1
|
Jia K, Cao L, Yu Y, Jing D, Wu W, Van Tine BA, Shao Z. Signaling pathways and targeted therapies in Ewing sarcoma. Pharmacol Ther 2024; 266:108765. [PMID: 39622389 DOI: 10.1016/j.pharmthera.2024.108765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
Ewing sarcoma, the second most prevalent malignant bone tumor with potential occurrence in soft tissues, exhibits a high level of aggressiveness, primarily afflicting children and adolescents. It is characterized by fusion proteins arising from chromosomal translocations. The fusion proteins induce aberrations in multiple signaling pathways and molecules, constituting a key event in oncogenic transformation. While diagnostic and therapeutic modalities have advanced in recent decades and multimodal treatments, including surgery, radiotherapy, and chemotherapy, have significantly improved survival of patients with localized tumors, patients with metastatic tumors continue to face poor prognoses. There persists a pressing need for novel alternative treatments, yet the translation of our understanding of Ewing sarcoma pathogenesis into improved clinical outcomes remains a critical challenge. Here, we provide a comprehensive review of Ewing sarcoma, including fusion proteins, various signaling pathways, pivotal pathogenetic molecules implicated in its development, and associated targeted therapies and immunotherapies. We summarize past endeavors, current advancements, and deliberate on limitations and future research directions. It is envisaged that this review will furnish novel insights into prospective treatment avenues for Ewing sarcoma.
Collapse
Affiliation(s)
- Ke Jia
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Li Cao
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Washington University School of Medicine, St Louis, MO, USA.
| | - Yihan Yu
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Doudou Jing
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Wei Wu
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | - Zengwu Shao
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
2
|
Menon S, Gracilla D, Breese MR, Lin YP, Cruz FD, Feinberg T, de Stanchina E, Galic AF, Allegakoen H, Perati S, Wen N, Heslin A, Horlbeck MA, Weissman J, Sweet-Cordero EA, Bivona TG, Tulpule A. FET fusion oncoproteins disrupt physiologic DNA repair networks in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.30.538578. [PMID: 37205599 PMCID: PMC10187251 DOI: 10.1101/2023.04.30.538578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
While oncogenes promote cancer cell growth, unrestrained proliferation represents a significant stressor to cellular homeostasis networks such as the DNA damage response (DDR). To enable oncogene tolerance, many cancers disable tumor suppressive DDR signaling through genetic loss of DDR pathways and downstream effectors (e.g., ATM or p53 tumor suppressor mutations). Whether and how oncogenes can help "self-tolerize" by creating analogous functional defects in physiologic DDR networks is not known. Here we focus on Ewing sarcoma, a FET fusion oncoprotein (EWSR1-FLI1) driven pediatric bone tumor, as a model for the class of FET rearranged cancers. Native FET family members are among the earliest factors recruited to DNA double-strand breaks (DSBs), though the function of both native FET proteins and FET fusion oncoproteins in DNA repair remains to be defined. We discover that the EWSR1-FLI1 fusion oncoprotein is recruited to DNA DSBs and interferes with native FET (EWSR1) protein function in activating the DNA damage sensor ATM. In multiple FET rearranged cancers, FET fusion oncoproteins induce functional ATM defects, rendering the compensatory ATR signaling axis as a collateral dependency and therapeutic target. More generally, we find that aberrant recruitment of a fusion oncoprotein to sites of DNA damage can disrupt physiologic DSB repair, revealing a mechanism for how growth-promoting oncogenes can also create functional defects within tumor suppressive DDR networks.
Collapse
Affiliation(s)
- Shruti Menon
- Tow Center for Developmental Oncology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 444 East 68th Street, 9th Floor, New York, NY 10065
| | - Daniel Gracilla
- Tow Center for Developmental Oncology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 444 East 68th Street, 9th Floor, New York, NY 10065
| | - Marcus R. Breese
- Division of Pediatric Oncology, University of California, San Francisco, San Francisco, CA 94143
| | - Yone Phar Lin
- Division of Pediatric Oncology, University of California, San Francisco, San Francisco, CA 94143
| | - Filemon Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 444 East 68th Street, 9th Floor, New York, NY 10065
| | - Tamar Feinberg
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 444 East 68th Street, 9th Floor, New York, NY 10065
| | - Elisa de Stanchina
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 444 East 68th Street, 9th Floor, New York, NY 10065
| | - Ana-Florina Galic
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 444 East 68th Street, 9th Floor, New York, NY 10065
| | - Hannah Allegakoen
- Division of Pediatric Oncology, University of California, San Francisco, San Francisco, CA 94143
| | - Shruthi Perati
- Division of Pediatric Oncology, University of California, San Francisco, San Francisco, CA 94143
| | - Nicholas Wen
- Tow Center for Developmental Oncology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021
| | - Ann Heslin
- Division of Pediatric Oncology, University of California, San Francisco, San Francisco, CA 94143
| | - Max A. Horlbeck
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, 02115
| | - Jonathan Weissman
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave, 68-132, Cambridge, MA 02139
| | | | - Trever G. Bivona
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA 94143
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Asmin Tulpule
- Tow Center for Developmental Oncology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 444 East 68th Street, 9th Floor, New York, NY 10065
| |
Collapse
|
3
|
Sukhanova MV, Anarbaev RO, Naumenko KN, Hamon L, Singatulina AS, Pastré D, Lavrik OI. Phase Separation of FUS with Poly(ADP-ribosyl)ated PARP1 Is Controlled by Polyamines, Divalent Metal Cations, and Poly(ADP-ribose) Structure. Int J Mol Sci 2024; 25:12445. [PMID: 39596510 PMCID: PMC11594298 DOI: 10.3390/ijms252212445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Fused in sarcoma (FUS) is involved in the formation of nuclear biomolecular condensates associated with poly(ADP-ribose) [PAR] synthesis catalyzed by a DNA damage sensor such as PARP1. Here, we studied FUS microphase separation induced by poly(ADP-ribosyl)ated PARP1WT [PAR-PARP1WT] or its catalytic variants PARP1Y986S and PARP1Y986H, respectively, synthesizing (short PAR)-PARP1Y986S or (short hyperbranched PAR)-PARP1Y986H using dynamic light scattering, fluorescence microscopy, turbidity assays, and atomic force microscopy. We observed that biologically relevant cations such as Mg2+, Ca2+, or Mn2+ or polyamines (spermine4+ or spermidine3+) were essential for the assembly of FUS with PAR-PARP1WT and FUS with PAR-PARP1Y986S in vitro. We estimated the range of the FUS-to-PAR-PARP1 molar ratio and the cation concentration that are favorable for the stability of the protein's microphase-separated state. We also found that FUS microphase separation induced by PAR-PARP1Y986H (i.e., a PARP1 variant attaching short hyperbranched PAR to itself) can occur in the absence of cations. The dependence of PAR-PARP1-induced FUS microphase separation on cations and on the branching of the PAR structure points to a potential role of the latter in the regulation of the formation of FUS-related biological condensates and requires further investigation.
Collapse
Affiliation(s)
- Maria V. Sukhanova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (M.V.S.); (R.O.A.); (K.N.N.); (A.S.S.)
| | - Rashid O. Anarbaev
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (M.V.S.); (R.O.A.); (K.N.N.); (A.S.S.)
| | - Konstantin N. Naumenko
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (M.V.S.); (R.O.A.); (K.N.N.); (A.S.S.)
| | - Loic Hamon
- INSERM U1204, Univ-Evry, University Paris Saclay, 91025 Evry, France;
| | - Anastasia S. Singatulina
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (M.V.S.); (R.O.A.); (K.N.N.); (A.S.S.)
| | - David Pastré
- INSERM U1204, Univ-Evry, University Paris Saclay, 91025 Evry, France;
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (M.V.S.); (R.O.A.); (K.N.N.); (A.S.S.)
| |
Collapse
|
4
|
Marcelis L, Sciot R. [Undifferentiated small round cell sarcomas of bone and soft tissue]. Ann Pathol 2024:S0242-6498(24)00199-8. [PMID: 39510958 DOI: 10.1016/j.annpat.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 11/15/2024]
Abstract
In the 2020 5th edition of the World Health Organization classification of soft tissue and bone tumours a major reorganization of Undifferentiated Small Round Cell Sarcomas (USRCS) took place based on the underlying molecular features. The classification now recognizes Ewing sarcoma, round cell sarcoma with EWSR1-non-ETS fusions, CIC-rearranged sarcoma and sarcoma with BCOR alterations. The focus on these genetic alterations highlights the importance of molecular techniques in the diagnosis of these entities. Knowledge of these features can drastically reduce the time to diagnosis and avoid potential misdiagnosis. Molecular diagnostic capabilities should not be limited to an overall small number of centres worldwide as is reflected by the WHO's recognition of 'essential' and 'desirable' diagnostic criteria. A good knowledge of the usual histomorphology, uncommon variants and diagnostic pitfalls remains essential even in centres with access to a full molecular testing arsenal. This review aims to give an overview of the current classification of USRCS not by going over each entity, but instead going over the molecular, morphological, immunophenotypic and clinical features step by step to allow easy comparison of these features between the separate entities.
Collapse
Affiliation(s)
- Lukas Marcelis
- Department of Pathology, UZ Leuven, University Hospitals, Leuven, Belgique; O&N IV Herestraat 49, 3000 Leuven, Belgique.
| | - Rafael Sciot
- Department of Pathology, UZ Leuven, University Hospitals, Leuven, Belgique; O&N IV Herestraat 49, 3000 Leuven, Belgique
| |
Collapse
|
5
|
Han TW, Portz B, Young RA, Boija A, Klein IA. RNA and condensates: Disease implications and therapeutic opportunities. Cell Chem Biol 2024; 31:1593-1609. [PMID: 39303698 DOI: 10.1016/j.chembiol.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
Biomolecular condensates are dynamic membraneless organelles that compartmentalize proteins and RNA molecules to regulate key cellular processes. Diverse RNA species exert their effects on the cell by their roles in condensate formation and function. RNA abnormalities such as overexpression, modification, and mislocalization can lead to pathological condensate behaviors that drive various diseases, including cancer, neurological disorders, and infections. Here, we review RNA's role in condensate biology, describe the mechanisms of RNA-induced condensate dysregulation, note the implications for disease pathogenesis, and discuss novel therapeutic strategies. Emerging approaches to targeting RNA within condensates, including small molecules and RNA-based therapies that leverage the unique properties of condensates, may revolutionize treatment for complex diseases.
Collapse
Affiliation(s)
| | | | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ann Boija
- Dewpoint Therapeutics, Boston, MA, USA.
| | | |
Collapse
|
6
|
Elpek GO. Tata-box-binding protein-associated factor 15 as a new potential marker in gastrointestinal tumors. World J Gastroenterol 2024; 30:3367-3372. [PMID: 39091718 PMCID: PMC11290397 DOI: 10.3748/wjg.v30.i28.3367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
In this editorial, the roles of tata-box-binding protein-associated factor 15 (TAF15) in oncogenesis, tumor behavior, and as a therapeutic target in cancers in the context of gastrointestinal (GI) tumors are discussed concerning the publication by Guo et al. TAF15 is a member of the FET protein family with a comprehensive range of cellular processes. Besides, evidence has shown that TAF15 is involved in many diseases, including cancers. TAF15 contributes to carcinogenesis and tumor behavior in many tumors. Besides, its relationship with the mitogen-activated protein kinases (MAPK) signaling pathway makes TAF15 a new target for therapy. Although, the fact that there is few studies investigating the expression of TAF15 constitutes a potential limitation in GI system, the association of TAF15 expression with aggressive tumor behavior and, similar to other organ tumors, the influence of TAF15 on the MAPK signaling pathway emphasize that this protein could serve as a new molecular biomarker to predict tumor behavior and target therapeutic intervention in GI cancers. In conclusion, more studies should be performed to better understand the prognostic and therapeutic role of TAF15 in GI tumors, especially in tumors resistant to therapy.
Collapse
Affiliation(s)
- Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Türkiye
| |
Collapse
|
7
|
Ding M, Xu W, Pei G, Li P. Long way up: rethink diseases in light of phase separation and phase transition. Protein Cell 2024; 15:475-492. [PMID: 38069453 PMCID: PMC11214837 DOI: 10.1093/procel/pwad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/24/2023] [Indexed: 07/02/2024] Open
Abstract
Biomolecular condensation, driven by multivalency, serves as a fundamental mechanism within cells, facilitating the formation of distinct compartments, including membraneless organelles that play essential roles in various cellular processes. Perturbations in the delicate equilibrium of condensation, whether resulting in gain or loss of phase separation, have robustly been associated with cellular dysfunction and physiological disorders. As ongoing research endeavors wholeheartedly embrace this newly acknowledged principle, a transformative shift is occurring in our comprehension of disease. Consequently, significant strides have been made in unraveling the profound relevance and potential causal connections between abnormal phase separation and various diseases. This comprehensive review presents compelling recent evidence that highlight the intricate associations between aberrant phase separation and neurodegenerative diseases, cancers, and infectious diseases. Additionally, we provide a succinct summary of current efforts and propose innovative solutions for the development of potential therapeutics to combat the pathological consequences attributed to aberrant phase separation.
Collapse
Affiliation(s)
- Mingrui Ding
- State Key Laboratory of Membrane Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- NuPhase Therapeutics, Beijing 100083, China
| | - Weifan Xu
- State Key Laboratory of Membrane Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- NuPhase Therapeutics, Beijing 100083, China
| | - Gaofeng Pei
- State Key Laboratory of Membrane Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Pilong Li
- State Key Laboratory of Membrane Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
8
|
Feichtner A, Enzler F, Kugler V, Hoppe K, Mair S, Kremser L, Lindner H, Huber RG, Stelzl U, Stefan E, Torres-Quesada O. Phosphorylation of the compartmentalized PKA substrate TAF15 regulates RNA-protein interactions. Cell Mol Life Sci 2024; 81:162. [PMID: 38568213 PMCID: PMC10991009 DOI: 10.1007/s00018-024-05204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
Spatiotemporal-controlled second messengers alter molecular interactions of central signaling nodes for ensuring physiological signal transmission. One prototypical second messenger molecule which modulates kinase signal transmission is the cyclic-adenosine monophosphate (cAMP). The main proteinogenic cellular effectors of cAMP are compartmentalized protein kinase A (PKA) complexes. Their cell-type specific compositions precisely coordinate substrate phosphorylation and proper signal propagation which is indispensable for numerous cell-type specific functions. Here we present evidence that TAF15, which is implicated in the etiology of amyotrophic lateral sclerosis, represents a novel nuclear PKA substrate. In cross-linking and immunoprecipitation experiments (iCLIP) we showed that TAF15 phosphorylation alters the binding to target transcripts related to mRNA maturation, splicing and protein-binding related functions. TAF15 appears to be one of multiple PKA substrates that undergo RNA-binding dynamics upon phosphorylation. We observed that the activation of the cAMP-PKA signaling axis caused a change in the composition of a collection of RNA species that interact with TAF15. This observation appears to be a broader principle in the regulation of molecular interactions, as we identified a significant enrichment of RNA-binding proteins within endogenous PKA complexes. We assume that phosphorylation of RNA-binding domains adds another layer of regulation to binary protein-RNAs interactions with consequences to RNA features including binding specificities, localization, abundance and composition.
Collapse
Affiliation(s)
- Andreas Feichtner
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Florian Enzler
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innrain 66/66a, 6020, Innsbruck, Austria
| | - Valentina Kugler
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Katharina Hoppe
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Sophia Mair
- Department of Cardiac Surgery, Medical University of Innsbruck, Innrain 66/66a, 6020, Innsbruck, Austria
- Vascage, Center of Clinical Stroke Research, 6020, Innsbruck, Austria
| | - Leopold Kremser
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Roland G Huber
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, 138671, Singapore
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstrasse 1, 8010, Graz, Austria
| | - Eduard Stefan
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria.
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria.
| | - Omar Torres-Quesada
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria.
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
9
|
Luna-Arias JP, Castro-Muñozledo F. Participation of the TBP-associated factors (TAFs) in cell differentiation. J Cell Physiol 2024; 239:e31167. [PMID: 38126142 DOI: 10.1002/jcp.31167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The understanding of the mechanisms that regulate gene expression to establish differentiation programs and determine cell lineages, is one of the major challenges in Developmental Biology. Besides the participation of tissue-specific transcription factors and epigenetic processes, the role of general transcription factors has been ignored. Only in recent years, there have been scarce studies that address this issue. Here, we review the studies on the biological activity of some TATA-box binding protein (TBP)-associated factors (TAFs) during the proliferation of stem/progenitor cells and their involvement in cell differentiation. Particularly, the accumulated evidence suggests that TAF4, TAF4b, TAF7L, TAF8, TAF9, and TAF10, among others, participate in nervous system development, adipogenesis, myogenesis, and epidermal differentiation; while TAF1, TAF7, TAF15 may be involved in the regulation of stem cell proliferative abilities and cell cycle progression. On the other hand, evidence suggests that TBP variants such as TBPL1 and TBPL2 might be regulating some developmental processes such as germ cell maturation and differentiation, myogenesis, or ventral specification during development. Our analysis shows that it is necessary to study in greater depth the biological function of these factors and its participation in the assembly of specific transcription complexes that contribute to the differential gene expression that gives rise to the great diversity of cell types existing in an organism. The understanding of TAFs' regulation might lead to the development of new therapies for patients which suffer from mutations, alterations, and dysregulation of these essential elements of the transcriptional machinery.
Collapse
Affiliation(s)
- Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| | - Federico Castro-Muñozledo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| |
Collapse
|
10
|
Chellini L, Scarfò M, Bonvissuto D, Sette C, Paronetto MP. The DNA/RNA helicase DHX9 orchestrates the KDM2B-mediated transcriptional regulation of YAP1 in Ewing sarcoma. Oncogene 2024; 43:225-234. [PMID: 38017132 DOI: 10.1038/s41388-023-02894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
Ewing sarcomas (ES) are aggressive paediatric tumours of bone and soft tissues. Resistance to chemotherapy and high propensity to metastasize remain the main causes of treatment failure. Thus, identifying novel targets for alternative therapeutic approaches is urgently needed. DNA/RNA helicases are emerging as crucial regulators of many cellular processes often deregulated in cancer. Among them, DHX9 is up-regulated in ES and collaborates with EWS-FLI1 in ES transformation. We report that DHX9 silencing profoundly impacts on the oncogenic properties of ES cells. Transcriptome profiling combined to bioinformatic analyses disclosed a gene signature commonly regulated by DHX9 and the Lysine Demethylase KDM2B, with the Hippo pathway regulator YAP1 as a prominent target. Mechanistically, we found that DHX9 enhances H3K9 chromatin demethylation by KDM2B and favours RNA Polymerase II recruitment, thus promoting YAP1 expression. Conversely, EWS-FLI1 binding to the promoter represses YAP1 expression. These findings identify the DHX9/KDM2B complex as a new druggable target to counteract ES malignancy.
Collapse
Affiliation(s)
- Lidia Chellini
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Santa Lucia Foundation, Rome, Italy.
| | - Marzia Scarfò
- Plaisant Polo Tecnologico s.r.l, Castel Romano, Rome, Italy
| | - Davide Bonvissuto
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Sette
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- GSTeP-Organoids Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Paola Paronetto
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Santa Lucia Foundation, Rome, Italy.
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
11
|
Ozenberger BB, Li L, Wilson ER, Lazar AJ, Barrott JJ, Jones KB. EWSR1::ATF1 Orchestrates the Clear Cell Sarcoma Transcriptome in Human Tumors and a Mouse Genetic Model. Cancers (Basel) 2023; 15:5750. [PMID: 38136296 PMCID: PMC10742207 DOI: 10.3390/cancers15245750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Clear cell sarcoma (CCS) is a rare, aggressive malignancy that most frequently arises in the soft tissues of the extremities. It is defined and driven by expression of one member of a family of related translocation-generated fusion oncogenes, the most common of which is EWSR1::ATF1. The EWSR1::ATF1 fusion oncoprotein reprograms transcription. However, the binding distribution of EWSR1::ATF1 across the genome and its target genes remain unclear. Here, we interrogated the genomic distribution of V5-tagged EWSR1::ATF1 in tumors it had induced upon expression in mice that also recapitulated the transcriptome of human CCS. ChIP-sequencing of V5-EWSR1::ATF1 identified previously unreported motifs including the AP1 motif and motif comprised of TGA repeats that resemble GGAA-repeating microsatellites bound by EWSR1::FLI1 in Ewing sarcoma. ChIP-sequencing of H3K27ac identified super enhancers in the mouse model and human contexts of CCS, which showed a shared super enhancer structure that associates with activated genes.
Collapse
Affiliation(s)
- Benjamin B. Ozenberger
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (B.B.O.); (L.L.); (E.R.W.)
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Li Li
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (B.B.O.); (L.L.); (E.R.W.)
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Emily R. Wilson
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (B.B.O.); (L.L.); (E.R.W.)
| | - Alexander J. Lazar
- Department of Pathology, Genomic Medicine and Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Jared J. Barrott
- Department of Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Kevin B. Jones
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (B.B.O.); (L.L.); (E.R.W.)
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
12
|
Chi B, Öztürk MM, Paraggio CL, Leonard CE, Sanita ME, Dastpak M, O’Connell JD, Coady JA, Zhang J, Gygi SP, Lopez-Gonzalez R, Yin S, Reed R. Causal ALS genes impact the MHC class II antigen presentation pathway. Proc Natl Acad Sci U S A 2023; 120:e2305756120. [PMID: 37722062 PMCID: PMC10523463 DOI: 10.1073/pnas.2305756120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/18/2023] [Indexed: 09/20/2023] Open
Abstract
Mutations in RNA/DNA-binding proteins cause amyotrophic lateral sclerosis (ALS), but the underlying disease mechanisms remain unclear. Here, we report that a set of ALS-associated proteins, namely FUS, EWSR1, TAF15, and MATR3, impact the expression of genes encoding the major histocompatibility complex II (MHC II) antigen presentation pathway. Both subunits of the MHC II heterodimer, HLA-DR, are down-regulated in ALS gene knockouts/knockdown in HeLa and human microglial cells, due to loss of the MHC II transcription factor CIITA. Importantly, hematopoietic progenitor cells (HPCs) derived from human embryonic stem cells bearing the FUSR495X mutation and HPCs derived from C9ORF72 ALS patient induced pluripotent stem cells also exhibit disrupted MHC II expression. Given that HPCs give rise to numerous immune cells, our data raise the possibility that loss of the MHC II pathway results in global failure of the immune system to protect motor neurons from damage that leads to ALS.
Collapse
Affiliation(s)
- Binkai Chi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Muhammet M. Öztürk
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Christina L. Paraggio
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Claudia E. Leonard
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Maria E. Sanita
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Mahtab Dastpak
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Jeremy D. O’Connell
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Jordan A. Coady
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Jiuchun Zhang
- Harvard Medical School Cell Biology Initiative for Genome Editing and Neurodegeneration, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Steven P. Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Rodrigo Lopez-Gonzalez
- Department of Neurosciences Lerner Research Institute, Cleveland Clinic, Cleveland, OH44196
| | - Shanye Yin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Robin Reed
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| |
Collapse
|
13
|
Asai-Nishishita A, Kawahara M, Tatsumi G, Iwasa M, Fujishiro A, Nishimura R, Minamiguchi H, Kito K, Murata M, Andoh A. FUS-ERG induces late-onset azacitidine resistance in acute myeloid leukaemia cells. Sci Rep 2023; 13:14454. [PMID: 37660196 PMCID: PMC10475016 DOI: 10.1038/s41598-023-41230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023] Open
Abstract
FUS-ERG is a chimeric gene with a poor prognosis, found in myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML). It remains unclear whether DNA hypomethylating agents, including azacitidine (Aza), are effective in FUS-ERG-harbouring AML and how FUS-ERG induces chemoresistance. Stable Ba/F3 transfectants with FUS-ERG were repeatedly exposed to Aza for 7 days of treatment and at 21-day intervals to investigate Aza sensitivity. Stable FUS-ERG transfectants acquired resistance acquired resistance after three courses of Aza exposure. RNA sequencing (RNA-seq) was performed when Aza susceptibility began to change; genes with altered expression or transcript variants were identified. Molecular signatures of these genes were analysed using gene ontology. RNA-seq analyses identified 74 upregulated and 320 downregulated genes involved in cell motility, cytokine production, and kinase activity. Additionally, 1321 genes with altered transcript variants were identified, revealing their involvement in chromatin organisation. In a clinical case of AML with FUS-ERG, we compared whole-genome alterations between the initial MDS diagnosis and AML recurrence after Aza treatment. Genes with non-synonymous or near mutations in transcription regulatory areas (TRAs), additionally detected in AML recurrence, were collated with the gene list from RNA-seq to identify genes involved in acquiring Aza resistance in the presence of FUS-ERG. Whole-genome sequencing of clinical specimens identified 29 genes with non-synonymous mutations, including BCOR, and 48 genes located within 20 kb of 54 TRA mutations in AML recurrence. These genes were involved in chromatin organisation and included NCOR2 as an overlapping gene with RNA-seq data. Transcription regulators involved in mutated TRAs were skewed and included RCOR1 in AML recurrence. We tested the efficacy of BH3 mimetics, including venetoclax and S63845, in primary Aza-resistant AML cells treated with FUS-ERG. Primary FUS-ERG-harbouring AML cells acquiring Aza resistance affected the myeloid cell leukaemia-1 (MCL1) inhibitor S63845 but not while using venetoclax, despite no mutations in BCL2. FUS-ERG promoted Aza resistance after several treatments. The disturbance of chromatin organisation might induce this by co-repressors, including BCOR, NCOR2, and RCOR1. MCL1 inhibition could partially overcome Aza resistance in FUS-ERG-harbouring AML cells.
Collapse
Affiliation(s)
- Ai Asai-Nishishita
- Division of Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Masahiro Kawahara
- Division of Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan.
| | - Goichi Tatsumi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8397, Japan
| | - Masaki Iwasa
- Division of Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Aya Fujishiro
- Division of Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Rie Nishimura
- Division of Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Hitoshi Minamiguchi
- Division of Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Katsuyuki Kito
- Division of Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Makoto Murata
- Division of Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Akira Andoh
- Division of Gastroenterology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
14
|
Gong H, Xue B, Ru J, Pei G, Li Y. Targeted Therapy for EWS-FLI1 in Ewing Sarcoma. Cancers (Basel) 2023; 15:4035. [PMID: 37627063 PMCID: PMC10452796 DOI: 10.3390/cancers15164035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Ewing sarcoma (EwS) is a rare and predominantly pediatric malignancy of bone and soft tissue in children and adolescents. Although international collaborations have greatly improved the prognosis of most EwS, the occurrence of macrometastases or relapse remains challenging. The prototypic oncogene EWS-FLI1 acts as an aberrant transcription factor that drives the cellular transformation of EwS. In addition to its involvement in RNA splicing and the DNA damage response, this chimeric protein directly binds to GGAA repeats, thereby modifying the transcriptional profile of EwS. Direct pharmacological targeting of EWS-FLI1 is difficult because of its intrinsically disordered structure. However, targeting the EWS-FLI1 protein complex or downstream pathways provides additional therapeutic options. This review describes the EWS-FLI1 protein partners and downstream pathways, as well as the related target therapies for the treatment of EwS.
Collapse
Affiliation(s)
- Helong Gong
- Department of Orthopaedic Surgery, Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, China;
| | - Busheng Xue
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Jinlong Ru
- Institute of Virology, Helmholtz Centre Munich, German Research Centre for Environmental Health, 85764 Neuherberg, Germany;
| | - Guoqing Pei
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi’an 710032, China;
| | - Yan Li
- Department of Orthopaedic Surgery, Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, China;
| |
Collapse
|
15
|
Liu Z, Qin Z, Liu Y, Xia X, He L, Chen N, Hu X, Peng X. Liquid‒liquid phase separation: roles and implications in future cancer treatment. Int J Biol Sci 2023; 19:4139-4156. [PMID: 37705755 PMCID: PMC10496506 DOI: 10.7150/ijbs.81521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 07/23/2023] [Indexed: 09/15/2023] Open
Abstract
Liquid‒liquid phase separation (LLPS) is a phenomenon driven by weak interactions between biomolecules, such as proteins and nucleic acids, that leads to the formation of distinct liquid-like condensates. Through LLPS, membraneless condensates are formed, selectively concentrating specific proteins while excluding other molecules to maintain normal cellular functions. Emerging evidence shows that cancer-related mutations cause aberrant condensate assembly, resulting in disrupted signal transduction, impaired DNA repair, and abnormal chromatin organization and eventually contributing to tumorigenesis. The objective of this review is to summarize recent advancements in understanding the potential implications of LLPS in the contexts of cancer progression and therapeutic interventions. By interfering with LLPS, it may be possible to restore normal cellular processes and inhibit tumor progression. The underlying mechanisms and potential drug targets associated with LLPS in cancer are discussed, shedding light on promising opportunities for novel therapeutic interventions.
Collapse
Affiliation(s)
- Zheran Liu
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zijian Qin
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yingtong Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu 610041, Sichuan, China
| | - Xi Xia
- Shanghai ETERN Biopharma Co., Ltd., Shanghai, China
| | - Ling He
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Na Chen
- School of Pharmacy, Chengdu Medical College, Xindu Avenue No 783, Chengdu, 610500, Sichuan Province, China
| | - Xiaolin Hu
- West China School of Nursing, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
16
|
Gallagher KPD, Roza ALOC, Tager EMJR, Mariz BALA, Soares CD, Rocha AC, Abrahão AC, Romañach MJ, Carlos R, Hunter KD, Lopes MA, Vargas PA, Santos-Silva AR. Rhabdomyosarcoma with TFCP2 Rearrangement or Typical Co-expression of AE1/AE3 and ALK: Report of Three New Cases in the Head and Neck Region and Literature Review. Head Neck Pathol 2023; 17:546-561. [PMID: 36374445 PMCID: PMC10293535 DOI: 10.1007/s12105-022-01507-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) harboring EWSR1/FUS-TFCP2 fusions has been recently described as a distinct form of RMS with an aggressive course and predilection for the craniofacial bones, especially the jaws. METHODS We report three new cases of this rare entity, two from Brazil and one from Guatemala, with detailed clinicopathologic, immunohistochemical, and molecular descriptions. Additionally, we explored the English-language literature searching RMS with TFCP2 rearrangement or typical immunophenotype with co-expression of AE1/AE3 and ALK in the head and neck region. RESULTS Case 1 is a 58-year-old male with a 3-month history of painful swelling in the anterior maxilla. Case 2 is a 22-year-old male presenting with right facial swelling and proptosis. Case 3 is a 43-year-old female with a rapidly growing tumor located in the zygomatic region. Imaging examinations revealed highly destructive intraosseous masses in the first two cases, and a soft tissue tumor with bone invasion in case 3. Microscopically, all cases showed a hybrid spindle and epithelioid phenotype of tumor cells which expressed desmin, myogenin and/or Myo-D1, AE1/AE3, and ALK. FISH confirmed molecular alterations related to TFCP2 rearrangement in Cases 1-2. In case 3, there was no available material for molecular analysis. The patients were subsequently referred to oncologic treatment. Additionally, we summarized the clinicopathologic, immunohistochemical, and molecular features of 27 cases of this rare RMS variant in the head and neck region reported in the English-language literature. CONCLUSION RMS with TFCP2 rearrangement is a rare and aggressive tumor with a particular predilection for craniofacial bones, especially the jaws. Knowing its clinicopathologic and immunohistochemical profile can avoid misdiagnosis.
Collapse
Affiliation(s)
- Karen Patricia Domínguez Gallagher
- Oral Diagnosis Department, Semiology and Oral Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Areão, Piracicaba, São Paulo, 13414-903, Brazil.
- Oral Pathology, School of Dentistry, National University of Asunción, Asunción, Paraguay.
| | - Ana Luiza Oliveira Corrêa Roza
- Oral Diagnosis Department, Semiology and Oral Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Areão, Piracicaba, São Paulo, 13414-903, Brazil
| | - Elena María José Roman Tager
- Oral Diagnosis Department, Semiology and Oral Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Areão, Piracicaba, São Paulo, 13414-903, Brazil
| | - Bruno Augusto Linhares Almeida Mariz
- Oral Diagnosis Department, Semiology and Oral Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Areão, Piracicaba, São Paulo, 13414-903, Brazil
| | - Ciro Dantas Soares
- Laboratório de Citopatologia, Division of Surgical Pathology, Private Pathology Service, Natal, Rio Grande do Norte, Brazil
| | - André Caroli Rocha
- Oral and Maxillofacial Surgery and Traumatology Service, Clinical Hospital, Medical School, University of São Paulo (FMUSP), São Paulo, São Paulo, Brazil
| | - Aline Corrêa Abrahão
- Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Mário José Romañach
- Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Roman Carlos
- Pathology Section, Centro Clínico de Cabeza y Cuello/Hospital Herrera Llerandi, Guatemala City, Guatemala
| | - Keith D Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Marcio Ajudarte Lopes
- Oral Diagnosis Department, Semiology and Oral Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Areão, Piracicaba, São Paulo, 13414-903, Brazil
| | - Pablo Agustin Vargas
- Oral Diagnosis Department, Semiology and Oral Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Areão, Piracicaba, São Paulo, 13414-903, Brazil
| | - Alan Roger Santos-Silva
- Oral Diagnosis Department, Semiology and Oral Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Areão, Piracicaba, São Paulo, 13414-903, Brazil
| |
Collapse
|
17
|
Sivakumar N, Sharma P, Chandra S, Gupta S, Samadi FM, Baghel S. Clinicopathological and Molecular Characteristics of Intraosseous Rhabdomyosarcoma Involving Head and Neck Region: A Systematic Review and Meta-Analysis. Pediatr Dev Pathol 2023:10935266231165636. [PMID: 37082926 DOI: 10.1177/10935266231165636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Rhabdomyosarcoma with TFCP2 rearrangement is a newly introduced spindle cell neoplasm showing predilection for craniofacial bones exhibiting highly aggressive nature and poor prognosis. Therefore, an attempt was made to delineate the entity for improved understanding and treatment outcomes through comprehensive analysis of the clinicopathological and molecular characteristics. An electronic search was carried out using MEDLINE by PubMed, Scopus, Google scholar, Cochrane library, and EMBASE databases. Original articles and case reports involving intraosseous rhabdomyosarcoma arising in head and neck region with TFCP2 fusion were included. Data were compiled and risk of bias was analyzed using JBI tool. Thirteen eligible articles were included for the quantitative analysis, which revealed 33 cases with TFCP2 fusion. Majority of the affected individuals were females (58%) with mandible being the common site. Most of the patients died within few months after diagnosis demonstrating a low mean survival rate (30 months). Odds ratio, overall survival and disease-free survival were calculated and analyzed statistically concluding that intraosseous rhabdomyosarcomas harboring TFCP2 fusion are found to be novel and dreadful neoplasms. The predilection for young age with poor prognosis exhibited by these lesions demand early diagnosis and specific treatment planning to curtail mortality.
Collapse
Affiliation(s)
- N Sivakumar
- Department of Oral Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Pooja Sharma
- Department of Oral Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shaleen Chandra
- Department of Oral Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shalini Gupta
- Department of Oral Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Fahad M Samadi
- Department of Oral Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shilpi Baghel
- Department of Oral Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
18
|
Lee J, Cho H, Kwon I. Phase separation of low-complexity domains in cellular function and disease. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1412-1422. [PMID: 36175485 PMCID: PMC9534829 DOI: 10.1038/s12276-022-00857-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
In this review, we discuss the ways in which recent studies of low-complexity (LC) domains have challenged our understanding of the mechanisms underlying cellular organization. LC sequences, long believed to function in the absence of a molecular structure, are abundant in the proteomes of all eukaryotic organisms. Over the past decade, the phase separation of LC domains has emerged as a fundamental mechanism driving dynamic multivalent interactions of many cellular processes. We review the key evidence showing the role of phase separation of individual proteins in organizing cellular assemblies and facilitating biological function while implicating the dynamics of phase separation as a key to biological validity and functional utility. We also highlight the evidence showing that pathogenic LC proteins alter various phase separation-dependent interactions to elicit debilitating human diseases, including cancer and neurodegenerative diseases. Progress in understanding the biology of phase separation may offer useful hints toward possible therapeutic interventions to combat the toxicity of pathogenic proteins.
Collapse
Affiliation(s)
- Jiwon Lee
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.
| | - Ilmin Kwon
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.
| |
Collapse
|
19
|
Potential Involvement of ewsr1-w Gene in Ovarian Development of Chinese Tongue Sole, Cynoglossus semilaevis. Animals (Basel) 2022; 12:ani12192503. [PMID: 36230245 PMCID: PMC9559465 DOI: 10.3390/ani12192503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Sexual dimorphism is a phenomenon commonly existing in animals. Chinese tongue sole Cynoglossus semilaevis is an economical marine fish with obvious female-biased size dimorphism. So, it is important to explore the molecular mechanism beyond gonadal development for sex control in aquaculture industry. RNA-binding protein Ewing Sarcoma protein-like (ewsr1) gene is important for mouse gonadal development and reproduction, however there are limited studies on this gene in teleost. In this study, two ewsr1 genes were cloned and characterized from C. semilaevis. The ewsr1-w gene, located in W chromosomes, showed female-biased expression during C. semilaevis gonadal development. In addition, knock-down effect and transcriptional regulation of Cs-ewsr1-w further suggested its essential role in ovarian development. This study broadened our understanding on ewsr1 function in teleost, and provided genetic resources for the further development of sex control breeding techniques in C. semilaevis aquaculture. Abstract Ewsr1 encodes a protein that acts as a multifunctional molecule in a variety of cellular processes. The full-length of Cs-ewsr1-w and Cs-ewsr1-z were cloned in Chinese tongue sole (Cynoglossus semilaevis). The open reading frame (ORF) of Cs-ewsr1-w was 1,767 bp that encoded 589 amino acids, while Cs-ewsr1-z was 1,794 bp that encoded 598 amino acids. Real-time PCR assays showed that Cs-ewsr1-w exhibited significant female-biased expression and could be hardly detected in male. It has the most abundant expression in ovaries among eight healthy tissues. Its expression in ovary increased gradually from 90 d to 3 y with C. semilaevis ovarian development and reached the peak at 3 y. After Cs-ewsr1-w knockdown with siRNA interference, several genes related to gonadal development including foxl2, sox9b and pou5f1 were down-regulated in ovarian cell line, suggesting the possible participation of Cs-ewsr1-w in C. semilaevis ovarian development. The dual-luciferase reporter assay revealed that the -733/-154 bp Cs-ewsr1-w promoter fragment exhibited strong transcription activity human embryonic kidney (HEK) 293T cell line. The mutation of a MAF BZIP Transcription Factor K (Mafk) binding site located in this fragment suggested that transcription factor Mafk might play an important role in Cs-ewsr1-w basal transcription. Our results will provide clues on the gene expression level, transcriptional regulation and knock-down effect of ewsr1 gene during ovarian development in teleost.
Collapse
|
20
|
Wang Y, Feswick A, Apostolou V, Petkov PM, Moser EK, Tibbetts SA. Gammaherpesvirus-mediated repression reveals EWSR1 to be a negative regulator of B cell responses. Proc Natl Acad Sci U S A 2022; 119:e2123362119. [PMID: 35921433 PMCID: PMC9371696 DOI: 10.1073/pnas.2123362119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/29/2022] [Indexed: 02/05/2023] Open
Abstract
The germinal center (GC) plays a central role in the generation of antigen-specific B cells and antibodies. Tight regulation of the GC is essential due to the inherent risks of tumorigenesis and autoimmunity posed by inappropriate GC B cell processes. Gammaherpesviruses such as Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68) utilize numerous armaments to drive infected naïve B cells, independent of antigen, through GC reactions to expand the latently infected B cell population and establish a stable latency reservoir. We previously demonstrated that the MHV68 microRNA (miRNA) mghv-miR-M1-7-5p represses host EWSR1 (Ewing sarcoma breakpoint region 1) to promote B cell infection. EWSR1 is a transcription and splicing regulator that is recognized for its involvement as a fusion protein in Ewing sarcoma. A function for EWSR1 in B cell responses has not been previously reported. Here, we demonstrate that 1) B cell-specific deletion of EWSR1 had no effect on generation of mature B cell subsets or basal immunoglobulin levels in naïve mice, 2) repression or ablation of EWSR1 in B cells promoted expansion of MHV68 latently infected GC B cells, and 3) B cell-specific deletion of EWSR1 during a normal immune response to nonviral antigen resulted in significantly elevated numbers of antigen-specific GC B cells, plasma cells, and circulating antibodies. Notably, EWSR1 deficiency did not affect the proliferation or survival of GC B cells but instead resulted in the generation of increased numbers of precursor GC B cells. Cumulatively, these findings demonstrate that EWSR1 is a negative regulator of B cell responses.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610
- UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610
- UF Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610
| | - April Feswick
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610
- UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610
- UF Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Vasiliki Apostolou
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610
- UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610
- UF Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610
| | | | - Emily K. Moser
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Scott A. Tibbetts
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610
- UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610
- UF Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610
| |
Collapse
|
21
|
Johnson MA, Nuckols TA, Merino P, Bagchi P, Nandy S, Root J, Taylor G, Seyfried NT, Kukar T. Proximity-based labeling reveals DNA damage-induced phosphorylation of fused in sarcoma (FUS) causes distinct changes in the FUS protein interactome. J Biol Chem 2022; 298:102135. [PMID: 35709984 PMCID: PMC9372748 DOI: 10.1016/j.jbc.2022.102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 01/18/2023] Open
Abstract
Accumulation of cytoplasmic inclusions containing fused in sarcoma (FUS), an RNA/DNA-binding protein, is a common hallmark of frontotemporal lobar degeneration and amyotrophic lateral sclerosis neuropathology. We have previously shown that DNA damage can trigger the cytoplasmic accumulation of N-terminally phosphorylated FUS. However, the functional consequences of N-terminal FUS phosphorylation are unknown. To gain insight into this question, we utilized proximity-dependent biotin labeling via ascorbate peroxidase 2 aired with mass spectrometry to investigate whether N-terminal phosphorylation alters the FUS protein-protein interaction network (interactome), and subsequently, FUS function. We report the first analysis comparing the interactomes of three FUS variants: homeostatic wildtype FUS (FUS WT), phosphomimetic FUS (FUS PM; a proxy for N-terminally phosphorylated FUS), and the toxic FUS proline 525 to leucine mutant (FUS P525L) that causes juvenile amyotrophic lateral sclerosis. We found that the phosphomimetic FUS interactome is uniquely enriched for a group of cytoplasmic proteins that mediate mRNA metabolism and translation, as well as nuclear proteins involved in the spliceosome and DNA repair functions. Furthermore, we identified and validated the RNA-induced silencing complex RNA helicase MOV10 as a novel interacting partner of FUS. Finally, we provide functional evidence that N-terminally phosphorylated FUS may disrupt homeostatic translation and steady-state levels of specific mRNA transcripts. Taken together, these results highlight phosphorylation as a unique modulator of the interactome and function of FUS.
Collapse
Affiliation(s)
- Michelle A. Johnson
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Thomas A. Nuckols
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Paola Merino
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Srijita Nandy
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Jessica Root
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Georgia Taylor
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Nicholas T. Seyfried
- Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA,Emory Integrated Proteomics Core, Emory University, School of Medicine, Atlanta, Georgia, USA,Department of Neurology, Emory University, School of Medicine, Atlanta, Georgia, USA,Department of Biochemistry, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA,Department of Neurology, Emory University, School of Medicine, Atlanta, Georgia, USA,For correspondence: Thomas Kukar
| |
Collapse
|
22
|
Identification of a novel translocation producing an in-frame fusion of TAF15 and ETV4 in a case of extraosseous Ewing sarcoma revealed in the prenatal period. Virchows Arch 2022; 481:665-669. [DOI: 10.1007/s00428-022-03335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022]
|
23
|
Mehta S, Zhang J. Liquid-liquid phase separation drives cellular function and dysfunction in cancer. Nat Rev Cancer 2022; 22:239-252. [PMID: 35149762 PMCID: PMC10036213 DOI: 10.1038/s41568-022-00444-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 12/11/2022]
Abstract
Cancer is a disease of uncontrollably reproducing cells. It is governed by biochemical pathways that have escaped the regulatory bounds of normal homeostatic balance. This balance is maintained through precise spatiotemporal regulation of these pathways. The formation of biomolecular condensates via liquid-liquid phase separation (LLPS) has recently emerged as a widespread mechanism underlying the spatiotemporal coordination of biological activities in cells. Biomolecular condensates are widely observed to directly regulate key cellular processes involved in cancer cell pathology, and the dysregulation of LLPS is increasingly implicated as a previously hidden driver of oncogenic activity. In this Perspective, we discuss how LLPS shapes the biochemical landscape of cancer cells.
Collapse
Affiliation(s)
- Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
24
|
Verdile V, Svetoni F, La Rosa P, Ferrante G, Cesari E, Sette C, Paronetto M. EWS splicing regulation contributes to balancing Foxp1 isoforms required for neuronal differentiation. Nucleic Acids Res 2022; 50:3362-3378. [PMID: 35253879 PMCID: PMC8989529 DOI: 10.1093/nar/gkac154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/27/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing is a key regulatory process underlying the amplification of genomic information and the expansion of proteomic diversity, particularly in brain. Here, we identify the Ewing sarcoma protein (EWS) as a new player of alternative splicing regulation during neuronal differentiation. Knockdown of EWS in neuronal progenitor cells leads to premature differentiation. Transcriptome profiling of EWS-depleted cells revealed global changes in splicing regulation. Bioinformatic analyses and biochemical experiments demonstrated that EWS regulates alternative exons in a position-dependent fashion. Notably, several EWS-regulated splicing events are physiologically modulated during neuronal differentiation and EWS depletion in neuronal precursors anticipates the splicing-pattern of mature neurons. Among other targets, we found that EWS controls the alternative splicing of the forkhead family transcription factor FOXP1, a pivotal transcriptional regulator of neuronal differentiation, possibly contributing to the switch of gene expression underlying the neuronal differentiation program.
Collapse
Affiliation(s)
- Veronica Verdile
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis 6, 00135 Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Francesca Svetoni
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Piergiorgio La Rosa
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Gabriele Ferrante
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Eleonora Cesari
- GSTEP-Organoids Core Facility, IRCCS Fondazione Policlinico Agostino Gemelli, 00168 Rome, Italy
| | - Claudio Sette
- GSTEP-Organoids Core Facility, IRCCS Fondazione Policlinico Agostino Gemelli, 00168 Rome, Italy
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, 00168 Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis 6, 00135 Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| |
Collapse
|
25
|
The low-complexity domain of the FUS RNA binding protein self-assembles via the mutually exclusive use of two distinct cross-β cores. Proc Natl Acad Sci U S A 2021; 118:2114412118. [PMID: 34654750 PMCID: PMC8545455 DOI: 10.1073/pnas.2114412118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 11/24/2022] Open
Abstract
Single amino acid changes causative of neurologic disease often map to the cross-β forming regions of low-complexity (LC) domains. All such mutations studied to date lead to enhanced avidity of cross-β interactions. The LC domain of the fused in sarcoma (FUS) RNA binding protein contains three different regions that are capable of forming labile cross-β interactions. Here we describe the perplexing effect of amyotrophic lateral sclerosis (ALS)-causing mutations localized to the LC domain of FUS to substantially weaken its ability to form one of its three cross-β interactions. An understanding of how these mutations abet uncontrolled polymerization of the FUS LC domain may represent an important clue as to how LC domains achieve their proper biological function. The low-complexity (LC) domain of the fused in sarcoma (FUS) RNA binding protein self-associates in a manner causing phase separation from an aqueous environment. Incubation of the FUS LC domain under physiologically normal conditions of salt and pH leads to rapid formation of liquid-like droplets that mature into a gel-like state. Both examples of phase separation have enabled reductionist biochemical assays allowing discovery of an N-terminal region of 57 residues that assembles into a labile, cross-β structure. Here we provide evidence of a nonoverlapping, C-terminal region of the FUS LC domain that also forms specific cross-β interactions. We propose that biologic function of the FUS LC domain may operate via the mutually exclusive use of these N- and C-terminal cross-β cores. Neurodegenerative disease–causing mutations in the FUS LC domain are shown to imbalance the two cross-β cores, offering an unanticipated concept of LC domain function and dysfunction.
Collapse
|
26
|
Maron MI, Lehman SM, Gayatri S, DeAngelo JD, Hegde S, Lorton BM, Sun Y, Bai DL, Sidoli S, Gupta V, Marunde MR, Bone JR, Sun ZW, Bedford MT, Shabanowitz J, Chen H, Hunt DF, Shechter D. Independent transcriptomic and proteomic regulation by type I and II protein arginine methyltransferases. iScience 2021; 24:102971. [PMID: 34505004 PMCID: PMC8417332 DOI: 10.1016/j.isci.2021.102971] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 06/21/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the post-translational monomethylation (Rme1), asymmetric (Rme2a), or symmetric (Rme2s) dimethylation of arginine. To determine the cellular consequences of type I (Rme2a) and II (Rme2s) PRMTs, we developed and integrated multiple approaches. First, we determined total cellular dimethylarginine levels, revealing that Rme2s was ∼3% of total Rme2 and that this percentage was dependent upon cell type and PRMT inhibition status. Second, we quantitatively characterized in vitro substrates of the major enzymes and expanded upon PRMT substrate recognition motifs. We also compiled our data with publicly available methylarginine-modified residues into a comprehensive database. Third, we inhibited type I and II PRMTs and performed proteomic and transcriptomic analyses to reveal their phenotypic consequences. These experiments revealed both overlapping and independent PRMT substrates and cellular functions. Overall, this study expands upon PRMT substrate diversity, the arginine methylome, and the complex interplay of type I and II PRMTs.
Collapse
Affiliation(s)
- Maxim I. Maron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Stephanie M. Lehman
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Sitaram Gayatri
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
- Graduate Program in Genetics and Epigenetics, The University of Texas MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Joseph D. DeAngelo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Subray Hegde
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benjamin M. Lorton
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yan Sun
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dina L. Bai
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Varun Gupta
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - James R. Bone
- EpiCypher, Inc., Research Triangle Park, NC 27709, USA
| | - Zu-Wen Sun
- EpiCypher, Inc., Research Triangle Park, NC 27709, USA
| | - Mark T. Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
- Graduate Program in Genetics and Epigenetics, The University of Texas MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Hongshan Chen
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Donald F. Hunt
- Departments of Chemistry and Pathology, University of Virginia, Charlottesville, VA 22904, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
27
|
Owen I, Yee D, Wyne H, Perdikari TM, Johnson V, Smyth J, Kortum R, Fawzi NL, Shewmaker F. The oncogenic transcription factor FUS-CHOP can undergo nuclear liquid-liquid phase separation. J Cell Sci 2021; 134:272045. [PMID: 34357401 DOI: 10.1242/jcs.258578] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/24/2021] [Indexed: 11/20/2022] Open
Abstract
Myxoid liposarcoma is caused by a chromosomal translocation resulting in a fusion protein comprised of the N terminus of FUS (fused in sarcoma) and the full-length transcription factor CHOP (CCAAT/enhancer-binding protein homologous protein, also known as DDIT3). FUS functions in RNA metabolism, and CHOP is a stress-induced transcription factor. The FUS-CHOP fusion protein causes unique gene expression and oncogenic transformation. Although it is clear that the FUS segment is required for oncogenic transformation, the mechanism of FUS-CHOP-induced transcriptional activation is unknown. Recently, some transcription factors and super enhancers have been proposed to undergo liquid-liquid phase separation and form membraneless compartments that recruit transcription machinery to gene promoters. Since phase separation of FUS depends on its N terminus, transcriptional activation by FUS-CHOP could result from the N terminus driving nuclear phase transitions. Here, we characterized FUS-CHOP in cells and in vitro, and observed novel phase-separating properties relative to unmodified CHOP. Our data indicate that FUS-CHOP forms phase-separated condensates that colocalize with BRD4, a marker of super enhancer condensates. We provide evidence that the FUS-CHOP phase transition is a novel oncogenic mechanism and potential therapeutic target for myxoid liposarcoma. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Izzy Owen
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Debra Yee
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Hala Wyne
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| | | | - Victoria Johnson
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Jeremy Smyth
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Robert Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Frank Shewmaker
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
28
|
Si S, Zhang M, Hu Y, Wu C, Yang Y, Luo S, Xiao X. BrcuHAC1 is a histone acetyltransferase that affects bolting development in Chinese flowering cabbage. J Genet 2021. [DOI: 10.1007/s12041-021-01303-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
DeJong CS, Dichmann DS, Exner CRT, Xu Y, Harland RM. The atypical RNA-binding protein Taf15 regulates dorsoanterior neural development through diverse mechanisms in Xenopus tropicalis. Development 2021; 148:271175. [PMID: 34345915 DOI: 10.1242/dev.191619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
The FET family of atypical RNA-binding proteins includes Fused in sarcoma (FUS), Ewing's sarcoma (EWS) and the TATA-binding protein-associate factor 15 (TAF15). FET proteins are highly conserved, suggesting specialized requirements for each protein. Fus regulates splicing of transcripts required for mesoderm differentiation and cell adhesion in Xenopus, but the roles of Ews and Taf15 remain unknown. Here, we analyze the roles of maternally deposited and zygotically transcribed Taf15, which is essential for the correct development of dorsoanterior neural tissues. By measuring changes in exon usage and transcript abundance from Taf15-depleted embryos, we found that Taf15 may regulate dorsoanterior neural development through fgfr4 and ventx2.1. Taf15 uses distinct mechanisms to downregulate Fgfr4 expression, namely retention of a single intron within fgfr4 when maternal and zygotic Taf15 is depleted, and reduction in the total fgfr4 transcript when zygotic Taf15 alone is depleted. The two mechanisms of gene regulation (post-transcriptional versus transcriptional) suggest that Taf15-mediated gene regulation is target and co-factor dependent, contingent on the milieu of factors that are present at different stages of development.
Collapse
Affiliation(s)
- Caitlin S DeJong
- Molecular and Cell Biology Department, Genetics, Genomics and Development Division, University of California, Berkeley, CA 94720, USA
| | - Darwin S Dichmann
- Molecular and Cell Biology Department, Genetics, Genomics and Development Division, University of California, Berkeley, CA 94720, USA
| | - Cameron R T Exner
- Department of Psychiatry, Weill Institute for Neurosciences, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yuxiao Xu
- Department of Psychiatry, Weill Institute for Neurosciences, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Richard M Harland
- Molecular and Cell Biology Department, Genetics, Genomics and Development Division, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
30
|
Barabino SML, Citterio E, Ronchi AE. Transcription Factors, R-Loops and Deubiquitinating Enzymes: Emerging Targets in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13153753. [PMID: 34359655 PMCID: PMC8345071 DOI: 10.3390/cancers13153753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The advent of DNA massive sequencing technologies has allowed for the first time an extensive look into the heterogeneous spectrum of genes and mutations underpinning myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). In this review, we wish to explore the most recent advances and the rationale for the potential therapeutic interest of three main actors in myelo-leukemic transformation: transcription factors that govern myeloid differentiation; RNA splicing factors, which ensure proper mRNA maturation and whose mutations increase R-loops formation; and deubiquitinating enzymes, which contribute to genome stability in hematopoietic stem cells (HSCs). Abstract Myeloid neoplasms encompass a very heterogeneous family of diseases characterized by the failure of the molecular mechanisms that ensure a balanced equilibrium between hematopoietic stem cells (HSCs) self-renewal and the proper production of differentiated cells. The origin of the driver mutations leading to preleukemia can be traced back to HSC/progenitor cells. Many properties typical to normal HSCs are exploited by leukemic stem cells (LSCs) to their advantage, leading to the emergence of a clonal population that can eventually progress to leukemia with variable latency and evolution. In fact, different subclones might in turn develop from the original malignant clone through accumulation of additional mutations, increasing their competitive fitness. This process ultimately leads to a complex cancer architecture where a mosaic of cellular clones—each carrying a unique set of mutations—coexists. The repertoire of genes whose mutations contribute to the progression toward leukemogenesis is broad. It encompasses genes involved in different cellular processes, including transcriptional regulation, epigenetics (DNA and histones modifications), DNA damage signaling and repair, chromosome segregation and replication (cohesin complex), RNA splicing, and signal transduction. Among these many players, transcription factors, RNA splicing proteins, and deubiquitinating enzymes are emerging as potential targets for therapeutic intervention.
Collapse
|
31
|
Ahn JH, Davis ES, Daugird TA, Zhao S, Quiroga IY, Uryu H, Li J, Storey AJ, Tsai YH, Keeley DP, Mackintosh SG, Edmondson RD, Byrum SD, Cai L, Tackett AJ, Zheng D, Legant WR, Phanstiel DH, Wang GG. Phase separation drives aberrant chromatin looping and cancer development. Nature 2021; 595:591-595. [PMID: 34163069 PMCID: PMC8647409 DOI: 10.1038/s41586-021-03662-5] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/21/2021] [Indexed: 01/05/2023]
Abstract
The development of cancer is intimately associated with genetic abnormalities that target proteins with intrinsically disordered regions (IDRs). In human haematological malignancies, recurrent chromosomal translocation of nucleoporin (NUP98 or NUP214) generates an aberrant chimera that invariably retains the nucleoporin IDR-tandemly dispersed repeats of phenylalanine and glycine residues1,2. However, how unstructured IDRs contribute to oncogenesis remains unclear. Here we show that IDRs contained within NUP98-HOXA9, a homeodomain-containing transcription factor chimera recurrently detected in leukaemias1,2, are essential for establishing liquid-liquid phase separation (LLPS) puncta of chimera and for inducing leukaemic transformation. Notably, LLPS of NUP98-HOXA9 not only promotes chromatin occupancy of chimera transcription factors, but also is required for the formation of a broad 'super-enhancer'-like binding pattern typically seen at leukaemogenic genes, which potentiates transcriptional activation. An artificial HOX chimera, created by replacing the phenylalanine and glycine repeats of NUP98 with an unrelated LLPS-forming IDR of the FUS protein3,4, had similar enhancing effects on the genome-wide binding and target gene activation of the chimera. Deeply sequenced Hi-C revealed that phase-separated NUP98-HOXA9 induces CTCF-independent chromatin loops that are enriched at proto-oncogenes. Together, this report describes a proof-of-principle example in which cancer acquires mutation to establish oncogenic transcription factor condensates via phase separation, which simultaneously enhances their genomic targeting and induces organization of aberrant three-dimensional chromatin structure during tumourous transformation. As LLPS-competent molecules are frequently implicated in diseases1,2,4-7, this mechanism can potentially be generalized to many malignant and pathological settings.
Collapse
Affiliation(s)
- Jeong Hyun Ahn
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Eric S Davis
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy A Daugird
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Shuai Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ivana Yoseli Quiroga
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hidetaka Uryu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jie Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Daniel P Keeley
- UNC Neuroscience Center and Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Deyou Zheng
- Departments of Genetics, Neurology, and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wesley R Legant
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, NC, USA
| | - Douglas H Phanstiel
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
32
|
Boone MA, Taslim C, Crow JC, Selich-Anderson J, Byrum AK, Showpnil IA, Sunkel BD, Wang M, Stanton BZ, Theisen ER, Lessnick SL. The FLI portion of EWS/FLI contributes a transcriptional regulatory function that is distinct and separable from its DNA-binding function in Ewing sarcoma. Oncogene 2021; 40:4759-4769. [PMID: 34145397 PMCID: PMC8298202 DOI: 10.1038/s41388-021-01876-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023]
Abstract
Ewing sarcoma is an aggressive bone cancer of children and young adults defined by the presence of a chromosomal translocation: t(11;22)(q24;q12). The encoded protein, EWS/FLI, fuses the amino-terminal domain of EWS to the carboxyl-terminus of FLI. The EWS portion is an intrinsically disordered transcriptional regulatory domain, while the FLI portion contains an ETS DNA-binding domain and two flanking regions of unknown function. Early studies using non-Ewing sarcoma models provided conflicting information on the roles of each domain of FLI in EWS/FLI oncogenic function. We therefore sought to define the specific contributions of each FLI domain to EWS/FLI activity in a well-validated Ewing sarcoma model and, in doing so, to better understand Ewing sarcoma development mediated by the fusion protein. We analyzed a series of engineered EWS/FLI mutants with alterations in the FLI portion using a variety of assays. Fluorescence anisotropy, CUT&RUN, and ATAC-sequencing experiments revealed that the isolated ETS domain is sufficient to maintain the normal DNA-binding and chromatin accessibility function of EWS/FLI. In contrast, RNA-sequencing and soft agar colony formation assays revealed that the ETS domain alone was insufficient for transcriptional regulatory and oncogenic transformation functions of the fusion protein. We found that an additional alpha-helix immediately downstream of the ETS domain is required for full transcriptional regulation and EWS/FLI-mediated oncogenesis. These data demonstrate a previously unknown role for FLI in transcriptional regulation that is distinct from its DNA-binding activity. This activity is critical for the cancer-causing function of EWS/FLI and may lead to novel therapeutic approaches.
Collapse
Affiliation(s)
- Megann A Boone
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Cenny Taslim
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jesse C Crow
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Julia Selich-Anderson
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Andrea K Byrum
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Iftekhar A Showpnil
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Benjamin D Sunkel
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Meng Wang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Benjamin Z Stanton
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Emily R Theisen
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Stephen L Lessnick
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA.
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
33
|
Fijen C, Rothenberg E. The evolving complexity of DNA damage foci: RNA, condensates and chromatin in DNA double-strand break repair. DNA Repair (Amst) 2021; 105:103170. [PMID: 34256335 DOI: 10.1016/j.dnarep.2021.103170] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Formation of biomolecular condensates is increasingly recognized as a mechanism employed by cells to deal with stress and to optimize enzymatic reactions. Recent studies have characterized several DNA repair foci as phase-separated condensates, behaving like liquid droplets. Concomitantly, the apparent importance of long non-coding RNAs and RNA-binding proteins for the repair of double-strand breaks has raised many questions about their exact contribution to the repair process. Here we discuss how RNA molecules can participate in condensate formation and how RNA-binding proteins can act as molecular scaffolds. We furthermore summarize our current knowledge about how properties of condensates can influence the choice of repair pathway (homologous recombination or non-homologous end joining) and identify the open questions in this field of emerging importance.
Collapse
Affiliation(s)
- Carel Fijen
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, USA.
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, USA.
| |
Collapse
|
34
|
Fang Y, Yao Y, Mao K, Zhong Y, Xu Y. Circ_0132817 facilitates cell proliferation, migration, invasion and glycolysis by regulating the miR-432-5p/NOL4L axis in neuroblastoma. Exp Brain Res 2021; 239:1841-1852. [PMID: 33837793 DOI: 10.1007/s00221-021-06091-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Neuroblastoma (NB) is one of the most common extracranial solid tumors in children. Circular RNAs (circRNAs) have been shown to be involved in the development of NB. However, the function of circ_0132817 in NB is currently unclear. In this paper, the levels of circ_0132817 and NOL4L were induced in NB tissues and cells, and miR-432-5p expression was on the contrary. MiR-432-5p was verified as a target of circ_0132817 and miR-432-5p could bind to NOL4L. The inhibitory effects of miR-432-5p overexpression on cell proliferation, migration, invasion and glycolysis could be reversed by circ_0132817 facilitation. The suppression of NOL4L knockdown on NB cells progression could be rescued by miR-432-5p inhibition. Besides, knockdown of circ_0132817 repressed tumor growth in vivo. Thus, we came to a conclusion that circ_0132817 promoted the tumorigenesis of NB cells by up-regulating NOL4L and acting as a sponge for miR-432-5p.
Collapse
Affiliation(s)
- Yafei Fang
- Department of Pediatrics, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu Province, China
| | - Yuqian Yao
- Department of Pediatrics, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu Province, China
| | - Kangwei Mao
- Department of Pediatrics, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu Province, China
| | - Yanyan Zhong
- Department of Pediatrics, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu Province, China
| | - Yan Xu
- Department of Nursing, The First People's Hospital of Lianyungang, No.182, North Tongguan Road, Haizhou District, Lianyungang, 222000, Jiangsu Province, China.
| |
Collapse
|
35
|
Taniue K, Akimitsu N. Aberrant phase separation and cancer. FEBS J 2021; 289:17-39. [PMID: 33583140 DOI: 10.1111/febs.15765] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/24/2021] [Accepted: 02/12/2021] [Indexed: 01/10/2023]
Abstract
Eukaryotic cells are intracellularly divided into numerous compartments or organelles, which coordinate specific molecules and biological reactions. Membrane-bound organelles are physically separated by lipid bilayers from the surrounding environment. Biomolecular condensates, also referred to membraneless organelles, are micron-scale cellular compartments that lack membranous enclosures but function to concentrate proteins and RNA molecules, and these are involved in diverse processes. Liquid-liquid phase separation (LLPS) driven by multivalent weak macromolecular interactions is a critical principle for the formation of biomolecular condensates, and a multitude of combinations among multivalent interactions may drive liquid-liquid phase transition (LLPT). Dysregulation of LLPS and LLPT leads to aberrant condensate and amyloid formation, which causes many human diseases, including neurodegeneration and cancer. Here, we describe recent findings regarding abnormal forms of biomolecular condensates and aggregation via aberrant LLPS and LLPT of cancer-related proteins in cancer development driven by mutation and fusion of genes. Moreover, we discuss the regulatory mechanisms by which aberrant LLPS and LLPT occur in cancer and the drug candidates targeting these mechanisms. Further understanding of the molecular events regulating how biomolecular condensates and aggregation form in cancer tissue is critical for the development of therapeutic strategies against tumorigenesis.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, Japan.,Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | | |
Collapse
|
36
|
Affiliation(s)
- Nicolò Riggi
- From the Institute of Pathology, Faculty of Biology and Medicine, University of Lausanne and Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N.R., I.S.); and the Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, and the Broad Institute of Harvard University and the Massachusetts Institute of Technology, Cambridge - both in Massachusetts (M.L.S.)
| | - Mario L Suvà
- From the Institute of Pathology, Faculty of Biology and Medicine, University of Lausanne and Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N.R., I.S.); and the Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, and the Broad Institute of Harvard University and the Massachusetts Institute of Technology, Cambridge - both in Massachusetts (M.L.S.)
| | - Ivan Stamenkovic
- From the Institute of Pathology, Faculty of Biology and Medicine, University of Lausanne and Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N.R., I.S.); and the Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, and the Broad Institute of Harvard University and the Massachusetts Institute of Technology, Cambridge - both in Massachusetts (M.L.S.)
| |
Collapse
|
37
|
Sukhanova MV, Singatulina AS, Pastré D, Lavrik OI. Fused in Sarcoma (FUS) in DNA Repair: Tango with Poly(ADP-ribose) Polymerase 1 and Compartmentalisation of Damaged DNA. Int J Mol Sci 2020; 21:E7020. [PMID: 32987654 PMCID: PMC7582374 DOI: 10.3390/ijms21197020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
The fused in sarcoma (FUS) protein combines prion-like properties with a multifunctional DNA/RNA-binding domain and has functions spanning the regulation of RNA metabolism, including transcription, pre-mRNA splicing, mRNA transport and translation. In addition to its roles in RNA metabolism, FUS is implicated in the maintenance of DNA integrity. In this review, we examine the participation of FUS in major DNA repair pathways, focusing on DNA repair associated with poly(ADP-ribosyl)ation events and on how the interaction of FUS with poly(ADP-ribose) may orchestrate transient compartmentalisation of DNA strand breaks. Unravelling how prion-like RNA-binding proteins control DNA repair pathways will deepen our understanding of the pathogenesis of some neurological diseases and cancer as well as provide the basis for the development of relevant innovative therapeutic technologies. This knowledge may also extend the range of applications of poly(ADP-ribose) polymerase inhibitors to the treatment of neurodegenerative diseases related to RNA-binding proteins in the cell, e.g., amyotrophic lateral sclerosis and frontotemporal lobar degeneration.
Collapse
Affiliation(s)
- Maria V. Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (A.S.S.); (O.I.L.)
| | - Anastasia S. Singatulina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (A.S.S.); (O.I.L.)
| | - David Pastré
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, INSERM U1204, Université Paris-Saclay, 91025 Evry, France;
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (A.S.S.); (O.I.L.)
| |
Collapse
|
38
|
Memon RA, Granada CNP, Patel C, Manne U, Heslin MJ, Gbolahan OB, Harada S, Diffalha SA. Gastric Sclerosing Epithelioid Fibrosarcoma Harboring a Rare FUS- CREM Fusion. Int J Surg Pathol 2020; 29:565-570. [PMID: 32964769 DOI: 10.1177/1066896920961174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sclerosing epithelioid fibrosarcoma (SEF) is a rare, aggressive soft-tissue tumor, commonly occurring in upper and lower extremities, the limb girdle, and the head and neck, which shows morphologic and molecular overlap with low-grade fibromyxoid sarcoma. For SEF in soft tissues, 100 case reports have been published. To our knowledge, the present case is the first to be reported in English literature for a primary SEF of the stomach with a rare FUS-CREM fusion. We report a case of gastric SEF in a 35-year-old female who presented with nonspecific symptoms, including night sweat, cough, and iron deficiency anemia for the past few months. Further workup showed, on computed tomography, a large, heterogeneously enhancing and centrally necrotic left upper quadrant mass, which measured approximately 8.4 cm. A laparoscopic partial gastrectomy with distal pancreatectomy and splenectomy was performed. Histological examination and immunohistochemical staining suggested the diagnosis of primary gastric SEF, which was later confirmed by sarcoma fusion panel showing FUS-CREM fusion. In this article, we report this first case of SEF in the stomach with a rare FUS-CREM fusion, which has been previously reported only once in SEFs of soft tissue.
Collapse
Affiliation(s)
- Raima A Memon
- Depatment of Pathology, University of Alabama at Birmingham, Birmingham AL, USA
| | | | - Chirag Patel
- Depatment of Pathology, University of Alabama at Birmingham, Birmingham AL, USA
| | - Upender Manne
- Depatment of Pathology, University of Alabama at Birmingham, Birmingham AL, USA
| | - Martin J Heslin
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Olumide B Gbolahan
- Department of Medicine/Hematology & Oncology, University of Alabama at Birmingham, AL, USA
| | - Shuko Harada
- Depatment of Pathology, University of Alabama at Birmingham, Birmingham AL, USA
| | - Sameer Al Diffalha
- Depatment of Pathology, University of Alabama at Birmingham, Birmingham AL, USA
| |
Collapse
|
39
|
Stacchiotti S, Baldi GG, Morosi C, Gronchi A, Maestro R. Extraskeletal Myxoid Chondrosarcoma: State of the Art and Current Research on Biology and Clinical Management. Cancers (Basel) 2020; 12:cancers12092703. [PMID: 32967265 PMCID: PMC7563993 DOI: 10.3390/cancers12092703] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The aim of this review is to provide an overview of the biological basis of pathogenesis and current research in extraskeletal myxoid chondrosarcoma (EMC), together with the state of the art of treatment for localized and advanced disease. EMC is an ultra-rare sarcoma sub-type, more often arising from the soft tissues, marked by specific molecular features consisting in rearrangement of the NR4A3 gene, identified in recent years and very useful to distinguish EMC from other mimics. Available pharmacological treatments in particular are discussed, with a focus on the most recent results and future perspectives. Abstract Extraskeletal myxoid chondrosarcoma (EMC) is an ultra-rare mesenchymal neoplasm with uncertain differentiation, which arises mostly in the deep soft tissue of proximal extremities and limb girdles. EMC is marked by a translocation involving the NR4A3 gene, which can be fused in-frame with different partners, most often EWSR1 or TAF1. Although EMC biology is still poorly defined, recent studies have started shedding light on the specific contribution of NR4A3 chimeric proteins to EMC pathogenesis and clinical outcome. Standard treatment for localized disease is surgery, plus or minus radiation therapy with an expected prolonged survival even though the risk of relapse is about 50%. In advanced cases, besides the standard chemotherapy currently used for soft tissue sarcoma, antiangiogenic agents have recently shown promising activity. The aim of this review is to provide the state of the art of treatment for localized and advanced disease, with a focus on pharmacological treatments available for EMC. The biological basis of current research and future perspectives will be also discussed.
Collapse
Affiliation(s)
- Silvia Stacchiotti
- Medical Oncology Unit 2, Cancer Medicine Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
- Correspondence: ; Tel.: +39-02-2390-2803; Fax: +39-02-2390-2804
| | - Giacomo Giulio Baldi
- “Sandro Pitigliani” Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy;
| | - Carlo Morosi
- Deparment of Radiology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy;
| | - Alessandro Gronchi
- Department of Surgery, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy;
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081 Aviano, Italy;
| |
Collapse
|
40
|
Maio F, Helderman TA, Arroyo-Mateos M, van der Wolf M, Boeren S, Prins M, van den Burg HA. Identification of Tomato Proteins That Interact With Replication Initiator Protein (Rep) of the Geminivirus TYLCV. FRONTIERS IN PLANT SCIENCE 2020; 11:1069. [PMID: 32760417 PMCID: PMC7373745 DOI: 10.3389/fpls.2020.01069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/29/2020] [Indexed: 05/23/2023]
Abstract
Geminiviruses are plant-infecting DNA viruses that reshape the intracellular environment of their host in order to create favorable conditions for viral replication and propagation. Viral manipulation is largely mediated via interactions between viral and host proteins. Identification of this protein network helps us to understand how these viruses manipulate their host and therefore provides us potentially with novel leads for resistance against this class of pathogens, as genetic variation in the corresponding plant genes could subvert viral manipulation. Different studies have already yielded a list of host proteins that interact with one of the geminiviral proteins. Here, we use affinity purification followed by mass spectrometry (AP-MS) to further expand this list of interacting proteins, focusing on an important host (tomato) and the Replication initiator protein (Rep, AL1, C1) from Tomato yellow leaf curl virus (TYLCV). Rep is the only geminiviral protein proven to be essential for geminiviral replication and it forms an integral part of viral replisomes, a protein complex that consists of plant and viral proteins that allows for viral DNA replication. Using AP-MS, fifty-four 'high confidence' tomato proteins were identified that specifically co-purified with Rep. For two of them, an unknown EWS-like RNA-binding protein (called Geminivirus Rep interacting EWS-like protein 1 or GRIEP1) and an isoform of the THO complex subunit 4A (ALY1), we were able to confirm this interaction with Rep in planta using a second method, bimolecular fluorescence complementation (BiFC). The THO subunit 4 is part of the THO/TREX (TRanscription-EXport) complex, which controls RNA splicing and nuclear export of mRNA to the cytoplasm and is also connected to plant disease resistance. This work represents the first step towards characterization of novel host factors with a putative role in the life cycle of TYLCV and possibly other geminiviruses.
Collapse
Affiliation(s)
- Francesca Maio
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Tieme A. Helderman
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Manuel Arroyo-Mateos
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Miguel van der Wolf
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| | - Marcel Prins
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
- Keygene N.V., Wageningen, Netherlands
| | - Harrold A. van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
41
|
Koutlas IG, Olson DR, Rawwas J. FET(EWSR1)-TFCP2 Rhabdomyosarcoma: An Additional Example of this Aggressive Variant with Predilection for the Gnathic Bones. Head Neck Pathol 2020; 15:374-380. [PMID: 32504289 PMCID: PMC8010041 DOI: 10.1007/s12105-020-01189-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022]
Abstract
An example of a mandibular rhabdomyosarcoma in a 15-year-old male is described featuring EWSR1-TFCP2 fusion with homolateral lymph node metastasis and apparent metastasis to the thoracic vertebra T7. This type of rhabdomyosarcoma has preference for the craniofacial skeleton. Histologically, the tumor was composed of spindle and epithelioid cells characterized by nuclear pleomorphism, cytologic atypia and brisk mitotic activity. Immunohistochemically, it featured diffuse positive nuclear staining MYOD1, only focal staining for myogenin and patchy cytoplasmic staining for desmin. Tumor cells were positive for keratins and nuclear staining for SATB2 was also observed. Interestingly, tumor cells were diffusely positive for calponin. Currently, the patient is under chemotherapy treatment.
Collapse
Affiliation(s)
- Ioannis G Koutlas
- Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, 515 Delaware Street SE #16-116B, Minneapolis, MN, 55455, USA.
| | - Damon R Olson
- Department of Laboratory Medicine and Pathology, Children's Minnesota, Minneapolis, MN, USA
| | - Jawhar Rawwas
- Pediatric Hematology and Oncology, Children's Minnesota, Minneapolis, MN, USA
| |
Collapse
|
42
|
Ruan X, Zheng J, Liu X, Liu Y, Liu L, Ma J, He Q, Yang C, Wang D, Cai H, Li Z, Liu J, Xue Y. lncRNA LINC00665 Stabilized by TAF15 Impeded the Malignant Biological Behaviors of Glioma Cells via STAU1-Mediated mRNA Degradation. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:823-840. [PMID: 32464546 PMCID: PMC7256440 DOI: 10.1016/j.omtn.2020.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022]
Abstract
Glioma is a brain cancer characterized by strong invasiveness with limited treatment options and poor prognosis. Recently, dysregulation of long non-coding RNAs (lncRNAs) has emerged as an important component in cellular processes and tumorigenesis. In this study, we demonstrated that TATA-box binding protein associated factor 15 (TAF15) and long intergenic non-protein coding RNA 665 (LINC00665) were both downregulated in glioma tissues and cells. TAF15 overexpression enhanced the stability of LINC00665, inhibiting malignant biological behaviors of glioma cells. Both metal regulatory transcription factor 1 (MTF1) and YY2 transcription factor (YY2) showed high expression levels in glioma tissues and cells, and their knockdown inhibited malignant progression. Mechanistically, overexpression of LINC00665 was confirmed to destabilize MTF1 and YY2 mRNA by interacting with STAU1, and knockdown of STAU1 could rescue the MTF1 and YY2 mRNA degradation caused by LINC00665 overexpression. G2 and S-phase expressed 1 (GTSE1) was identified as an oncogene in glioma, and knockdown of MTF1 or YY2 decreased the mRNA and protein expression levels of GTSE1 through direct binding to the GTSE1 promoter region. Our study highlights a key role of the TAF15/LINC00665/MTF1(YY2)/GTSE1 axis in modulating the malignant biological behaviors of glioma cells, suggesting novel mechanisms by which lncRNAs affect STAU1-mediated mRNA stability, which can inform new molecular therapies for glioma.
Collapse
Affiliation(s)
- Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Qianru He
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Jing Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China.
| |
Collapse
|
43
|
Shukla TN, Song J, Campbell ZT. Molecular entrapment by RNA: an emerging tool for disrupting protein-RNA interactions in vivo. RNA Biol 2020; 17:417-424. [PMID: 31957541 PMCID: PMC7237136 DOI: 10.1080/15476286.2020.1717059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/09/2019] [Accepted: 01/12/2020] [Indexed: 10/25/2022] Open
Abstract
mRNA function is controlled by RNA-binding proteins. The specificity of RNA-binding factors for their targets is critical in that it enables all subsequent regulation. Despite widespread recognition of the pervasive role RNA-binding proteins play in development and disease, they remain challenging to target with small molecules. A renaissance in RNA therapeutics has led to the identification of modifications that substantially increase RNA stability. When combined with information regarding specificity, a new class of oligonucleotide mimics has emerged as a means to competitively disrupt the regulation of endogenous substrates. These decoys have been used to inhibit RNA-binding proteins in living animals. Decoys will likely provide new insights into the expansive roles of RNA-binding proteins in biology and disease. Here, we describe examples where they have been used and discuss how they could be applied to new targets.
Collapse
Affiliation(s)
- Tarjani N. Shukla
- The Department of Biological Sciences, University of Texas-Dallas, Richardson, TX, USA
| | - Jane Song
- The Department of Biological Sciences, University of Texas-Dallas, Richardson, TX, USA
| | - Zachary T. Campbell
- The Department of Biological Sciences, University of Texas-Dallas, Richardson, TX, USA
| |
Collapse
|
44
|
Virgen-Slane R, Correa RG, Ramezani-Rad P, Steen-Fuentes S, Detanico T, DiCandido MJ, Li J, Ware CF. Cutting Edge: The RNA-Binding Protein Ewing Sarcoma Is a Novel Modulator of Lymphotoxin β Receptor Signaling. THE JOURNAL OF IMMUNOLOGY 2020; 204:1085-1090. [PMID: 31969387 DOI: 10.4049/jimmunol.1901260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/22/2019] [Indexed: 01/05/2023]
Abstract
Lymphotoxin β receptor (LTβR) signaling is crucial for lymphoid tissue organogenesis and immune homeostasis. To identify novel regulatory mechanisms for signaling, we implemented a two-step screen that uses coexpression analysis of human fibroblasts undergoing LTβR stimulation and affinity-purification mass spectrometry for the LTβR signaling protein TNFR-associated factor 3 (TRAF3). We identify Ewing sarcoma (EWS) protein as a novel LTβR signaling component that associates with TRAF3 but not with TNFR-associated factor 2 (TRAF2). The EWS:TRAF3 complex forms under unligated conditions that are disrupted following activation of the LTβR. We conclude that EWS limits expression of proinflammatory molecules, GM-CSF, and ERK-2, promoting immune homeostasis.
Collapse
Affiliation(s)
- Richard Virgen-Slane
- Laboratory of Molecular Immunology, Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Ricardo G Correa
- Laboratory of Molecular Immunology, Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Parham Ramezani-Rad
- National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037; and
| | - Seth Steen-Fuentes
- Laboratory of Molecular Immunology, Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Thiago Detanico
- Laboratory of Molecular Immunology, Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Michael J DiCandido
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877
| | - Jun Li
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877
| | - Carl F Ware
- Laboratory of Molecular Immunology, Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037;
| |
Collapse
|
45
|
Spannl S, Tereshchenko M, Mastromarco GJ, Ihn SJ, Lee HO. Biomolecular condensates in neurodegeneration and cancer. Traffic 2019; 20:890-911. [PMID: 31606941 DOI: 10.1111/tra.12704] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 12/14/2022]
Abstract
The intracellular environment is partitioned into functionally distinct compartments containing specific sets of molecules and reactions. Biomolecular condensates, also referred to as membrane-less organelles, are diverse and abundant cellular compartments that lack membranous enclosures. Molecules assemble into condensates by phase separation; multivalent weak interactions drive molecules to separate from their surroundings and concentrate in discrete locations. Biomolecular condensates exist in all eukaryotes and in some prokaryotes, and participate in various essential house-keeping, stress-response and cell type-specific processes. An increasing number of recent studies link abnormal condensate formation, composition and material properties to a number of disease states. In this review, we discuss current knowledge and models describing the regulation of condensates and how they become dysregulated in neurodegeneration and cancer. Further research on the regulation of biomolecular phase separation will help us to better understand their role in cell physiology and disease.
Collapse
Affiliation(s)
- Stephanie Spannl
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Sean J Ihn
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Canada Research Chairs Program, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Romo-Morales A, Aladowicz E, Blagg J, Gatz SA, Shipley JM. Catalytic inhibition of KDM1A in Ewing sarcoma is insufficient as a therapeutic strategy. Pediatr Blood Cancer 2019; 66:e27888. [PMID: 31207107 DOI: 10.1002/pbc.27888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/02/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ewing sarcoma and desmoplastic small round cell tumors (DSRCT) are rare and clinically aggressive sarcomas usually characterized by oncogenic fusion proteins involving EWS. Emerging studies of Ewing sarcoma have demonstrated EWS-FLI1-driven chromatin remodeling as a key aspect of tumorigenicity. In particular, the lysine-specific demethylase KDM1A/LSD1 is linked to transcriptional regulation of target genes orchestrated by the EWS portion of the fusion protein interacting with repressive chromatin-remodeling complexes. Consistent with this model, depletion of KDM1A supports it is a molecular therapeutic target in Ewing sarcoma cells, but effective drugs need to be identified. PROCEDURE A comprehensive phenotypic analysis of the effects of catalytic KDM1A inhibitors ORY-1001 and GSK2879552, including clinically relevant doses, was carried out in 2D and 3D spheroid models of Ewing sarcoma and DSRCT. RESULTS Catalytic inhibition of KDM1A did not affect cell viability in 2D and 3D assays and had no impact on invasion in a 3D assay. CONCLUSIONS Overall, evidence presented here does not support inhibition of KDM1A catalytic demethylase activity as an effective therapeutic strategy for Ewing sarcoma or DSRCT. However, roles of KDM1A beyond its demethylase activity should be considered for these sarcomas.
Collapse
Affiliation(s)
- Antonio Romo-Morales
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Ewa Aladowicz
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Susanne A Gatz
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK.,Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| |
Collapse
|
47
|
Lee J, Nguyen PT, Shim HS, Hyeon SJ, Im H, Choi MH, Chung S, Kowall NW, Lee SB, Ryu H. EWSR1, a multifunctional protein, regulates cellular function and aging via genetic and epigenetic pathways. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1938-1945. [PMID: 30481590 PMCID: PMC6527469 DOI: 10.1016/j.bbadis.2018.10.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022]
Abstract
Ewing's sarcoma (EWS) is a bone cancer arising predominantly in young children. EWSR1 (Ewing Sarcoma breakpoint region 1/EWS RNA binding protein 1) gene is ubiquitously expressed in most cell types, indicating it has diverse roles in various cellular processes and organ development. Recently, several studies have shown that missense mutations of EWSR1 genes are known to be associated with central nervous system disorders such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Otherwise, EWSR1 plays epigenetic roles in gene expression, RNA processing, and cellular signal transduction. Interestingly, EWSR1 controls micro RNA (miRNA) levels via Drosha, leading to autophagy dysfunction and impaired dermal development. Ewsr1 deficiency also leads to premature senescence of blood cells and gamete cells with a high rate of apoptosis due to the abnormal meiosis. Despite these roles of EWSR1 in various cellular functions, the exact mechanisms are not yet understood. In this context, the current review overviews a large body of evidence and discusses on what EWSR1 genetic mutations are associated with brain diseases and on how EWSR1 modulates cellular function via the epigenetic pathway. This will provide a better understanding of bona fide roles of EWSR1 in aging and its association with brain disorders.
Collapse
Affiliation(s)
- Junghee Lee
- Boston University Alzheimer's Disease Center and Departments of Neurology, Boston University School of Medicine, Boston, MA 02118, United States of America; Veteran's Affairs Boston Healthcare System, Boston, MA 02130, USA
| | - Phuong T Nguyen
- Centers for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Hyun Soo Shim
- Centers for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Seung Jae Hyeon
- Centers for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Hyeonjoo Im
- Centers for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Mi-Hyun Choi
- Centers for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Sooyoung Chung
- Centers for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Neil W Kowall
- Boston University Alzheimer's Disease Center and Departments of Neurology, Boston University School of Medicine, Boston, MA 02118, United States of America; Veteran's Affairs Boston Healthcare System, Boston, MA 02130, USA
| | - Sean Bong Lee
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Hoon Ryu
- Boston University Alzheimer's Disease Center and Departments of Neurology, Boston University School of Medicine, Boston, MA 02118, United States of America; Veteran's Affairs Boston Healthcare System, Boston, MA 02130, USA; Centers for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea.
| |
Collapse
|
48
|
Abstract
Recurrent chromosomal rearrangements leading to the generation of oncogenic fusion proteins are a common feature of many cancers. These aberrations are particularly prevalent in sarcomas and haematopoietic malignancies and frequently involve genes required for chromatin regulation and transcriptional control. In many cases, these fusion proteins are thought to be the primary driver of cancer development, altering chromatin dynamics to initiate oncogenic gene expression programmes. In recent years, mechanistic insights into the underlying molecular functions of a number of these oncogenic fusion proteins have been discovered. These insights have allowed the design of mechanistically anchored therapeutic approaches promising substantial treatment advances. In this Review, we discuss how our understanding of fusion protein function is informing therapeutic innovations and illuminating mechanisms of chromatin and transcriptional regulation in cancer and normal cells.
Collapse
Affiliation(s)
- Gerard L Brien
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
- Department of Pediatric Oncology, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Martinez-Macias MI, Moore DA, Green RL, Gomez-Herreros F, Naumann M, Hermann A, Van Damme P, Hafezparast M, Caldecott KW. FUS (fused in sarcoma) is a component of the cellular response to topoisomerase I-induced DNA breakage and transcriptional stress. Life Sci Alliance 2019; 2:2/2/e201800222. [PMID: 30808650 PMCID: PMC6391683 DOI: 10.26508/lsa.201800222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/11/2022] Open
Abstract
This work shows that the ALS-associated protein FUS is a component of the cellular response to transcriptional stress induced by topoisomerase I–induced DNA breakage, thereby accumulating at sites of nucleolar rRNA synthesis. FUS (fused in sarcoma) plays a key role in several steps of RNA metabolism, and dominant mutations in this protein are associated with neurodegenerative diseases. Here, we show that FUS is a component of the cellular response to topoisomerase I (TOP1)–induced DNA breakage; relocalising to the nucleolus in response to RNA polymerase II (Pol II) stalling at sites of TOP1-induced DNA breaks. This relocalisation is rapid and dynamic, reversing following the removal of TOP1-induced breaks and coinciding with the recovery of global transcription. Importantly, FUS relocalisation following TOP1-induced DNA breakage is associated with increased FUS binding at sites of RNA polymerase I transcription in ribosomal DNA and reduced FUS binding at sites of RNA Pol II transcription, suggesting that FUS relocates from sites of stalled RNA Pol II either to regulate pre-mRNA processing during transcriptional stress or to modulate ribosomal RNA biogenesis. Importantly, FUS-mutant patient fibroblasts are hypersensitive to TOP1-induced DNA breakage, highlighting the possible relevance of these findings to neurodegeneration.
Collapse
Affiliation(s)
| | - Duncan Aq Moore
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, England
| | - Ryan L Green
- Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton, England
| | - Fernando Gomez-Herreros
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, England.,Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocio-Centro Superior de Investigaciones Cientificas-Universidad de Sevilla, Seville, Spain
| | - Marcel Naumann
- Department of Neurology, Technische Universität Dresden, and German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, and German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Transdisciplinary Neurosciences Rostock, University Medical Center Rostock, University of Rostock, Rostock, Germany.,Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | | | - Majid Hafezparast
- Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton, England
| | - Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, England
| |
Collapse
|
50
|
Gittings LM, Foti SC, Benson BC, Gami-Patel P, Isaacs AM, Lashley T. Heterogeneous nuclear ribonucleoproteins R and Q accumulate in pathological inclusions in FTLD-FUS. Acta Neuropathol Commun 2019; 7:18. [PMID: 30755280 PMCID: PMC6371513 DOI: 10.1186/s40478-019-0673-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/14/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) is pathologically subdivided based on the presence of particular pathological proteins that are identified in inclusion bodies observed post-mortem. The FTLD-FUS subgroup is defined by the presence of the fused in sarcoma protein (FUS) in pathological inclusions. FUS is a heterogeneous nuclear ribonucleoprotein (hnRNP) protein and a member of the FET (FUS, EWS, TAF15) protein family. It shuttles between the nucleus and cytoplasm, and has been implicated in many cellular functions including translation, splicing, and RNA transport. EWS, TAF15 and the nuclear import receptor transportin have been shown to co-accumulate with FUS in neuronal inclusions specifically in FTLD-FUS, with transportin-positive inclusions most frequently observed. Here, we report the identification of hnRNP R and hnRNP Q in neuronal cytoplasmic and intranuclear inclusions in the frontal cortex and hippocampus of FTLD-FUS patients, as frequently as transportin. hnRNP R and hnRNP Q were not found in the characteristic pathological inclusions observed in FTLD-TDP (subtypes A-C). Additionally, we studied the expression of hnRNP R in the frontal and temporal cortices from patients with FTLD and found significantly increased expression of the heterogeneous nuclear ribonucleoprotein R in several FTLD disease groups. Our identification of the frequent presence of hnRNP R and hnRNP Q in FTLD-FUS inclusions suggests a potential role for these hnRNPs in FTLD-FUS pathogenesis and supports the role of dysfunctional RNA metabolism in FTLD.
Collapse
|