1
|
Uchikawa H, Rahmani R. Animal Models of Intracranial Aneurysms: History, Advances, and Future Perspectives. Transl Stroke Res 2025; 16:37-48. [PMID: 39060663 DOI: 10.1007/s12975-024-01276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Intracranial aneurysms (IA) are a disease process with potentially devastating outcomes, particularly when rupture occurs leading to subarachnoid hemorrhage. While some candidates exist, there is currently no established pharmacological prevention of growth and rupture. The development of prophylactic treatments is a critical area of research, and preclinical models using animals play a pivotal role. These models, which utilize various species and induction methods, each possess unique characteristics that can be leveraged depending on the specific aim of the study. A comprehensive understanding of these models, including their historical development, is crucial for appreciating the advantages and limitations of aneurysm research in animal models.We summarize the significant roles of animal models in IA research, with a particular focus on rats, mice, and large animals. We discuss the pros and cons of each model, providing insights into their unique characteristics and contributions to our understanding of IA. These models have been instrumental in elucidating the pathophysiology of IA and in the development of potential therapeutic strategies.A deep understanding of these models is essential for advancing research on preventive treatments for IA. By leveraging the unique strengths of each model and acknowledging their limitations, researchers can conduct more effective and targeted studies. This, in turn, can accelerate the development of novel therapeutic strategies, bringing us closer to the goal of establishing an effective prophylactic treatment for IA. This review aims to provide a comprehensive view of the current state of animal models in IA research.
Collapse
Affiliation(s)
- Hiroki Uchikawa
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Redi Rahmani
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ, USA.
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA.
| |
Collapse
|
2
|
Khan D, Li X, Hashimoto T, Tanikawa R, Niemela M, Lawton M, Muhammad S. Current Mouse Models of Intracranial Aneurysms: Analysis of Pharmacological Agents Used to Induce Aneurysms and Their Impact on Translational Research. J Am Heart Assoc 2024; 13:e031811. [PMID: 38258667 PMCID: PMC11056163 DOI: 10.1161/jaha.123.031811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Intracranial aneurysms (IAs) are rare vascular lesions that are more frequently found in women. The pathophysiology behind the formation and growth of IAs is complex. Hence, to date, no single pharmacological option exists to treat them. Animal models, especially mouse models, represent a valuable tool to explore such complex scientific questions. Genetic modification in a mouse model of IAs, including deletion or overexpression of a particular gene, provides an excellent means for examining basic mechanisms behind disease pathophysiology and developing novel pharmacological approaches. All existing animal models need some pharmacological treatments, surgical interventions, or both to develop IAs, which is different from the spontaneous and natural development of aneurysms under the influence of the classical risk factors. The benefit of such animal models is the development of IAs in a limited time. However, clinical translation of the results is often challenging because of the artificial course of IA development and growth. Here, we summarize the continuous improvement in mouse models of IAs. Moreover, we discuss the pros and cons of existing mouse models of IAs and highlight the main translational roadblocks and how to improve them to increase the success of translational IA research.
Collapse
Affiliation(s)
- Dilaware Khan
- Department of NeurosurgeryMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐Universität DüsseldorfDüsseldorfGermany
| | - Xuanchen Li
- Department of NeurosurgeryMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐Universität DüsseldorfDüsseldorfGermany
| | - Tomoki Hashimoto
- Department of Neurosurgery and NeurobiologyBarrow Neurological InstitutePhoenixAZUSA
| | - Rokuya Tanikawa
- Department of Neurosurgery, Stroke CenterSapporo Teishinkai HospitalSapporoHokkaidoJapan
| | - Mika Niemela
- Department of NeurosurgeryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Michael Lawton
- Department of Neurological SurgeryBarrow Neurological Institute, St. Joseph’s Hospital and Medical CenterPhoenixAZUSA
| | - Sajjad Muhammad
- Department of NeurosurgeryMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐Universität DüsseldorfDüsseldorfGermany
- Department of NeurosurgeryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| |
Collapse
|
3
|
Cayron AF, Bejuy O, Vargas MI, Colin DJ, Aoki T, Lövblad KO, Bijlenga P, Kwak BR, Allémann E, Morel S. Time-of-flight and black-blood MRI to study intracranial arteries in rats. Eur Radiol Exp 2024; 8:3. [PMID: 38191711 PMCID: PMC10774247 DOI: 10.1186/s41747-023-00407-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 01/10/2024] Open
Abstract
Intracranial aneurysms (IAs) are usually incidentally discovered by magnetic resonance imaging (MRI). Once discovered, the risk associated with their treatment must be balanced with the risk of an unexpected rupture. Although clinical observations suggest that the detection of contrast agent in the aneurysm wall using a double-inversion recovery black-blood (BB) sequence may point to IA wall instability, the exact meaning of this observation is not understood. Validation of reliable diagnostic markers of IA (in)stability is of utmost importance to deciding whether to treat or not an IA. To longitudinally investigate IA progression and enhance our understanding of this devastating disease, animal models are of great help. The aim of our study was to improve a three-dimensional (3D)-time-of-flight (TOF) sequence and to develop a BB sequence on a standard preclinical 3-T MRI unit to investigate intracranial arterial diseases in rats. We showed that our 3D-TOF sequence allows reliable measurements of intracranial artery diameters, inter-artery distances, and angles between arteries and that our BB sequence enables us to visualize intracranial arteries. We report the first BB-MRI sequence to visualize intracranial arteries in rats using a preclinical 3-T MRI unit. This sequence could be useful for a large community of researchers working on intracranial arterial diseases.Relevance statement We developed a black-blood MRI sequence to study vessel wall enhancement in rats with possible application to understanding IAs instability and finding reliable markers for clinical decision-making.Key points• Reliable markers of aneurysm stability are needed for clinical decision.• Detection of contrast enhancement in the aneurysm wall may be associated with instability.• We developed a black-blood MRI sequence in rats to be used to study vessel wall enhancement of IAs.
Collapse
Affiliation(s)
- Anne F Cayron
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CMU, Rue Michel-Servet 1, CH-1211, Geneva, Switzerland
- Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Olivia Bejuy
- CIBM Center for BioMedical Imaging, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Small Animal Preclinical Imaging Platform, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Maria Isabel Vargas
- Division of Neuroradiology, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Didier J Colin
- Small Animal Preclinical Imaging Platform, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tomohiro Aoki
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan
| | - Karl-Olof Lövblad
- Division of Neuroradiology, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Philippe Bijlenga
- Division of Neurosurgery, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CMU, Rue Michel-Servet 1, CH-1211, Geneva, Switzerland
- Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Small Animal Preclinical Imaging Platform, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandrine Morel
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CMU, Rue Michel-Servet 1, CH-1211, Geneva, Switzerland.
- Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Division of Neurosurgery, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| |
Collapse
|
4
|
Matur AV, Yamani AS, Robinson MW, Smith MS, Shirani P, Grossman AW, Prestigiacomo CJ. Association between underlying autoimmune disease and small aneurysm size at rupture. J Neurosurg 2023; 138:701-708. [PMID: 35901690 DOI: 10.3171/2022.5.jns22750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Although the role of inflammation in the development of aneurysms is established, less is known about the development of intracranial aneurysms in the setting of underlying autoimmune disease. The underlying systemic inflammatory characteristics of disorders such as systemic lupus erythematosus, rheumatoid arthritis, and Sjögren's syndrome may influence the development of intracranial aneurysms through common inflammatory pathways. The authors hypothesized that there is an association between underlying autoimmune disease and aneurysm growth and rupture. METHODS Medical records of patients who underwent cerebral angiography between August 2018 and August 2021 were manually reviewed. Autoimmune diseases as defined for this study are those known to have systemic inflammatory effects on the central nervous system or multiple other organ systems. Statistical analysis, including construction of multivariable linear and logistic regression models, was performed using R version 4.1.0. RESULTS Chart review identified 190 patients with 469 ruptured and unruptured saccular intracranial aneurysms. There were 31 patients with 44 aneurysms identified as having an autoimmune disease. The mean size of a ruptured aneurysm was significantly smaller among patients with autoimmune disease compared with patients without autoimmune disease (4.14 mm vs 5.34 mm, p = 0.03). The multivariate logistic regression model did not identify any significant association between rupture and autoimmune disease when controlling for other variables (p = 0.49). In the multivariate linear regression model, autoimmune disease was still significantly associated with a smaller size at rupture (p = 0.04), and smoking was associated with a larger size at rupture (p = 0.03) when controlling for other variables. A second multivariate logistic regression model found autoimmune disease to be independently associated with rupture at a size smaller than 7 mm (p = 0.02), while smoking was independently associated with rupture at a size larger than 7 mm (p = 0.01). CONCLUSIONS Autoimmune disease is associated with a smaller aneurysm size at rupture, although it is not associated with rupture itself. This association may be due to inflammatory pathways that are common to autoimmune diseases as well as aneurysm wall development. Although the authors were unable to identify any association between rupture status and the presence of autoimmune disease, the association between smaller size at rupture and autoimmune disease warrants further studies, as autoimmune disease may influence the trajectory of aneurysm development and the decision to treat.
Collapse
Affiliation(s)
- Abhijith V Matur
- 1Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati; and
| | - Ali S Yamani
- 1Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati; and
| | - Michael W Robinson
- 1Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati; and
| | - Matthew S Smith
- 2Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Peyman Shirani
- 2Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Aaron W Grossman
- 2Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | |
Collapse
|
5
|
Boillat G, Franssen T, Wanderer S, Rey J, Casoni D, Andereggen L, Marbacher S, Gruter BE. Anatomical Variations of the Common Carotid Arteries and Neck Structures of the New Zealand White Rabbit and Their Implications for the Development of Preclinical Extracranial Aneurysm Models. Brain Sci 2023; 13:brainsci13020222. [PMID: 36831765 PMCID: PMC9954206 DOI: 10.3390/brainsci13020222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Rabbit models involving neck arteries are of growing importance for the development of preclinical aneurysm models. An optimal understanding of the anatomy is primordial to allow the conception of models while minimizing mortality and morbidity. The aim of this study is to give reliable anatomical landmarks to allow a standardized approach to the neck vessels. METHODS We performed a necropsy on nine specimens from ongoing experimental studies. We measured the distance between the origins of the right and left common carotid artery (rCCA/lCCA) and between the rCCA and the manubrium sterni (MS). The structures at risk were described. RESULTS Female New Zealand White rabbits (NZWR) weighing 3.7 ± 0.3 kg and aged 25 ± 5 weeks were included. The rCCA origin was located 9.6 ± 1.2 mm laterally and 10.1 ± 3.3 mm caudally to the MS. In all specimens, the lCCA originated from the aortic arch, together with the brachiocephalic trunk (BCT), and 6.2 ± 3.1 mm proximally to the rCCA origin. The external and internal jugular veins, trachea and laryngeal nerve were the main structures at risk. CONCLUSIONS The data help to localize both CCAs and their origin to guide surgical approaches with the manubrium sterni as a main landmark. Special attention has to be paid to the trachea, jugular veins and laryngeal nerves.
Collapse
Affiliation(s)
- Gwendoline Boillat
- Department of Neurosurgery, Kantonsspital Aarau, 5001 Aarau, Switzerland
- Cerebrovascular Research Group, Department for BioMedical Research, University of Bern, 3010 Bern, Switzerland
- Correspondence:
| | - Tim Franssen
- Cerebrovascular Research Group, Department for BioMedical Research, University of Bern, 3010 Bern, Switzerland
| | - Stefan Wanderer
- Department of Neurosurgery, Kantonsspital Aarau, 5001 Aarau, Switzerland
- Cerebrovascular Research Group, Department for BioMedical Research, University of Bern, 3010 Bern, Switzerland
| | - Jeannine Rey
- Department of Neurosurgery, Kantonsspital Aarau, 5001 Aarau, Switzerland
- Cerebrovascular Research Group, Department for BioMedical Research, University of Bern, 3010 Bern, Switzerland
| | - Daniela Casoni
- Experimental Surgery Facility, Department for Biomedical Research, Faculty of Medicine, University of Bern, 3010 Bern, Switzerland
| | - Lukas Andereggen
- Department of Neurosurgery, Kantonsspital Aarau, 5001 Aarau, Switzerland
- Cerebrovascular Research Group, Department for BioMedical Research, University of Bern, 3010 Bern, Switzerland
| | - Serge Marbacher
- Department of Neurosurgery, Kantonsspital Aarau, 5001 Aarau, Switzerland
- Cerebrovascular Research Group, Department for BioMedical Research, University of Bern, 3010 Bern, Switzerland
| | - Basil E. Gruter
- Department of Neurosurgery, Kantonsspital Aarau, 5001 Aarau, Switzerland
- Cerebrovascular Research Group, Department for BioMedical Research, University of Bern, 3010 Bern, Switzerland
- Institute of Neuroradiology, Department of Radiology, Kantonsspital Aarau, 5001 Aarau, Switzerland
| |
Collapse
|
6
|
Yi H, Yang Z, Johnson M, Bramlage L, Ludwig B. Developing an in vitro validated 3D in silico internal carotid artery sidewall aneurysm model. Front Physiol 2022; 13:1024590. [PMID: 36605897 PMCID: PMC9810024 DOI: 10.3389/fphys.2022.1024590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: Direct quantification of hemodynamic factors applied to a cerebral aneurysm (CA) remains inaccessible due to the lack of technologies to measure the flow field within an aneurysm precisely. This study aimed to develop an in vitro validated 3D in silico patient-specific internal carotid artery sidewall aneurysm (ICASA) model which can be used to investigate hemodynamic factors on the CA pathophysiology. Methods: The validated ICASA model was developed by quantifying and comparing the flow field using particle image velocimetry (PIV) measurements and computational fluid dynamics (CFD) simulations. Specifically, the flow field characteristics, i.e., blood flowrates, normalized velocity profiles, flow streamlines, and vortex locations, have been compared at representative time instants in a cardiac pulsatile period in two designated regions of the ICASA model, respectively. One region is in the internal carotid artery (ICA) inlet close to the aneurysm sac, the other is across the middle of the aneurysmal sac. Results and Discussion: The results indicated that the developed computational fluid dynamics model presents good agreements with the results from the parallel particle image velocimetry and flowrate measurements, with relative differences smaller than 0.33% in volumetric flow rate in the ICA and relative errors smaller than 9.52% in averaged velocities in the complex aneurysmal sac. However, small differences between CFD and PIV in the near wall regions were observed due to the factors of slight differences in the 3D printed model, light reflection and refraction near arterial walls, and flow waveform uncertainties. The validated model not only can be further employed to investigate hemodynamic factors on the cerebral aneurysm pathophysiology statistically, but also provides a typical model and guidance for other professionals to evaluate the hemodynamic effects on cerebral aneurysms.
Collapse
Affiliation(s)
- Hang Yi
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Zifeng Yang
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Mark Johnson
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Luke Bramlage
- Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Bryan Ludwig
- Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- Division of NeuroInterventional Surgery, Department of Neurology, Wright State University/Premier Health—Clinical Neuroscience Institute, Dayton, OH, United States
| |
Collapse
|
7
|
Wu A, Zhao C, Mou S, Li S, Cui X, Zhang R. Integrated analysis identifies the IL6/JAK/STAT signaling pathway and the estrogen response pathway associated with the pathogenesis of intracranial aneurysms. Front Immunol 2022; 13:1046765. [PMID: 36451838 PMCID: PMC9702531 DOI: 10.3389/fimmu.2022.1046765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/28/2022] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVE We intended to identify the potential key biomarker and pathways that correlated with infiltrating immune cells during the pathogenesis of intracranial aneurysms (IA), to develop a diagnostic model, and to predict therapeutic drugs. METHODS Three datasets containing intracranial aneurysm tissue samples and normal artery control samples from Gene Expression Omnibus (GEO) were included. Gene-set variation analysis(GSVA) and gene set enrichment analysis (GSEA) were conducted to find the significant differentially expressed pathways in IA formation. The least absolute shrinkage and selection operator (LASSO) regression and the multivariate logistic regression analysis were performed to identify the characteristic genes in the IL6/JAK/STAT signaling pathway (ISP) and the estrogen response pathway (ERP). A diagnostic model was constructed. xCell was used to identify immune cell types in IA pathogenesis. We used the weighted gene co-expression network analysis (WGCNA) algorithm to explore the correlations between the key modules and the four traits. Potential therapeutic drugs were investigated in Enrichr and Drugbank database. RESULTS The ISP is significant positively correlated with IA onset. The biological function of the ISP is positively correlated with that of the ERP, and is significantly associated with immune cells activities. CSF2RB, FAS, IL6, PTPN1, STAT2, TGFB1 of the ISP gene set and ALDH3A2, COX6C, IGSF1, KRT18, MICB, NPY1R of the ERP gene set were proved to be the characteristic genes. The STAT2 gene can be the potential biomarker of IA onset. The immune score of IA samples was significantly higher than the controls. The STAT2 gene expression is associated with infiltration of immune cells. The WGCNA results were consistent with our finds. Acetaminophen can be a potential therapeutic drug for IA targeting STAT2. CONCLUSIONS We identified that the ISP was one of the most significant positively correlated pathways in IA onset, and it was activated in this process concordant with the ERP and immune responses. Except for beneficial effects, complex and multiple roles of estrogen may be involved in IA formation. STAT2 could be a potential biomarker and a promising therapeutic target of IA pathogenesis.
Collapse
Affiliation(s)
- Aihong Wu
- Library, Qufu Normal University, Rizhao, Shandong, China
| | - Chao Zhao
- Department of Neurosurgery, The Affiliated Rizhao People´s Hospital of Jining Medical University, Rizhao, Shandong, China
- School of Computer Science, Qufu Normal University, Rizhao, Shandong, China
| | - Shanling Mou
- Department of Laboratory, The Affiliated Rizhao People´s Hospital of Jining Medical University, Rizhao, Shandong, China
| | - Shengjun Li
- School of Computer Science, Qufu Normal University, Rizhao, Shandong, China
| | - Xinchun Cui
- School of Computer Science, Qufu Normal University, Rizhao, Shandong, China
| | - Ronghua Zhang
- Department of Laboratory, The Affiliated Rizhao People´s Hospital of Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
8
|
Yi H, Yang Z, Johnson M, Bramlage L, Ludwig B. Hemodynamic characteristics in a cerebral aneurysm model using non-Newtonian blood analogues. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2022; 34:103101. [PMID: 36212224 PMCID: PMC9533395 DOI: 10.1063/5.0118097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
This study aims to develop an experimentally validated computational fluid dynamics (CFD) model to estimate hemodynamic characteristics in cerebral aneurysms (CAs) using non-Newtonian blood analogues. Blood viscosities varying with shear rates were measured under four temperatures first, which serves as the reference for the generation of blood analogues. Using the blood analogue, particle image velocimetry (PIV) measurements were conducted to quantify flow characteristics in a CA model. Then, using the identical blood properties in the experiment, CFD simulations were executed to quantify the flow patterns, which were used to compare with the PIV counterpart. Additionally, hemodynamic characteristics in the simplified Newtonian and non-Newtonian models were quantified and compared using the experimentally validated CFD model. Results showed the proposed non-Newtonian viscosity model can predict blood shear-thinning properties accurately under varying temperatures and shear rates. Another developed viscosity model based on the blood analogue can well represent blood rheological properties. The comparisons in flow characteristics show good agreements between PIV and CFD, demonstrating the developed CFD model is qualified to investigate hemodynamic factors within CAs. Furthermore, results show the differences of absolute values were insignificant between Newtonian and non-Newtonian fluids in the distributions of wall shear stress (WSS) and oscillatory shear index (OSI) on arterial walls. However, not only does the simplified Newtonian model underestimate WSS and OSI in most regions of the aneurysmal sac, but it also makes mistakes in identifying the high OSI regions on the sac surface, which may mislead the hemodynamic assessment on the pathophysiology of CAs.
Collapse
Affiliation(s)
- Hang Yi
- Department of Mechanical and Material Engineering, Wright State University, 3640 Colonel Glenn Hwy., Dayton, Ohio 45435, USA
| | - Zifeng Yang
- Department of Mechanical and Material Engineering, Wright State University, 3640 Colonel Glenn Hwy., Dayton, Ohio 45435, USA
| | - Mark Johnson
- Department of Mechanical and Material Engineering, Wright State University, 3640 Colonel Glenn Hwy., Dayton, Ohio 45435, USA
| | - Luke Bramlage
- Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA
| | | |
Collapse
|
9
|
Lampmann T, Borger V, Konczalla J, Gispert S, Auburger G, Vatter H, Güresir E. Experimental Induction of Intracranial Aneurysms in Rats: A New Model Utilizing a Genetic Modification within the EDNRA Gene. Brain Sci 2022; 12:brainsci12091239. [PMID: 36138975 PMCID: PMC9497172 DOI: 10.3390/brainsci12091239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 12/01/2022] Open
Abstract
The rupture of an intracranial aneurysm (IA) leads to life-threatening subarachnoid hemorrhage. Aside from well-established risk factors, recently published genome-wide association studies of IA revealed the strong association of a common variant near the endothelin receptor type A (EDNRA) gene with IA risk. However, the role of EDNRA in the pathogenesis of IA remains unclear. The aim of this study was to investigate the influence of a genetic modification within the EDNRA gene on IA pathogenesis in a novel in vivo model. Adult wild-type Sprague–Dawley rats (WT rats) and genetically modified rats (EDNRA rats) were used for the induction of IA using arterial hypertension (HT). Animals were stratified into four groups: WT rats without (WT_CTL) and with induction of HT (WT + HT), as well as EDNRA rats without (EDNRA_CTL) and with induction of HT (EDNRA + HT). Blood pressure (BP) was observed for 12 weeks. After the observation period, cerebral arteries were analyzed for morphological (i.e., aneurysmal) changes as well as histological and functional changes by immunofluorescence and functional investigation. In the groups of rats with induction of HT, BP was higher in EDNRA + HT compared with that in WT + HT. No IAs were observed in WT_CTL and EDNRA_CTL but were found in WT + HT and EDNRA + HT. There was no histological difference in the immunofluorescence of EDNRA between all groups. Contractility and potency of endothelin-1 differed between the groups in functional investigation. In summary, we created a new model that is suitable for further studies for better understanding of the role of EDNRA in IA pathogenesis.
Collapse
Affiliation(s)
- Tim Lampmann
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
- Correspondence:
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Jürgen Konczalla
- Department of Neurosurgery, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
10
|
Sato Y, Falcone-Juengert J, Tominaga T, Su H, Liu J. Remodeling of the Neurovascular Unit Following Cerebral Ischemia and Hemorrhage. Cells 2022; 11:2823. [PMID: 36139398 PMCID: PMC9496956 DOI: 10.3390/cells11182823] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Formulated as a group effort of the stroke community, the transforming concept of the neurovascular unit (NVU) depicts the structural and functional relationship between brain cells and the vascular structure. Composed of both neural and vascular elements, the NVU forms the blood-brain barrier that regulates cerebral blood flow to meet the oxygen demand of the brain in normal physiology and maintain brain homeostasis. Conversely, the dysregulation and dysfunction of the NVU is an essential pathological feature that underlies neurological disorders spanning from chronic neurodegeneration to acute cerebrovascular events such as ischemic stroke and cerebral hemorrhage, which were the focus of this review. We also discussed how common vascular risk factors of stroke predispose the NVU to pathological changes. We synthesized existing literature and first provided an overview of the basic structure and function of NVU, followed by knowledge of how these components remodel in response to ischemic stroke and brain hemorrhage. A greater understanding of the NVU dysfunction and remodeling will enable the design of targeted therapies and provide a valuable foundation for relevant research in this area.
Collapse
Affiliation(s)
- Yoshimichi Sato
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Jaime Falcone-Juengert
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
| | - Teiji Tominaga
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hua Su
- Department of Anesthesia, UCSF, San Francisco, CA 94143, USA
- Center for Cerebrovascular Research, UCSF, San Francisco, CA 94143, USA
| | - Jialing Liu
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
| |
Collapse
|
11
|
Effects of Pulsatile Flow Rate and Shunt Ratio in Bifurcated Distal Arteries on Hemodynamic Characteristics Involved in Two Patient-Specific Internal Carotid Artery Sidewall Aneurysms: A Numerical Study. Bioengineering (Basel) 2022; 9:bioengineering9070326. [PMID: 35877376 PMCID: PMC9311626 DOI: 10.3390/bioengineering9070326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 01/08/2023] Open
Abstract
The pulsatile flow rate (PFR) in the cerebral artery system and shunt ratios in bifurcated arteries are two patient-specific parameters that may affect the hemodynamic characteristics in the pathobiology of cerebral aneurysms, which needs to be identified comprehensively. Accordingly, a systematic study was employed to study the effects of pulsatile flow rate (i.e., PFR−I, PFR−II, and PFR−III) and shunt ratio (i.e., 75:25 and 64:36) in bifurcated distal arteries, and transient cardiac pulsatile waveform on hemodynamic patterns in two internal carotid artery sidewall aneurysm models using computational fluid dynamics (CFD) modeling. Numerical results indicate that larger PFRs can cause higher wall shear stress (WSS) in some local regions of the aneurysmal dome that may increase the probability of small/secondary aneurysm generation than under smaller PFRs. The low WSS and relatively high oscillatory shear index (OSI) could appear under a smaller PFR, increasing the potential risk of aneurysmal sac growth and rupture. However, the variances in PFRs and bifurcated shunt ratios have rare impacts on the time-average pressure (TAP) distributions on the aneurysmal sac, although a higher PFR can contribute more to the pressure increase in the ICASA−1 dome due to the relatively stronger impingement by the redirected bloodstream than in ICASA−2. CFD simulations also show that the variances of shunt ratios in bifurcated distal arteries have rare impacts on the hemodynamic characteristics in the sacs, mainly because the bifurcated location is not close enough to the sac in present models. Furthermore, it has been found that the vortex location plays a major role in the temporal and spatial distribution of the WSS on the luminal wall, varying significantly with the cardiac period.
Collapse
|
12
|
The Cerebral Arterial Wall in the Development and Growth of Intracranial Aneurysms. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A considerable number of people harbor intracranial aneurysms (IA), which is a focal or segmental disease of the arterial wall. The pathophysiologic mechanisms of IAs formation, growth, and rupture are complex. The mechanism also differs with respect to the type of aneurysm. In broad aspects, aneurysms may be considered a disease of the vessel wall. In addition to the classic risk factors and the genetic/environmental conditions, altered structural and pathologic events along with the interaction of the surrounding environment and luminal flow dynamics contribute to the aneurysm’s development and growth. In this review, we have tried to simplify the complex interaction of a multitude of events in relation to vessel wall in the formation and growth of IAs.
Collapse
|
13
|
SHIMODA Y, NAKAYAMA N, MORIWAKI T, ABUMIYA T, KAWABORI M, KURISU K, GEKKA M, HOKARI M, ITO Y, HOUKIN K. Induction of large cerebral aneurysms by intraperitoneal administration of β-aminopropionitrile fumarate in male rats. J Neurosurg Sci 2022; 66:220-227. [DOI: 10.23736/s0390-5616.19.04819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
tPA-NMDAR Signaling Blockade Reduces the Incidence of Intracerebral Aneurysms. Transl Stroke Res 2022; 13:1005-1016. [DOI: 10.1007/s12975-022-01004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022]
|
15
|
Patel D, Dodd WS, Motwani K, Hosaka K, Hoh BL. A Modification to a Murine Model for Intracranial Aneurysm Formation and Rupture. Cureus 2021; 13:e16250. [PMID: 34373811 PMCID: PMC8346265 DOI: 10.7759/cureus.16250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
Between 3.6% and 6.0% of the population has an intracranial aneurysm. The mechanisms underlying intracranial aneurysm formation and rupture are not fully known. Several rodent models have been developed to better understand intracranial aneurysm pathophysiology. Hypertension, hemodynamic changes, and vessel injury are all necessary for aneurysm induction; however, multiple invasive procedures may disrupt an animal’s physiology. Therefore, we hypothesized that our method for inducing hypertension could be modified to create a simpler model. We previously developed a highly reproducible murine model of intracranial aneurysm formation and rupture that involves hemodynamic changes through ligation of the left common carotid artery, vessel wall degradation using elastase and a lysyl oxidase inhibitor, and hypertension through a high-salt diet, continuous angiotensin II infusion, and right renal artery ligation. In order to create a simpler model, we sought to eliminate renal artery ligation. We assessed aneurysm formation, aneurysm rupture, and blood pressure in two separate cohorts of C57BL/6 mice: one cohort underwent our model as above, while another cohort did not receive right renal artery ligation. Our results demonstrate that intracranial aneurysm formation and rupture rates did not differ between each group. Further, the blood pressures between cohorts did not differ at various timepoints in the model. Both cohorts, however, did have a significant increase in blood pressure from baseline, suggesting that renal artery ligation is not needed for inducing hypertension. These findings demonstrate that our murine model can be modified to eliminate right renal artery ligation. Thus, we propose this modification to our murine model for studying intracranial aneurysm pathophysiology.
Collapse
Affiliation(s)
- Devan Patel
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - William S Dodd
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Kartik Motwani
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Koji Hosaka
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Brian L Hoh
- Department of Neurosurgery, University of Florida, Gainesville, USA
| |
Collapse
|
16
|
Tutino VM, Zebraski HR, Rajabzadeh-Oghaz H, Waqas M, Jarvis JN, Bach K, Mokin M, Snyder KV, Siddiqui AH, Poppenberg KE. Identification of Circulating Gene Expression Signatures of Intracranial Aneurysm in Peripheral Blood Mononuclear Cells. Diagnostics (Basel) 2021; 11:1092. [PMID: 34203780 PMCID: PMC8232768 DOI: 10.3390/diagnostics11061092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) play an important role in the inflammation that accompanies intracranial aneurysm (IA) pathophysiology. We hypothesized that PBMCs have different transcriptional profiles in patients harboring IAs as compared to IA-free controls, which could be the basis for potential blood-based biomarkers for the disease. To test this, we isolated PBMC RNA from whole blood of 52 subjects (24 with IA, 28 without) and performed next-generation RNA sequencing to obtain their transcriptomes. In a randomly assigned discovery cohort of n = 39 patients, we performed differential expression analysis to define an IA-associated signature of 54 genes (q < 0.05 and an absolute fold-change ≥ 1.3). In the withheld validation dataset, these genes could delineate patients with IAs from controls, as the majority of them still had the same direction of expression difference. Bioinformatics analyses by gene ontology enrichment analysis and Ingenuity Pathway Analysis (IPA) demonstrated enrichment of structural regulation processes, intracellular signaling function, regulation of ion transport, and cell adhesion. IPA analysis showed that these processes were likely coordinated through NF-kB, cytokine signaling, growth factors, and TNF activity. Correlation analysis with aneurysm size and risk assessment metrics showed that 4/54 genes were associated with rupture risk. These findings highlight the potential to develop predictive biomarkers from PBMCs to identify patients harboring IAs.
Collapse
Affiliation(s)
- Vincent M. Tutino
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14228, USA
| | - Haley R. Zebraski
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14228, USA;
| | - Hamidreza Rajabzadeh-Oghaz
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Muhammad Waqas
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - James N. Jarvis
- Department of Pediatrics, University at Buffalo, Buffalo, NY 14203, USA;
| | - Konrad Bach
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33620, USA; (K.B.); (M.M.)
| | - Maxim Mokin
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33620, USA; (K.B.); (M.M.)
| | - Kenneth V. Snyder
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Adnan H. Siddiqui
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Kerry E. Poppenberg
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
17
|
Kawaguchi R, Miyachi S, Ohshima T, Matsuo N. Unruptured Paraclinoid Carotid Aneurysms Occur More Frequently in Younger Ages. Neurointervention 2021; 16:111-116. [PMID: 34030220 PMCID: PMC8261117 DOI: 10.5469/neuroint.2021.00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose We investigated the age distribution of cerebral saccular aneurysms in various locations to clarify the differences by location and discuss the mechanism of formation. Materials and Methods We retrospectively assessed clinical material obtained from 1,252 unruptured aneurysms treated with endovascular embolization between 2004 and 2019. Age, sex, laterality, and size were investigated by the location of aneurysms, classified as cavernous internal carotid artery (ICA), paraclinoid ICA, supraclinoid ICA, anterior communicating artery, anterior cerebral artery, middle cerebral artery, basilar artery complex, and posterior inferior cerebellar artery. Paraclinoid aneurysms were subclassified into 3 patterns according to their projecting direction: S-type, with superior protrusion; M-type, with medial protrusion; and P-type, with posteroinferior protrusion. Results There was no significant difference by location for sex, laterality, and size. The mean age of patients with paraclinoid aneurysms (56.5 years old) was significantly lower than that of other aneurysm patients (64.3 years old). Notably, 40% of the patients with M-type aneurysms were <50 years old. This percentage was significantly higher than that of aneurysms at other locations (P<0.05). Conclusion We found a young female predominance for patients with paraclinoid carotid aneurysms. This study may suggest that congenital factors contribute to paraclinoid aneurysm formation as well acquired factors, such as hemodynamic stress, atherosclerotic wall damage, and local inflammation.
Collapse
Affiliation(s)
- Reo Kawaguchi
- Department of Neurological Surgery and Neuroendovascular Therapy Center, Aichi Medical University, Aichi, Japan
| | - Shigeru Miyachi
- Department of Neurological Surgery and Neuroendovascular Therapy Center, Aichi Medical University, Aichi, Japan
| | - Tomotaka Ohshima
- Department of Neurological Surgery and Neuroendovascular Therapy Center, Aichi Medical University, Aichi, Japan
| | - Naoki Matsuo
- Department of Neurological Surgery and Neuroendovascular Therapy Center, Aichi Medical University, Aichi, Japan
| |
Collapse
|
18
|
Kushamae M, Miyata H, Shirai M, Shimizu K, Oka M, Koseki H, Abekura Y, Ono I, Nozaki K, Mizutani T, Aoki T. Involvement of neutrophils in machineries underlying the rupture of intracranial aneurysms in rats. Sci Rep 2020; 10:20004. [PMID: 33203959 PMCID: PMC7672058 DOI: 10.1038/s41598-020-74594-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Subarachnoid hemorrhage due to rupture of an intracranial aneurysm has a quite poor prognosis after the onset of symptoms, despite the modern technical advances. Thus, the mechanisms underlying the rupture of lesions should be clarified. To this end, we obtained gene expression profile data and identified the neutrophil-related enriched terms in rupture-prone lesions using Gene Ontology analysis. Next, to validate the role of neutrophils in the rupture of lesions, granulocyte-colony stimulating factor (G-CSF) was administered to a rat model, in which more than half of induced lesions spontaneously ruptured, leading to subarachnoid hemorrhage. As a result, G-CSF treatment not only increased the number of infiltrating neutrophils, but also significantly facilitated the rupture of lesions. To clarify the mechanisms of how neutrophils facilitate this rupture, we used HL-60 cell line and found an enhanced collagenolytic activity, corresponding to matrix metalloproteinase 9 (MMP9), upon inflammatory stimuli. The immunohistochemical analyses revealed the accumulation of neutrophils around the site of rupture and the production of MMP9 from these cells in situ. Consistently, the collagenolytic activity of MMP9 could be detected in the lysate of ruptured lesions. These results suggest the crucial role of neutrophils to the rupture of intracranial aneurysms; implying neutrophils as a therapeutic or diagnostic target candidate.
Collapse
Affiliation(s)
- Mika Kushamae
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, Japan.,Department of Neurosurgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Haruka Miyata
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, Japan.,Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu City, Shiga, Japan
| | - Manabu Shirai
- Omics Research Center, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, Japan
| | - Kampei Shimizu
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho Shogoin, Sakyo-ku, Kyoto, Japan
| | - Mieko Oka
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, Japan.,Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawata-cho, Shinjyuku-ku, Tokyo, Japan
| | - Hirokazu Koseki
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, Japan.,Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, Japan
| | - Yu Abekura
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho Shogoin, Sakyo-ku, Kyoto, Japan
| | - Isao Ono
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho Shogoin, Sakyo-ku, Kyoto, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu City, Shiga, Japan
| | - Tohru Mizutani
- Department of Neurosurgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Tomohiro Aoki
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan. .,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, Japan.
| |
Collapse
|
19
|
Frösen J, Cebral J, Robertson AM, Aoki T. Flow-induced, inflammation-mediated arterial wall remodeling in the formation and progression of intracranial aneurysms. Neurosurg Focus 2020; 47:E21. [PMID: 31261126 DOI: 10.3171/2019.5.focus19234] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/01/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Unruptured intracranial aneurysms (UIAs) are relatively common lesions that may cause devastating intracranial hemorrhage, thus producing considerable suffering and anxiety in those affected by the disease or an increased likelihood of developing it. Advances in the knowledge of the pathobiology behind intracranial aneurysm (IA) formation, progression, and rupture have led to preclinical testing of drug therapies that would prevent IA formation or progression. In parallel, novel biologically based diagnostic tools to estimate rupture risk are approaching clinical use. Arterial wall remodeling, triggered by flow and intramural stresses and mediated by inflammation, is relevant to both. METHODS This review discusses the basis of flow-driven vessel remodeling and translates that knowledge to the observations made on the mechanisms of IA initiation and progression on studies using animal models of induced IA formation, study of human IA tissue samples, and study of patient-derived computational fluid dynamics models. RESULTS Blood flow conditions leading to high wall shear stress (WSS) activate proinflammatory signaling in endothelial cells that recruits macrophages to the site exposed to high WSS, especially through macrophage chemoattractant protein 1 (MCP1). This macrophage infiltration leads to protease expression, which disrupts the internal elastic lamina and collagen matrix, leading to focal outward bulging of the wall and IA initiation. For the IA to grow, collagen remodeling and smooth muscle cell (SMC) proliferation are essential, because the fact that collagen does not distend much prevents the passive dilation of a focal weakness to a sizable IA. Chronic macrophage infiltration of the IA wall promotes this SMC-mediated growth and is a potential target for drug therapy. Once the IA wall grows, it is subjected to changes in wall tension and flow conditions as a result of the change in geometry and has to remodel accordingly to avoid rupture. Flow affects this remodeling process. CONCLUSIONS Flow triggers an inflammatory reaction that predisposes the arterial wall to IA initiation and growth and affects the associated remodeling of the UIA wall. This chronic inflammation is a putative target for drug therapy that would stabilize UIAs or prevent UIA formation. Moreover, once this coupling between IA wall remodeling and flow is understood, data from patient-specific flow models can be gathered as part of the diagnostic workup and utilized to improve risk assessment for UIA initiation, progression, and eventual rupture.
Collapse
Affiliation(s)
- Juhana Frösen
- 1Department of Neurosurgery, and.,2Hemorrhagic Brain Pathology Research Group, Kuopio University Hospital, Kuopio, Finland
| | - Juan Cebral
- 3Bioengineering Department, Volgenau School of Engineering, George Mason University, Fairfax, Virginia
| | - Anne M Robertson
- 4Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Tomohiro Aoki
- 5Department of Molecular Pharmacology, Research Institute, and.,6Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|
20
|
Tang H, Lu Z, Xue G, Li S, Xu F, Yan Y, Liu J, Zuo Q, Luo Y, Huang Q. The development and understanding of intracranial aneurysm based on rabbit model. Neuroradiology 2020; 62:1219-1230. [PMID: 32594185 DOI: 10.1007/s00234-020-02475-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
In modern society, intracranial aneurysms have seriously affected people's life. To better study and treat intracranial aneurysm, animal models are ideal candidates to perform biological research and preclinical endovascular device testing. Rabbit aneurysm model is one of the most commonly used animal models, and the rabbit aneurysms share similarities in histology, morphology, and hemodynamic aspects with human intracranial aneurysms, which is an ideal model for intracranial aneurysm pre-clinical and basic research. In this review, we will summarize the main methods of establishing rabbit aneurysms model and will further discuss the current biological mechanisms of intracranial aneurysms based on rabbit model. Further improvements of rabbit aneurysm model and more deep studies based on this model are needed to provide new insights into studying and clinical treating intracranial aneurysm.
Collapse
Affiliation(s)
- Haishuang Tang
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China.,Naval Medical Center of PLA, Second Military Medical University, Shanghai, 200050, People's Republic of China
| | - Zhiwen Lu
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Gaici Xue
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Sisi Li
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Fengfeng Xu
- Naval Medical Center of PLA, Second Military Medical University, Shanghai, 200050, People's Republic of China
| | - Yazhou Yan
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Qiao Zuo
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Yin Luo
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Qinghai Huang
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
21
|
Shimizu K, Miyata H, Abekura Y, Oka M, Kushamae M, Kawamata T, Mizutani T, Kataoka H, Nozaki K, Miyamoto S, Aoki T. High-Fat Diet Intake Promotes the Enlargement and Degenerative Changes in the Media of Intracranial Aneurysms in Rats. J Neuropathol Exp Neurol 2020; 78:798-807. [PMID: 31340038 DOI: 10.1093/jnen/nlz057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/21/2019] [Accepted: 06/13/2019] [Indexed: 11/12/2022] Open
Abstract
Subarachnoid hemorrhage due to rupture of intracranial aneurysms is a life-threatening disease. Although some previous reports have demonstrated an association between lipid accumulation and degenerative changes in aneurysmal walls in humans, epidemiological studies have failed to identify dyslipidemia as a risk factor for intracranial aneurysms. Thus, we examined whether an increase in serum cholesterol levels facilitates the progression of intracranial aneurysms in a rat model. Rats were given a high-fat diet (HFD) and subjected to an intracranial aneurysm model. The HFD elevated their serum cholesterol levels. The intracranial aneurysms induced at the anterior cerebral artery-olfactory artery bifurcation were significantly larger in the high-fat group than in the normal-chow group. Histological analysis demonstrated that the loss of medial smooth muscle layers was exacerbated in the high-fat group and indicated the presence of macrophage-derived foam cells in the lesions. In in vitro experiments, the expression levels of the pro-inflammatory genes induced by LPS in RAW264.7-derived foam cells were significantly higher than those in RAW264.7 cells. The combination of these results suggests that increased serum cholesterol levels facilitate degenerative changes in the media and the progression of intracranial aneurysms presumably through foam cell transformation.
Collapse
Affiliation(s)
- Kampei Shimizu
- Department of Molecular Pharmacology, Research Institute.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita City, Osaka, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto, Japan
| | - Haruka Miyata
- Department of Molecular Pharmacology, Research Institute.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita City, Osaka, Japan.,Department of Neurosurgery, Shiga University of Medical Science, Otsu City, Shiga, Japan
| | - Yu Abekura
- Department of Molecular Pharmacology, Research Institute.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita City, Osaka, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto, Japan
| | - Mieko Oka
- Department of Molecular Pharmacology, Research Institute.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita City, Osaka, Japan.,Department of Neurosurgery, Tokyo Women's Medical University
| | - Mika Kushamae
- Department of Molecular Pharmacology, Research Institute.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita City, Osaka, Japan.,Department of Neurosurgery, Showa University School of Medicine, Tokyo, Japan
| | | | - Tohru Mizutani
- Department of Neurosurgery, Showa University School of Medicine, Tokyo, Japan
| | - Hiroharu Kataoka
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Otsu City, Shiga, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto, Japan
| | - Tomohiro Aoki
- Department of Molecular Pharmacology, Research Institute.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita City, Osaka, Japan
| |
Collapse
|
22
|
Cordina SM, Afarian S, Gerthoffer WT, Martino A, Wilson R, Naritoku DK. Novel in vivo Assessment of Unruptured Intracranial Aneurysm Inflammatory Factors. Front Neurol 2020; 11:439. [PMID: 32582003 PMCID: PMC7283897 DOI: 10.3389/fneur.2020.00439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/24/2020] [Indexed: 11/20/2022] Open
Abstract
Background and Purpose: The growth and eventual rupture of intracranial aneurysms may be due to an underlying inflammatory process as evidenced by pathological examination of aneurysm walls. We hypothesize that unruptured aneurysms have an increased inflammatory milieu within their lumen in comparison to the rest of the cerebral arterial vascular system. Methods: Blood was sampled from unruptured aneurysms in patients presenting for aneurysm coil embolization and C3 and C4 complement values from this serum were compared with complement values in the parent artery. Results: Ten patients were enrolled over 32 months with a mean aneurysm size of 9.1 mm. Compared to control samples drawn from peripheral circulation, there were significant decreases of both C3 (p = 0.0003) and C4 (p = 0.0063) levels in aneurysmal blood samples. Conclusions: A state of decreased complement indicative of classic pathway activation was found in all tested aneurysms, thus providing evidence of an ongoing process of complement activation in the blood of live, unruptured aneurysm sacs.
Collapse
Affiliation(s)
- Steve M. Cordina
- Department of Neurology, University of South Alabama College of Medicine, Mobile, AL, United States
- Department of Neurosurgery, University of South Alabama College of Medicine, Mobile, AL, United States
- Department of Radiology, University of South Alabama College of Medicine, Mobile, AL, United States
- *Correspondence: Steve M. Cordina
| | - Shant Afarian
- Department of Neurology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - William T. Gerthoffer
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, AL, United States
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, United States
| | - Anthony Martino
- Department of Neurosurgery, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Russell Wilson
- Department of Radiology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Dean K. Naritoku
- Department of Neurology, University of South Alabama College of Medicine, Mobile, AL, United States
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, United States
| |
Collapse
|
23
|
Oka M, Shimo S, Ohno N, Imai H, Abekura Y, Koseki H, Miyata H, Shimizu K, Kushamae M, Ono I, Nozaki K, Kawashima A, Kawamata T, Aoki T. Dedifferentiation of smooth muscle cells in intracranial aneurysms and its potential contribution to the pathogenesis. Sci Rep 2020; 10:8330. [PMID: 32433495 PMCID: PMC7239886 DOI: 10.1038/s41598-020-65361-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Smooth muscle cells (SMCs) are the major type of cells constituting arterial walls and play a role to maintain stiffness via producing extracellular matrix. Here, the loss and degenerative changes of SMCs become the major histopathological features of an intracranial aneurysm (IA), a major cause of subarachnoid hemorrhage. Considering the important role of SMCs and the loss of this type of cells in IA lesions, we in the present study subjected rats to IA models and examined how SMCs behave during disease progression. We found that, at the neck portion of IAs, SMCs accumulated underneath the internal elastic lamina according to disease progression and formed the intimal hyperplasia. As these SMCs were positive for a dedifferentiation marker, myosin heavy chain 10, and contained abundant mitochondria and rough endoplasmic reticulum, SMCs at the intimal hyperplasia were dedifferentiated and activated. Furthermore, dedifferentiated SMCs expressed some pro-inflammatory factors, suggesting the role in the formation of inflammatory microenvironment to promote the disease. Intriguingly, some SMCs at the intimal hyperplasia were positive for CD68 and contained lipid depositions, indicating similarity with atherosclerosis. We next examined a potential factor mediating dedifferentiation and recruitment of SMCs. Platelet derived growth factor (PDGF)-BB was expressed in endothelial cells at the neck portion of lesions where high wall shear stress (WSS) was loaded. PDGF-BB facilitated migration of SMCs across matrigel-coated pores in a transwell system, promoted dedifferentiation of SMCs and induced expression of pro-inflammatory genes in these cells in vitro. Because, in a stenosis model of rats, PDGF-BB expression was expressed in endothelial cells loaded in high WSS regions, and SMCs present nearby were dedifferentiated, hence a correlation existed between high WSS, PDGFB and dedifferentiation in vivo. In conclusion, dedifferentiated SMCs presumably by PDGF-BB produced from high WSS-loaded endothelial cells accumulate in the intimal hyperplasia to form inflammatory microenvironment leading to the progression of the disease.
Collapse
Affiliation(s)
- Mieko Oka
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawata-cho, Shinjyuku-ku, Tokyo, 162-8666, Japan
| | - Satoshi Shimo
- Department of Occupational Therapy, Health Science University, 7181 Kodachi, Minamitsurugun Fujikawaguchikomachi, Yamanashi, 401-0380, Japan
| | - Nobuhiko Ohno
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke City, Tochigi, 329-0498, Japan.,Division of Ultrastructural Research, National Institute for Physiological Sciences, 38 Saigonaka, Meidaiji-cho, Okazaki City, Aichi, 444-8787, Japan
| | - Hirohiko Imai
- Department of Systems Science, Graduate School of Informatics, Kyoto University, 36-1 Yoshidahomachi Saikyo-ku, Kyoto City, Kyoto, 606-8317, Japan
| | - Yu Abekura
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hirokazu Koseki
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Haruka Miyata
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu City, Shiga, 520-2192, Japan
| | - Kampei Shimizu
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mika Kushamae
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Department of Neurosurgery, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Isao Ono
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu City, Shiga, 520-2192, Japan
| | - Akitsugu Kawashima
- Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Oowadashinden, Yachiyo City, Chiba, 276-8524, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawata-cho, Shinjyuku-ku, Tokyo, 162-8666, Japan
| | - Tomohiro Aoki
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan. .,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.
| |
Collapse
|
24
|
Sasaki T, Kakizawa Y, Yoshino M, Fujii Y, Yoroi I, Ichikawa Y, Horiuchi T, Hongo K. Numerical Analysis of Bifurcation Angles and Branch Patterns in Intracranial Aneurysm Formation. Neurosurgery 2020; 85:E31-E39. [PMID: 30137458 DOI: 10.1093/neuros/nyy387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 07/24/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Hemodynamic factors, especially wall shear stress (WSS), are generally thought to play an important role in intracranial aneurysm (IA) formation. IAs frequently occur at bifurcation apices, where the vessels are exposed to the impact of WSS. OBJECTIVE To elucidate the relationship between bifurcation geometry and WSS for IA formation. METHODS Twenty-one bifurcation models varying in branch angles and branch diameters were made with 3-dimensional computer-aided design software. In all models, the value of maximum WSS (WSSMAX), the area of high WSS (AREA), and the magnitude of wall shear force over AREA ($| {{{\vec{F}}_w}} |$) were investigated by the steady-flow simulation of computational fluid dynamics. RESULTS On the basis of statistical analysis, WSSMAX tended to be high when the bifurcation angle and/or branch diameter was small. AREA and $| {{{\vec{F}}_w}} |$ significantly increase as the bifurcation and/or the branch angle became larger. CONCLUSION The magnitude of WSS strongly correlated with bifurcation geometry. In addition to high WSS, AREA and $| {{{\vec{F}}_w}} |$ were thought to affect IA formation. Observed bifurcation geometry may predict IA formation. Large branch angles and small branch may increase the risk of IA formation.
Collapse
Affiliation(s)
- Tetsuo Sasaki
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yukinari Kakizawa
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masato Yoshino
- Institute of Engineering, Academic Assembly, Shinshu University, Nagano, Japan.,Institute of Carbon Science and Technology, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Yasuhiro Fujii
- Department of Mechanical Systems Engineering, Shinshu University, Nagano, Japan
| | - Ikumi Yoroi
- Department of Mechanical Systems Engineering, Shinshu University, Nagano, Japan
| | - Yozo Ichikawa
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tetsuyoshi Horiuchi
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kazuhiro Hongo
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
25
|
Role of oral pathogens in the pathogenesis of intracranial aneurysm: review of existing evidence and potential mechanisms. Neurosurg Rev 2020; 44:239-247. [PMID: 32034564 PMCID: PMC7850994 DOI: 10.1007/s10143-020-01253-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/12/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
Degeneration of intracranial aneurysm wall is under active research and recent studies indicate an increased risk of rupture of intracranial aneurysm among patients with periodontal diseases. In addition, oral bacterial DNA has been identified from wall samples of ruptured and unruptured aneurysms. These novel findings led us to evaluate if oral diseases could predispose to pathological changes seen on intracranial aneurysm walls eventually leading to subarachnoid hemorrhage. The aim of this review is to consider mechanisms on the relationship between periodontitis and aneurysm rupture, focusing on recent evidence.
Collapse
|
26
|
Aoki T, Miyata H, Abekura Y, Koseki H, Shimizu K. Rat Model of Intracranial Aneurysm: Variations, Usefulness, and Limitations of the Hashimoto Model. ACTA NEUROCHIRURGICA SUPPLEMENT 2020; 127:35-41. [DOI: 10.1007/978-3-030-04615-6_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Frösen J, Joutel A. Smooth muscle cells of intracranial vessels: from development to disease. Cardiovasc Res 2019; 114:501-512. [PMID: 29351598 DOI: 10.1093/cvr/cvy002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/12/2018] [Indexed: 02/02/2023] Open
Abstract
Cerebrovascular diseases that cause ischaemic or haemorrhagic stroke with subsequent loss of life or functional capacity due to damage of the brain tissue are among the leading causes of human suffering and economic burden inflicted by diseases in the developed world. Diseases affecting intracranial vessels are significant contributors to ischaemic and haemorrhagic strokes. Brain arteriovenous malformations, which are a collection of abnormal blood vessels connecting arteries to veins, are the most common cause of intracranial haemorrhage in children and young adults. Saccular intracranial aneurysms, which are pathological saccular dilations mainly occurring at bifurcations of the large intracranial arteries near the circle of Willis, are highly prevalent in the middle-aged population, causing significant anxiety and concern; their rupture, although rare, is a significant cause of intracranial haemorrhage in those past middle age that is associated with a very sinister prognosis. Cerebral small-vessel disease, which comprise all pathological processes affecting vessels <500 microns in diameter, account for the majority of intracerebral haemorrhages and ∼25% of ischaemic strokes and 45% of dementias in the elderly. In this review, we summarize the developmental, structural, and functional features of intracranial vessels. We then describe the role of smooth muscle cells in brain arteriovenous malformations, intracranial aneurysms, and small-vessel diseases, and discuss how the peculiar ontogeny, structure, and function of intracranial vessels are related to the development of these diseases.
Collapse
Affiliation(s)
- Juhana Frösen
- Hemorrhagic Brain Pathology Research Group, NeuroCenter, Kuopio University Hospital, Kuopio 70029, Finland.,Department of Neurosurgery, Kuopio University Hospital, Kuopio 70029, Finland
| | - Anne Joutel
- Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, Université Paris Diderot-Paris 7, 10 av de Verdun, Paris 75010, France.,DHU NeuroVasc, Sorbonne Paris Cité, Paris 75010, France
| |
Collapse
|
28
|
Abstract
Considered with a poor outcome of subarachnoid hemorrhage due to rupture of intracranial aneurysms (IAs), treatment interventions to prevent rupture of the lesions are mandatory for social health. As treatment option is limited to surgical manipulations, like microsurgical clipping, endovascular coiling or deployment of flow diverter, and these surgical interventions have a potential risk of complications in nature, a proper selection of rupture-prone IAs among ones incidentally found is essential. Today, a rupture risk in each case is estimated by several factors like patient characteristics and morphological ones of each lesion. However, unfortunately, an IA without treatment sometimes unexpectedly ruptures resulting in a devastating outcome or an IA surgically treated is turned out to have a thick wall. To achieve more efficient treatment interventions, the development of a novel diagnostic modality is required. Here, mainly through the accumulation of experimental findings, the crucial contribution of macrophage-mediated chronic inflammatory responses to IA progression have been revealed, making macrophage being a promising target for a diagnosis. If we could non-invasively visualize accumulation of macrophages in lesions, this imaging technique ‘macrophage imaging’ may enable a qualitative evaluation of IAs to stratify rupture-prone ‘dangerous’ lesions among many stable ones. Thereby, a development of macrophage imaging makes an indication of surgical interventions being more accurate and also greatly facilitates a development of a novel medical therapy if used as a surrogate marker.
Collapse
Affiliation(s)
- Kampei Shimizu
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center.,Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | - Mika Kushamae
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center.,Department of Neurosurgery, Showa University School of Medicine
| | - Tomohiro Aoki
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center
| |
Collapse
|
29
|
Intracranial Aneurysms: Pathology, Genetics, and Molecular Mechanisms. Neuromolecular Med 2019; 21:325-343. [PMID: 31055715 DOI: 10.1007/s12017-019-08537-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
Intracranial aneurysms (IA) are local dilatations in cerebral arteries that predominantly affect the circle of Willis. Occurring in approximately 2-5% of adults, these weakened areas are susceptible to rupture, leading to subarachnoid hemorrhage (SAH), a type of hemorrhagic stroke. Due to its early age of onset and poor prognosis, SAH accounts for > 25% of years lost for all stroke victims under the age of 65. In this review, we describe the cerebrovascular pathology associated with intracranial aneurysms. To understand IA genetics, we summarize syndromes with elevated incidence, genome-wide association studies (GWAS), whole exome studies on IA-affected families, and recent research that established definitive roles for Thsd1 (Thrombospondin Type 1 Domain Containing Protein 1) and Sox17 (SRY-box 17) in IA using genetically engineered mouse models. Lastly, we discuss the underlying molecular mechanisms of IA, including defects in vascular endothelial and smooth muscle cells caused by dysfunction in mechanotransduction, Thsd1/FAK (Focal Adhesion Kinase) signaling, and the Transforming Growth Factor β (TGF-β) pathway. As illustrated by THSD1 research, cell adhesion may play a significant role in IA.
Collapse
|
30
|
Cooke DL, Bauer D, Sun Z, Stillson C, Nelson J, Barry D, Hetts SW, Higashida RT, Dowd CF, Halbach VV, Su H, Saeed MM. Endovascular biopsy: Technical feasibility of novel endothelial cell harvesting devices assessed in a rabbit aneurysm model. Interv Neuroradiol 2018; 21:120-8. [PMID: 25934786 DOI: 10.15274/inr-2014-10103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The lack of safe and reliable methods to sample vascular tissue in situ limits discovery of the underlying genetic and pathophysiological mechanisms of many vascular disorders, including aneurysms. We investigated the feasibility and comparable efficacy of in vivo vascular endothelial cell sampling using a spectrum of endovascular devices. Using the rabbit elastase carotid aneurysm model we evaluated the performance of existing aneurysmal coils, intracranial stents, and stent-like devices to collect vascular endothelial cells. Additionally, we modified a subset of devices to assess the effects of alterations to coil pitch, coil wire contour, and stent surface finishing. Device performance was evaluated by (1) the number of viable endothelial cells harvested, (2) the degree of vascular wall damage analyzed using digital subtraction angiography and histopathological analysis, and (3) the ease of device navigability and retrieval. Isolated cells underwent immunohistochemical analysis to confirm cell type and viability. Coil and stent specifications, technique, and endothelial cell counts were tabulated and statistical analysis performed. Using conventional detachable-type and modified aneurysm coils 11 of 14 (78.6%) harvested endothelial cells with a mean of 7.93 (±8.33) cells/coil, while 15 of 15 (100%) conventional stents, stent-like devices and modified stents harvested endothelial cells with a mean of 831.33 (±887.73) cells/device. Coil stiffness was significantly associated with endothelial cell count in univariate analysis (p = 0.044). For stents and stent-like devices univariate analysis demonstrated stent-to-aorta diameter ratios (p = 0.001), stent length (p = 0.049), and the use of a pulling retrieval technique (p = 0.019) significantly predictive of endothelial cell counts, though a multivariate model using these variables demonstrated only the stent-to-aorta diameter ratio (p = 0.029) predictive of endothelial cell counts. Modified devices did not significantly impact harvesting. The efficacy and safety of existing aneurysm coils, intracranial stents and stent-like devices in collecting viable endothelial cells was confirmed. The technique is reproducible and the quantity and quality of collected endothelial cells is adequate for targeted genetic analysis.
Collapse
Affiliation(s)
- Daniel L Cooke
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Diana Bauer
- Laboratory Animal Resource Center, University of California, San Francisco, CA, USA
| | - Zhengda Sun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Carol Stillson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Jeffrey Nelson
- Department of Anesthesiology and Perioperative Care, University of California, San Francisco, CA, USA
| | | | - Steven W Hetts
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Randall T Higashida
- Department of Radiology, Neurology, and Neurological Surgery, University of California, San Francisco, CA, USA
| | - Christopher F Dowd
- Department of Radiology, Neurology, and Neurological Surgery, University of California, San Francisco, CA, USA
| | - Van V Halbach
- Department of Radiology, Neurology, and Neurological Surgery, University of California, San Francisco, CA, USA
| | - Hua Su
- Department of Anesthesiology and Perioperative Care, University of California, San Francisco, CA, USA
| | - Maythem M Saeed
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
31
|
Yamamoto R, Aoki T, Koseki H, Fukuda M, Hirose J, Tsuji K, Takizawa K, Nakamura S, Miyata H, Hamakawa N, Kasuya H, Nozaki K, Hirayama Y, Aramori I, Narumiya S. A sphingosine-1-phosphate receptor type 1 agonist, ASP4058, suppresses intracranial aneurysm through promoting endothelial integrity and blocking macrophage transmigration. Br J Pharmacol 2017; 174:2085-2101. [PMID: 28409823 PMCID: PMC5466536 DOI: 10.1111/bph.13820] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/26/2022] Open
Abstract
Background and Purpose Intracranial aneurysm (IA), common in the general public, causes lethal subarachnoid haemorrhage on rupture. It is, therefore, of utmost importance to prevent the IA from rupturing. However, there is currently no medical treatment. Recent studies suggest that IA is the result of chronic inflammation in the arterial wall caused by endothelial dysfunction and infiltrating macrophages. The sphingosine‐1‐phosphate receptor type 1 (S1P1 receptor) is present on the endothelium and promotes its barrier function. Here we have tested the potential of an S1P1 agonist, ASP4058, to prevent IA in an animal model. Experimental Approach The effects of a selective S1P1 agonist, ASP4058, on endothelial permeability and migration of macrophages across an endothelial cell monolayer were tested in vitro using a Transwell system, and its effects on the size of IAs were evaluated in a rat model of IA. Key Results S1P1 receptor was expressed in endothelial cells of human IA lesions and control arterial walls. ASP4058 significantly reduced FITC‐dextran leakage through an endothelial monolayer and suppressed the migration of macrophages across the monolayer in vitro. Oral administration of ASP4058 reduced the vascular permeability, macrophage infiltration and size of the IAs by acting as an S1P1 agonist in the rat model. This effect was mimicked by another two structurally‐unrelated S1P1 agonists. Conclusion and Implications A selective S1P1 agonist is a strong drug candidate for IA treatment as it promotes the endothelial cell barrier and suppresses the trans‐endothelial migration of macrophages in IA lesions.
Collapse
Affiliation(s)
- Rie Yamamoto
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Tsukuba Research Center, Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | - Tomohiro Aoki
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirokazu Koseki
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Miyuki Fukuda
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jun Hirose
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Tsukuba Research Center, Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | - Keiichi Tsuji
- Department of Neurosurgery, Shiga University of Medical Science, Shiga, Japan
| | - Katsumi Takizawa
- Deaprtment of Neurosurgery, Japanese Red Cross Asahikawa Hospital, Hokkaido, Japan
| | - Shinichiro Nakamura
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Haruka Miyata
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Neurosurgery, Shiga University of Medical Science, Shiga, Japan
| | - Nozomu Hamakawa
- Tsukuba Research Center, Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | - Hidetoshi Kasuya
- Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Shiga, Japan
| | - Yoshitaka Hirayama
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Tsukuba Research Center, Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | - Ichiro Aramori
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Tsukuba Research Center, Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | - Shuh Narumiya
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
32
|
Miyata H, Koseki H, Takizawa K, Kasuya H, Nozaki K, Narumiya S, Aoki T. T cell function is dispensable for intracranial aneurysm formation and progression. PLoS One 2017; 12:e0175421. [PMID: 28437485 PMCID: PMC5402951 DOI: 10.1371/journal.pone.0175421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/24/2017] [Indexed: 02/04/2023] Open
Abstract
Given the social importance of intracranial aneurysm as a major cause of a lethal subarachnoid hemorrhage, clarification of mechanisms underlying the pathogenesis of this disease is essential for improving poor prognosis once after rupture. Previous histopathological analyses of human aneurysm walls have revealed the presence of T cells in lesions suggesting involvement of this type of cell in the pathogenesis. However, it remains unclear whether T cell actively participates in intracranial aneurysm progression. To examine whether T cell is involved in aneurysm progression, intracranial aneurysm model of rat was used. In this model, aneurysm is induced by increase in hemodynamic force loaded on bifurcation site of intracranial arteries where aneurysms are developed. Deficiency in T cells and pharmacological inhibition of T cell function were applied to this model. CD3-positive T cells were present in human aneurysm walls, whose number was significantly larger compared with that in control arterial walls. Deficiency in T cells in rats and pharmacological inhibition of T cell function by oral administration of Cyclosporine A both failed to affect intracranial aneurysm progression, degenerative changes of arterial walls and macrophage infiltration in lesions. Although T cells are detectable in intracranial aneurysm walls, their function is dispensable for macrophage-mediated inflammation and degenerative changes in arterial walls, which presumably leads to intracranial aneurysm progression.
Collapse
Affiliation(s)
- Haruka Miyata
- Innovation Center for Immunoregulation Technologies and Therapeutics (AK project), Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Neurosurgery, Shiga University of Medical Science, Shiga, Japan
- Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirokazu Koseki
- Innovation Center for Immunoregulation Technologies and Therapeutics (AK project), Kyoto University Graduate School of Medicine, Kyoto, Japan
- Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Neurosurgery, Tokyo Women’s Medical University Medical Center East, Tokyo, Japan
| | - Katsumi Takizawa
- Department of Neurosurgery, Japan Red Cross Asahikawa Hospital, Hokkaido, Japan
| | - Hidetoshi Kasuya
- Department of Neurosurgery, Tokyo Women’s Medical University Medical Center East, Tokyo, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Shiga, Japan
| | - Shuh Narumiya
- Innovation Center for Immunoregulation Technologies and Therapeutics (AK project), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohiro Aoki
- Innovation Center for Immunoregulation Technologies and Therapeutics (AK project), Kyoto University Graduate School of Medicine, Kyoto, Japan
- Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail:
| |
Collapse
|
33
|
Aoki T, Frȍsen J, Fukuda M, Bando K, Shioi G, Tsuji K, Ollikainen E, Nozaki K, Laakkonen J, Narumiya S. Prostaglandin E2-EP2-NF-κB signaling in macrophages as a potential therapeutic target for intracranial aneurysms. Sci Signal 2017; 10:10/465/eaah6037. [PMID: 28174280 DOI: 10.1126/scisignal.aah6037] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Intracranial aneurysms are common but are generally untreated, and their rupture can lead to subarachnoid hemorrhage. Because of the poor prognosis associated with subarachnoid hemorrhage, preventing the progression of intracranial aneurysms is critically important. Intracranial aneurysms are caused by chronic inflammation of the arterial wall due to macrophage infiltration triggered by monocyte chemoattractant protein-1 (MCP-1), macrophage activation mediated by the transcription factor nuclear factor κB (NF-κB), and inflammatory signaling involving prostaglandin E2 (PGE2) and prostaglandin E receptor subtype 2 (EP2). We correlated EP2 and cyclooxygenase-2 (COX-2) with macrophage infiltration in human intracranial aneurysm lesions. Monitoring the spatiotemporal pattern of NF-κB activation during intracranial aneurysm development in mice showed that NF-κB was first activated in macrophages in the adventitia and in endothelial cells and, subsequently, in the entire arterial wall. Mice with a macrophage-specific deletion of Ptger2 (which encodes EP2) or macrophage-specific expression of an IκBα mutant that restricts NF-κB activation had fewer intracranial aneurysms with reduced macrophage infiltration and NF-κB activation. In cultured cells, EP2 signaling cooperated with tumor necrosis factor-α (TNF-α) to activate NF-κB and synergistically induce the expression of proinflammatory genes, including Ptgs2 (encoding COX-2). EP2 signaling also stabilized Ccl2 (encoding MCP-1) by activating the RNA-stabilizing protein HuR. Rats administered an EP2 antagonist had reduced macrophage infiltration and intracranial aneurysm formation and progression. This signaling pathway in macrophages thus facilitates intracranial aneurysm development by amplifying inflammation in intracranial arteries. These results indicate that EP2 antagonists may therefore be a therapeutic alternative to surgery.
Collapse
Affiliation(s)
- Tomohiro Aoki
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.,Core Research for Evolutional Science and Technology, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Juhana Frȍsen
- Neurosurgery Research Group, Biomedicum Helsinki, Helsinki 00029 HUS, Finland.,Hemorrhagic Brain Pathology Research Group, NeuroCenter, Kuopio University Hospital, Kuopio 70029 KYS, Finland.,Department of Neurosurgery, NeuroCenter, Kuopio University Hospital, Kuopio 70029 KYS, Finland
| | - Miyuki Fukuda
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Kana Bando
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Hyogo 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Hyogo 650-0047, Japan
| | - Go Shioi
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Hyogo 650-0047, Japan
| | - Keiichi Tsuji
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Eliisa Ollikainen
- Neurosurgery Research Group, Biomedicum Helsinki, Helsinki 00029 HUS, Finland
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Johanna Laakkonen
- Department of Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio 70211, Finland
| | - Shuh Narumiya
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan. .,Core Research for Evolutional Science and Technology, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
34
|
Fennell VS, Kalani MYS, Atwal G, Martirosyan NL, Spetzler RF. Biology of Saccular Cerebral Aneurysms: A Review of Current Understanding and Future Directions. Front Surg 2016; 3:43. [PMID: 27504449 PMCID: PMC4958945 DOI: 10.3389/fsurg.2016.00043] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022] Open
Abstract
Understanding the biology of intracranial aneurysms is a clinical quandary. How these aneurysms form, progress, and rupture is poorly understood. Evidence indicates that well-established risk factors play a critical role, along with immunologic factors, in their development and clinical outcomes. Much of the expanding knowledge of the inception, progression, and rupture of intracranial aneurysms implicates inflammation as a critical mediator of aneurysm pathogenesis. Thus, therapeutic targets exploiting this arm of aneurysm pathogenesis have been implemented, often with promising outcomes.
Collapse
Affiliation(s)
- Vernard S Fennell
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center , Phoenix, AZ , USA
| | - M Yashar S Kalani
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center , Phoenix, AZ , USA
| | - Gursant Atwal
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center , Phoenix, AZ , USA
| | - Nikolay L Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center , Phoenix, AZ , USA
| | - Robert F Spetzler
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center , Phoenix, AZ , USA
| |
Collapse
|
35
|
Aoki T, Yamamoto K, Fukuda M, Shimogonya Y, Fukuda S, Narumiya S. Sustained expression of MCP-1 by low wall shear stress loading concomitant with turbulent flow on endothelial cells of intracranial aneurysm. Acta Neuropathol Commun 2016; 4:48. [PMID: 27160403 PMCID: PMC4862234 DOI: 10.1186/s40478-016-0318-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Enlargement of a pre-existing intracranial aneurysm is a well-established risk factor of rupture. Excessive low wall shear stress concomitant with turbulent flow in the dome of an aneurysm may contribute to progression and rupture. However, how stress conditions regulate enlargement of a pre-existing aneurysm remains to be elucidated. RESULTS Wall shear stress was calculated with 3D-computational fluid dynamics simulation using three cases of unruptured intracranial aneurysm. The resulting value, 0.017 Pa at the dome, was much lower than that in the parent artery. We loaded wall shear stress corresponding to the value and also turbulent flow to the primary culture of endothelial cells. We then obtained gene expression profiles by RNA sequence analysis. RNA sequence analysis detected hundreds of differentially expressed genes among groups. Gene ontology and pathway analysis identified signaling related with cell division/proliferation as overrepresented in the low wall shear stress-loaded group, which was further augmented by the addition of turbulent flow. Moreover, expression of some chemoattractants for inflammatory cells, including MCP-1, was upregulated under low wall shear stress with concomitant turbulent flow. We further examined the temporal sequence of expressions of factors identified in an in vitro study using a rat model. No proliferative cells were detected, but MCP-1 expression was induced and sustained in the endothelial cell layer. CONCLUSIONS Low wall shear stress concomitant with turbulent flow contributes to sustained expression of MCP-1 in endothelial cells and presumably plays a role in facilitating macrophage infiltration and exacerbating inflammation, which leads to enlargement or rupture.
Collapse
|
36
|
Flynn L, Andrews P. Advances in the understanding of delayed cerebral ischaemia after aneurysmal subarachnoid haemorrhage. F1000Res 2015; 4:F1000 Faculty Rev-1200. [PMID: 26937276 PMCID: PMC4752028 DOI: 10.12688/f1000research.6635.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 12/23/2022] Open
Abstract
Delayed cerebral ischaemia has been described as the single most important cause of morbidity and mortality in patients who survive the initial aneurysmal subarachnoid haemorrhage. Our understanding of the pathophysiology of delayed cerebral ischaemia is meagre at best and the calcium channel blocker nimodipine remains the only intervention to consistently improve functional outcome after aneurysmal subarachnoid haemorrhage. There is substantial evidence to support cerebral vessel narrowing as a causative factor in delayed cerebral ischaemia, but contemporary research demonstrating improvements in vessel narrowing has failed to show improved functional outcomes. This has encouraged researchers to investigate other potential causes of delayed cerebral ischaemia, such as early brain injury, microthrombosis, and cortical spreading depolarisation. Adherence to a common definition of delayed cerebral ischaemia is needed in order to allow easier assessment of studies using multiple different terms. Furthermore, improved recognition of delayed cerebral ischaemia would not only allow for faster treatment but also better assessment of interventions. Finally, understanding nimodipine's mechanism of action may allow us to develop similar agents with improved efficacy.
Collapse
Affiliation(s)
- Liam Flynn
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter Andrews
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
37
|
van ’t Hof FNG, Ruigrok YM, Medic J, Sanjabi B, van der Vlies P, Rinkel GJE, Veldink JH. Whole Blood Gene Expression Profiles of Patients with a Past Aneurysmal Subarachnoid Hemorrhage. PLoS One 2015; 10:e0139352. [PMID: 26439625 PMCID: PMC4595144 DOI: 10.1371/journal.pone.0139352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/11/2015] [Indexed: 11/19/2022] Open
Abstract
Background The pathogenesis of development and rupture of intracranial aneurysms (IA) is largely unknown. Also, screening for IA to prevent aneurysmal subarachnoid hemorrhage (aSAH) is inefficient, as disease markers are lacking. We investigated gene expression profiles in blood of previous aSAH patients, who are still at risk for future IA, aiming to gain insight into the pathogenesis of IA and aSAH, and to make a first step towards improvement of aSAH risk prediction. Methods and Results We collected peripheral blood of 119 patients with aSAH at least two years prior, and 118 controls. We determined gene expression profiles using Illumina HumanHT-12v4 BeadChips. After quality control, we divided the dataset in a discovery (2/3) and replication set (1/3), identified differentially expressed genes, and applied (co-)differential co-expression to identify disease-related gene networks. No genes with a significant (false-discovery rate <5%) differential expression were observed. We detected one gene network with significant differential co-expression, but did not find biologically meaningful gene networks related to a history of aSAH. Next, we applied prediction analysis of microarrays to find a gene set that optimally predicts absence or presence of a history of aSAH. We found no gene sets with a correct disease state prediction higher than 40%. Conclusions No gene expression differences were present in blood of previous aSAH patients compared to controls, besides one differentially co-expressed gene network without a clear relevant biological function. Our findings suggest that gene expression profiles, as detected in blood of previous aSAH patients, do not reveal the pathogenesis of IA and aSAH, and cannot be used for aSAH risk prediction.
Collapse
Affiliation(s)
- Femke N. G. van ’t Hof
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| | - Ynte M. Ruigrok
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jelena Medic
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bahram Sanjabi
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Pieter van der Vlies
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Gabriel J. E. Rinkel
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan H. Veldink
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
38
|
Cooke DL, Bauer D, Sun Z, Stillson C, Nelson J, Barry D, Hetts SW, Higashida RT, Dowd CF, Halbach VV, Su H, Saeed MM. Endovascular biopsy: Technical feasibility of novel endothelial cell harvesting devices assessed in a rabbit aneurysm model. Interv Neuroradiol 2015. [DOI: 10.1177/inr-2014-10103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
Cooke DL, Bauer D, Sun Z, Stillson C, Nelson J, Barry D, Hetts SW, Higashida RT, Dowd CF, Halbach VV, Su H, Saeed MM. Endovascular Biopsy: Technical Feasibility of Novel Endothelial Cell Harvesting Devices Assessed in a Rabbit Aneurysm Model. Interv Neuroradiol 2015. [DOI: 10.15274/inr-2015-10103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
40
|
Fukuda M, Aoki T. Molecular basis for intracranial aneurysm formation. ACTA NEUROCHIRURGICA. SUPPLEMENT 2015; 120:13-5. [PMID: 25366592 DOI: 10.1007/978-3-319-04981-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intracranial aneurysm (IA) is a socially important disease both because it has a high prevalence and because of the severity of resultant subarachnoid hemorrhages after IA rupture. The major concern of current IA treatment is the lack medical therapies that are less invasive than surgical procedures for many patients. The current situation is mostly caused by a lack of knowledge regarding the regulating mechanisms of IA formation. Hemodynamic stress, especially high wall shear stress, loaded on arterial bifurcation sites is recognized as a trigger of IA formation from studies performed in the field of fluid dynamics. On the other hand, many studies using human specimens have also revealed the presence of active inflammatory responses, such as the infiltration of macrophages, in the pathogenesis of IA. Because of these findings, recent experimental studies, mainly using animal models of IA, have revealed some of the molecular mechanisms linking hemodynamic stress and long-lasting inflammation in IA walls. Currently, we propose that IA is a chronic inflammatory disease regulated by a positive feedback loop consisting of the cyclooxygenase (COX)-2 - prostaglandin (PG) E2 - prostaglandin E receptor 2 (EP2) - nuclear factor (NF)-κB signaling pathway triggered under hemodynamic stress and macrophage infiltration via NF-κB-mediated monocyte chemoattractant protein (MCP)-1 induction. These findings indicate future directions for the development of therapeutic drugs for IAs.
Collapse
Affiliation(s)
- Miyuki Fukuda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
41
|
Fukuda M, Aoki T, Manabe T, Maekawa A, Shirakawa T, Kataoka H, Takagi Y, Miyamoto S, Narumiya S. Exacerbation of intracranial aneurysm and aortic dissection in hypertensive rat treated with the prostaglandin F-receptor antagonist AS604872. J Pharmacol Sci 2014; 126:230-42. [PMID: 25341845 DOI: 10.1254/jphs.14148fp] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Intracranial aneurysm (IA) and aortic dissection are both complications of hypertension and characterized by degeneration of the media. Given the involvement of prostaglandin F2α and its receptor, FP, in extracellular matrix remodeling in a mouse model of pulmonary fibrosis, here we induced hypertension and IA in rats by salt loading and hemi-lateral ligation of renal and carotid arteries and examined effects of a selective FP antagonist, AS604872, on these vascular events. AS604872 significantly accelerated degeneration of the media in both cerebral artery and aorta as evidenced by thinning of the media and disruption of the elastic lamina and promoted IA and aortic dissection. Notably, AS604872 induced expression of pro-inflammatory genes such as E-selectin in lesions and significantly enhanced macrophage infiltration. Suppression of surface expression of E-selectin with cimetidine prevented macrophage infiltration and aortic dissection. Thus, AS604872 exacerbates vascular inflammation in hypertensive rats and facilitates IA and aortic dissection. These results demonstrate that both IA and aortic dissection are caused by chronic inflammation of the arterial wall, which is worsened by AS604872, cautioning that other FP antagonists may share such deleterious actions in vascular homeostasis and suggesting that AS604872 can be used to make models of these vascular diseases with extensive degeneration.
Collapse
Affiliation(s)
- Miyuki Fukuda
- Department of Neurosurgery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Arterial Wall Degeneration Plus Hemodynamic Insult Cause Arterial Wall Remodeling and Nascent Aneurysm Formation at Specific Sites in Dogs. J Neuropathol Exp Neurol 2014; 73:808-19. [PMID: 25111020 DOI: 10.1097/nen.0000000000000100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
43
|
Staalsø JM, Edsen T, Kotinis A, Romner B, Springborg JB, Olsen NV. Association of the NOS3 intron-4 VNTR polymorphism with aneurysmal subarachnoid hemorrhage. J Neurosurg 2014; 121:587-92. [PMID: 24972130 DOI: 10.3171/2014.5.jns131572] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The nitric oxide system has been linked to the pathogenesis of aneurysmal subarachnoid hemorrhage (SAH). The authors performed a case-control study to investigate the association between SAH and common genetic variants within the endothelial nitric oxide synthase gene (NOS3). METHODS Three hundred thirty-three Caucasian SAH patients and 498 controls were genotyped for the -922A > G (rs 1800779), -786T > C (rs2070744), and 894G > T (rs1799983) single nucleotide polymorphisms and the intron-4 27-bp variable number of tandem repeats polymorphism (27-bp-VNTR). RESULTS The b/b (5 repeats) genotype of the 27-bp-VNTR was overrepresented in cases (77%) versus controls (69%) (p = 0.02). In male patients the b/b genotype was found in 85% compared with 67% in male controls, whereas in women, the frequencies were 73% and 72%, respectively. This corresponds to an odds ratio of 2.8 (95% CI 1.5-5.6, p = 0.0005) for SAH in men with the b/b genotype versus men with a/b or a/a. In women, no such association was found (OR 1.1, 95% CI 0.7-1.6, p = 0.76). Stepwise logistic regression including arterial hypertension, smoking, sex, and age with interactions yielded similar effect estimates of the 27-bp-VNTR. Haplotype analysis revealed that no single haplotype containing the b-allele was responsible for the observed genotype effect. CONCLUSIONS The authors' results suggest that the NOS3 27-bp-VNTR b/b genotype independent of other risk factors act in concert with male sex to substantially increase risk of SAH. This effect is not mediated by any single NOS3 haplotype.
Collapse
|
44
|
Gama Sosa MA, De Gasperi R, Janssen PL, Yuk FJ, Anazodo PC, Pricop PE, Paulino AJ, Wicinski B, Shaughness MC, Maudlin-Jeronimo E, Hall AA, Dickstein DL, McCarron RM, Chavko M, Hof PR, Ahlers ST, Elder GA. Selective vulnerability of the cerebral vasculature to blast injury in a rat model of mild traumatic brain injury. Acta Neuropathol Commun 2014; 2:67. [PMID: 24938728 PMCID: PMC4229875 DOI: 10.1186/2051-5960-2-67] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/03/2014] [Indexed: 12/23/2022] Open
Abstract
Background Blast-related traumatic brain injury (TBI) is a common cause of injury in the military operations in Iraq and Afghanistan. How the primary blast wave affects the brain is not well understood. The aim of the present study was to examine whether blast exposure affects the cerebral vasculature in a rodent model. We analyzed the brains of rats exposed to single or multiple (three) 74.5 kPa blast exposures, conditions that mimic a mild TBI. Rats were sacrificed 24 hours or between 6 and 10 months after exposure. Blast-induced cerebral vascular pathology was examined by a combination of light microscopy, immunohistochemistry, and electron microscopy. Results We describe a selective vascular pathology that is present acutely at 24 hours after injury. The vascular pathology is found at the margins of focal shear-related injuries that, as we previously showed, typically follow the patterns of penetrating cortical vessels. However, changes in the microvasculature extend beyond the margins of such lesions. Electron microscopy revealed that microvascular pathology is found in regions of the brain with an otherwise normal neuropil. This initial injury leads to chronic changes in the microvasculature that are still evident many months after the initial blast exposure. Conclusions These studies suggest that vascular pathology may be a central mechanism in the induction of chronic blast-related injury.
Collapse
|
45
|
Lindgren AE, Kurki MI, Riihinen A, Koivisto T, Ronkainen A, Rinne J, Hernesniemi J, Eriksson JG, Jääskeläinen JE, von und zu Fraunberg M. Hypertension predisposes to the formation of saccular intracranial aneurysms in 467 unruptured and 1053 ruptured patients in Eastern Finland. Ann Med 2014; 46:169-76. [PMID: 24579936 DOI: 10.3109/07853890.2014.883168] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Hypertension associates with subarachnoid hemorrhage from saccular intracranial aneurysm (sIA-SAH) when compared to matched controls or general population. Few series compare hypertension in unruptured sIA versus sIA-SAH, so its impact on the sIA disease remains uncertain. METHODS Kuopio sIA Database ( www.uef.fi/ns ) contains all cases of unruptured and ruptured sIAs admitted to Kuopio University Hospital from its Eastern Finnish catchment population. We compared the age-adjusted incidence of drug-treated hypertension in 467 unruptured and 1053 ruptured sIA patients admitted to Kuopio University Hospital from 1995 to 2007, using the national registry of prescribed medicines. RESULTS Antihypertensive medication was more frequent in the unruptured (73% versus 62%) with higher age-adjusted incidence. At sIA diagnosis, the sIA-SAH group had more often untreated hypertension (29% versus 23%). The size of unruptured sIAs increased with age at sIA diagnosis, independently of hypertension. Multiple sIAs, familial sIA, and sIA-SAH were not associated with hypertension in multivariate analysis. Results indicate that drug-treated hypertension associates with the formation of sIAs rather than their growth or rupture. CONCLUSION Hypertension is highly prevalent in the carriers of unruptured sIAs when compared to those with ruptured sIA. Hypertension may associate with the sIA formation, and may predispose to the rupture of sIA if untreated.
Collapse
Affiliation(s)
- Antti E Lindgren
- Neurosurgery of NeuroCenter, Kuopio University Hospital , Kuopio , Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang J, Tan HQ, Zhu YQ, Li MH, Li ZZ, Yan L, Cheng YS. Complex hemodynamic insult in combination with wall degeneration at the apex of an arterial bifurcation contributes to generation of nascent aneurysms in a canine model. AJNR Am J Neuroradiol 2014; 35:1805-12. [PMID: 24788130 DOI: 10.3174/ajnr.a3926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The detailed mechanisms of cerebral aneurysm generation remain unclear. Our aim was to investigate whether specific hemodynamic insult in combination with arterial wall degeneration leads to the development of aneurysms in a canine model. MATERIALS AND METHODS New branch points in the common carotid artery were created in 18 dogs. Nine animals subsequently received elastase insult at the arterial bifurcation apex (elastase-treated bifurcation group); the control bifurcation group (n=9) received saline, and 3 dogs received an elastase insult to both straight common carotid arteries (elastase-treated straight group). Angiographic and hemodynamic analysis was performed immediately and 12 and 24 weeks' postsurgery; histologic response was evaluated at 12 and 24 weeks. RESULTS Angiography revealed nascent aneurysms (mean, 3.2±0.4 mm) at the arterial bifurcation apices in 5/9 models of the elastase-treated bifurcation group (versus 0 in the control bifurcation group and elastase-treated straight group) without any observed aneurysm rupture. Histologic analysis revealed internal elastic lamina discontinuity, elastic fiber disruption, a thinner muscular layer, reduced smooth-muscle cell proliferation, increased inflammatory cell (macrophage) infiltration, and expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 in the media of the elastase-treated bifurcation group compared with that in either the control bifurcation group or the elastase-treated straight group (P<.001). Hemodynamic analysis after surgery indicated that the apex experienced extremely low wall shear stress and flow velocity and the highest relative and total pressure in the elastase-treated bifurcation group, while the values returned to normal after arterial wall remodelling. CONCLUSIONS In our study, combined hemodynamic insult and arterial wall degeneration at arterial bifurcations are required for the generation of aneurysms in a canine model.
Collapse
Affiliation(s)
- J Wang
- From the Department of Diagnostic and Interventional Radiology (J.W., H.-Q.T., Y.-Q.Z., M.-H.L., L.Y., Y.-S.C.), Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - H-Q Tan
- From the Department of Diagnostic and Interventional Radiology (J.W., H.-Q.T., Y.-Q.Z., M.-H.L., L.Y., Y.-S.C.), Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Y-Q Zhu
- From the Department of Diagnostic and Interventional Radiology (J.W., H.-Q.T., Y.-Q.Z., M.-H.L., L.Y., Y.-S.C.), Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - M-H Li
- From the Department of Diagnostic and Interventional Radiology (J.W., H.-Q.T., Y.-Q.Z., M.-H.L., L.Y., Y.-S.C.), Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Z-Z Li
- School of Mechanical Engineering (Z.-Z.L.), Shanghai Jiao Tong University, Shanghai, China
| | - L Yan
- From the Department of Diagnostic and Interventional Radiology (J.W., H.-Q.T., Y.-Q.Z., M.-H.L., L.Y., Y.-S.C.), Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Y-S Cheng
- From the Department of Diagnostic and Interventional Radiology (J.W., H.-Q.T., Y.-Q.Z., M.-H.L., L.Y., Y.-S.C.), Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
47
|
Aoki T, Fukuda M, Nishimura M, Nozaki K, Narumiya S. Critical role of TNF-alpha-TNFR1 signaling in intracranial aneurysm formation. Acta Neuropathol Commun 2014; 2:34. [PMID: 24685329 PMCID: PMC3974421 DOI: 10.1186/2051-5960-2-34] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/12/2014] [Indexed: 11/22/2022] Open
Abstract
Background Intracranial aneurysm (IA) is a socially important disease due to its high incidence in the general public and the severity of resultant subarachnoid hemorrhage that follows rupture. Despite the social importance of IA as a cause of subarachnoid hemorrhage, there is no medical treatment to prevent rupture, except for surgical procedures, because the mechanisms regulating IA formation are poorly understood. Therefore, these mechanisms should be elucidated to identify a therapeutic target for IA treatment. In human IAs, the presence of inflammatory responses, such as an increase of tumor necrosis factor (TNF)-alpha, have been observed, suggesting a role for inflammation in IA formation. Recent investigations using rodent models of IAs have revealed the crucial role of inflammatory responses in IA formation, supporting the results of human studies. Thus, we identified nuclear factor (NF)-kappaB as a critical mediator of inflammation regulating IA formation, by inducing downstream pro-inflammatory genes such as MCP-1, a chemoattractant for macrophages, and COX-2. In this study, we focused on TNF-alpha signaling as a potential cascade that regulates NF-kappaB-mediated IA formation. Results We first confirmed an increase in TNF-alpha content in IA walls during IA formation, as expected based on human studies. Consistently, the activity of TNF-alpha converting enzyme (TACE), an enzyme responsible for TNF-alpha release, was induced in the arterial walls after aneurysm induction in a rat model. Next, we subjected tumor necrosis factor receptor superfamily member 1a (TNFR1)-deficient mice to the IA model to clarify the contribution of TNF-alpha-TNFR1 signaling to pathogenesis, and confirmed significant suppression of IA formation in TNFR1-deficient mice. Furthermore, in the IA walls of TNFR1-deficient mice, inflammatory responses, including NF-kappaB activation, subsequent expression of MCP-1 and COX-2, and infiltration of macrophages into the IA lesion, were greatly suppressed compared with those in wild-type mice. Conclusions In this study, using rodent models of IAs, we clarified the crucial role of TNF-alpha-TNFR1 signaling in the pathogenesis of IAs by inducing inflammatory responses, and propose this signaling as a potential therapeutic target for IA treatment.
Collapse
|
48
|
Yokoi T, Isono T, Saitoh M, Yoshimura Y, Nozaki K. Suppression of cerebral aneurysm formation in rats by a tumor necrosis factor-α inhibitor. J Neurosurg 2014; 120:1193-200. [PMID: 24628611 DOI: 10.3171/2014.1.jns13818] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Although cerebral aneurysmal subarachnoid hemorrhage is a devastating disease for humans, effective medical treatments have not yet been established. Recent reports have shown that regression of some inflammatory-related mediators has protective effects in experimental cerebral aneurysm models. This study corroborated the effectiveness of tumor necrosis factor-α (TNF-α) inhibitor for experimentally induced cerebral aneurysms in rats. METHODS Five-week-old male rats were prepared for induction of cerebral aneurysms and divided into 3 groups, 2 groups administered different concentrations of a TNF-α inhibitor (etanercept), and 1 control group. One month after aneurysm induction, 7-T MRI was performed. The TNF-α inhibitor groups received subcutaneous injection of 25 μg or 2.5 μg of etanercept, and the control group received subcutaneous injection of normal saline every week. The TNF-α inhibitor administrations were started at 1 month after aneurysm induction to evaluate its suppressive effects on preexisting cerebral aneurysms. Arterial circles of Willis were obtained and evaluated 3 months after aneurysm induction. RESULTS Rats administered a TNF-α inhibitor experienced significant increases in media thickness and reductions in aneurysmal size compared with the control group. Immunohistochemical staining showed that treatment with a TNF-α inhibitor suppressed matrix metalloproteinase (MMP)-9 and inducible nitric oxide synthase (iNOS) expression through the luminal surface of the endothelial cell layer, the media and the adventitia at the site of aneurysmal formation, and the anterior cerebral artery-olfactory artery bifurcation. Quantitative polymerase chain reaction also showed suppression of MMP-9 and iNOS by TNF-α inhibitor administration. CONCLUSIONS Therapeutic administration of a TNF-α inhibitor significantly reduced the formation of aneurysms in rats. These data also suggest that TNF-α suppression reduced some inflammatory-related mediators that are in the downstream pathway of nuclear factor-κB.
Collapse
|
49
|
Tsuji K, Aoki T, Fukuda M, Nozaki K. Statins as a Candidate of Drugs for Intracranial Aneurysm Treatment. Health (London) 2014. [DOI: 10.4236/health.2014.612180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Cooke DL, Su H, Sun Z, Guo Y, Guo D, Saeed MM, Hetts SW, Higashida RT, Dowd CF, Young WL, Halbach VV. Endovascular biopsy: evaluating the feasibility of harvesting endothelial cells using detachable coils. Interv Neuroradiol 2013; 19:399-408. [PMID: 24355142 DOI: 10.1177/159101991301900401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 05/20/2013] [Indexed: 11/16/2022] Open
Abstract
The absence of safe and reliable methods to harvest vascular tissue in situ limits the discovery of the underlying genetic and pathophysiological mechanisms of many vascular disorders such as aneurysms. We investigated the feasibility and comparable efficacy of endothelial cell collection using a spectrum of endovascular coils. Nine detachable coils ranging in k coefficient (0.15-0.24), diameter (4.0 mm-16.0 mm), and length (8.0 cm-47.0 cm) were tested in pigs. All coils were deployed and retrieved within the iliac artery of pigs (three coils/pig). Collected coils were evaluated under light microscopy. The total and endothelial cells collected by each coil were quantified. The nucleated cells were identified by Wright-Giemsa and DAPI stains. Endothelial and smooth muscle cells were identified by CD31 and α-smooth muscle actin antibody staining. Coils were deployed and retrieved without technical difficulty. Light microscopy demonstrated sheets of cellular material concentrated within the coil winds. All coils collected cellular material while five of nine (55.6%) coils retrieved endothelial cells. Coils collected mean endothelial cell counts of 89.0±101.6. Regression analysis demonstrated a positive correlation between increasing coil diameter and endothelial cell counts (R(2)=0.52, p = 0.029). Conventional detachable coils can be used to harvest endothelial cells. The number of endothelial cells collected by a coil positively correlated with its diameter. Given the widespread use of coils and their well-described safety profile their potential as an endovascular biopsy device would expand the availability of tissue for cellular and molecular analysis.
Collapse
Affiliation(s)
- Daniel L Cooke
- Department of Radiology and Biomedical Imaging; University of California; San Francisco, CA, USA -
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|