1
|
Al-Ezzi A, Arechavala RJ, Butler R, Nolty A, Kang JJ, Shimojo S, Wu DA, Fonteh AN, Kleinman MT, Kloner RA, Arakaki X. Disrupted brain functional connectivity as early signature in cognitively healthy individuals with pathological CSF amyloid/tau. Commun Biol 2024; 7:1037. [PMID: 39179782 PMCID: PMC11344156 DOI: 10.1038/s42003-024-06673-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024] Open
Abstract
Alterations in functional connectivity (FC) have been observed in individuals with Alzheimer's disease (AD) with elevated amyloid (Aβ) and tau. However, it is not yet known whether directed FC is already influenced by Aβ and tau load in cognitively healthy (CH) individuals. A 21-channel electroencephalogram (EEG) was used from 46 CHs classified based on cerebrospinal fluid (CSF) Aβ tau ratio: pathological (CH-PAT) or normal (CH-NAT). Directed FC was estimated with Partial Directed Coherence in frontal, temporal, parietal, central, and occipital regions. We also examined the correlations between directed FC and various functional metrics, including neuropsychology, cognitive reserve, MRI volumetrics, and heart rate variability between both groups. Compared to CH-NATs, the CH-PATs showed decreased FC from the temporal regions, indicating a loss of relative functional importance of the temporal regions. In addition, frontal regions showed enhanced FC in the CH-PATs compared to CH-NATs, suggesting neural compensation for the damage caused by the pathology. Moreover, CH-PATs showed greater FC in the frontal and occipital regions than CH-NATs. Our findings provide a useful and non-invasive method for EEG-based analysis to identify alterations in brain connectivity in CHs with a pathological versus normal CSF Aβ/tau.
Collapse
Affiliation(s)
- Abdulhakim Al-Ezzi
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA.
| | - Rebecca J Arechavala
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, CA, USA
| | - Ryan Butler
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Anne Nolty
- Fuller Theological Seminary, Pasadena, CA, USA
| | | | - Shinsuke Shimojo
- The Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Daw-An Wu
- The Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alfred N Fonteh
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Michael T Kleinman
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, CA, USA
| | - Robert A Kloner
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
- Department of Cardiovascular Research, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Xianghong Arakaki
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA.
| |
Collapse
|
2
|
Jiao B, Li R, Zhou H, Qing K, Liu H, Pan H, Lei Y, Fu W, Wang X, Xiao X, Liu X, Yang Q, Liao X, Zhou Y, Fang L, Dong Y, Yang Y, Jiang H, Huang S, Shen L. Neural biomarker diagnosis and prediction to mild cognitive impairment and Alzheimer's disease using EEG technology. Alzheimers Res Ther 2023; 15:32. [PMID: 36765411 PMCID: PMC9912534 DOI: 10.1186/s13195-023-01181-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Electroencephalogram (EEG) has emerged as a non-invasive tool to detect the aberrant neuronal activity related to different stages of Alzheimer's disease (AD). However, the effectiveness of EEG in the precise diagnosis and assessment of AD and its preclinical stage, amnestic mild cognitive impairment (MCI), has yet to be fully elucidated. In this study, we aimed to identify key EEG biomarkers that are effective in distinguishing patients at the early stage of AD and monitoring the progression of AD. METHODS A total of 890 participants, including 189 patients with MCI, 330 patients with AD, 125 patients with other dementias (frontotemporal dementia, dementia with Lewy bodies, and vascular cognitive impairment), and 246 healthy controls (HC) were enrolled. Biomarkers were extracted from resting-state EEG recordings for a three-level classification of HC, MCI, and AD. The optimal EEG biomarkers were then identified based on the classification performance. Random forest regression was used to train a series of models by combining participants' EEG biomarkers, demographic information (i.e., sex, age), CSF biomarkers, and APOE phenotype for assessing the disease progression and individual's cognitive function. RESULTS The identified EEG biomarkers achieved over 70% accuracy in the three-level classification of HC, MCI, and AD. Among all six groups, the most prominent effects of AD-linked neurodegeneration on EEG metrics were localized at parieto-occipital regions. In the cross-validation predictive analyses, the optimal EEG features were more effective than the CSF + APOE biomarkers in predicting the age of onset and disease course, whereas the combination of EEG + CSF + APOE measures achieved the best performance for all targets of prediction. CONCLUSIONS Our study indicates that EEG can be used as a useful screening tool for the diagnosis and disease progression evaluation of MCI and AD.
Collapse
Affiliation(s)
- Bin Jiao
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China ,grid.216417.70000 0001 0379 7164Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China ,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China ,grid.216417.70000 0001 0379 7164Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Rihui Li
- grid.168010.e0000000419368956Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA USA ,Brainup Institute of Science and Technology, Chongqing, China
| | - Hui Zhou
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Kunqiang Qing
- Brainup Institute of Science and Technology, Chongqing, China
| | - Hui Liu
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hefu Pan
- Brainup Institute of Science and Technology, Chongqing, China
| | - Yanqin Lei
- Brainup Institute of Science and Technology, Chongqing, China
| | - Wenjin Fu
- Brainup Institute of Science and Technology, Chongqing, China
| | - Xiaoan Wang
- Brainup Institute of Science and Technology, Chongqing, China
| | - Xuewen Xiao
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- grid.216417.70000 0001 0379 7164Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yafang Zhou
- grid.216417.70000 0001 0379 7164Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Liangjuan Fang
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanbin Dong
- Brainup Institute of Science and Technology, Chongqing, China
| | - Yuanhao Yang
- grid.1003.20000 0000 9320 7537Mater Research Institute, The University of Queensland, Woolloongabba, Queensland 4102 Australia
| | - Haiyan Jiang
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Sha Huang
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China. .,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China. .,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China. .,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China. .,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
| |
Collapse
|
3
|
Consoli DC, Spitznagel BD, Owen BM, Kang H, Williams Roberson S, Pandharipande P, Wesley Ely E, Nobis WP, Bastarache JA, Harrison FE. Altered EEG, disrupted hippocampal long-term potentiation and neurobehavioral deficits implicate a delirium-like state in a mouse model of sepsis. Brain Behav Immun 2023; 107:165-178. [PMID: 36243287 PMCID: PMC10010333 DOI: 10.1016/j.bbi.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/26/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Sepsis and systemic inflammation are often accompanied by severe encephalopathy, sleep disruption and delirium that strongly correlate with poor clinical outcomes including long-term cognitive deficits. The cardinal manifestations of delirium are fluctuating altered mental status and inattention, identified in critically ill patients by interactive bedside assessment. The lack of analogous assessments in mouse models or clear biomarkers is a challenge to preclinical studies of delirium. In this study, we utilized concurrent measures of telemetric EEG recordings and neurobehavioral tasks in mice to characterize inattention and persistent cognitive deficits following polymicrobial sepsis. During the 24-hour critical illness period for the mice, slow-wave EEG dominance, sleep disruption, and hypersensitivity to auditory stimuli in neurobehavioral tasks resembled clinical observations in delirious patients in which alterations in similar outcome measurements, although measured differently in mice and humans, are reported. Mice were tested for nest building ability 7 days after sepsis induction, when sickness behaviors and spontaneous activity had returned to baseline. Animals that showed persistent deficits determined by poor nest building at 7 days also exhibited molecular changes in hippocampal long-term potentiation compared to mice that returned to baseline cognitive performance. Together, these behavioral and electrophysiological biomarkers offer a robust mouse model with which to further probe molecular pathways underlying brain and behavioral changes during and after acute illness such as sepsis.
Collapse
Affiliation(s)
- David C Consoli
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | | | - Benjamin M Owen
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | - Hakmook Kang
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | | | | | - E Wesley Ely
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | - William P Nobis
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | - Julie A Bastarache
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA
| | - Fiona E Harrison
- Vanderbilt University Medical Center, 7465 MRB4, Nashville, TN 37232, USA.
| |
Collapse
|
4
|
Patchitt J, Porffy LA, Whomersley G, Szentgyorgyi T, Brett J, Mouchlianitis E, Mehta MA, Nottage JF, Shergill SS. Alpha3/alpha2 power ratios relate to performance on a virtual reality shopping task in ageing adults. Front Aging Neurosci 2022; 14:876832. [PMID: 36212034 PMCID: PMC9540381 DOI: 10.3389/fnagi.2022.876832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Background Aspects of cognitive function decline with age. This phenomenon is referred to as age-related cognitive decline (ARCD). Improving the understanding of these changes that occur as part of the ageing process can serve to enhance the detection of the more incapacitating neurodegenerative disorders such as Alzheimer’s disease (AD). In this study, we employ novel methods to assess ARCD by exploring the utility of the alpha3/alpha2 electroencephalogram (EEG) power ratio – a marker of AD, and a novel virtual reality (VR) functional cognition task – VStore, in discriminating between young and ageing healthy adults. Materials and methods Twenty young individuals aged 20–30, and 20 older adults aged 60–70 took part in the study. Participants underwent resting-state EEG and completed VStore and the Cogstate Computerised Cognitive Battery. The difference in alpha3/alpha2 power ratios between the age groups was tested using t-test. In addition, the discriminatory accuracy of VStore and Cogstate were compared using logistic regression and overlying receiver operating characteristic (ROC) curves. Youden’s J statistic was used to establish the optimal threshold for sensitivity and specificity and model performance was evaluated with the DeLong’s test. Finally, alpha3/alpha2 power ratios were correlated with VStote and Cogstate performance. Results The difference in alpha3/alpha2 power ratios between age cohorts was not statistically significant. On the other hand, VStore discriminated between age groups with high sensitivity (94%) and specificity (95%) The Cogstate Pre-clinical Alzheimer’s Battery achieved a sensitivity of 89% and specificity of 60%, and Cogstate Composite Score achieved a sensitivity of 83% and specificity of 85%. The differences between the discriminatory accuracy of VStore and Cogstate models were statistically significant. Finally, high alpha3/alpha2 power ratios correlated strongly with VStore (r = 0.73), the Cogstate Pre-clinical Alzheimer’s Battery (r = -0.67), and Cogstate Composite Score (r = -0.76). Conclusion While we did not find evidence that the alpha3/alpha2 power ratio is elevated in healthy ageing individuals compared to young individuals, we demonstrated that VStore can classify age cohorts with high accuracy, supporting its utility in the assessment of ARCD. In addition, we found preliminary evidence that elevated alpha3/alpha2 power ratio may be linked to lower cognitive performance.
Collapse
Affiliation(s)
- Joel Patchitt
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Trafford Centre for Medical Research, University of Sussex, Brighton, United Kingdom
| | - Lilla A. Porffy
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- *Correspondence: Lilla A. Porffy,
| | - Gabriella Whomersley
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Timea Szentgyorgyi
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Jack Brett
- Faculty of Media and Communications, Bournemouth University, Poole, United Kingdom
| | - Elias Mouchlianitis
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- School of Psychology, University of East London, London, United Kingdom
| | - Mitul A. Mehta
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Judith F. Nottage
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Sukhi S. Shergill
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Kent and Medway Medical School, Canterbury, United Kingdom
- Kent and Medway National Health Service and Social Care Partnership Trust, Kent, United Kingdom
| |
Collapse
|
5
|
Mitsukura Y, Sumali B, Watanabe H, Ikaga T, Nishimura T. Frontotemporal EEG as potential biomarker for early MCI: a case-control study. BMC Psychiatry 2022; 22:289. [PMID: 35459119 PMCID: PMC9027034 DOI: 10.1186/s12888-022-03932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies using EEG (electroencephalography) as biomarker for dementia have attempted to research, but results have been inconsistent. Most of the studies have extremely small number of samples (average N = 15) and studies with large number of data do not have control group. We identified EEG features that may be biomarkers for dementia with 120 subjects (dementia 10, MCI 33, against control 77). METHODS We recorded EEG from 120 patients with dementia as they stayed in relaxed state using a single-channel EEG device while conducting real-time noise reduction and compared them to healthy subjects. Differences in EEG between patients and controls, as well as differences in patients' severity, were examined using the ratio of power spectrum at each frequency. RESULTS In comparing healthy controls and dementia patients, significant power spectrum differences were observed at 3 Hz, 4 Hz, and 10 Hz and higher frequencies. In patient group, differences in the power spectrum were observed between asymptomatic patients and healthy individuals, and between patients of each respective severity level and healthy individuals. CONCLUSIONS A study with a larger sample size should be conducted to gauge reproducibility, but the results implied the effectiveness of EEG in clinical practice as a biomarker of MCI (mild cognitive impairment) and/or dementia.
Collapse
Affiliation(s)
- Yasue Mitsukura
- Department of System Design Engineering, School of Integrated Design Engineering, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, Japan.
| | - Brian Sumali
- grid.26091.3c0000 0004 1936 9959Keio Global Institute(KGRI), Keio University, Tokyo, Japan
| | - Hideto Watanabe
- grid.26091.3c0000 0004 1936 9959Department of System Design Engineering, School of Integrated Design Engineering, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa Japan
| | - Toshiharu Ikaga
- grid.26091.3c0000 0004 1936 9959Department of System Design Engineering, School of Integrated Design Engineering, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa Japan
| | - Toshihiko Nishimura
- grid.168010.e0000000419368956Department of Anesthesia, School of Medicine, Stanford University, Stanford, CA USA
| |
Collapse
|
6
|
Lavy Y, Dwolatzky T, Kaplan Z, Guez J, Todder D. Mild Cognitive Impairment and Neurofeedback: A Randomized Controlled Trial. Front Aging Neurosci 2021; 13:657646. [PMID: 34194315 PMCID: PMC8236892 DOI: 10.3389/fnagi.2021.657646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Objectives: Mild cognitive impairment (MCI) is often a precursor of dementia, and in particular of Alzheimer's Disease (AD) which is the most common cause of dementia. Individuals with amnestic MCI are several-fold more likely to develop AD than the general population. Therefore, MCI comprises a well-detectable, early stage time-point for therapeutic intervention and strategic prevention. Based on common electroencephalographical (EEG) pattern changes seen in individuals with MCI, we postulated that EEG-based neurofeedback could help improve the memory performance of patients with MCI. Memory performance is of particular importance in these patients, since memory decline is the most prominent symptom in most patients with MCI, and is the most predictive symptom for cognitive deterioration and the development of AD. Methods: In order to improve the memory performance of patients with MCI we used a system of EEG-based neurofeedback in an attempt to reverse alterations of the EEG that are known to be common in patients with MCI. Our protocol comprised the provision of positive feedback in order to enhance the activity level of the upper alpha band. Participants were divided to two groups receiving either neurofeedback training to enhance the upper alpha frequency (Experimental group) or random feedbacks (Sham group) Results: We witnessed a significant improvement in memory performance in subjects in the experimental group compared to those in the sham group. This improvement was maintained for at least 1 month. Conclusions: Neurofeedback may be a promising and affordable novel approach for treating the decline in memory witnessed in patients with MCI.
Collapse
Affiliation(s)
- Yotam Lavy
- Ophtalmology Department, Soroka Medical Centre, Beersheba, Israel.,Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tzvi Dwolatzky
- Geriatric Unit, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Zeev Kaplan
- Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jonathan Guez
- Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Psychology, Achva Academic College, Beer-Tuvia, Israel
| | - Doron Todder
- Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
7
|
Babiloni C, Arakaki X, Azami H, Bennys K, Blinowska K, Bonanni L, Bujan A, Carrillo MC, Cichocki A, de Frutos-Lucas J, Del Percio C, Dubois B, Edelmayer R, Egan G, Epelbaum S, Escudero J, Evans A, Farina F, Fargo K, Fernández A, Ferri R, Frisoni G, Hampel H, Harrington MG, Jelic V, Jeong J, Jiang Y, Kaminski M, Kavcic V, Kilborn K, Kumar S, Lam A, Lim L, Lizio R, Lopez D, Lopez S, Lucey B, Maestú F, McGeown WJ, McKeith I, Moretti DV, Nobili F, Noce G, Olichney J, Onofrj M, Osorio R, Parra-Rodriguez M, Rajji T, Ritter P, Soricelli A, Stocchi F, Tarnanas I, Taylor JP, Teipel S, Tucci F, Valdes-Sosa M, Valdes-Sosa P, Weiergräber M, Yener G, Guntekin B. Measures of resting state EEG rhythms for clinical trials in Alzheimer's disease: Recommendations of an expert panel. Alzheimers Dement 2021; 17:1528-1553. [PMID: 33860614 DOI: 10.1002/alz.12311] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 12/25/2022]
Abstract
The Electrophysiology Professional Interest Area (EPIA) and Global Brain Consortium endorsed recommendations on candidate electroencephalography (EEG) measures for Alzheimer's disease (AD) clinical trials. The Panel reviewed the field literature. As most consistent findings, AD patients with mild cognitive impairment and dementia showed abnormalities in peak frequency, power, and "interrelatedness" at posterior alpha (8-12 Hz) and widespread delta (< 4 Hz) and theta (4-8 Hz) rhythms in relation to disease progression and interventions. The following consensus statements were subscribed: (1) Standardization of instructions to patients, resting state EEG (rsEEG) recording methods, and selection of artifact-free rsEEG periods are needed; (2) power density and "interrelatedness" rsEEG measures (e.g., directed transfer function, phase lag index, linear lagged connectivity, etc.) at delta, theta, and alpha frequency bands may be use for stratification of AD patients and monitoring of disease progression and intervention; and (3) international multisectoral initiatives are mandatory for regulatory purposes.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,San Raffaele of Cassino, Cassino (FR), Italy
| | | | - Hamed Azami
- Department of Neurology and Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Karim Bennys
- Centre Mémoire de Ressources et de Recherche (CMRR), Centre Hospitalier, Universitaire de Montpellier, Montpellier, France
| | - Katarzyna Blinowska
- Institute of Biocybernetics, Warsaw, Poland.,Faculty of Physics University of Warsaw and Nalecz, Warsaw, Poland
| | - Laura Bonanni
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Ana Bujan
- Psychological Neuroscience Lab, School of Psychology, University of Minho, Minho, Portugal
| | - Maria C Carrillo
- Division of Medical & Scientific Relations, Alzheimer's Association, Chicago, Illinois, USA
| | - Andrzej Cichocki
- Skolkowo Institute of Science and Technology (SKOLTECH), Moscow, Russia.,Systems Research Institute PAS, Warsaw, Poland.,Nicolaus Copernicus University (UMK), Torun, Poland
| | - Jaisalmer de Frutos-Lucas
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Bruno Dubois
- Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), Paris, France.,ICM, INSERM U1127, CNRS UMR 7225, Sorbonne Université, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Rebecca Edelmayer
- Division of Medical & Scientific Relations, Alzheimer's Association, Chicago, Illinois, USA
| | - Gary Egan
- Foundation Director of the Monash Biomedical Imaging (MBI) Research Facilities, Monash University, Clayton, Australia
| | - Stephane Epelbaum
- Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Institute of Memory and Alzheimer's Disease (IM2A), Paris, France.,ICM, INSERM U1127, CNRS UMR 7225, Sorbonne Université, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Javier Escudero
- School of Engineering, Institute for Digital Communications, The University of Edinburgh, Edinburgh, UK
| | - Alan Evans
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Francesca Farina
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Keith Fargo
- Division of Medical & Scientific Relations, Alzheimer's Association, Chicago, Illinois, USA
| | - Alberto Fernández
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Giovanni Frisoni
- IRCCS San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Harald Hampel
- GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Sorbonne University, Paris, France
| | | | - Vesna Jelic
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jaeseung Jeong
- Department of Bio and Brain Engineering/Program of Brain and Cognitive Engineering Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Yang Jiang
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Maciej Kaminski
- Faculty of Physics University of Warsaw and Nalecz, Warsaw, Poland
| | - Voyko Kavcic
- Institute of Gerontology, Wayne State University, Detroit, Michigan, USA
| | - Kerry Kilborn
- School of Psychology, University of Glasgow, Glasgow, UK
| | - Sanjeev Kumar
- Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Alice Lam
- MGH Epilepsy Service, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lew Lim
- Vielight Inc., Toronto, Ontario, Canada
| | | | - David Lopez
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Brendan Lucey
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain
| | - William J McGeown
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK
| | - Ian McKeith
- Newcastle upon Tyne, Translational and Clinical Research Institute, Newcastle University, UK
| | | | - Flavio Nobili
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - John Olichney
- UC Davis Department of Neurology and Center for Mind and Brain, Davis, California, USA
| | - Marco Onofrj
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Ricardo Osorio
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, New York, USA
| | | | - Tarek Rajji
- Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Petra Ritter
- Brain Simulation Section, Department of Neurology, Charité Universitätsmedizin and Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Andrea Soricelli
- IRCCS SDN, Napoli, Italy.,Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | - Ioannis Tarnanas
- Global Brain Health Institute, University of California San Francisco, San Francisco, USA.,Global Brain Health Institute, Trinity College Dublin, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - John Paul Taylor
- Newcastle upon Tyne, Translational and Clinical Research Institute, Newcastle University, UK
| | - Stefan Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE) - Rostock/Greifswald, Rostock, Germany
| | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Pedro Valdes-Sosa
- Cuban Neuroscience Center, Havana, Cuba.,Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, BfArM), Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn, Germany
| | - Gorsev Yener
- Departments of Neurosciences and Department of Neurology, Dokuz Eylül University Medical School, Izmir, Turkey
| | - Bahar Guntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
8
|
Vaquero-Blasco MA, Perez-Valero E, Morillas C, Lopez-Gordo MA. Virtual Reality Customized 360-Degree Experiences for Stress Relief. SENSORS 2021; 21:s21062219. [PMID: 33810135 PMCID: PMC8004715 DOI: 10.3390/s21062219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022]
Abstract
The latest studies in virtual reality (VR) have evidenced the potential of this technology to reproduce environments from multiple domains in an immersive way. For instance, in stress relief research, VR has been presented as a portable and inexpensive alternative to chromotherapy rooms, which require an adapted space and are expensive. In this work, we propose a portable and versatile alternative to the traditional chromotherapy color-loop treatment through four different 360-degree virtual experiences. A group of 23 healthy participants (mean age 22.65 ± 5.48) were conducted through a single-session experience divided into four phases while their electroencephalography (EEG) was recorded. First, they were stressed via the Montreal imaging stress task (MIST), and then relaxed using our VR proposal. We applied the Wilcoxon test to evaluate the relaxation effect in terms of the EEG relative gamma and self-perceived stress surveys. The results that we obtained validate the effectiveness of our 360-degree proposal to significantly reduce stress (p-value = 0.0001). Furthermore, the participants deemed our proposal comfortable and immersive (score above 3.5 out of 5). These results suggest that 360-degree VR experiences can mitigate stress, reduce costs, and bring stress relief assistance closer to the general public, like in workplaces or homes.
Collapse
Affiliation(s)
- Miguel A. Vaquero-Blasco
- Department of Signal Theory, Telematics and Communications, University of Granada, Calle Periodista Daniel Saucedo Aranda, s/n, 18014 Granada, Spain;
- Research Centre for Information and Communications Technologies (CITIC), University of Granada, Calle Periodista Rafael Gómez Montero, 2, 18014 Granada, Spain; (E.P.-V.); (C.M.)
| | - Eduardo Perez-Valero
- Research Centre for Information and Communications Technologies (CITIC), University of Granada, Calle Periodista Rafael Gómez Montero, 2, 18014 Granada, Spain; (E.P.-V.); (C.M.)
- Department of Computer Architecture and Technology, University of Granada, Calle Periodista Daniel Saucedo Aranda, s/n, 18014 Granada, Spain
| | - Christian Morillas
- Research Centre for Information and Communications Technologies (CITIC), University of Granada, Calle Periodista Rafael Gómez Montero, 2, 18014 Granada, Spain; (E.P.-V.); (C.M.)
- Department of Computer Architecture and Technology, University of Granada, Calle Periodista Daniel Saucedo Aranda, s/n, 18014 Granada, Spain
| | - Miguel A. Lopez-Gordo
- Department of Signal Theory, Telematics and Communications, University of Granada, Calle Periodista Daniel Saucedo Aranda, s/n, 18014 Granada, Spain;
- Research Centre for Information and Communications Technologies (CITIC), University of Granada, Calle Periodista Rafael Gómez Montero, 2, 18014 Granada, Spain; (E.P.-V.); (C.M.)
- Correspondence: ; Tel.: +34-958-249-721
| |
Collapse
|
9
|
Lavy Y, Dwolatzky T, Kaplan Z, Guez J, Todder D. Neurofeedback Improves Memory and Peak Alpha Frequency in Individuals with Mild Cognitive Impairment. Appl Psychophysiol Biofeedback 2020; 44:41-49. [PMID: 30284663 DOI: 10.1007/s10484-018-9418-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mild cognitive impairment (MCI) is a syndrome characterized by a decrease in cognitive abilities, while daily function is maintained. This condition, which is associated with an increased risk for the development of Alzheimer's disease, has no known definitive treatment at present. In this open-label pilot study we explored the possible benefits of neurofeedback for subjects with MCI. Eleven participants diagnosed with MCI were trained to increase the power of their individual upper alpha band of the electroencephalogram (EEG) signal over the central parietal region. This was achieved using an EEG-based neurofeedback training protocol. Training comprised ten 30-min sessions delivered over 5 weeks. Cognitive and electroencephalographic assessments were conducted before and after training and at 30 days following the last training session. A dose-dependent increase in peak alpha frequency was observed throughout the period of training. Memory performance also improved significantly following training, and this improvement was maintained at 30-day follow-up, while peak alpha frequency returned to baseline at this evaluation. Our findings suggest that neurofeedback may improve memory performance in subjects with mild cognitive impairment, and this benefit may be maintained beyond the training period.
Collapse
Affiliation(s)
- Yotam Lavy
- Beer-Sheva Mental Health Center, Ministry of Health, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Tzvi Dwolatzky
- Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Zeev Kaplan
- Beer-Sheva Mental Health Center, Ministry of Health, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jonathan Guez
- Beer-Sheva Mental Health Center, Ministry of Health, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Psychology, Achva Academic College, M.P.O., Shikmim, 79800, Israel
| | - Doron Todder
- Beer-Sheva Mental Health Center, Ministry of Health, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
10
|
Li F, Egawa N, Yoshimoto S, Mizutani H, Kobayashi K, Tachibana N, Takahashi R. Potential Clinical Applications and Future Prospect of Wireless and Mobile Electroencephalography on the Assessment of Cognitive Impairment. Bioelectricity 2019; 1:105-112. [PMID: 34471813 DOI: 10.1089/bioe.2019.0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Electroencephalography (EEG) systems have been used for assessing cognitive function in dementia for several decades. Studies have demonstrated that EEG in Alzheimer's disease (AD) patients is generally characterized by significant and specific increases in delta and theta power, a decrease in alpha power, and a decrease in the coherence of the fast bands between different brain areas linked by long corticocortical fibers. Posterior EEG characteristics in dementia with Lewy bodies (DLB) allowed discrimination of DLB from AD and controls with high accuracy. Traditional EEG systems require a long application time and discomfort, which limited its use in dementia patients. Alternative tools for assessing cognition may be simple, low-cost, and mobile medical devices such as wireless and mobile EEG (wmEEG) sensor platforms with flexible electronics and stretchable electrode sheets that could be compatible with long-term EEG monitoring even in dementia patients. In this study, we review the utility of EEG in reflecting cognitive function and the prospects for clinical application of wmEEG monitoring for detecting early dementia and discriminating subtypes of dementia effectively and objectively assessing longitudinal cognitive changes. Repeated and longitudinal documentation of EEG using wmEEG will contribute to detection of specific sleep/wake EEG patterns for patients with sleep and wake-related problems related to dementia.
Collapse
Affiliation(s)
- Fangzhou Li
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naohiro Egawa
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoko Tachibana
- Department of Neurology, Center for Sleep-Related Disorders, Kansai Electric Power Hospital, Osaka, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
11
|
Ruzich E, Crespo‐García M, Dalal SS, Schneiderman JF. Characterizing hippocampal dynamics with MEG: A systematic review and evidence-based guidelines. Hum Brain Mapp 2019; 40:1353-1375. [PMID: 30378210 PMCID: PMC6456020 DOI: 10.1002/hbm.24445] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
The hippocampus, a hub of activity for a variety of important cognitive processes, is a target of increasing interest for researchers and clinicians. Magnetoencephalography (MEG) is an attractive technique for imaging spectro-temporal aspects of function, for example, neural oscillations and network timing, especially in shallow cortical structures. However, the decrease in MEG signal-to-noise ratio as a function of source depth implies that the utility of MEG for investigations of deeper brain structures, including the hippocampus, is less clear. To determine whether MEG can be used to detect and localize activity from the hippocampus, we executed a systematic review of the existing literature and found successful detection of oscillatory neural activity originating in the hippocampus with MEG. Prerequisites are the use of established experimental paradigms, adequate coregistration, forward modeling, analysis methods, optimization of signal-to-noise ratios, and protocol trial designs that maximize contrast for hippocampal activity while minimizing those from other brain regions. While localizing activity to specific sub-structures within the hippocampus has not been achieved, we provide recommendations for improving the reliability of such endeavors.
Collapse
Affiliation(s)
- Emily Ruzich
- Department of Clinical Neurophysiology and MedTech West, Institute of Neuroscience and PhysiologySahlgrenska Academy & the University of GothenburgGothenburgSweden
| | | | - Sarang S. Dalal
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhus CDenmark
| | - Justin F. Schneiderman
- Department of Clinical Neurophysiology and MedTech West, Institute of Neuroscience and PhysiologySahlgrenska Academy & the University of GothenburgGothenburgSweden
| |
Collapse
|
12
|
Cassani R, Estarellas M, San-Martin R, Fraga FJ, Falk TH. Systematic Review on Resting-State EEG for Alzheimer's Disease Diagnosis and Progression Assessment. DISEASE MARKERS 2018; 2018:5174815. [PMID: 30405860 PMCID: PMC6200063 DOI: 10.1155/2018/5174815] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/12/2018] [Accepted: 07/29/2018] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that accounts for nearly 70% of the more than 46 million dementia cases estimated worldwide. Although there is no cure for AD, early diagnosis and an accurate characterization of the disease progression can improve the quality of life of AD patients and their caregivers. Currently, AD diagnosis is carried out using standardized mental status examinations, which are commonly assisted by expensive neuroimaging scans and invasive laboratory tests, thus rendering the diagnosis time consuming and costly. Notwithstanding, over the last decade, electroencephalography (EEG) has emerged as a noninvasive alternative technique for the study of AD, competing with more expensive neuroimaging tools, such as MRI and PET. This paper reports on the results of a systematic review on the utilization of resting-state EEG signals for AD diagnosis and progression assessment. Recent journal articles obtained from four major bibliographic databases were analyzed. A total of 112 journal articles published from January 2010 to February 2018 were meticulously reviewed, and relevant aspects of these papers were compared across articles to provide a general overview of the research on this noninvasive AD diagnosis technique. Finally, recommendations for future studies with resting-state EEG were presented to improve and facilitate the knowledge transfer among research groups.
Collapse
Affiliation(s)
- Raymundo Cassani
- Institut national de la recherche scientifique (INRS-EMT), University of Québec, Montreal, Canada
| | - Mar Estarellas
- Institut national de la recherche scientifique (INRS-EMT), University of Québec, Montreal, Canada
- Department of Bioengineering, Imperial College London, London, UK
| | - Rodrigo San-Martin
- Center for Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Francisco J. Fraga
- Engineering, Modeling and Applied Social Sciences Center, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Tiago H. Falk
- Institut national de la recherche scientifique (INRS-EMT), University of Québec, Montreal, Canada
| |
Collapse
|
13
|
Olejarczyk E, Bogucki P, Sobieszek A. The EEG Split Alpha Peak: Phenomenological Origins and Methodological Aspects of Detection and Evaluation. Front Neurosci 2017; 11:506. [PMID: 28955192 PMCID: PMC5601034 DOI: 10.3389/fnins.2017.00506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/28/2017] [Indexed: 11/13/2022] Open
Abstract
Electroencephalographic (EEG) patterns were analyzed in a group of ambulatory patients who ranged in age and sex using spectral analysis as well as Directed Transfer Function, a method used to evaluate functional brain connectivity. We tested the impact of window size and choice of reference electrode on the identification of two or more peaks with close frequencies in the spectral power distribution, so called "split alpha." Together with the connectivity analysis, examination of spatiotemporal maps showing the distribution of amplitudes of EEG patterns allowed for better explanation of the mechanisms underlying the generation of split alpha peaks. It was demonstrated that the split alpha spectrum can be generated by two or more independent and interconnected alpha wave generators located in different regions of the cerebral cortex, but not necessarily in the occipital cortex. We also demonstrated the importance of appropriate reference electrode choice during signal recording. In addition, results obtained using the original data were compared with results obtained using re-referenced data, using average reference electrode and reference electrode standardization techniques.
Collapse
Affiliation(s)
- Elzbieta Olejarczyk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of SciencesWarsaw, Poland
| | - Piotr Bogucki
- Department of Neurology and Epileptology, Medical Center for Postgraduate EducationWarsaw, Poland
| | - Aleksander Sobieszek
- Department of Neurology and Epileptology, Medical Center for Postgraduate EducationWarsaw, Poland
| |
Collapse
|
14
|
Cox SR, Valdés Hernández MDC, Kim J, Royle NA, MacPherson SE, Ferguson KJ, Muñoz Maniega S, Anblagan D, Aribisala BS, Bastin ME, Park J, Starr JM, Deary IJ, MacLullich AM, Wardlaw JM. Associations between hippocampal morphology, diffusion characteristics, and salivary cortisol in older men. Psychoneuroendocrinology 2017; 78:151-158. [PMID: 28199858 PMCID: PMC5380197 DOI: 10.1016/j.psyneuen.2017.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 01/23/2023]
Abstract
High, unabated glucocorticoid (GC) levels are thought to selectively damage certain tissue types. The hippocampus is thought to be particularly susceptible to such effects, and though findings from animal models and human patients provide some support for this hypothesis, evidence for associations between elevated GCs and lower hippocampal volumes in older age (when GC levels are at greater risk of dysregulation) is inconclusive. To address the possibility that the effects of GCs in non-pathological ageing may be too subtle for gross volumetry to reliably detect, we analyse associations between salivary cortisol (diurnal and reactive measures), hippocampal morphology and diffusion characteristics in 88 males, aged ∼73 years. However, our results provide only weak support for this hypothesis. Though nominally significant peaks in morphology were found in both hippocampi across all salivary cortisol measures (standardised β magnitudes<0.518, puncorrected>0.0000003), associations were both positive and negative, and none survived false discovery rate correction. We found one single significant association (out of 12 comparisons) between a general measure of hippocampal diffusion and reactive cortisol slope (β=0.290, p=0.008) which appeared to be driven predominantly by mean diffusivity but did not survive correction for multiple testing. The current data therefore do not clearly support the hypothesis that elevated cortisol levels are associated with subtle variations in hippocampal shape or microstructure in non-pathological older age.
Collapse
Affiliation(s)
- Simon R. Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK,Department of Psychology, University of Edinburgh, UK,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK,Corresponding author at: Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor’s Building, Edinburgh, EH16 4SB, UK.Department of Neuroimaging SciencesCentre for Clinical Brain SciencesUniversity of EdinburghUK
| | - Maria del Carmen Valdés Hernández
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK,Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, UK,Corresponding author at: Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor’s Building, Edinburgh, EH16 4SB, UK.Department of Neuroimaging SciencesCentre for Clinical Brain SciencesUniversity of EdinburghUK
| | - Jaeil Kim
- School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Natalie A. Royle
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK,Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Sarah E. MacPherson
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK,Department of Psychology, University of Edinburgh, UK
| | - Karen J. Ferguson
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK,Edinburgh Delirium Research Group, Geriatric Medicine, University of Edinburgh, UK
| | - Susana Muñoz Maniega
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK,Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Devasuda Anblagan
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK,Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Benjamin S. Aribisala
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, UK,Department of Computer Science, Lagos State University, Lagos, Nigeria
| | - Mark E. Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK,Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Jinah Park
- School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK,Department of Psychology, University of Edinburgh, UK
| | - Alasdair M.J. MacLullich
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK,Edinburgh Delirium Research Group, Geriatric Medicine, University of Edinburgh, UK
| | - Joanna M. Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK,Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, UK
| |
Collapse
|
15
|
Valdés Hernández MDC, Cox SR, Kim J, Royle NA, Muñoz Maniega S, Gow AJ, Anblagan D, Bastin ME, Park J, Starr JM, Wardlaw JM, Deary IJ. Hippocampal morphology and cognitive functions in community-dwelling older people: the Lothian Birth Cohort 1936. Neurobiol Aging 2016; 52:1-11. [PMID: 28104542 PMCID: PMC5364373 DOI: 10.1016/j.neurobiolaging.2016.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/18/2016] [Accepted: 12/13/2016] [Indexed: 01/18/2023]
Abstract
Structural measures of the hippocampus have been linked to a variety of memory processes and also to broader cognitive abilities. Gross volumetry has been widely used, yet the hippocampus has a complex formation, comprising distinct subfields which may be differentially sensitive to the deleterious effects of age, and to different aspects of cognitive performance. However, a comprehensive analysis of multidomain cognitive associations with hippocampal deformations among a large group of cognitively normal older adults is currently lacking. In 654 participants of the Lothian Birth Cohort 1936 (mean age = 72.5, SD = 0.71 years), we examined associations between the morphology of the hippocampus and a variety of memory tests (spatial span, letter-number sequencing, verbal recall, and digit backwards), as well as broader cognitive domains (latent measures of speed, fluid intelligence, and memory). Following correction for age, sex, and vascular risk factors, analysis of memory subtests revealed that only right hippocampal associations in relation to spatial memory survived type 1 error correction in subiculum and in CA1 at the head (β = 0.201, p = 5.843 × 10-4, outward), and in the ventral tail section of CA1 (β = -0.272, p = 1.347 × 10-5, inward). With respect to latent measures of cognitive domains, only deformations associated with processing speed survived type 1 error correction in bilateral subiculum (βabsolute ≤ 0.247, p < 1.369 × 10-4, outward), bilaterally in the ventral tail section of CA1 (βabsolute ≤ 0.242, p < 3.451 × 10-6, inward), and a cluster at the left anterior-to-dorsal region of the head (β = 0.199, p = 5.220 × 10-6, outward). Overall, our results indicate that a complex pattern of both inward and outward hippocampal deformations are associated with better processing speed and spatial memory in older age, suggesting that complex shape-based hippocampal analyses may provide valuable information beyond gross volumetry.
Collapse
Affiliation(s)
- Maria Del Carmen Valdés Hernández
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK; Department of Psychology, University of Edinburgh, Edinburgh, UK.
| | - Jaeil Kim
- School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Natalie A Royle
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Susana Muñoz Maniega
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Alan J Gow
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Department of Psychology, Heriot-Watt University, Edinburgh, UK
| | - Devasuda Anblagan
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK; Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Jinah Park
- School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Joanna M Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK; Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Department of Psychology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Moretti DV. Electroencephalography-driven approach to prodromal Alzheimer's disease diagnosis: from biomarker integration to network-level comprehension. Clin Interv Aging 2016; 11:897-912. [PMID: 27462146 PMCID: PMC4939982 DOI: 10.2147/cia.s103313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Decay of the temporoparietal cortex is associated with prodromal Alzheimer's disease (AD). Additionally, shrinkage of the temporoparietal cerebral area has been connected with an increase in α3/α2 electroencephalogram (EEG) power ratio in prodromal AD. Furthermore, a lower regional blood perfusion has been exhibited in patients with a higher α3/α2 proportion when contrasted with low α3/α2 proportion. Furthermore, a lower regional blood perfusion and reduced hippocampal volume has been exhibited in patients with higher α3/α2 when contrasted with lower α3/α2 EEG power ratio. Neuropsychological evaluation, EEG recording, and magnetic resonance imaging were conducted in 74 patients with mild cognitive impairment (MCI). Estimation of cortical thickness and α3/α2 frequency power ratio was conducted for each patient. A subgroup of 27 patients also underwent single-photon emission computed tomography evaluation. In view of α3/α2 power ratio, the patients were divided into three groups. The connections among cortical decay, cerebral perfusion, and memory loss were evaluated by Pearson's r coefficient. Results demonstrated that higher α3/α2 frequency power ratio group was identified with brain shrinkage and cutdown perfusion inside the temporoparietal projections. In addition, decay and cutdown perfusion rate were connected with memory shortfalls in patients with MCI. MCI subgroup with higher α3/α2 EEG power ratio are at a greater risk to develop AD dementia.
Collapse
Affiliation(s)
- Davide Vito Moretti
- Rehabilitation in Alzheimer’s Disease Operative Unit, IRCCS San Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| |
Collapse
|
17
|
Moretti D. Involvement of mirror neuron system in prodromal Alzheimer's disease. BBA CLINICAL 2016; 5:46-53. [PMID: 27051589 PMCID: PMC4802394 DOI: 10.1016/j.bbacli.2015.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Mirror neurons have been localized in several locations, including the inferior parietal lobule (IPL). Increase of EEG alpha3/alpha2 frequency power ratio has been detected in mild cognitive impairment (MCI) subjects who will convert in Alzheimer's disease (AD). We investigated the association of alpha3/alpha2 frequency power ratio with cortical thickness in IPL in MCI subjects. METHODS 74 adult subjects with MCI underwent EEG recording and high resolution MRI. Alpha3/alpha2 frequency power ratio as well as cortical thickness were computed for each subject. Three MCI groups were obtained according to increasing tertile values of alpha3/alpha2 ratio. Difference of cortical thickness among the groups was estimated. RESULTS Higher alpha3/alpha2 frequency power ratio group had wider cortical thinning than other groups, mapped on the IPL, supramarginal gyrus and precuneus bilaterally. CONCLUSIONS High EEG alpha3/alpha2 frequency power ratio was associated with atrophy of IPL areas in MCI subjects. GENERAL SIGNIFICANCE The scientific hypothesis is divided into the following main points: 1) the theoretical background considering two recent theories, an evolutionary perspective theory and the theory of mind (ToM), which both track a possible relationship between prodromal AD and mirror system; 2) the relationship has been focused on the prodromal stage of Alzheimer's disease, that is a peculiar and very debated phase of the disease itself; and 3) not a generical relationship, but a focused anatomo-functional association has been proposed.
Collapse
|
18
|
Moretti DV, Benussi L, Fostinelli S, Ciani M, Binetti G, Ghidoni R. Progranulin Mutations Affects Brain Oscillatory Activity in Fronto-Temporal Dementia. Front Aging Neurosci 2016; 8:35. [PMID: 26973510 PMCID: PMC4770190 DOI: 10.3389/fnagi.2016.00035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/10/2016] [Indexed: 12/12/2022] Open
Abstract
Background: Mild cognitive impairment (MCI) is a clinical stage indicating a prodromal phase of dementia. This practical concept could be used also for fronto-temporal dementia (FTD). Progranulin (PGRN) has been recently recognized as a useful diagnostic biomarker for fronto-temporal lobe degeneration (FTLD) due to GRN null mutations. Electroencephalography (EEG) is a reliable tool in detecting brain networks changes. The working hypothesis of the present study is that EEG oscillations could detect different modifications among FTLD stages (FTD-MCI versus overt FTD) as well as differences between GRN mutation carriers versus non-carriers in patients with overt FTD. Materials and Methods: EEG in all patients and PGRN dosage in patients with a clear FTD were detected. The cognitive state has been investigated through mini mental state examination (MMSE). Results: MCI-FTD showed a significant lower spectral power in both alpha and theta oscillations as compared to overt FTD. GRN mutations carriers affected by FTLD show an increase in high alpha and decrease in theta oscillations as compared to non-carriers. Conclusion: EEG frequency rhythms are sensible to different stage of FTD and could detect changes in brain oscillatory activity affected by GRN mutations.
Collapse
Affiliation(s)
- Davide V Moretti
- Alzheimer Rehabilitation Research Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy
| | - Silvia Fostinelli
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy
| | - Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy
| | - Giuliano Binetti
- Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy
| |
Collapse
|
19
|
Moretti DV. Conversion of mild cognitive impairment patients in Alzheimer's disease: prognostic value of Alpha3/Alpha2 electroencephalographic rhythms power ratio. Alzheimers Res Ther 2015; 7:80. [PMID: 26715588 PMCID: PMC4696332 DOI: 10.1186/s13195-015-0162-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 11/04/2015] [Indexed: 11/10/2022]
Abstract
INTRODUCTION The increase in electroencephalogram (EEG) alpha3/alpha2 frequency power ratio has been demonstrated as a biomarker characteristic of subjects with mild cognitive impairment (MCI) who will develop Alzheimer's disease (AD). METHODS Seventy-four adult subjects with MCI underwent clinical and neuropsychological evaluation, EEG recording, and high-resolution 3D magnetic resonance imaging (MRI). This group has been evaluated after a three years follow-up. Twenty-seven of these subjects underwent perfusion single-photon emission computed tomography (SPECT) evaluation also. Increasing alpha3/alpha2 power ratio, was computed for each subject. Differences in EEG markers, cortical thickness, brain perfusion among the groups were estimated. RESULTS In the higher alpha3/alpha2 frequency power ratio group, greater memory impairment was correlated with greater cortical atrophy and lower perfusional rate in the temporo-parietal cortex. After a follow-up of three years, these patients converted in AD. CONCLUSION High EEG upper/low alpha power ratio was associated with cortical thinning and lower perfusion in the temporo-parietal lobe. Moreover, atrophy and lower perfusion rate were both significantly correlated with memory impairment in MCI subjects. The increase of EEG upper/low alpha frequency power ratio could be useful for identifying individuals at risk for progression to AD dementia and may be of value in the clinical context.
Collapse
Affiliation(s)
- D V Moretti
- Alzheimer' Disease Rehabilitation Unit, IRCCS S. Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
20
|
Moretti DV. Association of EEG, MRI, and regional blood flow biomarkers is predictive of prodromal Alzheimer's disease. Neuropsychiatr Dis Treat 2015; 11:2779-91. [PMID: 26604762 PMCID: PMC4629965 DOI: 10.2147/ndt.s93253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Thinning in the temporoparietal cortex, hippocampal atrophy, and a lower regional blood perfusion is connected with prodromal stage of Alzheimer's disease (AD). Of note, an increase of electroencephalography (EEG) upper/low alpha frequency power ratio has also been associated with these major landmarks of prodromal AD. METHODS Clinical and neuropsychological assessment, EEG recording, and high-resolution three-dimensional magnetic resonance imaging were done in 74 grown up subjects with mild cognitive impairment. This information was gathered and has been assessed 3 years postliminary. EEG recording and perfusion single-photon emission computed tomography assessment was done in 27 subjects. Alpha3/alpha2 frequency power ratio, including cortical thickness, was figured for every subject. Contrasts in cortical thickness among the groups were assessed. Pearson's r relationship coefficient was utilized to evaluate the quality of the relationship between cortical thinning, brain perfusion, and EEG markers. RESULTS The higher alpha3/alpha2 frequency power ratio group corresponded with more prominent cortical decay and a lower perfusional rate in the temporoparietal cortex. In a subsequent meetup after 3 years, these patients had AD. CONCLUSION High EEG upper/low alpha power ratio was connected with cortical diminishing and lower perfusion in the temporoparietal brain area. The increase in EEG upper/low alpha frequency power ratio could be helpful in recognizing people in danger of conversion to AD dementia and this may be quality information in connection with clinical assessment.
Collapse
|
21
|
Schaapsmeerders P, Tuladhar AM, Maaijwee NAM, Rutten-Jacobs LCA, Arntz RM, Schoonderwaldt HC, Dorresteijn LDA, van Dijk EJ, Kessels RPC, de Leeuw FE. Lower Ipsilateral Hippocampal Integrity after Ischemic Stroke in Young Adults: A Long-Term Follow-Up Study. PLoS One 2015; 10:e0139772. [PMID: 26462115 PMCID: PMC4603678 DOI: 10.1371/journal.pone.0139772] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/17/2015] [Indexed: 11/18/2022] Open
Abstract
Background and purpose Memory impairment after stroke is poorly understood as stroke rarely occurs in the hippocampus. Previous studies have observed smaller ipsilateral hippocampal volumes after stroke compared with controls. Possibly, these findings on macroscopic level are not the first occurrence of structural damage and are preceded by microscopic changes that may already be associated with a worse memory function. We therefore examined the relationship between hippocampal integrity, volume, and memory performance long after first-ever ischemic stroke in young adults. Methods We included all consecutive first-ever ischemic stroke patients, without hippocampal strokes or recurrent stroke/TIA, aged 18–50 years, admitted to our academic hospital between 1980 and 2010. One hundred and forty-six patients underwent T1 MPRAGE, DTI scanning and completed the Rey Auditory Verbal Learning Test and were compared with 84 stroke-free controls. After manual correction of hippocampal automatic segmentation, we calculated mean hippocampal fractional anisotropy (FA) and diffusivity (MD). Results On average 10 years after ischemic stroke, lesion volume was associated with lower ipsilateral hippocampal integrity (p<0.05), independent of hippocampal volume. In patients with a normal ipsilateral hippocampal volume (volume is less than or equal to 1.5 SD below the mean volume of controls) significant differences in ipsilateral hippocampal MD were observed (p<0.0001). However, patients with a normal hippocampal volume and high hippocampal MD did not show a worse memory performance compared with patients with a normal volume and low hippocampal MD (p>0.05). Conclusions Patients with average ipsilateral hippocampal volume could already have lower ipsilateral hippocampal integrity, although at present with no attendant worse memory performance compared with patients with high hippocampal integrity. Longitudinal studies are needed to investigate whether a low hippocampal integrity after stroke might lead to exacerbated memory decline with increasing age.
Collapse
Affiliation(s)
- Pauline Schaapsmeerders
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, the Netherlands
| | - Anil M. Tuladhar
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, the Netherlands
| | - Noortje A. M. Maaijwee
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, the Netherlands
| | | | - Renate M. Arntz
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, the Netherlands
| | - Hennie C. Schoonderwaldt
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, the Netherlands
| | | | - Ewoud J. van Dijk
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, the Netherlands
| | - Roy P. C. Kessels
- Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience and Centre for Cognition, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department of Medical Psychology, Radboud university medical centre, Nijmegen, the Netherlands
| | - Frank-Erik de Leeuw
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, the Netherlands
- * E-mail:
| |
Collapse
|
22
|
Moretti VD. Atrophy and lower regional perfusion of temporo-parietal brain areas are correlated with impairment in memory performances and increase of EEG upper alpha power in prodromal Alzheimer's disease. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2015; 4:13-27. [PMID: 26389016 PMCID: PMC4568770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Temporo-parietal cortex thinning is associated with mild cognitive impairment (MCI) due to Alzheimer's disease (AD). The increase of the EEG upper/low alpha power ratio has been associated with MCI due to AD subjects and to the atrophy of temporo-parietal brain areas. Moreover, subjects with a higher alpha3/alpha2 frequency power ratio showed lower brain perfusion than in the low alpha3/alpha2 group. The two groups have significantly different hippocampal volumes and correlation with the theta frequency activity. METHODS 74 adult subjects with MCI underwent clinical and neuropsychological evaluation, electroencephalogram (EEG) recording, and high resolution 3D magnetic resonance imaging (MRI). 27 of them underwent EEG recording and perfusion single-photon emission computed tomography (SPECT) evaluation. The alpha3/alpha2 power ratio as well as cortical thickness was computed for each subject. The difference in cortical thickness between the groups was estimated. Pearson's r was used to assess the correlation topography between cortical thinning as well as between brain perfusion and memory impairment. RESULTS In the higher upper/low alpha group, memory impairment was more pronounced both in the MRI group and the SPECT MCI group. Moreover, it was correlated with greater cortical atrophy and lower perfusional rate in temporo-parietal cortex. CONCLUSION High EEG upper/low alpha power ratio was associated with cortical thinning lower perfusion in temporo-parietal. Moreover, atrophy and lower perfusional rate were both significantly correlated with memory impairment in MCI subjects. The increase of EEG upper/low alpha frequency power ratio could be useful for identifying individuals at risk for progression to AD dementia and may be of value in the clinical context.
Collapse
|
23
|
Moretti DV. Mild Cognitive Impairment: Structural, Metabolical, and Neurophysiological Evidence of a Novel EEG Biomarker. Front Neurol 2015. [PMID: 26217299 PMCID: PMC4491619 DOI: 10.3389/fneur.2015.00152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Recent studies demonstrate that the alpha3/alpha2 power ratio correlates with cortical atrophy, regional hypoperfusion, and memory impairment in subjects with mild cognitive impairment (MCI). METHODS Evidences were reviewed in subjects with MCI, who underwent EEG recording, magnetic resonance imaging (MRI) scans, and memory evaluation. Alpha3/alpha2 power ratio (alpha2 8.9-10.9 Hz range; alpha3 10.9-12.9 Hz range), cortical thickness, linear EEG coherence, and memory impairment have been evaluated in a large group of 74 patients. A subset of 27 subjects within the same group also underwent single photon emission computed tomography (SPECT) evaluation. RESULTS In MCI subjects with higher EEG upper/low alpha power ratio, a greater temporo-parietal and hippocampal atrophy was found as well as a decrease in regional blood perfusion and memory impairment. In this group, an increase of theta oscillations is associated with a greater interhemispheric coupling between temporal areas. CONCLUSION The increase of alpha3/alpha2 power ratio is a promising novel biomarker in identifying MCI subjects at risk for Alzheimer's disease.
Collapse
|
24
|
Kim J, Valdes-Hernandez MDC, Royle NA, Park J. Hippocampal Shape Modeling Based on a Progressive Template Surface Deformation and its Verification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1242-1261. [PMID: 25532173 DOI: 10.1109/tmi.2014.2382581] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Accurately recovering the hippocampal shapes against rough and noisy segmentations is as challenging as achieving good anatomical correspondence between the individual shapes. To address these issues, we propose a mesh-to-volume registration approach, characterized by a progressive model deformation. Our model implements flexible weighting scheme for model rigidity under a multi-level neighborhood for vertex connectivity. This method induces a large-to-small scale deformation of a template surface to build the pairwise correspondence by minimizing geometric distortion while robustly restoring the individuals' shape characteristics. We evaluated the proposed method's (1) accuracy and robustness in smooth surface reconstruction, (2) sensitivity in detecting significant shape differences between healthy control and disease groups (mild cognitive impairment and Alzheimer's disease), (3) robustness in constructing the anatomical correspondence between individual shape models, and (4) applicability in identifying subtle shape changes in relation to cognitive abilities in a healthy population. We compared the performance of the proposed method with other well-known methods--SPHARM-PDM, ShapeWorks and LDDMM volume registration with template injection--using various metrics of shape similarity, surface roughness, volume, and shape deformity. The experimental results showed that the proposed method generated smooth surfaces with less volume differences and better shape similarity to input volumes than others. The statistical analyses with clinical variables also showed that it was sensitive in detecting subtle shape changes of hippocampus.
Collapse
|
25
|
Moretti DV. Theta and alpha EEG frequency interplay in subjects with mild cognitive impairment: evidence from EEG, MRI, and SPECT brain modifications. Front Aging Neurosci 2015; 7:31. [PMID: 25926789 PMCID: PMC4396516 DOI: 10.3389/fnagi.2015.00031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 02/27/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Temporo-parietal and medial temporal cortex atrophy are associated with mild cognitive impairment (MCI) due to Alzheimer disease (AD) as well as the reduction of regional cerebral blood perfusion in hippocampus. Moreover, the increase of EEG alpha3/alpha2 power ratio has been associated with MCI due to AD and with an increase in theta frequency power in a group of subjects with impaired cerebral perfusion in hippocampus. METHODS Seventy four adult subjects with MCI underwent clinical and neuropsychological evaluation, electroencephalogram (EEG) recording and high resolution 3D magnetic resonance imaging (MRI). Among the patients, a subset of 27 subjects underwent also perfusion single-photon emission computed tomography and hippocampal atrophy evaluation. Alpha3/alpha2 power ratio as well as cortical thickness was computed for each subject. Three MCI groups were detected according to increasing tertile values of alpha3/alpha2 power ratio and difference of cortical thickness among the groups estimated. RESULTS Higher alpha3/alpha2 power ratio group had wider cortical thinning than other groups, mapped to the Supramarginal and Precuneus bilaterally. Subjects with higher alpha3/alpha2 frequency power ratio showed a constant trend to a lower perfusion than lower alpha3/alpha2 group. Moreover, this group correlates with both a bigger hippocampal atrophy and an increase of theta frequency power. CONCLUSION Higher EEG alpha3/alpha2 power ratio was associated with temporo-parietal cortical thinning, hippocampal atrophy and reduction of regional cerebral perfusion in medial temporal cortex. In this group an increase of theta frequency power was detected inMCI subjects. The combination of higher EEG alpha3/alpha2 power ratio, cortical thickness measure and regional cerebral perfusion reveals a complex interplay between EEG cerebral rhythms, structural and functional brain modifications.
Collapse
Affiliation(s)
- Davide V. Moretti
- Istituto di Ricovero e Cura a Carattere Scientifico San Giovanni di Dio – Fatebenefratelli, Brescia, Italy
| |
Collapse
|
26
|
Moretti DV. Electroencephalography reveals lower regional blood perfusion and atrophy of the temporoparietal network associated with memory deficits and hippocampal volume reduction in mild cognitive impairment due to Alzheimer's disease. Neuropsychiatr Dis Treat 2015; 11:461-70. [PMID: 25750526 PMCID: PMC4348123 DOI: 10.2147/ndt.s78830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND An increased electroencephalographic (EEG) upper/lower alpha power ratio has been associated with less regional blood perfusion, atrophy of the temporoparietal region of the brain, and reduction of hippocampal volume in subjects affected by mild cognitive impairment due to Alzheimer's disease as compared with subjects who do not develop the disease. Moreover, EEG theta frequency activity is quite different in these groups. This study investigated the correlation between biomarkers and memory performance. METHODS EEG α3/α2 power ratio and cortical thickness were computed in 74 adult subjects with prodromal Alzheimer's disease. Twenty of these subjects also underwent assessment of blood perfusion by single-photon emission computed tomography (SPECT). Pearson's r was used to assess the correlation between cortical thinning, brain perfusion, and memory impairment. RESULTS In the higher α3/α2 frequency power ratio group, greater cortical atrophy and lower regional perfusion in the temporoparietal cortex was correlated with an increase in EEG theta frequency. Memory impairment was more pronounced in the magnetic resonance imaging group and SPECT groups. CONCLUSION A high EEG upper/low alpha power ratio was associated with cortical thinning and less perfusion in the temporoparietal area. Moreover, atrophy and less regional perfusion were significantly correlated with memory impairment in subjects with prodromal Alzheimer's disease. The EEG upper/lower alpha frequency power ratio could be useful for identifying individuals at risk for progression to Alzheimer's dementia and may be of value in the clinical context.
Collapse
Affiliation(s)
- Davide Vito Moretti
- National Institute for the research and cure of Alzheimer’s disease, S. John of God, Fatebenefratelli, Brescia, Italy
| |
Collapse
|
27
|
Moretti DV. Understanding early dementia: EEG, MRI, SPECT and memory evaluation. Transl Neurosci 2015; 6:32-46. [PMID: 28123789 PMCID: PMC4936613 DOI: 10.1515/tnsci-2015-0005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/01/2014] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND An increase in the EEG upper/low α power ratio has been associated with mild cognitive impairment (MCI) due to Alzheimer's disease (AD) and to the atrophy of temporoparietal brain areas. Subjects with a higher α3/α2 frequency power ratio showed lower brain perfusion than in the low α3/α2 group. The two groups show significantly different hippocampal volumes and correlation with θ frequency activity. METHODS Seventy-four adult subjects with MCI underwent clinical and neuropsychological evaluation, electroencephalogram (EEG) recording, and high resolution 3D magnetic resonance imaging (MRI). Twenty-seven of them underwent EEG recording and perfusion single-photon emission computed tomography (SPECT) evaluation. The α3/α2 power ratio and cortical thickness were computed for each subject. The difference in cortical thickness between the groups was estimated. RESULTS In the higher upper/low α group, memory impairment was more pronounced in both the MRI group and the SPECT MCI groups. An increase in the production of θ oscillations was associated with greater interhemisperic coupling between temporal areas. It also correlated with greater cortical atrophy and lower perfusional rate in the temporoparietal cortex. CONCLUSION High EEG upper/low α power ratio was associated with cortical thinning and lower perfusion in temporoparietal areas. Moreover, both atrophy and lower perfusion rate significantly correlated with memory impairment in MCI subjects. Therefore, the increase in the EEG upper/low α frequency power ratio could be useful in identifying individuals at risk for progression to AD dementia in a clinical context.
Collapse
Affiliation(s)
- Davide Vito Moretti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
28
|
Moretti DV. Alpha rhythm oscillations and MMSE scores are differently modified by transdermal or oral rivastigmine in patients with Alzheimer's disease. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2014; 3:72-83. [PMID: 25232512 PMCID: PMC4162588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia in older patients. Rivastigmine, a reversible cholinesterase inhibitor, has been shown to improve the clinical manifestations of AD by delaying the breakdown of acetylcholine (ACh) released into synaptic clefts. Moreover, there is evidence that ACh modulates EEG alpha frequency. OBJECTIVES the objectives of this pilot study in patients with AD were to determine the effects of two formulations of RV (transdermal and oral) on Mini-Mental State Examination (MMSE) scores and on alpha frequency in particular the posterior dominant rhythm. METHODS twenty subjects with AD were randomly assigned to receive either RV transdermal patch (RV-TDP, n=10) or RV capsules (RV-CP, n=10) according to the standard recommended dosage regimen. All patients were driven to the maximum drug dosage. Diagnosis of AD was made according to NINCDS-ADRDA criteria and the Diagnostic and Statistical Manual of Mental Disorders IV. All patients underwent EEG recordings at the beginning and at the end of the 18-month study period using P3, P4, O1 and O2 electrodes each at high (10.5-13.0 Hz) and low (8.0-10.5 Hz) frequency. MMSE scores were determined at the start of the study and at three successive 6-month intervals (T0, T1, T2, and T3). RESULTS administration of RV-DP increases the spectral power of alpha waves in the posterior region and is associated with improved cognitive function as evidenced by significant changes in MMSE scores. CONCLUSION RV-DP provides an effective and long-term management option in patients with AD.
Collapse
Affiliation(s)
- Davide V Moretti
- Scientific Institute for Research and Care (IRCCS) of Alzheimer's and Psychiatric Diseases, S. Giovanni Di Dio, Fatebenefratelli Brescia, Italy
| |
Collapse
|
29
|
Frantzidis CA, Vivas AB, Tsolaki A, Klados MA, Tsolaki M, Bamidis PD. Functional disorganization of small-world brain networks in mild Alzheimer's Disease and amnestic Mild Cognitive Impairment: an EEG study using Relative Wavelet Entropy (RWE). Front Aging Neurosci 2014; 6:224. [PMID: 25206333 PMCID: PMC4144118 DOI: 10.3389/fnagi.2014.00224] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/08/2014] [Indexed: 11/13/2022] Open
Abstract
Previous neuroscientific findings have linked Alzheimer's Disease (AD) with less efficient information processing and brain network disorganization. However, pathological alterations of the brain networks during the preclinical phase of amnestic Mild Cognitive Impairment (aMCI) remain largely unknown. The present study aimed at comparing patterns of the detection of functional disorganization in MCI relative to Mild Dementia (MD). Participants consisted of 23 cognitively healthy adults, 17 aMCI and 24 mild AD patients who underwent electroencephalographic (EEG) data acquisition during a resting-state condition. Synchronization analysis through the Orthogonal Discrete Wavelet Transform (ODWT), and directional brain network analysis were applied on the EEG data. This computational model was performed for networks that have the same number of edges (N = 500, 600, 700, 800 edges) across all participants and groups (fixed density values). All groups exhibited a small-world (SW) brain architecture. However, we found a significant reduction in the SW brain architecture in both aMCI and MD patients relative to the group of Healthy controls. This functional disorganization was also correlated with the participant's generic cognitive status. The deterioration of the network's organization was caused mainly by deficient local information processing as quantified by the mean cluster coefficient value. Functional hubs were identified through the normalized betweenness centrality metric. Analysis of the local characteristics showed relative hub preservation even with statistically significant reduced strength. Compensatory phenomena were also evident through the formation of additional hubs on left frontal and parietal regions. Our results indicate a declined functional network organization even during the prodromal phase. Degeneration is evident even in the preclinical phase and coexists with transient network reorganization due to compensation.
Collapse
Affiliation(s)
- Christos A Frantzidis
- Laboratory of Medical Physics, Faculty of Health Sciences, Medical School, Aristotle University of Thessaloniki Thessaloniki, Greece
| | - Ana B Vivas
- Psychology Department, City College, The University of Sheffield International Faculty Thessaloniki, Greece
| | - Anthoula Tsolaki
- Laboratory of Medical Physics, Faculty of Health Sciences, Medical School, Aristotle University of Thessaloniki Thessaloniki, Greece ; Greek Association of Alzheimer's Disease and related Disorders Thessaloniki, Greece
| | - Manousos A Klados
- Laboratory of Medical Physics, Faculty of Health Sciences, Medical School, Aristotle University of Thessaloniki Thessaloniki, Greece
| | - Magda Tsolaki
- 3rd Department of Neurology, Medical School, Aristotle University of Thessaloniki Thessaloniki, Greece
| | - Panagiotis D Bamidis
- Laboratory of Medical Physics, Faculty of Health Sciences, Medical School, Aristotle University of Thessaloniki Thessaloniki, Greece
| |
Collapse
|
30
|
Moretti DV, Frisoni GB, Binetti G, Zanetti O. Comparison of the effects of transdermal and oral rivastigmine on cognitive function and EEG markers in patients with Alzheimer's disease. Front Aging Neurosci 2014; 6:179. [PMID: 25100996 PMCID: PMC4107674 DOI: 10.3389/fnagi.2014.00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/04/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia in older patients. Rivastigmine (RV, Exelon, Novartis), a reversible cholinesterase inhibitor, improves clinical manifestations of AD and may enhance ACh-modulated electroencephalogram (EEG) alpha frequency. This pilot study aimed to determine the effects of two formulations of RV [transdermal patch (RV-TDP) and oral capsules (TV-CP)] on alpha frequency, in particular the posterior dominant rhythm, and cognitive function [assessed by the Mini-Mental State Examination (MMSE)] in patients with AD. METHODS Subjects with AD were assigned to receive either RV-TDP 10 cm(2) or RV-CP 12 mg/day. All patients underwent EEG recordings at the beginning and end of the 18-month study period using P3, P4, O1, and O2 electrodes, each at high (10.5-13.0 Hz) and low (8.0-10.5 Hz) frequency. MMSE scores were determined at the start of the study (T0) and at three successive 6-month intervals (T1, T2, and T3). RESULTS RV-TDP administration (n = 10) maintained cognitive function as evidenced by stable MMSE scores from baseline to 18 months (21.07 ± 2.4-21.2 ± 3.1) compared with a decrease in MMSE score with RV-CP (n = 10) over 18 months [18.3 ± 3.6-13.6 ± 5.06 (adjusted for covariates p = 0.006)]. MMSE scores were significantly different between treatment groups from 6 months (p = 0.04). RV-TDP also increased the spectral power of alpha waves in the posterior region measured with electrode P3 in a significantly great percentage of patients than TV-CP from baseline to 18 months; 80% vs 30%, respectively [p = 0.025 (χ (2) test)]. CONCLUSIONS RV-TDP was associated with a greater proportion of patients with increased posterior region alpha wave spectral power and significantly higher cognitive function at 18 months, compared with RV-CP treatment. Our findings suggest that RV-TDP provides an effective long-term management option in patients with AD compared with oral RV-CP. This study is a pilot, open-label study with a clear explorative purpose and with a small number of patients. Further randomized, double-blind, placebo-controlled trial studies with a bigger sample size as well as healthy controls are needed to support these initial results.
Collapse
Affiliation(s)
- Davide V Moretti
- Scientific Institute for Research and Care of Alzheimer's and Psychiatric Diseases, San Giovanni Di Dio Fatebenefratelli Brescia, Italy
| | - Giovanni B Frisoni
- Scientific Institute for Research and Care of Alzheimer's and Psychiatric Diseases, San Giovanni Di Dio Fatebenefratelli Brescia, Italy
| | - Giuliano Binetti
- Scientific Institute for Research and Care of Alzheimer's and Psychiatric Diseases, San Giovanni Di Dio Fatebenefratelli Brescia, Italy
| | - Orazio Zanetti
- Scientific Institute for Research and Care of Alzheimer's and Psychiatric Diseases, San Giovanni Di Dio Fatebenefratelli Brescia, Italy
| |
Collapse
|
31
|
Cassani R, Falk TH, Fraga FJ, Kanda PAM, Anghinah R. The effects of automated artifact removal algorithms on electroencephalography-based Alzheimer's disease diagnosis. Front Aging Neurosci 2014; 6:55. [PMID: 24723886 PMCID: PMC3971195 DOI: 10.3389/fnagi.2014.00055] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/06/2014] [Indexed: 11/13/2022] Open
Abstract
Over the last decade, electroencephalography (EEG) has emerged as a reliable tool for the diagnosis of cortical disorders such as Alzheimer's disease (AD). EEG signals, however, are susceptible to several artifacts, such as ocular, muscular, movement, and environmental. To overcome this limitation, existing diagnostic systems commonly depend on experienced clinicians to manually select artifact-free epochs from the collected multi-channel EEG data. Manual selection, however, is a tedious and time-consuming process, rendering the diagnostic system “semi-automated.” Notwithstanding, a number of EEG artifact removal algorithms have been proposed in the literature. The (dis)advantages of using such algorithms in automated AD diagnostic systems, however, have not been documented; this paper aims to fill this gap. Here, we investigate the effects of three state-of-the-art automated artifact removal (AAR) algorithms (both alone and in combination with each other) on AD diagnostic systems based on four different classes of EEG features, namely, spectral, amplitude modulation rate of change, coherence, and phase. The three AAR algorithms tested are statistical artifact rejection (SAR), blind source separation based on second order blind identification and canonical correlation analysis (BSS-SOBI-CCA), and wavelet enhanced independent component analysis (wICA). Experimental results based on 20-channel resting-awake EEG data collected from 59 participants (20 patients with mild AD, 15 with moderate-to-severe AD, and 24 age-matched healthy controls) showed the wICA algorithm alone outperforming other enhancement algorithm combinations across three tasks: diagnosis (control vs. mild vs. moderate), early detection (control vs. mild), and disease progression (mild vs. moderate), thus opening the doors for fully-automated systems that can assist clinicians with early detection of AD, as well as disease severity progression assessment.
Collapse
Affiliation(s)
- Raymundo Cassani
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux, Télécommunications, University of Quebec Montreal, QC, Canada
| | - Tiago H Falk
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux, Télécommunications, University of Quebec Montreal, QC, Canada
| | - Francisco J Fraga
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux, Télécommunications, University of Quebec Montreal, QC, Canada ; Engineering, Modelling and Applied Social Sciences Center, Universidade Federal do ABC São Paulo, Brazil
| | - Paulo A M Kanda
- Reference Center of Behavioural Disturbances and Dementia, School of Medicine, Universidade de São Paulo São Paulo, Brazil
| | - Renato Anghinah
- Reference Center of Behavioural Disturbances and Dementia, School of Medicine, Universidade de São Paulo São Paulo, Brazil
| |
Collapse
|
32
|
Moretti DV, Paternicò D, Binetti G, Zanetti O, Frisoni GB. Electroencephalographic upper/low alpha frequency power ratio relates to cortex thinning in mild cognitive impairment. NEURODEGENER DIS 2014; 14:18-30. [PMID: 24434624 DOI: 10.1159/000354863] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/06/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Temporoparietal cortex thinning is associated with mild cognitive impairment (MCI) due to Alzheimer disease (AD). The increase in EEG upper/low α frequency power ratio has been associated with AD converter MCI subjects. We investigated the association of the EEG upper/low α frequency power ratio with patterns of cortical thickness in MCI. METHODS 74 adult subjects with MCI underwent clinical and neuropsychological evaluation, electroencephalography (EEG) recording and high-resolution 3-dimensional magnetic resonance imaging (MRI). The EEG upper/low α frequency power ratio as well as cortical thickness were computed for each subject. Three MCI groups were detected according to increasing tertile values of EEG upper/low α frequency power ratios, and the difference of cortical thickness among the groups was estimated. RESULTS The EEG high upper/low α frequency power ratio group had a total cortical grey matter volume reduction of 471 mm(2), greater than that of the EEG low upper/low α frequency power ratio group (p < 0.001). The EEG high upper/low α frequency power ratio group showed a similar but less marked pattern (160 mm(2)) of cortical thinning when compared to the EEG middle upper/low α frequency power ratio group (p < 0.001). Moreover, the EEG high upper/low α frequency power ratio group had wider cortical thinning than other groups, mapped to the supramarginal gyrus and precuneus bilaterally. No significant regional cortical thickness differences were found between middle and low EEG upper/low α frequency power ratio groups. CONCLUSION A high EEG upper/low α frequency power ratio was associated with temporoparietal cortical thinning in MCI subjects. The combination of upper/low α frequency power ratio and cortical thickness measurement could be useful for identifying individuals at risk for progression to AD dementia and may be of value in the clinical context.
Collapse
Affiliation(s)
- D V Moretti
- IRCCS, S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | | | | | | |
Collapse
|
33
|
Ponomareva N, Andreeva T, Protasova M, Shagam L, Malina D, Goltsov A, Fokin V, Mitrofanov A, Rogaev E. Age-dependent effect of Alzheimer's risk variant of CLU on EEG alpha rhythm in non-demented adults. Front Aging Neurosci 2013; 5:86. [PMID: 24379779 PMCID: PMC3861782 DOI: 10.3389/fnagi.2013.00086] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/19/2013] [Indexed: 12/22/2022] Open
Abstract
Polymorphism in the genomic region harboring the CLU gene (rs11136000) has been associated with the risk for Alzheimer’s disease (AD). CLU C allele is assumed to confer risk for AD and the allele T may have a protective effect. We investigated the influence of the AD-associated CLU genotype on a common neurophysiological trait of brain activity (resting-state alpha-rhythm activity) in non-demented adults and elucidated whether this influence is modified over the course of aging. We examined quantitative electroencephalography (EEG) in a cohort of non-demented individuals (age range 20–80) divided into young (age range 20–50) and old (age range 51–80) cohorts and stratified by CLU polymorphism. To rule out the effect of the apolipoprotein E (ApoE) genotype on EEG characteristics, only subjects without the ApoE ε4 allele were included in the study. The homozygous presence of the AD risk variant CLU CC in non-demented subjects was associated with an increase of alpha3 absolute power. Moreover, the influence of CLU genotype on alpha3 was found to be higher in the subjects older than 50 years of age. The study also showed age-dependent alterations of alpha topographic distribution that occur independently of the CLU genotype. The increase of upper alpha power has been associated with hippocampal atrophy in patients with mild cognitive impairment (Moretti etal., 2012a). In our study, the CLU CC-dependent increase in upper alpha rhythm, particularly enhanced in elderly non-demented individuals, may imply that the genotype is related to preclinical dysregulation of hippocampal neurophysiology in aging and that this factor may contribute to the pathogenesis of AD.
Collapse
Affiliation(s)
- Natalya Ponomareva
- Brain Research Department, Research Center of Neurology Russian Academy of Medical Science Moscow, Russia
| | - Tatiana Andreeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences Moscow, Russia ; Center of Brain Neurobiology and Neurogenetics, Institute of Cytogenetics and Genetics, Russian Academy of Sciences Novosibirsk, Russia
| | - Maria Protasova
- Vavilov Institute of General Genetics, Russian Academy of Sciences Moscow, Russia
| | - Lev Shagam
- Vavilov Institute of General Genetics, Russian Academy of Sciences Moscow, Russia
| | - Daria Malina
- Brain Research Department, Research Center of Neurology Russian Academy of Medical Science Moscow, Russia
| | - Andrei Goltsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences Moscow, Russia
| | - Vitaly Fokin
- Brain Research Department, Research Center of Neurology Russian Academy of Medical Science Moscow, Russia
| | | | - Evgeny Rogaev
- Vavilov Institute of General Genetics, Russian Academy of Sciences Moscow, Russia ; Center of Brain Neurobiology and Neurogenetics, Institute of Cytogenetics and Genetics, Russian Academy of Sciences Novosibirsk, Russia ; University of Massachusetts Medical School, Department of Psychiatry, BNRI Worcester, MA, USA
| |
Collapse
|
34
|
Moretti DV, Paternicò D, Binetti G, Zanetti O, Frisoni GB. EEG upper/low alpha frequency power ratio relates to temporo-parietal brain atrophy and memory performances in mild cognitive impairment. Front Aging Neurosci 2013; 5:63. [PMID: 24187540 PMCID: PMC3807715 DOI: 10.3389/fnagi.2013.00063] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/02/2013] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Temporo-parietal cortex thinning is associated to mild cognitive impairment (MCI) due to Alzheimer disease (AD). The increase of EEG upper/low alpha power ratio has been associated with AD-converter MCI subjects. We investigated the association of alpha3/alpha2 ratio with patterns of cortical thickness in MCI. MATERIALS AND METHODS Seventy-four adult subjects with MCI underwent clinical and neuropsychological evaluation, electroencephalogram (EEG) recording and high resolution 3D magnetic resonance imaging. Alpha3/alpha2 power ratio as well as cortical thickness was computed for each subject. Three MCI groups were detected according to increasing tertile values of upper/low alpha power ratio. Difference of cortical thickness among the groups was estimated. Pearson's r was used to assess the topography of the correlation between cortical thinning and memory impairment. RESULTS High upper/low alpha power ratio group had total cortical gray matter volume reduction of 471 mm(2) than low upper/low alpha power ratio group (p < 0.001). Upper/low alpha group showed a similar but less marked pattern (160 mm(2)) of cortical thinning when compared to middle upper/low alpha power ratio group (p < 0.001). Moreover, high upper/low alpha group had wider cortical thinning than other groups, mapped to the Supramarginal and Precuneus bilaterally. Finally, in high upper/low alpha group temporo-parietal cortical thickness was correlated to memory performance. No significant cortical thickness differences was found between middle and low alpha3/alpha2 power ratio groups. CONCLUSION High EEG upper/low alpha power ratio was associated with temporo-parietal cortical thinning and memory impairment in MCI subjects. The combination of EEG upper/low alpha ratio and cortical thickness measure could be useful for identifying individuals at risk for progression to AD dementia and may be of value in clinical context.
Collapse
Affiliation(s)
- Davide V. Moretti
- Istituto di Ricovero e Cura a Carattere Scientifico Centro San Giovanni di Dio FatebenefratelliBrescia, Italy
| | | | | | | | | |
Collapse
|
35
|
Moretti DV, Paternicò D, Binetti G, Zanetti O, Frisoni GB. Analysis of grey matter in thalamus and basal ganglia based on EEG α3/α2 frequency ratio reveals specific changes in subjects with mild cognitive impairment. ASN Neuro 2012; 4:e00103. [PMID: 23126239 PMCID: PMC3522208 DOI: 10.1042/an20120058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/29/2012] [Accepted: 11/05/2012] [Indexed: 11/24/2022] Open
Abstract
GM (grey matter) changes of thalamus and basal ganglia have been demonstrated to be involved in AD (Alzheimer's disease). Moreover, the increase of a specific EEG (electroencephalogram) marker, α3/α2, have been associated with AD-converters subjects with MCI (mild cognitive impairment). To study the association of prognostic EEG markers with specific GM changes of thalamus and basal ganglia in subjects with MCI to detect biomarkers (morpho-physiological) early predictive of AD and non-AD dementia. Seventy-four adult subjects with MCI underwent EEG recording and high-resolution 3D MRI (three-dimensional magnetic resonance imaging). The α3/α2 ratio was computed for each subject. Three groups were obtained according to increasing tertile values of α3/α2 ratio. GM density differences between groups were investigated using a VBM (voxel-based morphometry) technique. Subjects with higher α3/α2 ratios when compared with subjects with lower and middle α3/α2 ratios showed minor atrophy in the ventral stream of basal ganglia (head of caudate nuclei and accumbens nuclei bilaterally) and of the pulvinar nuclei in the thalamus; The integrated analysis of EEG and morpho-structural markers could be useful in the comprehension of anatomo-physiological underpinning of the MCI entity.
Collapse
Key Words
- alzheimer's disease
- basal ganglia
- electroencephalogram (eeg)
- mild cognitive impairment
- thalamus
- voxel-based morphometry (vbm)
- ad, alzheimer's disease
- dartel, diffeomorphic anatomical registration using exponentiated lie
- eeg, electroencephalogram
- fmri, functional magnetic resonance imaging
- gm, grey matter
- iaf, individual α frequency
- mci, mild cognitive impairment
- mmse, mini-mental state examination
- pet, positron-emission tomography
- tf, transition frequency
- tiv, total intracranial volume
- vbm, voxel-based morphometry
Collapse
|