1
|
Harada Y, Ikeda S, Kawabe Y, Oguri Y, Hashimura M, Yokoi A, Sida A, Fukagawa N, Hayashi M, Ono M, Kusano C, Takahashi H, Saegusa M. S100A4 contributes to colorectal carcinoma aggressive behavior and to chemoradiotherapy resistance in locally advanced rectal carcinoma. Sci Rep 2024; 14:31338. [PMID: 39732925 DOI: 10.1038/s41598-024-82814-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
To investigate the functional role of S100A4 in advanced colorectal carcinoma (Ad-CRC) and locally advanced rectal carcinoma (LAd-RC) receiving neoadjuvant chemoradiotherapy (NCRT). We analyzed histopathological and immunohistochemical sections from 150 patients with Ad-CRC and 177 LAd-RC patients treated with NCRT. S100A4 knockout (KO) HCT116 cells were also used. S100A4 expression was absent in normal mucosa but increased progressively from colorectal adenoma to carcinoma, suggesting that S100A4 regulation is an early event in colorectal carcinogenesis. In Ad-CRC, high S100A4 expression correlated with high tumor budding and nuclear β-catenin, deep invasion, lymph-vascular involvement, and unfavorable prognosis. In NCRT-treated LAd-RC, high S100A4 expression was associated with poor treatment response and short progression-free survival. S100A4 KO decreased the proliferation of HCT116 cells through activation of the p53/p21waf1 axis, and sensitized cells to adriamycin-induced apoptosis. Levels of the apoptotic marker, cleaved poly (ADP-ribose) polymerase 1, were significantly higher in samples with low S100A4 and wild type p53. Finally, we observed a direct interaction between S100A4 and p53. In conclusion, S100A4 expression engenders aggressive behavior in Ad-CRC through association with β-catenin-driven tumor buddings. S100A4 exerts anti-apoptotic and proliferative effects via inhibition of p53 in LAd-RC patients receiving NCRT, which leads to chemoradioresistance and poor prognosis.
Collapse
Affiliation(s)
- Yohei Harada
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan
| | - Sayako Ikeda
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan
| | - Yuna Kawabe
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan
| | - Yasuko Oguri
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan
| | - Miki Hashimura
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan
| | - Ako Yokoi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan
| | - Akiko Sida
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan
| | - Naomi Fukagawa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan
| | - Misato Hayashi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan
| | - Mototsugu Ono
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan
- Department of Pathology, Kitasato University School of Allied Health Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan
| | - Chika Kusano
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan
| | - Hiroyuki Takahashi
- Department of Pathology, Kitasato University School of Allied Health Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan.
| |
Collapse
|
2
|
Wang Y, Wang C, Zhong R, Wang L, Sun L. Research progress of DNA methylation in colorectal cancer (Review). Mol Med Rep 2024; 30:154. [PMID: 38963030 PMCID: PMC11240861 DOI: 10.3892/mmr.2024.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024] Open
Abstract
DNA methylation is one of the earliest and most significant epigenetic mechanisms discovered. DNA methylation refers, in general, to the addition of a methyl group to a specific base in the DNA sequence under the catalysis of DNA methyltransferase, with S‑adenosine methionine as the methyl donor, via covalent bonding and chemical modifications. DNA methylation is an important factor in inducing cancer. There are different types of DNA methylation, and methylation at different sites plays different roles. It is well known that the progression of colorectal cancer (CRC) is affected by the methylation of key genes. The present review did not only discuss the potential relationship between DNA methylation and CRC but also discussed how DNA methylation affects the development of CRC by affecting key genes. Furthermore, the clinical significance of DNA methylation in CRC was highlighted, including that of the therapeutic targets and biomarkers of methylation; and the importance of DNA methylation inhibitors was discussed as a novel strategy for treatment of CRC. The present review did not only focus upon the latest research findings, but earlier reviews were also cited as references to older literature.
Collapse
Affiliation(s)
- Yuxin Wang
- Emergency Department, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Chengcheng Wang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Ruiqi Zhong
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Liang Wang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Lei Sun
- Emergency Department, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
3
|
Bagheri-Hosseinabadi Z, Eshkevari SMS, Khalighfard S, Alizadeh AM, Khori V, Amiriani T, Poorkhani A, Sadani S, Esmati E, Lashgari M, Mahmoodi M, Hajizadeh MR. A systematic approach introduced some immune system targets in rectal cancer by considering cell-free DNA methylation in response to radiochemotherapy. Cytokine 2024; 181:156666. [PMID: 38906038 DOI: 10.1016/j.cyto.2024.156666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND This study aims to investigate cell-free DNA (cfDNA) methylation of genes involved in some immune system targets as biomarkers of radioresistance in patients with non-metastatic rectal cancer. METHODS Gene expression (GSE68204, GPL6480, and GSE15781) and DNA methylation profiles (GSE75548 and GSE139404) of rectal cancer patients were obtained from the Gene Expression Omnibus (GEO) database. GEO2R and FunRich software were first used to identify genes with significant expression differences. Enricher softwer was then used to analyze Gene Ontology and detect pathway enrichment of hub genes. Blood samples were then taken from 43 rectal cancer patients. After cfDNA extraction from samples, it was treated with bisulfite and analyzed by methylation-specific PCR. RESULTS 1088 genes with high and 629 with low expression were identified by GEO2R and FunRich software. A total of five high-expression hub genes, including CDH24, FGF18, CCND1, IFITM1, UBE2V1, and three low-expression hub genes, including CBLN2, VIPR2, and IRF4, were identified from UALCAN and DNMIVD databases. Methylation-specific PCR indicated a significant difference in hub gene methylation between cancerous and non-cancerous individuals. Radiochemotherapy significantly affected hub gene methylation. There was a considerable difference in the methylation rate of hub genes between patients who responded to radiochemotherapy and those who did not. CONCLUSIONS Evaluating gene methylation patterns might be an appropriate diagnostic tool to predict radiochemotherapy response and develop targeted therapeutic agents.
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | | | - Ali Mohammad Alizadeh
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran; Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhoushang Poorkhani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Somayeh Sadani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Esmati
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzih Lashgari
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahmoodi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Hajizadeh
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
4
|
Mao J, He Y, Chu J, Hu B, Yao Y, Yan Q, Han S. Analysis of clinical characteristics of mismatch repair status in colorectal cancer: a multicenter retrospective study. Int J Colorectal Dis 2024; 39:100. [PMID: 38967814 PMCID: PMC11226506 DOI: 10.1007/s00384-024-04674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Microsatellite instability (MSI) caused by DNA mismatch repair (MMR) deficiency is of great significance in the occurrence, diagnosis and treatment of colorectal cancer (CRC). AIM This study aimed to analyze the relationship between mismatch repair status and clinical characteristics of CRC. METHODS The histopathological results and clinical characteristics of 2029 patients who suffered from CRC and underwent surgery at two centers from 2018 to 2020 were determined. After screening the importance of clinical characteristics through machine learning algorithms, the patients were divided into deficient mismatch repair (dMMR) and proficient mismatch repair (pMMR) groups based on the immunohistochemistry results and the clinical feature data between the two groups were observed by statistical methods. RESULTS The dMMR and pMMR groups had significant differences in histologic type, TNM stage, maximum tumor diameter, lymph node metastasis, differentiation grade, gross appearance, and vascular invasion. There were significant differences between the MLH1 groups in age, histologic type, TNM stage, lymph node metastasis, tumor location, and depth of invasion. The MSH2 groups were significantly different in age. The MSH6 groups had significant differences in age, histologic type, and TNM stage. There were significant differences between the PMS2 groups in lymph node metastasis and tumor location. CRC was dominated by MLH1 and PMS2 combined expression loss (41.77%). There was a positive correlation between MLH1 and MSH2 and between MSH6 and PMS2 as well. CONCLUSIONS The proportion of mucinous adenocarcinoma, protruding type, and poor differentiation is relatively high in dMMR CRCs, but lymph node metastasis is rare. It is worth noting that the expression of MMR protein has different prognostic significance in different stages of CRC disease.
Collapse
Affiliation(s)
- Jing Mao
- Department of General Surgery, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Yang He
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, No. 92, Zheshan West Road, Jinghu District, Wuhu, Anhui, 241001, People's Republic of China
| | - Jian Chu
- Department of Gastroenterology, The Fifth Affiliated Clinical Medical College of Zhejiang, Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Boyang Hu
- Department of General Surgery, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Yanjun Yao
- Department of General Surgery, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Qiang Yan
- Department of General Surgery, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China.
| | - Shuwen Han
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China.
| |
Collapse
|
5
|
Tufail M, Wu C, Hussain MS. Dietary, addictive and habitual factors, and risk of colorectal cancer. Nutrition 2024; 120:112334. [PMID: 38271761 DOI: 10.1016/j.nut.2023.112334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND In Pakistan, the incidence of colorectal cancer (CRC) has sharply increased in recent years. Although several studies have reported global risk factors for CRC, no study has been conducted in Khyber Pakhtunkhwa (KPK), Pakistan, to investigate the risk factors associated with the increased CRC burden in this population. OBJECTIVES Therefore, we conducted a clinical survey using a case-control study design to explore the risk factors associatd with CRC. METHODS In the present study, one control was enrolled for each case. Both cases and controls were asked to complete a questionnaire to gather data. We analyzed all data using SPSS. RESULTS Our study found that certain dietary factors, such as consuming fast food (OR: 3.0; P = 0.0001) and reusing ghee (OR: 2.45; P = 0.0001) and oil (OR: 4.30; P = 0.0001), increase the risk of CRC. Additionally, use of tobacco products like smoking cigarettes (OR: 1.91; P = 0.0001) and using snuff (OR: 3.72; P = 0.0001) significantly increases the risk of CRC. Certain habitual factors, including binge eating (OR: 2.42; P = 0.0001) and spending excessive time watching TV (OR: 1.98; P = 0.0001), also increase the odds of developing CRC. However, our study also identified some protective factors against CRC, such as consuming vegetables (OR: .41; P = 0.0001), developing healthy eating habits (OR: .61; P = 0.0001), and maintaining regular sleeping patterns (OR: .45; P = 0.0001). CONCLUSION Given these findings, targeted health education is necessary to prevent the increase in CRC in this area. We also recommend developing and enforcing appropriate control guidelines for cancer risk factors to curb the incidence of CRC.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, China.
| | - Changxin Wu
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| |
Collapse
|
6
|
Chew DCH, Yim CHH, Ali RA, El‐Omar EM. Epidemiology, Microbiome, and Risk Factors Involved in Carcinogenesis of Esophagus, Gastric, and Intestine. GASTROINTESTINAL ONCOLOGY ‐ A CRITICAL MULTIDISCIPLINARY TEAM APPROACH 2E 2024:2-22. [DOI: 10.1002/9781119756422.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Bahman A, Abaza MS, Khoushaish S, Al-Attiyah RJ. Therapeutic efficacy of sorafenib and plant-derived phytochemicals in human colorectal cancer cells. BMC Complement Med Ther 2023; 23:210. [PMID: 37365571 DOI: 10.1186/s12906-023-04032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The present study aimed to investigate the sequence-dependent anticancer effects of combined treatment with sorafenib (Sora), a Food and Drug Administration-approved multikinase inhibitor drug, and plant-derived phytochemicals (PPCs) on human colorectal cancer (CRC) cell growth, and proteins associated with the control of cell cycle and apoptosis. METHODS The cytotoxic effects of 14 PPCs on CRL1554 fibroblast cells were determined using an MTT assay. Moreover, the cytotoxicity of Sora, PPCs, and a combination of both on CRC cells were also investigated. Cell cycle analysis was performed using flow cytometry, and cell apoptosis was investigated using DNA fragmentation, Annexin V/propidium iodide double staining, and mitochondrial membrane potential analyses. The cell cycle- and apoptosis-associated protein expression levels were analysed using western blotting. RESULTS Based on their low levels of cytotoxicity in CRL1554 cells at ≤ 20%, curcumin, quercetin, kaempferol, and resveratrol were selected for use in subsequent experiments. The combined treatment of sora and PPCs caused levels of CRC cytotoxicity in a dose-, cell type-, and schedule-dependent manner. Moreover, the combined treatment of CRC cells arrested cell growth at the S and G2/M phases, induced apoptotic cell death, caused extensive mitochondrial membrane damage, and altered the expression of the cell cycle and apoptotic proteins. CONCLUSIONS Results of the present study highlighted a difference in the level of sora efficacy in CRC cells when combined with PPCs. Further in vivo and clinical studies using the combined treatment of sora and PPCs are required to determine their potential as a novel therapeutic strategy for CRCs.
Collapse
Affiliation(s)
- Abdulmajeed Bahman
- Department of Biological Sciences, Molecular Biology Program, Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Safat, Kuwait
| | - Mohamed-Salah Abaza
- Department of Biological Sciences, Molecular Biology Program, Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Safat, Kuwait.
| | - Sarah Khoushaish
- Department of Biological Sciences, Molecular Biology Program, Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Safat, Kuwait
| | - Rajaa J Al-Attiyah
- Department of Microbiology and Immunology, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110, Safat, Kuwait
| |
Collapse
|
8
|
Ashari LS, Abd Rashid AA, Mohd Razif S, Yeong Yeh L, Jan Mohamed HJ. Diet is Linked to Colorectal Cancer Risk among Asian Adults: A Scoping Review. Malays J Med Sci 2023; 30:8-31. [PMID: 37425391 PMCID: PMC10325134 DOI: 10.21315/mjms2023.30.3.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/18/2022] [Indexed: 07/11/2023] Open
Abstract
This review aimed to map current evidence on the association between dietary factors and colorectal cancer (CRC) risk in Asia. This review was conducted based on Arksey and O'Malley methodological framework. Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) flow diagram was used to record the review process. For the purpose of searching for articles, three electronic databases namely PubMed, EBSCOHost and ScienceDirect were employed. The inclusion criteria for articles selection were articles with association analysis between diet and CRC risk among Asians, had adults as participants, articles were written in English, open-accessed and published between years 2009 and 2021. Thus, 35 out of 369 screened articles were eventually included in this review which covered 28 case-control studies, six prospective cohort studies and one randomised clinical trial. Foods such as meats, alcohol and westernised diet have been shown to be associated with increase of CRC risk while fruits, vegetables and traditional meals decreased the risk of CRC. Only a few interventional and dietary patterns studies were identified. Specific single foods and nutrients and dietary patterns have been found to increase the risk but also protected the Asian population against CRC. The findings of this review will guide health professionals, researchers and policy makers to conduct a suitable study design and topic for future research.
Collapse
Affiliation(s)
- Lydiatul Shima Ashari
- Nutrition Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | - Shahril Mohd Razif
- Nutritional Science Programme and Centre for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Lee Yeong Yeh
- School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- GI Function and Motility Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Hamid Jan Jan Mohamed
- Nutrition Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
9
|
Insights on the Association between Thyroid Diseases and Colorectal Cancer. J Clin Med 2023; 12:jcm12062234. [PMID: 36983233 PMCID: PMC10056144 DOI: 10.3390/jcm12062234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/22/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Benign and malignant thyroid diseases (TDs) have been associated with the occurrence of extrathyroidal malignancies (EMs), including colorectal cancers (CRCs). Such associations have generated a major interest, as their characterization may provide useful clues regarding diseases’ etiology and/or progression, with the possible identification of shared congenital and environmental elements. On the other hand, elucidation of the underlying molecular mechanism(s) could lead to an improved and tailored clinical management of these patients and stimulate an increased surveillance of TD patients at higher threat of developing EMs. Here, we will examine the epidemiological, clinical, and molecular findings connecting TD and CRC, with the aim to identify possible molecular mechanism(s) responsible for such diseases’ relationship.
Collapse
|
10
|
Effect of Tarantula cubensis alcoholic extract on tumour pathways in azoxymethane-induced colorectal cancer in rats. ACTA VET BRNO 2023. [DOI: 10.2754/avb202392010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this study was to determine the effects of Tarantula cubensis alcoholic extract (TCAE) on tumour development pathways in azoxymethane (AOM)-induced colorectal cancer in rats by molecular methods. Eighteen paraffin-embedded intestinal tissues, six from each group, were studied in the healthy control (C), cancer control (CC), cancer + TCAE (C-TCAE) groups. Sections of 5 µm thickness were taken from the paraffin blocks and submitted to staining with haematoxylin-eosin. In the histopathological examination, the number of crypts forming aberrant crypt foci (ACF) and the degree of dysplasia in the crypts were scored. Real-time PCR analysis was completed to determine β-catenin, KRAS (Kirsten rat sarcoma virus), APC (adenomatous polyposis coli) and P53 expressions on samples from each paraffin block. The grading scores of the number of crypts forming ACF and dysplasia in the crypts showed an evident decrease in the C-TCAE group in comparison to the CC group (P < 0.05). In real-time PCR analysis, mRNA expression levels of P53 (P > 0.05) and APC (P < 0.001) genes were found to be increased in the C-TCAE group according to the CC group. The expression levels of KRAS (P < 0.01) and β-catenin (P < 0.005) mRNA were found significantly decreased in the C-TCAE group. In conclusion, the effects of TCAE on AOM-induced colorectal cancer (CRC) in rats were evaluated molecularly; TCAE was found to modulate some changes in CRC developmental pathways, inhibiting tumour development and proliferation, and stimulating non-mutagenic tumour suppressor genes. Thus, it can be stated that TCAE is an effective chemopreventive agent.
Collapse
|
11
|
Shahmohamadnejad S, Nouri Ghonbalani Z, Tahbazlahafi B, Panahi G, Meshkani R, Emami Razavi A, Shokri Afra H, Khalili E. Aberrant methylation of miR-124 upregulates DNMT3B in colorectal cancer to accelerate invasion and migration. Arch Physiol Biochem 2022; 128:1503-1509. [PMID: 32552060 DOI: 10.1080/13813455.2020.1779311] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dysregulation of microRNA expression is significantly associated with the initiation and development of CRC. miR-124 is markedly downregulated in colorectal cancer. In the present study, the effects of methylation, over expression and downregulation of miR-124 and its target gene DNMT3B on the proliferation, migration and invasion of colorectal cell line were investigated. The promoter methylation status of miR-124 in the CRC was investigated by methylation specific PCR (MSP). The potential role of miR-124 expression in CRC cells was investigated using the demethylation reagent 5-Aza-CdR and transfection of miR-124 mimic/antimir. MSP revealed that miR-124 promoter region was hypermethylated, result in its significant downregulation in tumour tissues. We showed miR-124 expression was upregulated following 5-AZA-CdR treatment. Transfected Hct-116 cell line with miR-124 leads to decreased DNMT3B expression, cell proliferation, migration and invasion of HCT-116. In conclusion, our data indicate that miR-124 suppress colorectal cancer proliferation, migration and invasion through downregulating DNMT3B level.
Collapse
Affiliation(s)
- Shiva Shahmohamadnejad
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Nouri Ghonbalani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnoosh Tahbazlahafi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirnader Emami Razavi
- Iran National Tumor Bank, Cancer Institute of Iran, Imam Hospitals Complex, Tehran, Iran
| | - Hajar Shokri Afra
- Gut and Liver Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Khalili
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
The importance of habitat in the tumor-associated Pten, Mtor, and Akt gene expressions and chromosomal aberrations for wild rats. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Flores-López BA, Ayala-Madrigal MDLL, Moreno-Ortiz JM, Peregrina-Sandoval J, Trujillo-Rojas MÁ, Venegas-Rodríguez JL, Hernández-Ramírez R, Fernández-Galindo MA, Gutiérrez-Angulo M. Molecular Profiling of Tumor Tissue in Mexican Patients with Colorectal Cancer. Curr Issues Mol Biol 2022; 44:3770-3778. [PMID: 36005154 PMCID: PMC9406459 DOI: 10.3390/cimb44080258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Colorectal cancer is a heterogeneous disease with multiple genomic changes that influence the clinical management of patients; thus, the search for new molecular targets remains necessary. The aim of this study was to identify genetic variants in tumor tissues from Mexican patients with colorectal cancer, using massive parallel sequencing. A total of 4813 genes were analyzed in tumoral DNA from colorectal cancer patients, using the TruSight One Sequencing panel. From these, 192 variants with clinical associations were found distributed in 168 different genes, of which 46 variants had not been previous reported in the literature or databases, although genes harboring those variants had already been described in colorectal cancer. Enrichment analysis of the affected genes was performed using Reactome software; pathway over-representation showed significance for disease, signal transduction, and immune system subsets in all patients, while exclusive subsets such as DNA repair, autophagy, and RNA metabolism were also found. Those characteristics, whether individual or shared, could give tumors specific capabilities for survival, aggressiveness, or response to treatment. Our results can be useful for future investigations targeting specific characteristics of tumors in colorectal cancer patients. The identification of exclusive or common pathways in colorectal cancer patients could be important for better diagnosis and personalized cancer treatment.
Collapse
Affiliation(s)
- Beatriz Armida Flores-López
- Departamento de Biología Molecular y Genómica, Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - María de la Luz Ayala-Madrigal
- Departamento de Biología Molecular y Genómica, Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Miguel Moreno-Ortiz
- Departamento de Biología Molecular y Genómica, Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jorge Peregrina-Sandoval
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara 45200, Jalisco, Mexico
| | - Miguel Ángel Trujillo-Rojas
- Departamento de Biología Molecular y Genómica, Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Luis Venegas-Rodríguez
- Departamento de Biología Molecular y Genómica, Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Rosario Hernández-Ramírez
- Departamento de Biología Molecular y Genómica, Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Martha Alejandra Fernández-Galindo
- Departamento de Biología Molecular y Genómica, Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Melva Gutiérrez-Angulo
- Departamento de Biología Molecular y Genómica, Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Correspondence:
| |
Collapse
|
14
|
Guo Z, Liu X, Shao H. E2F4-induced AGAP2-AS1 up-regulation accelerates the progression of colorectal cancer via miR-182-5p/CFL1 axis. Dig Liver Dis 2022; 54:878-889. [PMID: 34838479 DOI: 10.1016/j.dld.2021.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are closely associated with the pathogenesis of numerous diseases including cancers. LncRNA AGAP2 Antisense RNA 1 (AGAP2-AS1) has been found to participate in the tumorigenesis of several kinds of human cancers. Nonetheless, its potential function in colorectal cancer (CRC) was still poorly investigated. METHODS The expression level of RNAs or proteins was assessed by RT-qPCR or western blot analysis. Functional experiments were performed to analyze the role of AGAP2-AS1 in CRC in vitro and in vivo. Mechanism investigations were fulfilled to determine the potential mechanism of the molecules. RESULTS AGAP2-AS1 expression was significantly elevated in CRC cells and could be transcriptionally activated by E2F Transcription Factor 4 (E2F4). Down-regulated AGAP2-AS1 could weaken CRC cell growth, migration, invasion, and epithelial-mesenchymal transition (EMT). MicroRNA-182-5p (miR-182-5p) was the target downstream molecule of AGAP2-AS1. Furthermore, Cofilin 1 (CFL1) was proved as the target of miR-182-5p. Mechanically, AGAP2-AS1 could boost the CFL1 expression via competitively binding to miR-182-5p in CRC. Importantly, CFL1 restoration could counteract the in vitro and in vivo suppression of depleted AGAP2-AS1 on CRC progression. CONCLUSION E2F4-stimulated AGAP2-AS1 aggravated CRC development through regulating miR-182-5p/CFL1 axis, implying that AGAP2-AS1 might become a potent new target for future therapies for CRC.
Collapse
Affiliation(s)
- Zhen Guo
- Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Xuezhong Liu
- Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Hongjin Shao
- Anorectal Department, Liaocheng People's Hospital, NO.67 Dongchang West Road, Dongchangfu District, Liaocheng, Shandong 252000, China.
| |
Collapse
|
15
|
Lv MY, Wang W, Zhong ME, Cai D, Fan D, Li CH, Kou WB, Huang ZP, Duan X, Hu C, Zhu Q, He X, Gao F. DNA Repair–Related Gene Signature in Predicting Prognosis of Colorectal Cancer Patients. Front Genet 2022; 13:872238. [PMID: 35495147 PMCID: PMC9048823 DOI: 10.3389/fgene.2022.872238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 01/02/2023] Open
Abstract
Background: Increasing evidence have depicted that DNA repair–related genes (DRGs) are associated with the prognosis of colorectal cancer (CRC) patients. Thus, the aim of this study was to evaluate the impact of DNA repair–related gene signature (DRGS) in predicting the prognosis of CRC patients. Method: In this study, we retrospectively analyzed the gene expression profiles from six CRC cohorts. A total of 1,768 CRC patients with complete prognostic information were divided into the training cohort (n = 566) and two validation cohorts (n = 624 and 578, respectively). The LASSO Cox model was applied to construct a prediction model. To further validate the clinical significance of the model, we also validated the model with Genomics of Drug Sensitivity in Cancer (GDSC) and an advanced clear cell renal cell carcinoma (ccRCC) immunotherapy data set. Results: We constructed a prognostic DRGS consisting of 11 different genes to stratify patients into high- and low-risk groups. Patients in the high-risk groups had significantly worse disease-free survival (DFS) than those in the low-risk groups in all cohorts [training cohort: hazard ratio (HR) = 2.40, p < 0.001, 95% confidence interval (CI) = 1.67–3.44; validation-1: HR = 2.20, p < 0.001, 95% CI = 1.38–3.49 and validation-2 cohort: HR = 2.12, p < 0.001, 95% CI = 1.40–3.21). By validating the model with GDSC, we could see that among the chemotherapeutic drugs such as oxaliplatin, 5-fluorouracil, and irinotecan, the IC50 of the cell line in the low-risk group was lower. By validating the model with the ccRCC immunotherapy data set, we can clearly see that the overall survival (OS) of the objective response rate (ORR) with complete response (CR) and partial response (PR) in the low-risk group was the best. Conclusions: DRGS is a favorable prediction model for patients with CRC, and our model can predict the response of cell lines to chemotherapeutic agents and potentially predict the response of patients to immunotherapy.
Collapse
Affiliation(s)
- Min-Yi Lv
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Biomedical Big Data Center, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Min-Er Zhong
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Du Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dejun Fan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangdong Institute of Gastroenterology, Guangzhou, China
| | - Cheng-Hang Li
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei-Bin Kou
- The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ze-Ping Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Duan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuling Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiqi Zhu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaosheng He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiaosheng He, ; Feng Gao,
| | - Feng Gao
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiaosheng He, ; Feng Gao,
| |
Collapse
|
16
|
Goïta AA, Guenot D. Colorectal Cancer: The Contribution of CXCL12 and Its Receptors CXCR4 and CXCR7. Cancers (Basel) 2022; 14:1810. [PMID: 35406582 PMCID: PMC8997717 DOI: 10.3390/cancers14071810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common cancers, and diagnosis at late metastatic stages is the main cause of death related to this cancer. This progression to metastasis is complex and involves different molecules such as the chemokine CXCL12 and its two receptors CXCR4 and CXCR7. The high expression of receptors in CRC is often associated with a poor prognosis and aggressiveness of the tumor. The interaction of CXCL12 and its receptors activates signaling pathways that induce chemotaxis, proliferation, migration, and cell invasion. To this end, receptor inhibitors were developed, and their use in preclinical and clinical studies is ongoing. This review provides an overview of studies involving CXCR4 and CXCR7 in CRC with an update on their targeting in anti-cancer therapies.
Collapse
Affiliation(s)
| | - Dominique Guenot
- INSERM U1113/Unistra, IRFAC—Interface de Recherche Fondamentale et Appliquée en Cancérologie, 67200 Strasbourg, France;
| |
Collapse
|
17
|
Molecular Landscape of Small Bowel Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14051287. [PMID: 35267592 PMCID: PMC8909755 DOI: 10.3390/cancers14051287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
Small bowel adenocarcinoma (SBA) is a rare malignancy, with lower incidence, later stage at diagnosis, and poor overall prognosis compared to other cancers of the gastrointestinal tract. Owing to the rarity of the disease along with the paucity of high-quality tissue samples and preclinical models, little is known about the molecular alterations characteristic of SBA. This is reflected by the fact that the clinical management of SBA is primarily extrapolated from colorectal cancer (CRC). Recent advances in genomic profiling have highlighted key differences between these tumors, establishing SBA as a molecularly unique intestinal cancer. Moreover, comprehensive molecular analysis has identified a relatively high incidence of potentially targetable genomic alterations in SBA, predictive of response to targeted and immunotherapies. Further advances in our knowledge of the mutational and transcriptomic landscape of SBA, guided by an increased understanding of the molecular drivers of SBA, will provide opportunities to develop novel diagnostic tools and personalized therapeutic strategies.
Collapse
|
18
|
Zhu Y, Li J, Liu H, Song Z, Yang Q, Lu C, Chen W. Circular RNA, hsa_circRNA_102049, promotes colorectal cancer cell migration and invasion via binding and suppressing miRNA-455-3p. Exp Ther Med 2022; 23:244. [PMID: 35222721 PMCID: PMC8815054 DOI: 10.3892/etm.2022.11169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 04/28/2021] [Indexed: 11/25/2022] Open
Abstract
Colorectal cancer (CRC) is the second most prevalent malignant gastrointestinal tumor type worldwide, displaying poor prognosis. Accumulating studies have reported the significance of circular RNAs (circRNAs) and microRNAs (miRNAs) in CRC carcinogenesis and development. At present, the functions and mechanisms of action underlying the circular RNA, hsa_circRNA_102049, in CRC are not completely understood. The present study aimed to establish the involvement of hsa_circRNA_102049 in CRC, as well as the associated mechanisms. The expression levels of hsa_circRNA_102049 and miRNA-455-3p were measured in CRC cell lines and tissues via reverse transcription-quantitative PCR. CRC progression was evaluated by performing Cell Counting Kit-8, flow cytometry, wound healing and Transwell invasion assays. The results demonstrated that hsa_circRNA_102049 was highly expressed in both CRC tissues and cell lines, which was associated with enhanced CRC cell proliferation, migration and invasion. Furthermore, miR-455-3p expression was downregulated in CRC cells and served as a target of has_circRNA_102049, which was validated by performing the dual luciferase reporter assay. hsa_circRNA_102049 knockdown significantly increased miR-455-3p expression, which was significantly reversed by co-transfection with the miR-455-3p inhibitor. Notably, miRNA-455-3p overexpression alleviated hsa_circRNA_102049-mediated induction of CRC cell proliferation, migration and invasion. The present study clearly demonstrated that miRNA-455-3p was a target of hsa_circRNA_102049. Moreover, the results indicated that the circular RNA, hsa_circRNA_102049, may function as a tumor promoter in CRC via directly sponging miRNA-455-3p.
Collapse
Affiliation(s)
- Yuandong Zhu
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Jianjion Li
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Haiyuan Liu
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Zhengming Song
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Qinghua Yang
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Chengdong Lu
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Wenbin Chen
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
19
|
Olabayo Olatubosun M, Abubakar MB, Batiha GES, Malami I, Ibrahim KG, Abubakar B, Bello MB, Alexiou A, Imam MU. LncRNA SNHG15: A potential therapeutic target in the treatment of colorectal cancer. Chem Biol Drug Des 2022; 101:1138-1150. [PMID: 35191201 DOI: 10.1111/cbdd.14036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/20/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
The global burden of colorectal cancer (CRC) is increasing annually. CRC could develop from genetic and phenotypic factors involving changes in gene expression. Incredibly, the human genome transcribes into non-coding RNAs, among which long non-coding RNAs (lncRNAs) signify the most crucial part of the transcriptome in multicellular organisms. lncRNAs affect gene expression at multiple levels, from transcription to protein localization and stability. Recent studies have implicated lncRNA small nucleolar RNA host gene 15 (SNHG15) in cancers occurrence and progression. Previously, an indication suggests SNHG15 overexpression triggers proliferation, metastasis, and impedes apoptosis in CRC. Further, through its activity of binding micro-RNAs, lncRNA SNHG15 modulates genes associated with CRC progression and promotes CRC resistance to chemotherapeutic drugs. Here we reviewed recent findings on the various mechanisms and roles of lncRNA SNHG15 implicated in CRC tumorigenesis. We further highlight how SNHG15 plays a vital role in regulating critical pathways linked to the development and progression of CRC. Finally, we highlight how SNHG15 can be modulated for CRC treatments and the various therapeutic strategies to be implored when targeting SNHG15 in the context of CRC treatments. Findings from these studies present SNHG15 as a potential therapeutic target for preventing and treating CRC.
Collapse
Affiliation(s)
- Mutolib Olabayo Olatubosun
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Usmanu Danfodiyo University, P.M.B 2346, Sokoto, Nigeria.,Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B, 2254, Sokoto, Nigeria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B 2346, Sokoto, Nigeria
| | - Kasimu Ghandi Ibrahim
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B, 2254, Sokoto, Nigeria
| | - Bilyaminu Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B 2346, Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Hebersham, Australia.,AFNP Med Austria, Wien, Austria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B, 2254, Sokoto, Nigeria
| |
Collapse
|
20
|
Mohd Y, Kumar P, Kuchi Bhotla H, Meyyazhagan A, Balasubramanian B, Ramesh Kumar MK, Pappusamy M, Alagamuthu KK, Orlacchio A, Keshavarao S, Sampathkumar P, Arumugam VA. Transmission Jeopardy of Adenomatosis Polyposis Coli and Methylenetetrahydrofolate Reductase in Colorectal Cancer. J Renin Angiotensin Aldosterone Syst 2021; 2021:7010706. [PMID: 34956401 PMCID: PMC8683247 DOI: 10.1155/2021/7010706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/14/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the globally prevalent and virulent types of cancer with a distinct alteration in chromosomes. Often, any alterations in the adenomatosis polyposis coli (APC), a tumor suppressor gene, and methylenetetrahydrofolate reductase (MTHFR) gene are related to surmise colorectal cancer significantly. In this study, we have investigated chromosomal and gene variants to discern a new-fangled gene and its expression in the southern populations of India by primarily spotting the screened APC and MTHFR variants in CRC patients. An equal number of CRC patients and healthy control subjects (n = 65) were evaluated to observe a chromosomal alteration in the concerted and singular manner for APC and MTHFR genotypes using standard protocols. The increasing prognosis was observed in persons with higher alcoholism and smoking (P < 0.05) with frequent alterations in chromosomes 1, 5, 12, 13, 15, 17, 18, 21, and 22. The APC Asp 1822Val and MTHFR C677T genotypes provided significant results, while the variant alleles of this polymorphism were linked with an elevated risk of CRC. Chromosomal alterations can be the major cause in inducing carcinogenic outcomes in CRCs and can drive to extreme pathological states.
Collapse
Affiliation(s)
- Younis Mohd
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, School of Life Sciences, Bharathiar University, 641046 Tamil Nadu, India
| | - Parvinder Kumar
- Department of Zoology, Jammu University, Jammu, 180006 Jammu and Kashmir, India
- Institution of Human Genetics, Jammu University, Jammu, 180006 Jammu and Kashmir, India
| | - Haripriya Kuchi Bhotla
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 461046 Tamil Nadu, India
| | - Arun Meyyazhagan
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560029, India
| | | | - Mithun Kumar Ramesh Kumar
- Department of General Surgery, Mahatma Gandhi Medical College and Research Institute, Pillaiyarkuppam, 607403 Pondicherry, India
| | - Manikantan Pappusamy
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560029, India
| | - Karthick Kumar Alagamuthu
- Department of Biotechnology, Selvamm Arts and Science College (Autonomous), Namakkal, Tamil Nadu 637003, India
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Sasikala Keshavarao
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 461046 Tamil Nadu, India
| | - Palanisamy Sampathkumar
- Department of Chemistry and Biosciences, SASTRA Deemed to be University, Kumbakonam Tamil Nadu 612001, India
| | - Vijaya Anand Arumugam
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, School of Life Sciences, Bharathiar University, 641046 Tamil Nadu, India
| |
Collapse
|
21
|
Tsai WL, Wang CY, Lee YC, Tang WC, Anuraga G, Ta HDK, Wu YF, Lee KH. A New Light on Potential Therapeutic Targets for Colorectal Cancer Treatment. Biomedicines 2021; 9:1438. [PMID: 34680556 PMCID: PMC8533612 DOI: 10.3390/biomedicines9101438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
The development and progression of colorectal cancer (CRC) involve changes in genetic and epigenetic levels of oncogenes and/or tumor suppressors. In spite of advances in understanding of the molecular mechanisms involved in CRC, the overall survival rate of CRC still remains relatively low. Thus, more research is needed to discover and investigate effective biomarkers and targets for diagnosing and treating CRC. The roles of long non-coding RNAs (lncRNAs) participating in various aspects of cell biology have been investigated and potentially contribute to tumor development. Our recent study also showed that CRNDE was among the top 20 upregulated genes in CRC clinical tissues compared to normal colorectal tissues by analyzing a Gene Expression Omnibus (GEO) dataset (GSE21815). Although CRNDE is widely reported to be associated with different types of cancer, most studies of CRNDE were limited to examining regulation of its transcription levels, and in-depth mechanistic research is lacking. In the present study, CRNDE was found to be significantly upregulated in CRC patients at an advanced TNM stage, and its high expression was correlated with poor outcomes of CRC patients. In addition, we found that knocking down CRNDE could reduce lipid accumulation through the miR-29b-3p/ANGPTL4 axis and consequently induce autophagy of CRC cells.
Collapse
Affiliation(s)
- Wei-Lun Tsai
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (W.-L.T.); (G.A.); (H.D.K.T.)
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.W.); (W.-C.T.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Wan-Chun Tang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.W.); (W.-C.T.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Gangga Anuraga
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (W.-L.T.); (G.A.); (H.D.K.T.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, East Java, Indonesia
| | - Hoang Dang Khoa Ta
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (W.-L.T.); (G.A.); (H.D.K.T.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yung-Fu Wu
- National Defense Medical Center, Department of Medical Research, School of Medicine, Tri-Service General Hospital, Taipei 11490, Taiwan;
| | - Kuen-Haur Lee
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.W.); (W.-C.T.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
22
|
Expression Profile and Prognostic Value of Wnt Signaling Pathway Molecules in Colorectal Cancer. Biomedicines 2021; 9:biomedicines9101331. [PMID: 34680448 PMCID: PMC8533439 DOI: 10.3390/biomedicines9101331] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/18/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with changes in the genetic and epigenetic levels of various genes. The molecular assessment of CRC is gaining increasing attention, and furthermore, there is an increase in biomarker use for disease prognostication. Therefore, the identification of different gene biomarkers through messenger RNA (mRNA) abundance levels may be useful for capturing the complex effects of CRC. In this study, we demonstrate that the high mRNA levels of 10 upregulated genes (DPEP1, KRT80, FABP6, NKD2, FOXQ1, CEMIP, ETV4, TESC, FUT1, and GAS2) are observed in CRC cell lines and public CRC datasets. Moreover, we find that a high mRNA expression of DPEP1, NKD2, CEMIP, ETV4, TESC, or FUT1 is significantly correlated with a worse prognosis in CRC patients. Further investigation reveals that CTNNB1 is the key factor in the interaction of the canonical Wnt signaling pathway with 10 upregulated CRC-associated genes. In particular, we identify NKD2, FOXQ1, and CEMIP as three CTNNB1-regulated genes. Moreover, individual inhibition of the expression of three CTNNB1-regulated genes can cause the growth inhibition of CRC cells. This study reveals efficient biomarkers for the prognosis of CRC and provides a new molecular interaction network for CRC.
Collapse
|
23
|
Martin M, Sun M, Motolani A, Lu T. The Pivotal Player: Components of NF-κB Pathway as Promising Biomarkers in Colorectal Cancer. Int J Mol Sci 2021; 22:7429. [PMID: 34299049 PMCID: PMC8303169 DOI: 10.3390/ijms22147429] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
Over the last several decades, colorectal cancer (CRC) has been one of the most prevalent cancers. While significant progress has been made in both diagnostic screening and therapeutic approaches, a large knowledge gap still remains regarding the early identification and treatment of CRC. Specifically, identification of CRC biomarkers that can help with the creation of targeted therapies as well as increasing the ability for clinicians to predict the biological response of a patient to therapeutics, is of particular importance. This review provides an overview of CRC and its progression stages, as well as the basic types of CRC biomarkers. We then lay out the synopsis of signaling pathways related to CRC, and further highlight the pivotal and multifaceted role of nuclear factor (NF) κB signaling in CRC. Particularly, we bring forth knowledge regarding the tumor microenvironment (TME) in CRC, and its complex interaction with cancer cells. We also provide examples of NF-κB signaling-related CRC biomarkers, and ongoing efforts made at targeting NF-κB signaling in CRC treatment. We conclude and anticipate that with more emerging novel regulators of the NF-κB pathway being discovered, together with their in-depth characterization and the integration of large groups of genomic, transcriptomic and proteomic data, the day of successful development of more ideal NF-κB inhibitors is fast approaching.
Collapse
Affiliation(s)
- Matthew Martin
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (M.S.); (A.M.)
| | - Mengyao Sun
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (M.S.); (A.M.)
| | - Aishat Motolani
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (M.S.); (A.M.)
| | - Tao Lu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (M.S.); (A.M.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 West Walnut Street, Indianapolis, IN 46202, USA
| |
Collapse
|
24
|
Sadoughi F, Mirhashemi SM, Asemi Z. Epigenetic roles of PIWI proteins and piRNAs in colorectal cancer. Cancer Cell Int 2021; 21:328. [PMID: 34193172 PMCID: PMC8243752 DOI: 10.1186/s12935-021-02034-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/19/2021] [Indexed: 12/24/2022] Open
Abstract
Small non‐coding RNAs (sncRNAs) are a subgroup of non‐coding RNAs, with less than 200 nucleotides length and no potential for coding proteins. PiRNAs, a member of sncRNAs, were first discovered more than a decade ago and have attracted researcher’s attention because of their gene regulatory function both in the nucleus and in the cytoplasm. Recent investigations have found that the abnormal expression of these sncRNAs is involved in many human diseases, including cancers. Colorectal cancer (CRC), as a common gastrointestinal malignancy, is one of the important causes of cancer‐related deaths through the entire world and appears to be a consequence of mutation in the genome and epigenetic alterations. The aim of this review is to realize whether there is a relationship between CRC and piRNAs or not.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Seyyed Mehdi Mirhashemi
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| |
Collapse
|
25
|
Laka K, Mapheto K, Mbita Z. Selective in vitro cytotoxicity effect of Drimia calcarata bulb extracts against p53 mutant HT-29 and p53 wild-type Caco-2 colorectal cancer cells through STAT5B regulation. Toxicol Rep 2021; 8:1265-1279. [PMID: 34195018 PMCID: PMC8233163 DOI: 10.1016/j.toxrep.2021.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer is the fourth leading cause of oncological-related deaths and the third most diagnosed malignancy, worldwide. The emergence of chemoresistance is a fundamental drawback of colorectal cancer therapies and there is an urgent need for novel plant-derived therapeutics. In this regard, other compounds are needed to improve the efficacy of treatment against colorectal cancer. Medicinal plants have been effectively used by traditional doctors for decades to treat various ailments with little to no side effects. Drimia calcarata (D. calcarata) is one of the plants used by Pedi people in South Africa to treat a plethora of ailments. However, the anticancer therapeutic use of D. calcarata is less understood. Thus, this study was aimed at evaluating the potential anticancer activities of D. calcarata extracts against human colorectal cancer cells. The phytochemical analysis and antioxidant activity were analysed using LC-MS, DPPH, and FRAP. The inhibitory effects and IC50 values of D. calcarata extracts were determined using the MTT assay. Induction of cellular apoptosis was assessed using fluorescence microscopy, the Muse® Cell Analyser, and gene expression analysis by Polymerase Chain Reaction (PCR). Water extract (WE) demonstrated high phenolic, tannin, and flavonoid contents than the methanol extract (ME). LC-MS data demonstrated strong differences between the ME and WE. Moreover, WE showed the best antioxidant activity than ME. The MTT data showed that both ME and WE had no significant activity against human embryonic kidney Hek 293 cell line that served as non-cancer control cells. Caco-2 cells demonstrated high sensitivity to the ME and demonstrated resistance toward the WE, while HT-29 cells exhibited sensitivity to both D. calcarata extracts. The expression of apoptosis regulatory genes assessed by PCR revealed an upregulation of p53 by ME, accompanied by downregulation of Bcl-2 and high expression of Bax after treatment with curcumin. The Bax gene was undetected in HT-29 cells. The methanol extract induced mitochondrial-mediated apoptosis in colorectal Caco-2 and HT-29 cells and WE induced the extrinsic apoptotic pathway in HT-29 cells. ME downregulated STAT1, 3, and 5B in HT-29 cells. The D. calcarata bulb extracts, therefore, contain potential anticancer agents that can be further targeted for cancer therapeutics.
Collapse
Affiliation(s)
- K. Laka
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa
| | - K.B.F. Mapheto
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa
| | - Z. Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa
| |
Collapse
|
26
|
Jeong KY, Park M. Poly adenosine diphosphate-ribosylation, a promising target for colorectal cancer treatment. World J Gastrointest Oncol 2021. [PMID: 34163574 DOI: 10.4251/wjgo.v13.i6.574.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of colorectal cancer (CRC) can result from changes in a variety of cellular systems within the tumor microenvironment. Particularly, it is primarily associated with genomic instability that is the gradual accumulation of genetic and epigenetic changes consisting of a characteristic set of mutations crucial for pathways in CRC progression. Based on this background, the potential to focus on poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP)-1 and poly-ADP ribosylation (PARylation) as the main causes of malignant formation of CRC may be considered. One of the important functions of PARP-1 and PARylation is its deoxyribonucleic acid (DNA) repair function, which plays a pivotal role in the DNA damage response and prevention of DNA damage maintaining the redox homeostasis involved in the regulation of oxidation and superoxide. PARP-1 and PARylation can also alter epigenetic markers and chromatin structure involved in transcriptional regulation for the oncogenes or tumor suppressor genes by remodeling histone and chromatin enzymes. Given the high importance of these processes in CRC, it can be considered that PARP-1 and PARylation are at the forefront of the pathological changes required for CRC progression. Therefore, this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 and PARylation in CRC related to the aforementioned roles; furthermore, it presents a summary of recent approaches with PARP-1 inhibition in non-clinical and clinical studies targeting CRC. This understanding could help embrace the importance of targeting PARP-1 and PARylation in the treatment of CRC, which may present the potential to identify various research topics that can be challenged both non-clinically and clinically.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea.
| | - Minhee Park
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| |
Collapse
|
27
|
Jeong KY, Park M. Poly adenosine diphosphate-ribosylation, a promising target for colorectal cancer treatment. World J Gastrointest Oncol 2021; 13:574-588. [PMID: 34163574 PMCID: PMC8204356 DOI: 10.4251/wjgo.v13.i6.574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
The development of colorectal cancer (CRC) can result from changes in a variety of cellular systems within the tumor microenvironment. Particularly, it is primarily associated with genomic instability that is the gradual accumulation of genetic and epigenetic changes consisting of a characteristic set of mutations crucial for pathways in CRC progression. Based on this background, the potential to focus on poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP)-1 and poly-ADP ribosylation (PARylation) as the main causes of malignant formation of CRC may be considered. One of the important functions of PARP-1 and PARylation is its deoxyribonucleic acid (DNA) repair function, which plays a pivotal role in the DNA damage response and prevention of DNA damage maintaining the redox homeostasis involved in the regulation of oxidation and superoxide. PARP-1 and PARylation can also alter epigenetic markers and chromatin structure involved in transcriptional regulation for the oncogenes or tumor suppressor genes by remodeling histone and chromatin enzymes. Given the high importance of these processes in CRC, it can be considered that PARP-1 and PARylation are at the forefront of the pathological changes required for CRC progression. Therefore, this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 and PARylation in CRC related to the aforementioned roles; furthermore, it presents a summary of recent approaches with PARP-1 inhibition in non-clinical and clinical studies targeting CRC. This understanding could help embrace the importance of targeting PARP-1 and PARylation in the treatment of CRC, which may present the potential to identify various research topics that can be challenged both non-clinically and clinically.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| | - Minhee Park
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| |
Collapse
|
28
|
Kang B, Lee HS, Jeon SW, Park SY, Choi GS, Lee WK, Heo S, Lee DH, Kim DS. Progressive alteration of DNA methylation of Alu, MGMT, MINT2, and TFPI2 genes in colonic mucosa during colorectal cancer development. Cancer Biomark 2021; 32:231-236. [PMID: 34092617 DOI: 10.3233/cbm-203259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the leading causes of mortality and morbidity in the world. It is characterized by different pathways of carcinogenesis and is a heterogeneous disease with diverse molecular landscapes that reflect histopathological and clinical information. Changes in the DNA methylation status of colon epithelial cells have been identified as critical components in CRC development and appear to be emerging biomarkers for the early detection and prognosis of CRC. OBJECTIVE To explore the underlying disease mechanisms and identify more effective biomarkers of CRC. METHODS We compared the levels and frequencies of DNA methylation in 11 genes (Alu, APC, DAPK, MGMT, MLH1, MINT1, MINT2, MINT3, p16, RGS6, and TFPI2) in colorectal cancer and its precursor adenomatous polyp with normal tissue of healthy subjects using pyrosequencing and then evaluated the clinical value of these genes. RESULTS Aberrant methylation of Alu, MGMT, MINT2, and TFPI2 genes was progressively accumulated during the normal-adenoma-carcinoma progression. Additionally, CGI methylation occurred either as an adenoma-associated event for APC, MLH1, MINT1, MINT31, p16, and RGS6 or a tumor-associated event for DAPK. Moreover, relatively high levels and frequencies of DAPK, MGMT, and TFPI2 methylation were detected in the peritumoral nonmalignant mucosa of cancer patients in a field-cancerization manner, as compared to normal mucosa from healthy subjects. CONCLUSION This study identified several biomarkers associated with the initiation and progression of CRC. As novel findings, they may have important clinical implications for CRC diagnostic and prognostic applications. Further large-scale studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Ben Kang
- Department of Pediatrics and Bio-medical Research Institute, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Hyun Seok Lee
- Department of Internal Medicine, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Seong Woo Jeon
- Department of Internal Medicine, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Soo Yeun Park
- Department of General Surgery, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Gyu Seog Choi
- Department of General Surgery, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Won Kee Lee
- Department of Preventive Medicine, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Somi Heo
- Department of Preventive Medicine, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Duk Hee Lee
- Department of Preventive Medicine, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Dong Sun Kim
- Department of Anatomy, School of Medicine, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| |
Collapse
|
29
|
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, with increasing prevalence in Asian countries with a crude incidence of 21.1 per 100,000. Schistosoma is a genus of trematodes that infect millions of humans, affecting multiple organs, notably the intestines, liver, and bladder. Those trematodes may cause chronic inflammation in the affected organ leading to long-term complications such as fibrosis and neoplasia. There is rising evidence that infection with Schistosoma japonicum is correlated with the liver and CRC in endemic Asian countries. It is reported that chronic infection with Schistosomiasis raises the risk of CRC by 3 times. Less commonly seen outside of endemic areas, we present a case of S. japonicum-associated CRC in the United States in a woman with sigmoid adenocarcinoma and Schistosoma japonicum infection.
Collapse
|
30
|
miRNA-mRNA Regulatory Network Reveals miRNAs in HCT116 in Response to Folic Acid Deficiency via Regulating Vital Genes of Endoplasmic Reticulum Stress Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6650181. [PMID: 33997035 PMCID: PMC8096553 DOI: 10.1155/2021/6650181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/27/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
Moderate folic acid (FA) intake is an effective strategy that slows colorectal cancer (CRC) progression. However, high consumption of FA may trigger the transition of precancerous tissue towards malignancy. MicroRNAs (miRNAs) are considered to be potential biomarkers of CRC. Thus, identification of miRNAs of dysregulated genes in CRC cells by detailed analysis of mRNA and miRNA expression profile in the context of FA deficiency could substantially increase our understanding of its oncogenesis. mRNA-seq and miRNA-seq analyses were utilized to investigate the expression of miRNAs in FA-deficient CRC cell line–HCT116 through massive parallel sequencing technology. A total of 38 mRNAs and 168 miRNAs were identified to be differentially expressed between CRC groups with or without FA deficiency. We constructed an miRNA-mRNA network for the vital regulatory miRNAs altered in FA-deficient CRC cells. The mRNAs and miRNAs validated by Western blotting and RT-qPCR were consistent with the sequencing results. Results showed that FA deficiency upregulated some miRNAs thereby inhibiting the expression of critical genes in the endoplasmic reticulum (ER) stress pathway. Dysregulated miRNAs in our miRNA-mRNA network could contribute to CRC cell in response to deficient FA. This work reveals novel molecular targets that are likely to provide therapeutic interventions for CRC.
Collapse
|
31
|
Cai Y, Li Y, Shi C, Zhang Z, Xu J, Sun B. LncRNA OTUD6B-AS1 inhibits many cellular processes in colorectal cancer by sponging miR-21-5p and regulating PNRC2. Hum Exp Toxicol 2021; 40:1463-1473. [PMID: 33686892 DOI: 10.1177/0960327121997976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Accumulating evidence has revealed that long noncoding RNAs (lncRNAs) play essential roles in regulating cellular process of various cancers. There have been many studies on the biological functions of lncRNAs in colorectal cancer (CRC). In this research, we explored the role and mechanism of lncRNA ovarian tumor domain containing 6B antisense RNA1 (OTUD6B-AS1) in CRC. Here, we detected OTUD6B-AS1 expression in CRC tissues and cells by RT-qPCR. Functional experiments were performed to test alterations in different cellular processes. Moreover, to verify the binding ability among the indicated RNA molecules, we carried out RIP, RNA pull-down and luciferase reporter assays. According to our data, OTUD6B-AS1 expression was low in CRC tissues and cells. Functionally, overexpression of OTUD6B-AS1 inhibited cell proliferation, migration, invasion and EMT, and promoted cell apoptosis. Bioinformatic analysis and mechanistical experiments confirmed that OTUD6B-AS1 could act as a competitive endogenous RNA (ceRNA) to upregulate Proline-Rich Nuclear Receptor Coactivator 2 (PNRC2) expression by sequestering miR-21-5p. Further rescue experiments validated the inhibitory function of the OTUD6B-AS1/miR-21-5p/PNRC2 axis in cellular process of CRC. Overall, OTUD6B-AS1 inhibits cellular development in CRC by sponging miR-21-5p and upregulating PNRC2, providing a novel insight into the exploration on CRC treatment.
Collapse
Affiliation(s)
- Y Cai
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Y Li
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - C Shi
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Z Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - J Xu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - B Sun
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
32
|
Zhou M, Bian Z, Liu B, Zhang Y, Cao Y, Cui K, Sun S, Li J, Zhang J, Wang X, Li C, Yao S, Yin Y, Fei B, Huang Z. Long noncoding RNA MCM3AP-AS1 enhances cell proliferation and metastasis in colorectal cancer by regulating miR-193a-5p/SENP1. Cancer Med 2021; 10:2470-2481. [PMID: 33686713 PMCID: PMC7982620 DOI: 10.1002/cam4.3830] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Accumulating evidences have shown that long noncoding RNAs (lncRNAs) play key roles in many diseases, including cancer. Several studies reported that MCM3AP antisense RNA 1 (MCM3AP-AS1) was associated with the tumorigenesis and progression. However, the specific function and mechanism of MCM3AP-AS1 in colorectal cancer (CRC) have not been fully understood. METHODS The expression of MCM3AP-AS1 was detected by quantitative reverse transcription PCR (RT-qPCR) in CRC tissues and matched noncancerous tissues (NCTs). CCK-8 assay, colony formation assay, transwell assay, xenograft and lung metastasis mouse models were used to examine the tumor-promoting function of MCM3AP-AS1 in vitro and in vivo. The binding relationship between MCM3AP-AS1, miR-193a-5p and sentrin-specific peptidase 1 (SENP1) were screened and identified by databases, RT-qPCR, dual luciferase reporter assay and western blot. RESULTS In the present study, we got that the expression of MCM3AP-AS1 was higher in CRC tissues than in paired NCTs, and increased MCM3AP-AS1 expression was associated with adverse outcomes in CRC patients. Functional experiments in vitro revealed that silencing of MCM3AP-AS1 could inhibit the proliferation, colony formation, migratory, and invasive abilities of CRC cells. The mouse models of xenograft and lung metastasis further confirmed that in vivo silencing MCM3AP-AS1 could significantly inhibit the growth and metastasis of CRC. Further mechanism studies indicated that MCM3AP-AS1 could sponge miR-193a-5p and inhibit the activity of it. What is more, SENP1 was proved to be a novel target of miR-193a-5p and could be upregulated by MCM3AP-AS1. At last, we observed that SENP1 overexpression in CRC tissues was closely related to unfavorable prognosis. CONCLUSION Taken together, we identified in CRC the MCM3AP-AS1/miR-193a-5p/SENP1 regulatory axis, which affords a therapeutic possibility for CRC.
Collapse
Affiliation(s)
- Mingyue Zhou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Zehua Bian
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Bingxin Liu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yi Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yulin Cao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Shengbai Sun
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiuming Li
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jia Zhang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xue Wang
- Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Chaoqun Li
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuan Yin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Bojian Fei
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Cancer Epigenetics Program, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
33
|
Singh MP, Rai S, Pandey A, Singh NK, Srivastava S. Molecular subtypes of colorectal cancer: An emerging therapeutic opportunity for personalized medicine. Genes Dis 2021; 8:133-145. [PMID: 33997160 PMCID: PMC8099693 DOI: 10.1016/j.gendis.2019.10.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Molecular subtypes-based therapies offer new potential framework for desired and precise outcome in clinical settings. Current treatment strategies in colorectal cancer are largely 'one drug fit all' model for patients that display same pathological conditions. However, CRC is a very heterogenous set of malignancy that does not support for above criteria. Each subtype displays different pathological and genetic signatures. Based on these features, therapeutic stratification for individual patients may be designed, which may ultimately lead to improved therapeutic outcomes. In this comprehensive review, we have attempted to briefly outline major CRC pathways. A detailed overview of molecular subtypes and their clinical significance has been discussed. Present and future methods, governing CRC subtyping in the era of personalized therapy with a special emphasis on CMS subtypes of CRC has been reviewed. Together, discovery and validation of new CRC patient stratification methods, screening for novel therapeutic targets, and enhanced diagnosis of CRC may improve the treatment outcome.
Collapse
Affiliation(s)
- Manish Pratap Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, UP, 211004, India
| | - Sandhya Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, UP, 211004, India
| | - Ashutosh Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, UP, 211004, India
| | - Nand K. Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, UP, 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, UP, 211004, India
| |
Collapse
|
34
|
Zhang X, Lin JL, Gao R, Chen N, Huang GF, Wang L, Gao H, Zhuo HZ, Chen LQ, Chen XH, Li H. Application of the hospital-family holistic care model in caregivers of patients with permanent enterostomy: A randomized controlled trial. J Adv Nurs 2021; 77:2033-2049. [PMID: 33523488 DOI: 10.1111/jan.14691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/07/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022]
Abstract
AIMS To evaluate the effectiveness of the hospital-family holistic care model based on the theory of 'Timing It Right' in caregivers of patients with permanent enterostomy. DESIGN A prospective randomized controlled trial. METHODS One hundred and twenty-five caregivers of patients with permanent enterostomy were recruited from 1 May 2017-31 August 2019. They were randomized into either intervention group (N = 62) or control group (N = 63). The control group received routine care and follow-up, while the intervention group received routine care, follow-up, and hospital-family holistic care intervention based on 'Timing It Right'. The care ability, psychological distress, and life quality of the caregivers were evaluated between the groups before the intervention, at discharge, and 3 and 6 months after discharge. RESULTS One hundred and eleven caregivers completed the study (88.8%). At 3 and 6 months after discharge, the care ability and life quality in the intervention group were significantly better than those in the control group (t = 8.506/9.783, t = 22.652/26.179, p < 0.05) based on the t tests, and the psychological distress was lower than that in the control group. The ostomy adaptability of the control group was significantly lower than that in the intervention group (p < 0.001) based on the t tests, and the χ2 test showed that ostomy complication was more than that in the intervention group (23.81% vs. 12.90% and 34.92% vs. 19.35%; p < 0.05) at 3 and 6 months after discharge. The interaction between time and group showed that the effect of time factor varied with the group and the four evaluation indexes in the intervention group gradually improved with the extension of the observation time and were better than those in the control group based on generalized estimating equation model. CONCLUSION The hospital-family holistic care model based on 'Timing It Right' can effectively improve the care ability of caregivers of patients with permanent enterostomy, reduce psychological distress, and improve the quality of life. IMPACT The caregivers of patients with permanent enterostomy showed dynamic changes in their care experience and needs at different stages of the disease. The hospital-family holistic care intervention strategy based on 'Timing It Right' can effectively improve the caregiver's care ability, alleviate psychological distress, and improve the quality of life. Additionally, improving the patients' stoma adaptability and reducing the incidence of complications related to ostomy.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Gastroenterology, Fujian Provincial Hospital, Fujian Medical University Affiliated Clinical Provincial Medical Institute, Fuzhou, Fujian Province, China
| | - Jin Ling Lin
- Nursing School of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Rui Gao
- Department of Pathology, Fujian Provincial Hospital, Fujian Medical University Affiliated Clinical Provincial Medical Institute, Fuzhou, Fujian Province, China
| | - Ning Chen
- Department of Nursing, Fujian Provincial Hospital, Fujian Medical University Affiliated Clinical Provincial Medical Institute, Fuzhou, Fujian Province, China
| | - Gui Fang Huang
- Department of Gastroenterology, Fujian Provincial Hospital, Fujian Medical University Affiliated Clinical Provincial Medical Institute, Fuzhou, Fujian Province, China
| | - Long Wang
- Department of Gastroenterology, Fujian Provincial Hospital, Fujian Medical University Affiliated Clinical Provincial Medical Institute, Fuzhou, Fujian Province, China
| | - Hong Gao
- Department of Gastroenterology, Fujian Provincial Hospital, Fujian Medical University Affiliated Clinical Provincial Medical Institute, Fuzhou, Fujian Province, China
| | - Hui Zhen Zhuo
- Department of Gastroenterology, Fujian Provincial Hospital, Fujian Medical University Affiliated Clinical Provincial Medical Institute, Fuzhou, Fujian Province, China
| | - Li Qi Chen
- Department of Gastroenterology, Fujian Provincial Hospital, Fujian Medical University Affiliated Clinical Provincial Medical Institute, Fuzhou, Fujian Province, China
| | - Xiao Huan Chen
- Department of Nursing, Fujian Provincial Hospital, Fujian Medical University Affiliated Clinical Provincial Medical Institute, Fuzhou, Fujian Province, China
| | - Hong Li
- Nursing School of Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Nursing, Fujian Provincial Hospital, Fujian Medical University Affiliated Clinical Provincial Medical Institute, Fuzhou, Fujian Province, China
| |
Collapse
|
35
|
Malmqvist J, Siersma V, Bang CW, Brodersen J. Consequences of screening in colorectal cancer (COS-CRC): development and dimensionality of a questionnaire. BMC Psychol 2021; 9:7. [PMID: 33413695 PMCID: PMC7792180 DOI: 10.1186/s40359-020-00504-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Harms of colorectal cancer (CRC) screening include psychosocial consequences. We have not identified studies using a participant-relevant questionnaire with adequate measurement properties to investigate these harms. However, Brodersen et al. have previously developed a core questionnaire consequences of screening (COS) for use in screening for life-threatening diseases. Therefore, the objectives were: (1) To investigate content validity of COS in a CRC screening setting and in case of gaps in content coverage (2) generate new items and themes and (3) test the possibly extended version of COS for dimensionality and differential item functioning (DIF) using Rasch Models. METHODS We performed two-part-focus-groups with CRC screenees. Screenees were recruited by strategic sampling. In the first part 16 screenees with false-positive results (n = 7) and low-risk polyps (n = 9) were interviewed about their CRC screening experiences and in the second part COS was examined for content validity. When new information was developed in the focus groups, new items covering this topic were generated. Subsequently, new items were, together with COS, tested in the subsequent interviews. A random subsample (n = 410) from a longitudinal questionnaire study, not yet published, was used to form the data for this paper. We analysed multidimensionality and uniform DIF with Andersen's conditional likelihood ratio test. We assessed individual item fit to the model. We also analysed Local Dependence (LD) and DIF by partial gamma coefficients using Rasch Models. RESULTS COS was found relevant in a CRC screening setting. However, new information was discovered in the focus groups, covered by 18 new CRC screening-specific items. The Rasch analyses only revealed minor problems in the COS-scales. The 18 new items were distributed on four new CRC screening-specific dimensions and one single item. CONCLUSION An extended version of COS specifically for use in a CRC screening setting has been developed. The extended part encompasses four new scales and one new single item. The original COS with the CRC-screening specific extension is called consequences of screening in colorectal cancer (COS-CRC). COS-CRC possessed reliability, unidimensionality and invariant measurement.
Collapse
Affiliation(s)
- Jessica Malmqvist
- The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Oester Farimagsgade 5, 1514 Copenhagen, Denmark
- Primary Healthcare Research Unit, Region Zealand, Alléen 15, 4180 Soroe, Denmark
| | - Volkert Siersma
- The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Oester Farimagsgade 5, 1514 Copenhagen, Denmark
| | - Christine Winther Bang
- The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Oester Farimagsgade 5, 1514 Copenhagen, Denmark
| | - John Brodersen
- The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Oester Farimagsgade 5, 1514 Copenhagen, Denmark
- Primary Healthcare Research Unit, Region Zealand, Alléen 15, 4180 Soroe, Denmark
| |
Collapse
|
36
|
Wei F, Jing H, Wei M, Liu L, Wu J, Wang M, Han D, Yang F, Yang B, Jiao D, Zheng G, Zhang L, Xi W, Guo Z, Yang AG, Qin W, Zhou Y, Wen W. Ring finger protein 2 promotes colorectal cancer progression by suppressing early growth response 1. Aging (Albany NY) 2020; 12:26199-26220. [PMID: 33346749 PMCID: PMC7803491 DOI: 10.18632/aging.202396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Ring finger protein 2 (RNF2) is an important component of polycomb repressive complex 1. RNF2 is upregulated in many kinds of tumors, and elevated RNF2 expression is associated with a poor prognosis in certain cancers. To assess the function of RNF2 in colorectal cancer, we examined RNF2 protein levels in 313 paired colorectal cancer tissues and adjacent normal tissues. We then analyzed the association of RNF2 expression with the patients’ clinicopathologic features and prognoses. RNF2 expression was upregulated in colorectal cancer tissues and was associated with the tumor differentiation status, tumor stage and prognosis. In colorectal cancer cell lines, downregulation of RNF2 inhibited cell proliferation and induced apoptosis. Gene microarray analysis revealed that early growth response 1 (EGR1) was upregulated in RNF2-knockdown cells. Knocking down EGR1 partially reversed the inhibition of cell proliferation and the induction of apoptosis in RNF2-knockdown cells. RNF2 was enriched at the EGR1 promoter, where it mono-ubiquitinated histone H2A, thereby inhibiting EGR1 expression. These results indicate that RNF2 is oncogenic in colorectal cancer and may promote disease progression by inhibiting EGR1 expression. RNF2 is thus a potential prognostic marker and therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Feilong Wei
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Haoren Jing
- Department of Anorectal Surgery, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300013, China
| | - Ming Wei
- Urology Department of No. 989 Hospital, Joint Logistics Support Force of PLA, Luoyang 471000, China
| | - Lei Liu
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Jieheng Wu
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Meng Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Bo Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Dian Jiao
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Guoxu Zheng
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Lingling Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Wenjin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Zhangyan Guo
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yi Zhou
- Department of Anorectal Surgery, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300013, China
| | - Weihong Wen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
37
|
Kuo TT, Chang HY, Chen TY, Liu BC, Chen HY, Hsiung YC, Hsia SM, Chang CJ, Huang TC. Melissa officinalis Extract Induces Apoptosis and Inhibits Migration in Human Colorectal Cancer Cells. ACS OMEGA 2020; 5:31792-31800. [PMID: 33344833 PMCID: PMC7745433 DOI: 10.1021/acsomega.0c04489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/20/2020] [Indexed: 05/04/2023]
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Lifestyle-related factors, such as diet, are associated with the development of CRC. Cumulating evidence indicates noticeable chemopreventive effects of phytochemicals on CRC, suggesting that drinking herbal tea potentially reduces the risk of distal colon cancer via its antiproliferative and anti-angiogenic activities. We examine the antitumor effects of nine components frequently found in herbal tea and uncover the underlying molecular mechanism. Among them, the hot water extract of Melissa officinalis (MO) exhibited the highest anticancer activity on CRC cells. We revealed that MO reduced cell proliferation, induced cell cycle arrest at the G2/M phase, triggered caspase-dependent apoptotic cell death, and inhibited cell migration ability by modulating the epithelial-mesenchymal transition in HCT116 CRC cells. To examine the metabolite composition in the MO hot water extract, we applied mass spectrometry-based analysis and identified 67 compounds. Among them, the phenolic compounds, including lignans, phenylpropanoids, and polyketides, are widely found in natural products and possess various bioactivities such as anti-inflammatory, antioxidation, and anticancer effects. The results indicate that herbal tea consumption benefits CRC prevention and management.
Collapse
Affiliation(s)
- Tzu-Ting Kuo
- Ph.D.
Program for Cancer Molecular Biology and Drug Discovery, College of
Medical Science and Technology, Taipei Medical
University and Academia Sinica, Taipei 11031, Taiwan
| | - Hsin-Yi Chang
- Graduate
Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Tai-Yuan Chen
- Department
of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Bai-Chia Liu
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsin-Yi Chen
- Ph.D.
Program for Cancer Molecular Biology and Drug Discovery, College of
Medical Science and Technology, Taipei Medical
University and Academia Sinica, Taipei 11031, Taiwan
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yuan-Chin Hsiung
- TMU
Core Facility Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Shih-Min Hsia
- School of
Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Ju Chang
- Department
of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Tsui-Chin Huang
- Ph.D.
Program for Cancer Molecular Biology and Drug Discovery, College of
Medical Science and Technology, Taipei Medical
University and Academia Sinica, Taipei 11031, Taiwan
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU
Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cancer
Center, Wan Fang Hospital, Taipei Medical
University, Taipei 11696, Taiwan
| |
Collapse
|
38
|
Song C, Shen B, Dong Z, Fan Z, Xu L, Li ZP, Li Y, Feng ST. Diameter of Superior Rectal Vein - CT Predictor of KRAS Mutation in Rectal Carcinoma. Cancer Manag Res 2020; 12:10919-10928. [PMID: 33154671 PMCID: PMC7608140 DOI: 10.2147/cmar.s270727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/14/2020] [Indexed: 01/22/2023] Open
Abstract
Background The purpose of this study was to investigate the feasibility of CT parameters to predict the presence of KRAS mutations in rectal cancer patients. The relationship between the presence of a KRAS mutation and pathological findings was evaluated simultaneously. Methods Eighty-nine patients (29 females, 60 males, age 27–90, mean 59.7±12 years) with pathologically proven rectal cancer were enrolled. A KRAS mutation test was completed following surgery. Parameters evaluated on CT included the tumor location, the diameter of the superior rectal vein (SRV) and inferior mesenteric vein (IMV), the presence of calcification, ulceration, lymph node enlargement (LNE), distant metastasis, tumor shape (intraluminal polypoid mass, infiltrative mass, or bulky), circumferential extent (C0–C1/4, C1/4–C1/2, C1/2–C3/4, or C3/4–C1), enhanced pattern (homogeneous or heterogeneous), CT ratio, and the length of the tumor (LOT). Pathological findings included lymphovascular emboli, signet ring cell, peripheral fat interval infiltration, focal ulcer, lymph node metastasis, tumor pathological type, and differentiation extent. The correlations between KRAS status and CT parameters, and KRAS status and pathological findings were investigated. The accuracy of CT characteristics for predicting KRAS mutation was evaluated. Results A KRAS mutation was detected in 42 cases. On CT image, the diameter of the SRV was significantly increased in the KRAS mutation group compared to in the KRAS wild-type group (4.6±0.9 mm vs 4.2±0.9 mm, p=0.02), and LNE was more likely to occur in the KRAS mutation group (73.3% vs 26.7%, p=0.03). There was no significant difference between the KRAS mutation group and the KRAS wild-type group on the other CT parameters (location, IMV, calcification, ulcer, distant metastasis, tumor shape, enhanced pattern, circumferential extent, CT ratio, and LOT). In the pathological findings, a KRAS mutation was more likely to occur in the middle differentiation group (p=0.03). No significant difference was found between the KRAS mutation group and the KRAS wild-type group in the presence of lymphovascular emboli, signet ring cell, peripheral fat interval infiltration, focal ulcer, lymph node metastasis, and tumor pathological type. With the best cut-off value of 4.07 mm, the AUC of the SRV to predict a KRAS mutation was 0.63 with a sensitivity of 76.2% and a specificity of 48.9%. Conclusion It was feasible to use the diameter of the SRV to predict a KRAS mutation in rectal cancer patients, and LNE also can be regarded as an important clue on preoperative CT images.
Collapse
Affiliation(s)
- Chenyu Song
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Bingqi Shen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Zhi Dong
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Zhenzhen Fan
- Department of Radiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, People's Republic of China
| | - Ling Xu
- Faculty of Medicine and Dentistry, University of Western Australia, Perth, Australia
| | - Zi-Ping Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Yin Li
- Department of Gastroenterology Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, People's Republic of China
| |
Collapse
|
39
|
Wang YX, Li YZ, Zhu HF, Zhang ZY, Qian XL, He GY. STX2 drives colorectal cancer proliferation via upregulation of EXOSC4. Life Sci 2020; 263:118597. [PMID: 33075373 DOI: 10.1016/j.lfs.2020.118597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022]
Abstract
AIMS To explore the biological function and mechanism of Syntaxin2 (STX2) in Colorectal cancer (CRC) proliferation. MAIN METHODS A series of gain- and loss-of-function analysis were conducted the to explore the biological function of STX2 in CRC proliferation in vivo and in vitro. Western blot, Co-immunoprecipitation (Co-IP) and the functional analyses were taken to analyze the regulative role of STX2 on Exosome Complex 4 (EXOSC4) in CRC proliferation; Immunohistochemistry (IHC) and Real-time quantitative polymerase chain reaction (qPCR) were used to further verify the relationship between the expression of STX2 and EXOSC4 in human CRC samples. KEY FINDINGS Our study revealed that the over-expression of STX2 promoted CRC proliferation, while knockdown of STX2 repressed CRC proliferation; STX2 promoted CRC proliferation via increasing EXOSC4 protein; There was a positive correlation between STX2 and EXOSC4 expression. SIGNIFICANCE The current data verify that STX2 drives the proliferation of CRC via increasing the expression of EXOSC4.
Collapse
Affiliation(s)
- Yong-Xia Wang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China; Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Henan Provincial Key Laboratory of Molecular Oncologic Pathology, Henan, Xinxiang, China
| | - Yong-Zhen Li
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China; Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Henan Provincial Key Laboratory of Molecular Oncologic Pathology, Henan, Xinxiang, China
| | - Hui-Fang Zhu
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China; Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Henan Provincial Key Laboratory of Molecular Oncologic Pathology, Henan, Xinxiang, China
| | - Zhe-Ying Zhang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China; Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Henan Provincial Key Laboratory of Molecular Oncologic Pathology, Henan, Xinxiang, China
| | - Xin-Lai Qian
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China; Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Henan Provincial Key Laboratory of Molecular Oncologic Pathology, Henan, Xinxiang, China.
| | - Guo-Yang He
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China; Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Henan Provincial Key Laboratory of Molecular Oncologic Pathology, Henan, Xinxiang, China.
| |
Collapse
|
40
|
Antikchi MH, Asadian F, Dastgheib SA, Ghelmani Y, Kargar S, Sadeghizadeh-Yazdi J, Neamatzadeh H. Cumulative Evidence for Association Between IL-8 -251T>A and IL-18 -607C>A Polymorphisms and Colorectal Cancer Susceptibility: a Systematic Review and Meta-analysis. J Gastrointest Cancer 2020; 52:31-40. [PMID: 32944849 DOI: 10.1007/s12029-020-00521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE The correlation of IL-8 and IL-18 gene polymorphisms with colorectal cancer (CRC) was investigated by previous studies, though the results remained conflicting. Thus, the meta-analysis was performed to investigate the association of IL-8 -251T>A and IL-18 -607C>A polymorphisms with CRC risk. METHODS A comprehensive search of the PubMed, Web of Science, CNKI, SciELO, and Wanfang databases was performed up to February 20, 2020. The strength of the associations was calculated with odds ratios (ORs) and their corresponding 95% of confidence intervals (CIs). RESULTS A total of 16 case-control studies including 13 studies with 3908 cases and 5005 controls on IL-8 -251T>A polymorphism and three studies with 396 cases and 560 controls on IL-18 -607C>A polymorphism were selected. Pooled data revealed that the IL-8 -251T>A and IL-18 -607C>A polymorphisms were not significantly associated with an increased risk of CRC in global population. When stratified by ethnicity, source of controls, sample size, and Hardy-Weinberg equilibrium (HWE), there were still no significant association between IL-8 -251T>A polymorphism and risk of CRC. CONCLUSIONS Our results revealed that the IL-8 -251T>A and IL-18 -607C>A polymorphisms were not associated with an increased susceptibility to CRC. We strongly call for further studies with larger sample sizes and different ethnicities to confirm our findings.
Collapse
Affiliation(s)
| | - Fatemeh Asadian
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yaser Ghelmani
- Clinical Research Development Center of Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Shadi Kargar
- Department of Surgery, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jalal Sadeghizadeh-Yazdi
- Department of Food Science and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
41
|
Wang Z, Jin J. LncRNA SLCO4A1-AS1 promotes colorectal cancer cell proliferation by enhancing autophagy via miR-508-3p/PARD3 axis. Aging (Albany NY) 2020; 11:4876-4889. [PMID: 31308265 PMCID: PMC6682525 DOI: 10.18632/aging.102081] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022]
Abstract
Aberrant expressions of various long non-coding RNAs (lncRNAs) have been involved in the progression and pathogenesis of various carcinomas. However, the expression and biological function of SLCO4A1-AS1 in colorectal cancer (CRC) remain poorly understood. Gain- and loss-of-function assays were applied to determine the roles of SLCO4A1-AS1 in autophagy and CRC progression. qRT-PCR and in situ hybridization (ISH) results showed that SLCO4A1-AS1 was positively associated with PARD3 expression in CRC tissues. In vitro and in vivo studies revealed that SLCO4A1-AS1 knockdown repressed cytoprotective autophagy as assayed by transmission electron microscopy (TEM), and inhibited cell proliferation by directly targeting partition-defective 3 (PARD3). Mechanistically, SLCO4A1-AS1 acted as a sponge of miR-508-3p, leading to upregulation of PARD3 and promotion of CRC cell proliferation. The current study demonstrates that the SLCO4A1-AS1/miR-508-3p/PARD3/autophagy pathway play a critical role in CRC cell proliferation, and might provide novel targets for developing therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Zhaozhi Wang
- Department of Gastrointestinal Medicine, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Jianjun Jin
- Department of Gastrointestinal Medicine, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
| |
Collapse
|
42
|
Khan A, Ituarte PHG, Raoof M, Melstrom L, Li H, Yuan YC, Lai L, Benjamin Paz I, Goel A, Fong Y, Woo Y. Disparate and Alarming Impact of Gastrointestinal Cancers in Young Adult Patients. Ann Surg Oncol 2020; 28:785-796. [PMID: 32740736 DOI: 10.1245/s10434-020-08969-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/11/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The rise in the incidence of gastric cancer (GC) and colorectal cancer (CRC) in young adults (YA) remains unexplained. We aim to identify differences in these malignancies between YA and older patients. PATIENTS AND METHODS We retrospectively analyzed the California Cancer Registry for all GC and CRC cases from 2000 to 2012. Pearson's Chi square analysis and stepwise regression model with backward elimination were used to analyze differences in demographic, clinical, and histopathologic features, and log-rank test to compare survival between young (≤ 40 years) and older adults (41-90 years) with GC or CRC, separately. RESULTS We analyzed 19,368 cases of GC and 117,415 cases of CRC. YA accounted for 4.6% of GC (n = 883) and 2.8% of CRC (n = 3273) patients. Compared with older patients, YA were more likely to be Hispanic (P < 0.0001) and have poorly differentiated (P < 0.0001), higher histologic grade (P < 0.0001), and signet ring features (P < 0.0001). Synchronous peritoneal metastases were more common in YA patients (32.1% vs. 14.1% GC, 8.8% vs. 5.4% CRC, P < 0.0001). The 5-year overall survival (OS) of YA with CRC or GC was longer than that of older patients with the same stage of malignancy; except YA with stage I GC, who demonstrated poor OS and disease-specific survival (DSS) (65.1% and 67.9%, respectively) which were significantly worse than those of adults aged 41-49 years (70.7% and 76.2%, respectively) and 50-64 years (69.1% and 78.1%, respectively). CONCLUSIONS YA with GC or CRC have distinctly worse clinical and histopathologic features compared with older patients and are disproportionately of Hispanic ethnicity. These results contribute to improving understanding of younger versus older GI cancer patients.
Collapse
Affiliation(s)
- Amir Khan
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Philip H G Ituarte
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Mustafa Raoof
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Laleh Melstrom
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Haiqing Li
- Department of Computational Quantitative Medicine, Center for Informatics, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Yate-Ching Yuan
- Department of Computational Quantitative Medicine, Center for Informatics, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Lily Lai
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - I Benjamin Paz
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Yuman Fong
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yanghee Woo
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
43
|
Yang C, Shi S, Su Y, Tong JS, Li L. P2X7R promotes angiogenesis and tumour-associated macrophage recruitment by regulating the NF-κB signalling pathway in colorectal cancer cells. J Cell Mol Med 2020; 24:10830-10841. [PMID: 32735377 PMCID: PMC7521273 DOI: 10.1111/jcmm.15708] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Overexpression of P2X7R has been observed in several tumours and is related to cancer advancement and metastasis. However, the role of P2X7R in colorectal cancer (CRC) patients is not well understood. In the current study, overexpression of P2X7R and the effects at the molecular and functional levels in CRC were assessed in a mouse orthotopic model. Functional assays, such as the CCK‐8 assay, wound healing and transwell assay, were used to determine the biological role of P2X7R in CRC cells. CSC‐related genes and properties were detected via sphere formation and real‐time PCR assays. The underlying mechanisms were explored by Western blotting, real‐time PCR and Flow cytometry. In this study, we found that overexpression of P2X7R increases in the in vivo growth of tumours. P2X7R overexpression also increased CD31, VEGF and concurrent angiogenesis. P2X7R up‐regulates aldehyde dehydrogenase‐1 (ALDH1) and CSC characteristics. Transplanted tumour cells with P2X7R overexpression stimulated cytokines to recruit tumour‐associated macrophage (TAMs) to increase the growth of tumours. We also found that the NF‐κB signalling pathway is involved in P2X7R‐induced cytokine up‐regulation. P2X7R promotes NF‐κB–dependent cytokine induction, which leads to TAM recruitment to control tumour growth and advancement and remodelling of the stroma. Our findings demonstrate that P2X7R plays a key role in TAM recruitment, which may be a therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Chunhui Yang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuang Shi
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Su
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing-Shan Tong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Liangjun Li
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
44
|
Bishehsari F, Preuss F, Mirbagheri SS, Zhang L, Shaikh M, Keshavarzian A. Interaction of alcohol with time of eating on markers of circadian dyssynchrony and colon tissue injury. Chem Biol Interact 2020; 325:109132. [PMID: 32437693 PMCID: PMC7315934 DOI: 10.1016/j.cbi.2020.109132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alcohol increases the risk of developing colon cancer (CRC), in part via tissue inflammation and impaired barrier integrity. Circadian dyssynchrony (CD) is an understudied but common lifestyle associated factor that increases the risk of multi-organ tissue injury and number of malignancies including CRC. Our prior studies showed that the shift in light-dark cycle exacerbates barrier dysfunction and colonic inflammation in the setting of alcohol treatment, and increases the risk of CRC. Here we studied the interaction of alcohol with an abnormal eating pattern on markers of CD and colonic barrier integrity. METHOD Mice were subjected to day (rest-phase = wrong-time WT) or night-time (active-phase = right-time RT) access to food in combination with access to water or 15% alcohol for total duration of 10 weeks. The food and liquid intake was measured. The locomotor activity data was recorded throughout the study, using a beam-break system. Mice were euthanized at two time points (ZT2 and ZT14). Time variation in the expression of the molecular marker of circadian clock (per2 gene) was measured in the central (hypothalamus) and intestinal (colon) tissue. Colonic protein expression of barrier markers (Occludin and Claudin-1) was studied. RESULTS No significant differences were present in the weight gain and alcohol intake among the groups over the study period. We observed an interaction of WT eating with alcohol on behavioral markers of circadian rhythm. Compared to the RT + Water treated animals ("reference group"), combination of WT eating and alcohol consumption (WT + Alcohol) significantly changed the per2 oscillatory pattern, that was different between the colon and hypothalamus, indicative of worsening circadian dyssynchrony. This was associated with an overall impaired expression of barrier integrity markers in the colon. CONCLUSIONS Alcohol induces circadian dyssynchrony which is worsened by abnormal food timing, associated with impaired barrier integrity in the colon. Future studies on the interaction of alcohol and food timing could provide further insights into alcohol associated CRC pathophysiology.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA.
| | - Fabian Preuss
- Department of Biological Sciences, University of Wisconsin Parkside, Kenosha, WI, USA
| | - Seyed Sina Mirbagheri
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Lijuan Zhang
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Maliha Shaikh
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA; Department of Physiology, Rush University Medical Center, Chicago, IL, USA; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands; Department of Pharmacology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
45
|
Wang J, Cui Y, Shi G, Zhao J, Yang X, Qiang Y, Du Q, Ma Y, Kazihise NGF. Multi-branch cross attention model for prediction of KRAS mutation in rectal cancer with t2-weighted MRI. APPL INTELL 2020. [DOI: 10.1007/s10489-020-01658-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Bissahoyo AC, Xie Y, Yang L, Pearsall RS, Lee D, Elliott RW, Demant P, McMillan L, Pardo-Manuel de Villena F, Angel JM, Threadgill DW. A New Polygenic Model for Nonfamilial Colorectal Cancer Inheritance Based on the Genetic Architecture of the Azoxymethane-Induced Mouse Model. Genetics 2020; 214:691-702. [PMID: 31879319 PMCID: PMC7054011 DOI: 10.1534/genetics.119.302833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
The azoxymethane model of colorectal cancer (CRC) was used to gain insights into the genetic heterogeneity of nonfamilial CRC. We observed significant differences in susceptibility parameters across 40 mouse inbred strains, with 6 new and 18 of 24 previously identified mouse CRC modifier alleles detected using genome-wide association analysis. Tumor incidence varied in F1 as well as intercrosses and backcrosses between resistant and susceptible strains. Analysis of inheritance patterns indicates that resistance to CRC development is inherited as a dominant characteristic genome-wide, and that susceptibility appears to occur in individuals lacking a large-effect, or sufficient numbers of small-effect, polygenic resistance alleles. Our results suggest a new polygenic model for inheritance of nonfamilial CRC, and that genetic studies in humans aimed at identifying individuals with elevated susceptibility should be pursued through the lens of absence of dominant resistance alleles rather than for the presence of susceptibility alleles.
Collapse
Affiliation(s)
- Anika C Bissahoyo
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yuying Xie
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lynda Yang
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599
| | - R Scott Pearsall
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Daekee Lee
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760 South Korea
| | - Rosemary W Elliott
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Peter Demant
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Leonard McMillan
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599
| | | | - Joe M Angel
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas 77843
| | - David W Threadgill
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas 77843
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
47
|
Long noncoding RNA RHPN1-AS1 promotes colorectal cancer progression via targeting miR-7-5p/OGT axis. Cancer Cell Int 2020; 20:54. [PMID: 32099527 PMCID: PMC7029493 DOI: 10.1186/s12935-020-1110-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/16/2020] [Indexed: 02/08/2023] Open
Abstract
Background Rhophilin Rho GTPase binding protein 1 antisense RNA 1 (RHPN1-AS1) is a newly discovered oncogene in several diseases, such as breast cancer, non-small cell lung cancer and uveal melanoma. Nevertheless, its molecular role in colorectal cancer (CRC) remains unknown. This paper explored the role of RHPN1-AS1 in CRC progression. Methods qRT-PCR was used to detect relevant RNAs expression. CCK-8, EdU, flow cytometry, Transwell and western blot assays were performed to investigate the function of RHPN1-AS1 in CRC cells. Xenograft model was constructed to evaluate the effects of RHPN1-AS1 on tumor growth in vivo. Mechanical experiments were performed to investigate the relationship between relative genes. Results RHPN1-AS1 was significantly overexpressed in CRC cell lines. Knockdown of RHPN1-AS1 could inhibit cell proliferation, while stimulating cell apoptosis in vitro. Cell migration and invasion abilities were greatly suppressed after silencing RHPN1-AS1. Besides, signal transducer and activator of transcription 3 (STAT3) served as transcription factor of RHPN1-AS1. Moreover, miR-7-5p was identified as a target of RHPN1-AS1 and was negatively regulated by RHPN1-AS1 in CRC. MiR-7-5p inhibition rescued the oncogenic function of RHPN1-AS1. Additionally, O-GlcNAcylation transferase (OGT) was the downstream target of miR-7-5p. OGT overexpression could abrogate the anti-tumor effects of RHPN1-AS1 knockdown on CRC. Conclusion RHPN1-AS1 regulates CRC by mediating OGT through sponging miR-7-5p, suggesting that RHPN1-AS1 might be a potential therapeutic target for CRC.
Collapse
|
48
|
Ta TV, Nguyen QN, Chu HH, Truong VL, Vuong LD. RAS/RAF mutations and their associations with epigenetic alterations for distinct pathways in Vietnamese colorectal cancer. Pathol Res Pract 2020; 216:152898. [PMID: 32089414 DOI: 10.1016/j.prp.2020.152898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/27/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023]
Abstract
KRAS, NRAS, and BRAF are potential tumor-driven genes that are involved in the RAS/RAF/MAPK signaling pathway. RAS/RAF mutations importantly contribute to colorectal tumorigenesis since they remain the activated status of downstream pathways without regulation of the upstream EGFR signal. However, it has not been unclear how epigenetic alterations involved in colorectal tumorigenesis mediated by KRAS, NRAS, or BRAF mutations. Therefore, in this study, we investigated the frequency and distribution of KRAS/NRAS/BRAF mutations in Vietnamese colorectal cancer (CRC) and explored the relationship between genetic and epigenetic abnormalities in 156 tumors of CRC. Somatic mutations of KRAS (exon 2, codon 12/13; exon 3, codon 61), NRAS (exon 2, codon 12/13; exon 3, codon 61), and BRAF (exon 15, codon 600) was determined by Cobas® KRAS Mutation Test, Therascreen NRAS Pyro Kit and Cobas® 4800 BRAF V600 Mutation Test, respectively. Methylation status of BRCA1, MLH1, MGMT, p16, RASSF1A, and APC was detected by methylation-specific PCR. Distribution of each abnormality in clinicopathological features was also analyzed. Results showed the mutation rates of KRAS, NRAS, and BRAF were 41.0 %, 9.6 %, 8.3 % respectively, while the methylation rates of BRCA1, MLH1, MGMT, p16, RASSF1A, and APC were 16.7 %, 16.7 %, 32.7 %, 30.1 %, 30.1 %, and 37.2 % respectively. The distribution of KRAS mutation was mutually exclusive against that of NRAS (p < 0.001) and BRAF (p < 0.001) mutations in CRC. RAS/RAF mutations were more common in adenocarcinoma subtype (p = 0.020), whereas RASSF1A methylation was more frequent in mucinous adenocarcinoma subtype (p = 0.007). In addition, the frequency of having KRAS mutations was significantly higher in MGMT (p = 0.035) or RASSF1A (p = 0.043) methylated cases than in those without methylation. BRAF mutations were positively associated with MLH1 hypermethylation (p = 0.028) but were inversely associated with APC hypermethylation (p = 0.032). Overall, our results show specific interactions of genetic and epigenetic alterations and suggest the presence of independent oncogenic pathways in tumorigenesis of CRC.
Collapse
Affiliation(s)
- To Van Ta
- Pathology and Molecular Biology Center, National Cancer Hospital K, 30 Cau Buou Street, Thanh Tri, Hanoi, Viet Nam
| | - Quang Ngoc Nguyen
- Pathology and Molecular Biology Center, National Cancer Hospital K, 30 Cau Buou Street, Thanh Tri, Hanoi, Viet Nam
| | - Ha Hoang Chu
- National Key Laboratory of Gene Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Viet Nam
| | - Van-Long Truong
- Department of Smart Food and Drug, College of BNIT, Inje University, Gimhae 50834, South Korea.
| | - Linh Dieu Vuong
- Pathology and Molecular Biology Center, National Cancer Hospital K, 30 Cau Buou Street, Thanh Tri, Hanoi, Viet Nam.
| |
Collapse
|
49
|
Leberfarb EY, Degtyareva AO, Brusentsov II, Maximov VN, Voevoda MI, Autenshlus AI, Morozov DV, Sokolov AV, Merkulova TI. Potential regulatory SNPs in the ATXN7L3B and KRT15 genes are associated with gender-specific colorectal cancer risk. Per Med 2019; 17:43-54. [PMID: 31797724 DOI: 10.2217/pme-2019-0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aim: According to the current data, a major factor for phenotypic variation of complex traits and disease susceptibility is the cis-acting effects of noncoding variants on gene expression. Our purpose was to evaluate the association between colorectal cancer (CRC) and six single nucleotide polymorphisms identified using our original bioinformatics approach as regulatory and putatively related to CRC. Materials: One hundred and sixty CRC patients and 185 healthy controls have been genotyped for rs590352, rs2072580, rs78317230, rs3829202, rs11542583 and rs4796672. Results: Genotypes and alleles distributions of rs590352 of ATXN7L3B gene were significantly different between the male CRC subjects and controls. Significant correlation of genotype with CRC is observable for women only for the rs4796672 of KRT15 gene. Analysis of haplotypes reveals that rs2072580 of the ISCU and SART3 genes can be also associated with CRC. Conclusion: We have identified three SNPs associated with CRC risk and demonstrated a gender specificity of rs590352 and rs4796672.
Collapse
Affiliation(s)
- Elena Yu Leberfarb
- Institute of Cytology & Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State Medical University, Novosibirsk, Russia
| | - Arina O Degtyareva
- Institute of Cytology & Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State Medical University, Novosibirsk, Russia
| | - Ilya I Brusentsov
- Institute of Cytology & Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Vladimir N Maximov
- Institute of Cytology & Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State Medical University, Novosibirsk, Russia
| | - Mikhail I Voevoda
- Institute of Cytology & Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | | | | | - Tatiana I Merkulova
- Institute of Cytology & Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
50
|
Li Q, Zhang S, Hu M, Xu M, Jiang X. Silencing of synaptotagmin 13 inhibits tumor growth through suppressing proliferation and promoting apoptosis of colorectal cancer cells. Int J Mol Med 2019; 45:234-244. [PMID: 31939613 PMCID: PMC6889939 DOI: 10.3892/ijmm.2019.4412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
The treatment of colorectal cancer is currently hampered by the lack of early detection technology. The identification of molecular biomarkers for colorectal cancer is crucial for improving prognosis. Synaptotagmin (SYT) 13 has been reported to be associated with several human tumors, but its role in colorectal cancer remains elusive. In the present study, immunohistochemistry was utilized to detect the expression of SYT13 in colorectal cancer tissues and cells. MTT, colony formation, wound healing and Transwell assays were conducted to evaluate the effect of SYT13 knockdown on the biological behavior of RKO and HCT116 cells. Cell apoptosis and cell cycle profiles were detected by FACS. A mouse xenograft model was constructed to investigate the effect of SYT13 on colorectal cancer in vivo. The results indicated that SYT13 was upregulated in colorectal tumor tissues compared with paracancerous tissues. Silencing of SYT13 inhibited the proliferation, colony formation, migration and invasion ability of RKO and HCT116 cells. Moreover, SYT13 knockdown arrested the cell cycle in the G2 phase, thus inducing cell apoptosis. The in vivo experiments also demonstrated the inhibitory effect of SYT13 on tumor growth. In conclusion, the present study demonstrated that SYT13 may act as a promoter in the development and progression of colorectal cancer and, therefore, may be of value as a target for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Qin Li
- Department of Gastroenterology, Shanghai East Hospital, Tongji University, Shanghai 200123, P.R. China
| | - Shun Zhang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University, Shanghai 200123, P.R. China
| | - Miao Hu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University, Shanghai 200123, P.R. China
| | - Ming Xu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University, Shanghai 200123, P.R. China
| | - Xiaohua Jiang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University, Shanghai 200123, P.R. China
| |
Collapse
|