of Medicine, Xiamen University, Xiamen, PR China
| | - Yu Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| |
Collapse
|
29
|
Proteomic investigations of acute ischemic stroke in animal models: a narrative review. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Hypothermia evoked by stimulation of medial preoptic nucleus protects the brain in a mouse model of ischaemia. Nat Commun 2022; 13:6890. [PMID: 36371436 PMCID: PMC9653397 DOI: 10.1038/s41467-022-34735-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic hypothermia at 32-34 °C during or after cerebral ischaemia is neuroprotective. However, peripheral cold sensor-triggered hypothermia is ineffective and evokes vigorous counteractive shivering thermogenesis and complications that are difficult to tolerate in awake patients. Here, we show in mice that deep brain stimulation (DBS) of warm-sensitive neurones (WSNs) in the medial preoptic nucleus (MPN) produces tolerable hypothermia. In contrast to surface cooling-evoked hypothermia, DBS mice exhibit a torpor-like state without counteractive shivering. Like hypothermia evoked by chemogenetic activation of WSNs, DBS in free-moving mice elicits a rapid lowering of the core body temperature to 32-34 °C, which confers significant brain protection and motor function reservation. Mechanistically, activation of WSNs contributes to DBS-evoked hypothermia. Inhibition of WSNs prevents DBS-evoked hypothermia. Maintaining the core body temperature at normothermia during DBS abolishes DBS-mediated brain protection. Thus, the MPN is a DBS target to evoke tolerable therapeutic hypothermia for stroke treatment.
Collapse
|
31
|
Justić H, Barić A, Šimunić I, Radmilović M, Ister R, Škokić S, Dobrivojević Radmilović M. Redefining the Koizumi model of mouse cerebral ischemia: A comparative longitudinal study of cerebral and retinal ischemia in the Koizumi and Longa middle cerebral artery occlusion models. J Cereb Blood Flow Metab 2022; 42:2080-2094. [PMID: 35748043 PMCID: PMC9580169 DOI: 10.1177/0271678x221109873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cerebral and retinal ischemia share similar pathogenesis and epidemiology, each carrying both acute and prolonged risk of the other and often co-occurring. The most used preclinical stroke models, the Koizumi and Longa middle cerebral artery occlusion (MCAO) methods, have reported retinal damage with great variability, leaving the disruption of retinal blood supply via MCAO poorly investigated, even providing conflicting assumptions on the origin of the ophthalmic artery in rodents. The aim of our study was to use longitudinal in vivo magnetic resonance assessment of cerebral and retinal vascular perfusion after the ischemic injury to clarify whether and how the Koizumi and Longa methods induce retinal ischemia and how they differ in terms of cerebral and retinal lesion evolution. We provided anatomical evidence of the origin of the ophthalmic artery in mice from the pterygopalatine artery. Following the Koizumi surgery, retinal responses to ischemia overlapped with those in the brain, resulting in permanent damage. In contrast, the Longa method produced only extensive cerebral lesions, with greater tissue loss than in the Koizumi method. Additionally, our data suggests the Koizumi method should be redefined as a model of ischemia with chronic hypoperfusion rather than of ischemia and reperfusion.
Collapse
Affiliation(s)
- Helena Justić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Anja Barić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Iva Šimunić
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marin Radmilović
- Department of Ophthalmology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia *These authors contributed equally to this work
| | - Rok Ister
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Siniša Škokić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marina Dobrivojević Radmilović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
32
|
Wang P, Cui Y, Liu Y, Li Z, Bai H, Zhao Y, Chang YZ. Mitochondrial ferritin alleviates apoptosis by enhancing mitochondrial bioenergetics and stimulating glucose metabolism in cerebral ischemia reperfusion. Redox Biol 2022; 57:102475. [PMID: 36179435 PMCID: PMC9526171 DOI: 10.1016/j.redox.2022.102475] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/28/2022] Open
Abstract
Oxidative stress and deficient bioenergetics are key players in the pathological process of cerebral ischemia reperfusion injury (I/R). As a mitochondrial iron storage protein, mitochondrial ferritin (FtMt) plays a pivotal role in protecting neuronal cells from oxidative damage under stress conditions. However, the effects of FtMt in mitochondrial function and activation of apoptosis under cerebral I/R are barely understood. In the present study, we found that FtMt deficiency exacerbates neuronal apoptosis via classical mitochondria-depedent pathway and the endoplasmic reticulum (ER) stress pathway in brains exposed to I/R. Conversely, FtMt overexpression significantly inhibited oxygen and glucose deprivation and reperfusion (OGD/R)-induced apoptosis and the activation of ER stress response. Meanwhile, FtMt overexpression rescued OGD/R-induced mitochondrial iron overload, mitochondrial dysfunction, the generation of reactive oxygen species (ROS) and increased neuronal GSH content. Using the Seahorse and O2K cellular respiration analyser, we demonstrated that FtMt remarkably improved the ATP content and the spare respiratory capacity under I/R conditions. Importantly, we found that glucose consumption was augmented in FtMt overexpressing cells after OGD/R insult; overexpression of FtMt facilitated the activation of glucose 6-phosphate dehydrogenase and the production of NADPH in cells after OGD/R, indicating that the pentose-phosphate pathway is enhanced in FtMt overexpressing cells, thus strengthening the antioxidant capacity of neuronal cells. In summary, our results reveal that FtMt protects against I/R-induced apoptosis through enhancing mitochondrial bioenergetics and regulating glucose metabolism via the pentose-phosphate pathway, thus preventing ROS overproduction, and preserving energy metabolism.
Collapse
Affiliation(s)
- Peina Wang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China; College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Yanmei Cui
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Yuanyuan Liu
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Zhongda Li
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Huiyuan Bai
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Yashuo Zhao
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China; Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei Province, China
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China.
| |
Collapse
|
33
|
Pluta R, Jabłoński M, Januszewski S, Czuczwar SJ. Crosstalk between the aging intestinal microflora and the brain in ischemic stroke. Front Aging Neurosci 2022; 14:998049. [PMID: 36275012 PMCID: PMC9582537 DOI: 10.3389/fnagi.2022.998049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
Aging is an inevitable phenomenon experienced by animals and humans, and its intensity varies from one individual to another. Aging has been identified as a risk factor for neurodegenerative disorders by influencing the composition of the gut microbiota, microglia activity and cognitive performance. The microbiota-gut-brain axis is a two-way communication path between the gut microbes and the host brain. The aging intestinal microbiota communicates with the brain through secreted metabolites (neurotransmitters), and this phenomenon leads to the destruction of neuronal cells. Numerous external factors, such as living conditions and internal factors related to the age of the host, affect the condition of the intestinal microflora in the form of dysbiosis. Dysbiosis is defined as changes in the composition and function of the gut microflora that affect the pathogenesis, progress, and response to treatment of a disease entity. Dysbiosis occurs when changes in the composition and function of the microbiota exceed the ability of the microflora and its host to restore equilibrium. Dysbiosis leading to dysfunction of the microbiota-gut-brain axis regulates the development and functioning of the host’s nervous, immune, and metabolic systems. Dysbiosis, which causes disturbances in the microbiota-gut-brain axis, is seen with age and with the onset of stroke, and is closely related to the development of risk factors for stroke. The review presents and summarizes the basic elements of the microbiota-gut-brain axis to better understand age-related changes in signaling along the microbiota-gut-brain axis and its dysfunction after stroke. We focused on the relationship between the microbiota-gut-brain axis and aging, emphasizing that all elements of the microbiota-gut-brain axis are subject to age-related changes. We also discuss the interaction between microbiota, microglia and neurons in the aged individuals in the brain after ischemic stroke. Finally, we presented preclinical and clinical studies on the role of the aged microbiota-gut-brain axis in the development of risk factors for stroke and changes in the post-stroke microflora.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- *Correspondence: Ryszard Pluta,
| | - Mirosław Jabłoński
- Department of Rehabilitation and Orthopedics, Medical University of Lublin, Lublin, Poland
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
34
|
Kim E, Van Reet J, Kim HC, Kowsari K, Yoo SS. High Incidence of Intracerebral Hemorrhaging Associated with the Application of Low-Intensity Focused Ultrasound Following Acute Cerebrovascular Injury by Intracortical Injection. Pharmaceutics 2022; 14:2120. [PMID: 36297554 PMCID: PMC9609794 DOI: 10.3390/pharmaceutics14102120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
Low-intensity transcranial focused ultrasound (FUS) has gained momentum as a non-/minimally-invasive modality that facilitates the delivery of various pharmaceutical agents to the brain. With the additional ability to modulate regional brain tissue excitability, FUS is anticipated to confer potential neurotherapeutic applications whereby a deeper insight of its safety is warranted. We investigated the effects of FUS applied to the rat brain (Sprague-Dawley) shortly after an intracortical injection of fluorescent interstitial solutes, a widely used convection-enhanced delivery technique that directly (i.e., bypassing the blood-brain-barrier (BBB)) introduces drugs or interstitial tracers to the brain parenchyma. Texas Red ovalbumin (OA) and fluorescein isothiocyanate-dextran (FITC-d) were used as the interstitial tracers. Rats that did not receive sonication showed an expected interstitial distribution of OA and FITC-d around the injection site, with a wider volume distribution of OA (21.8 ± 4.0 µL) compared to that of FITC-d (7.8 ± 2.7 µL). Remarkably, nearly half of the rats exposed to the FUS developed intracerebral hemorrhaging (ICH), with a significantly higher volume of bleeding compared to a minor red blood cell extravasation from the animals that were not exposed to sonication. This finding suggests that the local cerebrovascular injury inflicted by the micro-injection was further exacerbated by the application of sonication, particularly during the acute stage of injury. Smaller tracer volume distributions and weaker fluorescent intensities, compared to the unsonicated animals, were observed for the sonicated rats that did not manifest hemorrhaging, which may indicate an enhanced degree of clearance of the injected tracers. Our results call for careful safety precautions when ultrasound sonication is desired among groups under elevated risks associated with a weakened or damaged vascular integrity.
Collapse
Affiliation(s)
- Evgenii Kim
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
| | - Jared Van Reet
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
| | - Hyun-Chul Kim
- Department of Artificial Intelligence, Kyungpook National University, Daegu 37224, Korea
| | - Kavin Kowsari
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
| |
Collapse
|
35
|
Wang YC, Chen YS, Hsieh ST. Neuroprotective Effects of a Cardioplegic Combination (Adenosine, Lidocaine, and Magnesium) in an Ischemic Stroke Model. Mol Neurobiol 2022; 59:7045-7055. [PMID: 36074233 DOI: 10.1007/s12035-022-03020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022]
Abstract
Adenosine, lidocaine, and magnesium (ALM) are clinically available cardioplegic solutions. We examined the effects of low-dose ALM on ischemic stroke in cell and animal models. Cobalt chloride (CoCl2)-treated SH-SY5Y cells were used as a surrogate model to mimic oxygen-glucose deprivation conditions. The cells were incubated with different dilutions of ALM authentic solution (1.0 mM adenosine, 2.0 mM lidocaine, and5 mM MgSO4 in Earle's balanced salt solution). At a concentration of 2.5%, ALM significantly reduced CoCl2-induced cell loss. This protective effect persisted even when ALM was administered 1 h after the insult. We used transient middle cerebral artery occlusion to investigate the therapeutic effects of ALM in vivo. Rats were randomly assigned to two groups-the experimental (ALM) and control (saline) groups-and infusion was administered during the ischemia for 1 h. The infarction area was significantly reduced in the ALM group compared with the control group (5.0% ± 2.0% vs. 23.5% ± 5.5%, p = 0.013). Neurological deficits were reduced in the ALM group compared with the control group (modified Longa score: 0 [0-1] vs. 2 [1-2], p = 0.047). This neuroprotective effect was substantiated by a reduction in the levels of various neuronal injury markers in plasma. These results demonstrate the neuroprotective effects of ALM and may provide a new therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Yi-Chia Wang
- Department of Anesthesiology, National Taiwan University College of Medicine and National University Hospital, Taipei, Taiwan
- Graduate Institutes of Anatomy and Cell Biology, National Taiwan University College of Medicine, 1 Jen-Ai Road, Section 1, Taipei, 100233, Taiwan
| | - Yih-Sharng Chen
- Department of Surgery, National Taiwan University College of Medicine and National University Hospital, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Graduate Institutes of Anatomy and Cell Biology, National Taiwan University College of Medicine, 1 Jen-Ai Road, Section 1, Taipei, 100233, Taiwan.
- Department of Neurology, National Taiwan University College of Medicine and National University Hospital, Taipei, Taiwan.
| |
Collapse
|
36
|
Seong D, Yi S, Han S, Lee J, Park S, Hwang YH, Kim J, Kim HK, Jeon M. Target ischemic stroke model creation method using photoacoustic microscopy with simultaneous vessel monitoring and dynamic photothrombosis induction. PHOTOACOUSTICS 2022; 27:100376. [PMID: 35734368 PMCID: PMC9207728 DOI: 10.1016/j.pacs.2022.100376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 06/02/2023]
Abstract
The ischemic stroke animal model evaluates the efficacy of reperfusion and neuroprotective strategies for ischemic injuries. Various conventional methods have been reported to induce the ischemic models; however, controlling specific neurological deficits, mortality rates, and the extent of the infarction is difficult as the size of the affected region is not precisely controlled. In this paper, we report a single laser-based localized target ischemic stroke model development method by simultaneous vessel monitoring and photothrombosis induction using photoacoustic microscopy (PAM), which has minimized the infarct size at precise location with high reproducibility. The proposed method has significantly reduced the infarcted region by illuminating the precise localization. The reproducibility and validity of suggested method have been demonstrated through repeated experiments and histological analyses. These results demonstrate that our method can provide the ischemic stroke model closest to the clinical pathology for brain ischemia research from inducement, occurrence mechanisms to the recovery process.
Collapse
Affiliation(s)
- Daewoon Seong
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
| | - Soojin Yi
- Bio-Medical Institute, Kyungpook National University Hospital, Daegu 41404, the Republic of Korea
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, the Republic of Korea
| | - Sangyeob Han
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
- Institute of Biomedical Engineering, School of Medicine, Kyungpook National University, Daegu 41566, the Republic of Korea
| | - Jaeyul Lee
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Sungjo Park
- Pohang Innotown Center, Pohang University of Science and Technology, Pohang 37673, the Republic of Korea
| | - Yang-Ha Hwang
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
| | - Jeehyun Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
| | - Hong Kyun Kim
- Bio-Medical Institute, Kyungpook National University Hospital, Daegu 41404, the Republic of Korea
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, the Republic of Korea
| | - Mansik Jeon
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
| |
Collapse
|
37
|
Protective Effect of Neferine in Permanent Cerebral Ischemic Rats via Anti-Oxidative and Anti-Apoptotic Mechanisms. Neurotox Res 2022; 40:1348-1359. [PMID: 36018507 DOI: 10.1007/s12640-022-00568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 11/27/2022]
Abstract
Permanent cerebral ischemia is a consequence of prolonged cerebral artery occlusion that results in severe brain damage. Neurotoxicity occurring after ischemia can induce brain tissue damage by destroying cell organelles and their function. Neferine is a natural compound isolated from the seed embryos of the lotus plant and has broad pharmacological effects, including blockading of the calcium channels, anti-oxidative stress, and anti-apoptosis. This study investigated the ability of neferine to reduce brain injury after permanent cerebral occlusion. Permanent cerebral ischemia in rats was induced by instigation of occlusion of the middle cerebral artery for 24 h. The rats were divided into 6 groups: sham, permanent middle cerebral artery occlusion (pMCAO), pMCAO with neferine and nimodipine treatment. To investigate the severity of the injury, the neurological deficit score and morphological alterations were investigated. After 24 h, the rats were evaluated to assess neurological deficit, infarct volume, morphological change, and the number of apoptotic cell deaths. In addition, the brain tissues were examined by western blot analysis to calculate the expression of proteins related to oxidative stress and apoptosis. The data showed that the neurological deficit scores and the infarct volume were significantly reduced in the neferine-treated rats compared to the vehicle group. Treatment with neferine significantly reduced oxidative stress with a measurable decrease in 4-hydroxynonenal (4-HNE), nitric oxide (NO), neuronal nitric oxide (nNOS), and calcium levels and an upregulation of Hsp70 expression. Neferine treatment also significantly decreased apoptosis, with a decrease in Bax and cleaved caspase-3 and an increase in Bcl-2. This study suggested that neferine had a neuroprotective effect on permanent cerebral ischemia in rats by diminishing oxidative stress and apoptosis.
Collapse
|
38
|
Oppong-Gyebi A, Metzger D, Vann PH, Yockey RA, Sumien N, Schreihofer DA. Dietary genistein and 17β-estradiol implants differentially influence locomotor and cognitive functions following transient focal ischemia in middle-aged ovariectomized rats at different lengths of estrogen deprivation. Horm Behav 2022; 144:105201. [PMID: 35653830 DOI: 10.1016/j.yhbeh.2022.105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/04/2022]
Abstract
Genistein possesses estrogenic activity and has been considered a potential replacement for estrogen replacement therapy after menopause. In the current study, we investigated the neuroprotective effects of dietary genistein at varied lengths of estrogen deprivation in middle-aged ovariectomized Sprague-Dawley rats under ischemic conditions. Two weeks of treatment with dietary genistein at 42 mg/kg but not 17β-estradiol implants improved cognitive flexibility (Morris water maze test) after short-term estrogen deprivation (2 weeks) but not long-term estrogen deprivation (12 weeks). 17β-estradiol implants but not dietary genistein improved locomotor asymmetry (cylinder test) after long-term but not short-term estrogen deprivation. Dietary genistein but not 17β-estradiol implant improved early phase motor learning (rotarod test) after long-term estrogen deprivation. Neither 17β-estradiol implant nor dietary genistein reduced infarct size after either short-term or long-term estrogen deprivation. Genistein, however, reduced ionized calcium-binding adaptor molecule-1 (Iba1) expression, a marker of brain inflammation, at the ipsilateral side of stroke injury after short-term but not long-term estrogen deprivation. This study suggests that the neuroprotective effects of dietary genistein on motor and cognitive functions are distinctly influenced by the length of estrogen deprivation following focal ischemia. SIGNIFICANCE: There is an increasing postmenopausal population opting for homeopathic medicines for the management of menopausal symptoms due to the perceived distrust in estrogen use as hormone replacement. Basic and clinical studies support the notion that early, but not delayed, hormone replacement after menopause is beneficial. Furthermore, evidence suggests that delaying hormone replacement augments the detrimental, rather than the beneficial effects of estrogens. Because of the active consideration of soy isoflavones including genistein as alternatives to estrogen replacement, it is necessary to understand the ramifications of soy isoflavones use when their administration is begun at various times after menopause.
Collapse
Affiliation(s)
- Anthony Oppong-Gyebi
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Daniel Metzger
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Philip H Vann
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - R Andrew Yockey
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Derek A Schreihofer
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
39
|
Brait VH, Jackman KA, Pang TY. Effects of wheel-running on anxiety and depression-relevant behaviours in the MCAO mouse model of stroke: moderation of brain-derived neurotrophic factor and serotonin receptor gene expression. Behav Brain Res 2022; 432:113983. [PMID: 35777551 DOI: 10.1016/j.bbr.2022.113983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022]
Abstract
Stroke continues to be a major cause of mortality globally. Post-stroke treatment is complicated by the heterogenous nature of pathology and the emergence of secondary psychological symptoms are an additional challenge to the recovery process. Poststroke depression (PSD) is a common co-morbidity and is a major impediment to recovery. While selective serotonin reuptake inhibitors (SSRIs) have proven to be clinically efficacious in treating PSD, the pathogenic processes that underlie the manifestation of depressive mood post-stroke remains unclear. Furthermore, the use of SSRIs is associated with risks of intracerebral haemorrhage, so alternative treatment options need to be continuously explored. Exercise has been demonstrated to be beneficial for improving mood in humans and preclinical models of neurological conditions. Little is known of the mood-related benefits of physical exercise post-stroke. Using the middle cerebral artery occlusion (MCAO) mouse model of cerebral ischaemia, we investigated whether behavioural deficits emerge post-MCAO and could be rescued by voluntary wheel-running. We report that MCAO induced hypo-locomotion and anhedonia-related behaviours, with some improvements conferred by wheel-running. Serotonin transporter gene expression was increased in the MCAO hippocampus and frontal cortex, but this increase remained despite wheel-running. Wheel-running associated up-regulation of BDNF gene expression was unaffected in MCAO mice, reflecting conservation of key neuroplasticity molecular pathways. Taken together, our results highlight the need for further research into serotonergic modulation of the affective symptoms of stroke.
Collapse
Affiliation(s)
- Vanessa H Brait
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Katherine A Jackman
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Terence Y Pang
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Department of Anatomy and Physiology, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
40
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
41
|
Neuroprotection of everolimus against focal cerebral ischemia-reperfusion injury in rats. J Stroke Cerebrovasc Dis 2022; 31:106576. [PMID: 35633587 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/01/2022] [Accepted: 05/15/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that regulates cell growth and metabolism and integrates various signals under physiological and pathological conditions. Altered signaling of mTOR has been shown to play pathogenic roles in ischemic stroke. In the present study, the protective effect of everolimus, the selective mTOR inhibitor, in the middle cerebral artery occlusion (MCAO) model of ischemic stroke was evaluated. METHODS Wistar rats were exposed to MCAO (30 min) followed by reperfusion for 24 h. Everolimus (100, and 500 µg/kg) was administered at the time of reperfusion, intraperitoneally. 24 h post operation, the neurological function, infarct volume, histopathological alterations and the markers of oxidative stress including superoxide dismutase (SOD) activity, malondialdehyde (MDA), and total thiol levels were analyzed in the peri-infarct region. RESULTS In the rats subjected to MCAO, everolimus ameliorated neurological deficits, neuronal cell loss, and infarct volume, as compared to the stroke group. Also, everolimus significantly increased SOD activity and total thiol content, while markedly decreased the MDA level, as compared to MCAO group. CONCLUSION Single-dose administration of everolimus significantly improved neurological deficits and inhibited cortical cell loss by enhancing redox status, subsequently protected cerebral ischemia-reperfusion injury in rats.
Collapse
|
42
|
Ye J, Shang H, Du H, Cao Y, Hua L, Zhu F, Liu W, Wang Y, Chen S, Qiu Z, Shen H. An Optimal Animal Model of Ischemic Stroke Established by Digital Subtraction Angiography-Guided Autologous Thrombi in Cynomolgus Monkeys. Front Neurol 2022; 13:864954. [PMID: 35547371 PMCID: PMC9083075 DOI: 10.3389/fneur.2022.864954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Ischemic stroke seriously threatens human health, characterized by the high rates of incidence, disability, and death. Developing a reliable animal model that mimics most of the features of stroke is critical for pathological studies and clinical research. In this study, we aimed to establish and examine a model of middle cerebral artery occlusion (MCAO) guided by digital subtraction angiography (DSA) in cynomolgus monkeys. Materials and Methods In this study, 15 adult male cynomolgus monkeys were enrolled. Under the guidance of DSA, a MCAO model was established by injecting an autologous venous clot into the middle cerebral artery (MCA) via femoral artery catheter. Thrombolytic therapy with alteplase (rt-PA) was given to eight of these monkeys at 3 h after the occlusion. Blood test and imaging examination, such as computed tomography angiography (CTA), CT perfusion (CTP), brain magnetic resonance imaging (MRI), and brain magnetic resonance angiography (MRA), were performed after the operation to identify the post-infarction changes. The behavioral performance of cynomolgus monkeys was continuously observed for 7 days after operation. The animals were eunthanized on the 8th day after operation, and then the brain tissues of monkeys were taken for triphenyltetrazolium chloride (TTC) staining. Results Among the 15 cynomolgus monkeys, 12 of them were successfully modeled, as confirmed by the imaging findings and staining assessment. One monkey died of brain hernia resulted from intracranial hemorrhage confirmed by necropsy. DSA, CTA, and MRA indicated the presence of an arterial occlusion. CTP and MRI showed acute focal cerebral ischemia. TTC staining revealed infarct lesions formed in the brain tissues. Conclusion Our study may provide an optimal non-human primate model for an in-depth study of the pathogenesis and treatment of focal cerebral ischemia.
Collapse
Affiliation(s)
- Juan Ye
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Hailong Shang
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Hongdi Du
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Ying Cao
- Department of Radiotherapy, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Lei Hua
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Feng Zhu
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Wei Liu
- Department of Pharmacology, Prisys Biotechnologies Co., Ltd., Shanghai, China
| | - Ying Wang
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Siyu Chen
- Department of Endocrinology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Zhifu Qiu
- Department of Pharmacology, Prisys Biotechnologies Co., Ltd., Shanghai, China
| | - Hailin Shen
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| |
Collapse
|
43
|
Abstract
The microbiota-gut-brain-axis (MGBA) is a bidirectional communication network between gut microbes and their host. Many environmental and host-related factors affect the gut microbiota. Dysbiosis is defined as compositional and functional alterations of the gut microbiota that contribute to the pathogenesis, progression and treatment responses to disease. Dysbiosis occurs when perturbations of microbiota composition and function exceed the ability of microbiota and its host to restore a symbiotic state. Dysbiosis leads to dysfunctional signaling of the MGBA, which regulates the development and the function of the host's immune, metabolic, and nervous systems. Dysbiosis-induced dysfunction of the MGBA is seen with aging and stroke, and is linked to the development of common stroke risk factors such as obesity, diabetes, and atherosclerosis. Changes in the gut microbiota are also seen in response to stroke, and may impair recovery after injury. This review will begin with an overview of the tools used to study the MGBA with a discussion on limitations and potential experimental confounders. Relevant MGBA components are introduced and summarized for a better understanding of age-related changes in MGBA signaling and its dysfunction after stroke. We will then focus on the relationship between the MGBA and aging, highlighting that all components of the MGBA undergo age-related alterations that can be influenced by or even driven by the gut microbiota. In the final section, the current clinical and preclinical evidence for the role of MGBA signaling in the development of stroke risk factors such as obesity, diabetes, hypertension, and frailty are summarized, as well as microbiota changes with stroke in experimental and clinical populations. We conclude by describing the current understanding of microbiota-based therapies for stroke including the use of pre-/pro-biotics and supplementations with bacterial metabolites. Ongoing progress in this new frontier of biomedical sciences will lead to an improved understanding of the MGBA's impact on human health and disease.
Collapse
Affiliation(s)
- Pedram Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston (P.H., L.D.M.)
| | - Robert M Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX (R.M.B.)
| | - Louise D McCullough
- Department of Neurology, University of Texas McGovern Medical School, Houston (P.H., L.D.M.)
| |
Collapse
|
44
|
Mostajeran M, Edvinsson L, Ahnstedt H, Arkelius K, Ansar S. Repair-related molecular changes during recovery phase of ischemic stroke in female rats. BMC Neurosci 2022; 23:23. [PMID: 35413803 PMCID: PMC9004052 DOI: 10.1186/s12868-022-00696-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Some degree of spontaneous recovery is usually observed after stroke. Experimental studies have provided information about molecular mechanisms underlying this recovery. However, the majority of pre-clinical stroke studies are performed in male rodents, and females are not well studied. This is a clear discrepancy when considering the clinical situation. Thus, it is important to include females in the evaluation of recovery mechanisms for future therapeutic strategies. This study aimed to evaluate spontaneous recovery and molecular mechanisms involved in the recovery phase two weeks after stroke in female rats. METHODS Transient middle cerebral artery occlusion was induced in female Wistar rats using a filament model. Neurological functions were assessed up to day 14 after stroke. Protein expression of interleukin 10 (IL-10), transforming growth factor (TGF)-β, neuronal specific nuclei protein (NeuN), nestin, tyrosine-protein kinase receptor Tie-2, extracellular signal-regulated kinase (ERK) 1/2, and Akt were evaluated in the peri-infarct and ischemic core compared to contralateral side of the brain at day 14 by western blot. Expression of TGF-β in middle cerebral arteries was evaluated by immunohistochemistry. RESULTS Spontaneous recovery after stroke was observed from day 2 to day 14 and was accompanied by a significantly higher expression of nestin, p-Akt, p-ERK1/2 and TGF-β in ischemic regions compared to contralateral side at day 14. In addition, a significantly higher expression of TGF-β was observed in occluded versus non-occluded middle cerebral arteries. The expression of Tie-2 and IL-10 did not differ between the ischemic and contralateral sides. CONCLUSION Spontaneous recovery after ischemic stroke in female rats was coincided by a difference observed in the expression of molecular markers. The alteration of these markers might be of importance to address future therapeutic strategies.
Collapse
Affiliation(s)
- Maryam Mostajeran
- Division of Experimental Vascular Research, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Lars Edvinsson
- Division of Experimental Vascular Research, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hilda Ahnstedt
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kajsa Arkelius
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Saema Ansar
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
45
|
Shou JW, Shaw PC. Therapeutic Efficacies of Berberine against Neurological Disorders: An Update of Pharmacological Effects and Mechanisms. Cells 2022; 11:cells11050796. [PMID: 35269418 PMCID: PMC8909195 DOI: 10.3390/cells11050796] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Neurological disorders are ranked as the leading cause of disability and the second leading cause of death worldwide, underscoring an urgent necessity to develop novel pharmacotherapies. Berberine (BBR) is a well-known phytochemical isolated from a number of medicinal herbs. BBR has attracted much interest for its broad range of pharmacological actions in treating and/or managing neurological disorders. The discoveries in basic and clinical studies of the effects of BBR on neurological disorders in the last decade have provided novel evidence to support the potential therapeutical efficacies of BBR in treating neurological diseases. In this review, we summarized the pharmacological properties and therapeutic applications of BBR against neurological disorders in the last decade. We also emphasized the major pathways modulated by BBR, which provides firm evidence for BBR as a promising drug candidate for neurological disorders.
Collapse
Affiliation(s)
- Jia-Wen Shou
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 852852, China;
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 852852, China;
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 852852, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants and Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 852852, China
- Correspondence:
| |
Collapse
|
46
|
Jurcau A, Simion A. Neuroinflammation in Cerebral Ischemia and Ischemia/Reperfusion Injuries: From Pathophysiology to Therapeutic Strategies. Int J Mol Sci 2021; 23:14. [PMID: 35008440 PMCID: PMC8744548 DOI: 10.3390/ijms23010014] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Its increasing incidence has led stroke to be the second leading cause of death worldwide. Despite significant advances in recanalization strategies, patients are still at risk for ischemia/reperfusion injuries in this pathophysiology, in which neuroinflammation is significantly involved. Research has shown that in the acute phase, neuroinflammatory cascades lead to apoptosis, disruption of the blood-brain barrier, cerebral edema, and hemorrhagic transformation, while in later stages, these pathways support tissue repair and functional recovery. The present review discusses the various cell types and the mechanisms through which neuroinflammation contributes to parenchymal injury and tissue repair, as well as therapeutic attempts made in vitro, in animal experiments, and in clinical trials which target neuroinflammation, highlighting future therapeutic perspectives.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| | - Aurel Simion
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurorehabilitation Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| |
Collapse
|
47
|
Lim S, Kim TJ, Kim YJ, Kim C, Ko SB, Kim BS. Senolytic Therapy for Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 22:ijms222111967. [PMID: 34769397 PMCID: PMC8584561 DOI: 10.3390/ijms222111967] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death, and even timely treatment can result in severe disabilities. Reperfusion of the ischemic stroke region and restoration of the blood supply often lead to a series of cellular and biochemical consequences, including generation of reactive oxygen species (ROS), expression of inflammatory cytokines, inflammation, and cerebral cell damage, which is collectively called cerebral ischemia-reperfusion (IR) injury. Since ROS and inflammatory cytokines are involved in cerebral IR injury, injury could involve cellular senescence. Thus, we investigated whether senolytic therapy that eliminates senescent cells could be an effective treatment for cerebral IR injury. To determine whether IR induces neural cell senescence in vitro, astrocytes were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). OGD/R induced astrocyte senescence and senescent cells in OGD/R-injured astrocytes were effectively eliminated in vitro by ABT263, a senolytic agent. IR in rats with intraluminal middle cerebral artery occlusion induced cellular senescence in the ischemic region. The senescent cells in IR-injured rats were effectively eliminated by intravenous injections of ABT263. Importantly, ABT263 treatment significantly reduced the infarct volume and improved neurological function in behavioral tests. This study demonstrated, for the first time, that senolytic therapy has therapeutic potential for cerebral IR injury.
Collapse
Affiliation(s)
- Songhyun Lim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea; (S.L.); (C.K.)
| | - Tae Jung Kim
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea; (T.J.K.); (Y.-J.K.)
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Young-Ju Kim
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea; (T.J.K.); (Y.-J.K.)
| | - Cheesue Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea; (S.L.); (C.K.)
| | - Sang-Bae Ko
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea; (T.J.K.); (Y.-J.K.)
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul 03080, Korea
- Correspondence: (S.-B.K.); (B.-S.K.); Tel.: +82-2-2072-2278 (S.-B.K.); +82-2-880-1509 (B.-S.K.)
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea; (S.L.); (C.K.)
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Korea
- Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
- Bio-MAX Institute, Seoul National University, Seoul 08826, Korea
- Correspondence: (S.-B.K.); (B.-S.K.); Tel.: +82-2-2072-2278 (S.-B.K.); +82-2-880-1509 (B.-S.K.)
| |
Collapse
|
48
|
Urushihata T, Takuwa H, Takahashi M, Kershaw J, Tachibana Y, Nitta N, Shibata S, Yasui M, Higuchi M, Obata T. Exploring cell membrane water exchange in aquaporin-4-deficient ischemic mouse brain using diffusion-weighted MRI. Eur Radiol Exp 2021; 5:44. [PMID: 34617156 PMCID: PMC8494869 DOI: 10.1186/s41747-021-00244-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Aquaporin-4 is a membrane channel protein that is highly expressed in brain astrocytes and facilitates the transport of water molecules. It has been suggested that suppression of aquaporin-4 function may be an effective treatment for reducing cellular edema after cerebral infarction. It is therefore important to develop clinically applicable measurement systems to evaluate and better understand the effects of aquaporin-4 suppression on the living body. METHODS Animal models of focal cerebral ischemia were created by surgically occluding the middle cerebral artery of wild-type and aquaporin-4 knockout mice, after which multi-b-value multi-diffusion-time diffusion-weighted imaging measurements were performed. Data were analyzed with both the apparent diffusion coefficient (ADC) model and a compartmental water-exchange model. RESULTS ADCs were estimated for five different b value ranges. The ADC of aquaporin-4 knockout mice in the contralateral region was significantly higher than that of wild-type mice for each range. In contrast, aquaporin-4 knockout mice had significantly lower ADC than wild-type mice in ischemic tissue for each b-value range. Genotype-dependent differences in the ADC were particularly significant for the lowest ranges in normal tissue and for the highest ranges in ischemic tissue. The ADCs measured at different diffusion times were significantly different for both genotypes. Fitting of the water-exchange model to the ischemic region data found that the water-exchange time in aquaporin-4 knockout mice was approximately 2.5 times longer than that in wild-type mice. CONCLUSIONS Multi-b-value multi-diffusion-time diffusion-weighted imaging may be useful for in vivo research and clinical diagnosis of aquaporin-4-related diseases.
Collapse
Affiliation(s)
- Takuya Urushihata
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Hiroyuki Takuwa
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Manami Takahashi
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Jeff Kershaw
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Yasuhiko Tachibana
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Nobuhiro Nitta
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Sayaka Shibata
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Masato Yasui
- Keio Advanced Research Center for Water Biology and Medicine, Keio University, Tokyo, 160-0016, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Takayuki Obata
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan.
| |
Collapse
|
49
|
Sengking J, Oka C, Wicha P, Yawoot N, Tocharus J, Chaichompoo W, Suksamrarn A, Tocharus C. Neferine Protects Against Brain Damage in Permanent Cerebral Ischemic Rat Associated with Autophagy Suppression and AMPK/mTOR Regulation. Mol Neurobiol 2021; 58:6304-6315. [PMID: 34498225 DOI: 10.1007/s12035-021-02554-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/04/2021] [Indexed: 01/26/2023]
Abstract
Neferine is the major alkaloid compound isolated from the seed embryos of lotus. Neferine has many pharmacological effects, such as anti-inflammatory, antioxidative stress, and antiapoptotic effects, and it maintains autophagic balance. The purpose of this study was to explore the mechanism by which neferine attenuates autophagy after permanent cerebral ischemia in rats. We performed permanent cerebral ischemia in rats by middle cerebral artery occlusion (pMCAO) for 12 h with or without administration of neferine or nimodipine, a calcium (Ca2+) channel blocker. Neuroprotective effects were determined by evaluating the infarct volume and neurological deficits. Autophagy and its signaling pathway were determined by evaluating the expression of phosphorylated AMP-activated protein kinase alpha (AMPKα), phosphorylated mammalian target of rapamycin (mTOR), beclin-1, microtubule-associated protein 1A/1B-light chain 3 class II (LC3-II), and p62 by western blotting. Autophagosomes were evaluated by transmission electron microscopy. Neferine treatment significantly reduced infarct volumes and improved neurological deficits. Neferine significantly attenuated the upregulation of autophagy-associated proteins such as LC3-II, beclin-1, and p62 as well as autophagosome formation, all of which were induced by pMCAO. Neferine exerted remarkable protection against cerebral ischemia, possibly via the regulation of autophagy mediated by the Ca2+-dependent AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Jirakhamon Sengking
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chio Oka
- Laboratory of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Piyawadee Wicha
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nuttapong Yawoot
- Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
50
|
Zhang W, Zhang F, Hu Q, Xiao X, Ou L, Chen Y, Luo S, Cheng Y, Jiang Y, Ma X, Zhao Y. The emerging possibility of the use of geniposide in the treatment of cerebral diseases: a review. Chin Med 2021; 16:86. [PMID: 34454545 PMCID: PMC8400848 DOI: 10.1186/s13020-021-00486-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/01/2021] [Indexed: 12/19/2022] Open
Abstract
With the advanced discoveries in the field of pathogenesis, a series of cerebral diseases, such as cerebral ischaemia, Alzheimer's disease, and depression, have been found to have multiple signalling targets in the microenvironment. Only a few existing agents have been shown to have curative effects due to this specific circumstance. In recent decades, active ingredients isolated from natural plants have been shown to be crucial for original drug development. Geniposide, mainly extracted from Gardenia jasminoides Ellis, is representative of these natural products. Geniposide demonstrates various biological activities in the treatment of cerebral, cardiovascular, hepatic, tumorous, and other diseases. The multiple protective effects of geniposide on the brain have especially drawn increasing attention. Thus, this article specifically reviews the characteristics of current models of cerebral ischaemia and illustrates the possible effects of geniposide and its pathogenetic mechanisms on these models. Geniposide has been shown to significantly reduce the area of cerebral infarction and alleviate neuronal damage and necrosis mainly by inhibiting inflammatory signals, including NLRP3, TNF-α, IL-6, and IL-1β. Neuronal protection was also involved in activating the PI3K/Akt and Wnt/catenin pathways. Geniposide was able to increase autophagy and inhibit apoptosis by regulating the function of mTOR in treating Alzheimer's disease. Geniposide has also been shown to act as a glucagon-like peptide-1 receptor (GLP-1R) agonist to reduce amyloid plaques and inhibit oxidative stress to alleviate memory impairment as well as synaptic loss. Moreover, geniposide has been shown to exert antidepressant effects primarily by regulating the hypothalamic-pituitary-adrenal (HPA) axis. Detailed explorations have shown that the biological activities of inhibiting inflammatory cytokine secretion, alleviating oxidative stress, and suppressing mitochondrial damage are also involved in the mechanism of action of geniposide. Therefore, geniposide is a promising agent awaiting further exploration for the treatment of cerebral diseases via various phenotypes or signalling pathways.
Collapse
Affiliation(s)
- Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fangling Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Linbo Ou
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiqing Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yonghong Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Centre of PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|