1
|
Karathia H, Hannenhalli S, Alves R. The Functional Comparison of Eukaryotic Proteomes: Implications for Choosing an Appropriate Model Organism to Probe Human Biology. Methods Mol Biol 2025; 2859:163-179. [PMID: 39436601 DOI: 10.1007/978-1-0716-4152-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Phenotypic differences between species are, in significant part, determined by their proteomic diversity. The link between proteomic and phenotypic diversity can be best understood in the context of the various pathways and biological processes in which proteins participate. While the conservation pattern for individual proteins across species is expected to follow the phylogenetic relationships among the species, the diversity patterns of individual pathways may not: certain pathways may be much more conserved among distantly related species than two closely related species, owing to the ecological histories of the species. Thus, a pathway-centric analysis of proteome conservation and diversity has important implications for the appropriate choice of a model organism when investigating specific aspects of human biology. Exploiting the complete genome sequences and protein-coding gene annotations, here we perform a comprehensive gene-set-centric analysis of proteomic diversity between humans and 54 eukaryotic organisms, resulting in a catalog of organisms that are most similar to humans in terms of specific pathways, processes, expression patterns, and diseases. We corroborate our findings using species-specific mass spectrometry data.Our analysis provides a general framework to identify conserved and unique pathways in a group of organisms and a resource to prioritize appropriate model systems to study a specific biological system in a reference organism such as humans.
Collapse
Affiliation(s)
- Hiren Karathia
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD, USA.
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA.
| | - Sridhar Hannenhalli
- Cancer Data Science Lab, CCR, National Cancer Institute (NIH), Bethesda, MD, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
| | - Rui Alves
- Ciencies Mediques Basiques, University of Lleida, Lleida, Catalonia, Spain
- IRBLleida, Lleida, Spain
| |
Collapse
|
2
|
Silva P, Atukorallaya D. Characterising the Effect of Wnt/β-Catenin Signalling on Melanocyte Development and Patterning: Insights from Zebrafish ( Danio rerio). Int J Mol Sci 2023; 24:10692. [PMID: 37445870 DOI: 10.3390/ijms241310692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Zebrafish (Danio rerio) is a well-established model organism for studying melanocyte biology due to its remarkable similarity to humans. The Wnt signalling pathway is a conserved signal transduction pathway that plays a crucial role in embryonic development and regulates many aspects of the melanocyte lineage. Our study was designed to investigate the effect of Wnt signalling activity on zebrafish melanocyte development and patterning. Stereo-microscopic examinations were used to screen for changes in melanocyte count, specific phenotypic differences, and distribution in zebrafish, while microscopic software tools were used to analyse the differences in pigment dispersion of melanocytes exposed to LiCl (Wnt enhancer) and W-C59 (Wnt inhibitor). Samples exposed to W-C59 showed low melanocyte densities and defects in melanocyte phenotype and patterning, whereas LiCl exposure demonstrated a stimulatory effect on most aspects of melanocyte development. Our study demonstrates the crucial role of Wnt signalling in melanocyte lineage and emphasises the importance of a balanced Wnt signalling level for proper melanocyte development and patterning.
Collapse
Affiliation(s)
- Praneeth Silva
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Devi Atukorallaya
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| |
Collapse
|
3
|
Pai VP, Cooper BG, Levin M. Screening Biophysical Sensors and Neurite Outgrowth Actuators in Human Induced-Pluripotent-Stem-Cell-Derived Neurons. Cells 2022; 11:cells11162470. [PMID: 36010547 PMCID: PMC9406775 DOI: 10.3390/cells11162470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
All living cells maintain a charge distribution across their cell membrane (membrane potential) by carefully controlled ion fluxes. These bioelectric signals regulate cell behavior (such as migration, proliferation, differentiation) as well as higher-level tissue and organ patterning. Thus, voltage gradients represent an important parameter for diagnostics as well as a promising target for therapeutic interventions in birth defects, injury, and cancer. However, despite much progress in cell and molecular biology, little is known about bioelectric states in human stem cells. Here, we present simple methods to simultaneously track ion dynamics, membrane voltage, cell morphology, and cell activity (pH and ROS), using fluorescent reporter dyes in living human neurons derived from induced neural stem cells (hiNSC). We developed and tested functional protocols for manipulating ion fluxes, membrane potential, and cell activity, and tracking neural responses to injury and reinnervation in vitro. Finally, using morphology sensor, we tested and quantified the ability of physiological actuators (neurotransmitters and pH) to manipulate nerve repair and reinnervation. These methods are not specific to a particular cell type and should be broadly applicable to the study of bioelectrical controls across a wide range of combinations of models and endpoints.
Collapse
Affiliation(s)
- Vaibhav P. Pai
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Ben G. Cooper
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
- Correspondence:
| |
Collapse
|
4
|
Exner CRT, Willsey HR. Xenopus leads the way: Frogs as a pioneering model to understand the human brain. Genesis 2021; 59:e23405. [PMID: 33369095 PMCID: PMC8130472 DOI: 10.1002/dvg.23405] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
From its long history in the field of embryology to its recent advances in genetics, Xenopus has been an indispensable model for understanding the human brain. Foundational studies that gave us our first insights into major embryonic patterning events serve as a crucial backdrop for newer avenues of investigation into organogenesis and organ function. The vast array of tools available in Xenopus laevis and Xenopus tropicalis allows interrogation of developmental phenomena at all levels, from the molecular to the behavioral, and the application of CRISPR technology has enabled the investigation of human disorder risk genes in a higher-throughput manner. As the only major tetrapod model in which all developmental stages are easily manipulated and observed, frogs provide the unique opportunity to study organ development from the earliest stages. All of these features make Xenopus a premier model for studying the development of the brain, a notoriously complex process that demands an understanding of all stages from fertilization to organogenesis and beyond. Importantly, core processes of brain development are conserved between Xenopus and human, underlining the advantages of this model. This review begins by summarizing discoveries made in amphibians that form the cornerstones of vertebrate neurodevelopmental biology and goes on to discuss recent advances that have catapulted our understanding of brain development in Xenopus and in relation to human development and disease. As we engage in a new era of patient-driven gene discovery, Xenopus offers exceptional potential to uncover conserved biology underlying human brain disorders and move towards rational drug design.
Collapse
Affiliation(s)
- Cameron R T Exner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
5
|
Pai VP, Cervera J, Mafe S, Willocq V, Lederer EK, Levin M. HCN2 Channel-Induced Rescue of Brain Teratogenesis via Local and Long-Range Bioelectric Repair. Front Cell Neurosci 2020; 14:136. [PMID: 32528251 PMCID: PMC7264377 DOI: 10.3389/fncel.2020.00136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
Embryonic exposure to the teratogen nicotine results in brain defects, by disrupting endogenous spatial pre patterns necessary for normal brain size and patterning. Extending prior work in Xenopus laevis that showed that misexpression of ion channels can rescue morphogenesis, we demonstrate and characterize a novel aspect of developmental bioelectricity: channel-dependent repair signals propagate long-range across the embryo. We show that distal HCN2 channel misexpression and distal transplants of HCN2-expressing tissue, non-cell-autonomously reverse profound defects, rescuing brain anatomy, gene expression, and learning. Moreover, such rescue can be induced by small-molecule HCN2 channel activators, even with delayed treatment initiation. We present a simple, versatile computational model of bioelectrical signaling upstream of key patterning genes such as OTX2 and XBF1, which predicts long-range repair induced by ion channel activity, and experimentally validate the predictions of this model. Our results and quantitative model identify a powerful morphogenetic control mechanism that could be targeted by future regenerative medicine exploiting ion channel modulating drugs approved for human use.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Allen Discovery Center at Tufts University, Medford, MA, United States
| | - Javier Cervera
- Departament de Termodinamica, Facultat de Fisica, Universitat de Valencia, Burjassot, Spain
| | - Salvador Mafe
- Departament de Termodinamica, Facultat de Fisica, Universitat de Valencia, Burjassot, Spain
| | - Valerie Willocq
- Allen Discovery Center at Tufts University, Medford, MA, United States
| | - Emma K Lederer
- Allen Discovery Center at Tufts University, Medford, MA, United States
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| |
Collapse
|
6
|
Pai VP, Adams DS. Preventing Ethanol-Induced Brain and Eye Morphology Defects Using Optogenetics. Bioelectricity 2019; 1:260-272. [PMID: 32685918 DOI: 10.1089/bioe.2019.0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Embryonic exposure to the teratogen ethanol leads to dysmorphias, including eye and brain morphology defects associated with fetal alcohol spectrum disorder (FASD). Exposure of Xenopus laevis embryos to ethanol leads to similar developmental defects, including brain and eye dysmorphism, confirming our work and the work of others showing Xenopus as a useful system for studies of the brain and eye birth defects associated with FASD. Several targets of ethanol action have been hypothesized, one being regulation of Kir2.1 potassium channel. Endogenous ion fluxes and membrane voltage variation (bioelectric signals) have been shown to be powerful regulators of embryonic cell behaviors that are required for correct brain and eye morphology. Disruptions to these voltage patterns lead to spatially correlated disruptions in gene expression patterns and corresponding morphology. Materials and Methods: Here, we use controlled membrane voltage modulation to determine when and where voltage modulation is sufficient to rescue ethanol-induced brain and eye defects in Xenopus embryos. Results: We found (1) that modulating membrane voltage using light activation of the channelrhodopsin-2 variant D156A rescues ethanol exposed embryos, resulting in normal brain and eye morphologies; (2) hyperpolarization is required for the full duration of ethanol exposure; (3) hyperpolarization of only superficial ectoderm is sufficient for this effect; and(4) the rescue effect acts at a distance. Conclusions: These results, particularly the last, raise the exciting possibility of using bioelectric modulation to treat ethanol-induced brain and eye birth defects, possibly with extant ion channel drugs already prescribed to pregnant women. This may prove to be a simple and cost-effective strategy for reducing the impact of FASD.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| | - Dany Spencer Adams
- Department of Biology, Tufts University, Medford, Massachusetts.,Ion Diagnostics LLC, Watertown, Massachusetts
| |
Collapse
|
7
|
Wei L, Xu F, Wang Y, Cai Z, Yu W, He C, Jiang Q, Xu X, Guo W, Wang X. The Molecular Differentiation of Anatomically Paired Left and Right Mantles of the Pacific Oyster Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:425-435. [PMID: 29594756 DOI: 10.1007/s10126-018-9806-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
Left-right (L-R) asymmetry is controlled by gene regulation pathways for the L-R axis, and in vertebrates, the gene Pitx2 in TGF-β signaling pathway plays important roles in the asymmetrical formation of organs. However, less is known about the asymmetries of anatomically identical paired organs, as well as the transcriptional regulation mechanism of the gene Pitx in invertebrates. Here, we report the molecular biological differences between the left and right mantles of an invertebrate, the Pacific oyster Crassostrea gigas, and propose one possible mechanism underlying those differences. RNA sequencing (RNA-seq) analysis indicated that the paired organs showed different gene expression patterns, suggesting possible functional differences in shell formation, pheromone signaling, nerve conduction, the stress response, and other physiological processes. RNA-seq and real-time qPCR analysis indicated high right-side expression of the Pitx homolog (cgPitx) in oyster mantle, supporting a conserved role for Pitx in controlling asymmetry. Methylation-dependent restriction-site associated DNA sequencing (MethylRAD) identified a methylation site in the promoter region of cgPitx and showed significantly different methylation levels between the left and right mantles. This is the first report, to our knowledge, of such a difference in methylation in spiralians, and it was further confirmed in 18 other individuals by using a pyrosequencing assay. The miRNome analysis and the TGF-β receptor/Smad inhibition experiment further supported that several genes in TGF-β signaling pathway may be related with the L/R asymmetry of oyster mantles. These results suggested that the molecular differentiation of the oyster's paired left and right mantles is significant, TGF-β signaling pathway could be involved in establishing or maintaining the asymmetry, and the cgPitx gene as one of genes in this pathway; the different methylation levels in its promoter regions between L/R mantles was the one of possible mechanisms regulating the left-right functional differentiation.
Collapse
Affiliation(s)
- Lei Wei
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Fei Xu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yuzhi Wang
- School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Zhongqiang Cai
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Changdao, 265800, China
| | - Wenchao Yu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Cheng He
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Qiuyun Jiang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiqiang Xu
- Qingdao OE Biotechnology Company Limited, Qingdao, 266101, China
| | - Wen Guo
- Marine Biology Institute of Shandong Province, Qingdao, 266104, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
8
|
McDowell G, Rajadurai S, Levin M. From cytoskeletal dynamics to organ asymmetry: a nonlinear, regulative pathway underlies left-right patterning. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0409. [PMID: 27821521 DOI: 10.1098/rstb.2015.0409] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 12/25/2022] Open
Abstract
Consistent left-right (LR) asymmetry is a fundamental aspect of the bodyplan across phyla, and errors of laterality form an important class of human birth defects. Its molecular underpinning was first discovered as a sequential pathway of left- and right-sided gene expression that controlled positioning of the heart and visceral organs. Recent data have revised this picture in two important ways. First, the physical origin of chirality has been identified; cytoskeletal dynamics underlie the asymmetry of single-cell behaviour and patterning of the LR axis. Second, the pathway is not linear: early disruptions that alter the normal sidedness of upstream asymmetric genes do not necessarily induce defects in the laterality of the downstream genes or in organ situs Thus, the LR pathway is a unique example of two fascinating aspects of biology: the interplay of physics and genetics in establishing large-scale anatomy, and regulative (shape-homeostatic) pathways that correct molecular and anatomical errors over time. Here, we review aspects of asymmetry from its intracellular, cytoplasmic origins to the recently uncovered ability of the LR control circuitry to achieve correct gene expression and morphology despite reversals of key 'determinant' genes. We provide novel functional data, in Xenopus laevis, on conserved elements of the cytoskeleton that drive asymmetry, and comparatively analyse it together with previously published results in the field. Our new observations and meta-analysis demonstrate that despite aberrant expression of upstream regulatory genes, embryos can progressively normalize transcriptional cascades and anatomical outcomes. LR patterning can thus serve as a paradigm of how subcellular physics and gene expression cooperate to achieve developmental robustness of a body axis.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Gary McDowell
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| | - Suvithan Rajadurai
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| | - Michael Levin
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA .,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| |
Collapse
|
9
|
Stanienda-Sokół K, Salwowska N, Sławińska M, Wicherska-Pawłowska K, Lorenc A, Wcisło-Dziadecka D, Wydmański J, Majewski W. Primary Locations of Malignant Melanoma Lesions Depending on Patients’ Gender and Age. Asian Pac J Cancer Prev 2017; 18:3081-3086. [PMID: 29172282 PMCID: PMC5773794 DOI: 10.22034/apjcp.2017.18.11.3081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Introduction: Location of malignant melanoma lesions depends on environmental, genetic, sociological and demographical factors. Available sources do not provide enough information on such dependencies in various populations. There is no data concerning the role of socio-demographic factors for the population of the Central and Eastern Europe. Aim: The aim of this work was to evaluate the anatomical location of the primary malignant melanoma lesion in correlation to patients’ gender and age. Material and methods: A retrospective analysis of medical documentation of 363 patients has been performed. The patients had been diagnosed with malignant melanoma and were undergoing treatment in the years 2010-2014 in two Polish oncologic hospitals. The subject group consisted of 199 (55%) females and 164 (45%) males. The age varied between 19 - 90 years, with the median of 62 years. Results: In women, the melanoma lesions seem to appear more often in their lower extremities, while in case of men such lesions seem to be more often on their torsos. In both cases, the difference was statistically significant (p<0.01 When the specific locations are considered in women the lesions were more often located on their shins (p<0.01), whereas for men the lesions were located on their backs (p<0.01). It has been observed that there is dependency between lesion localization and age of patients. The lesions located on heads and necks were most common in older patients, and the lesions located in lower extremities were most common in younger ones. Conclusion: Differences in location of malignant melanoma lesions may be due to either genetic or environmental reasons. It is often emphasized in literature that correlation between the socio-demographic factors and the process of oncogenesis requires intensive research. In our work, we have tried to fill this gap for the population of Central and Eastern Europe to determine the exact epidemiology of this kind of cancer. This knowledge may be then used for developing cancer prevention methods specific to gender and age.
Collapse
|
10
|
Alqadah A, Hsieh YW, Morrissey ZD, Chuang CF. Asymmetric development of the nervous system. Dev Dyn 2017; 247:124-137. [PMID: 28940676 DOI: 10.1002/dvdy.24595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/09/2017] [Accepted: 09/18/2017] [Indexed: 12/13/2022] Open
Abstract
The human nervous system consists of seemingly symmetric left and right halves. However, closer observation of the brain reveals anatomical and functional lateralization. Defects in brain asymmetry correlate with several neurological disorders, yet our understanding of the mechanisms used to establish lateralization in the human central nervous system is extremely limited. Here, we review left-right asymmetries within the nervous system of humans and several model organisms, including rodents, Zebrafish, chickens, Xenopus, Drosophila, and the nematode Caenorhabditis elegans. Comparing and contrasting mechanisms used to develop left-right asymmetry in the nervous system can provide insight into how the human brain is lateralized. Developmental Dynamics 247:124-137, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amel Alqadah
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Zachery D Morrissey
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois.,Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
11
|
Pietak A, Levin M. Bioelectric gene and reaction networks: computational modelling of genetic, biochemical and bioelectrical dynamics in pattern regulation. J R Soc Interface 2017; 14:20170425. [PMID: 28954851 PMCID: PMC5636277 DOI: 10.1098/rsif.2017.0425] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022] Open
Abstract
Gene regulatory networks (GRNs) describe interactions between gene products and transcription factors that control gene expression. In combination with reaction-diffusion models, GRNs have enhanced comprehension of biological pattern formation. However, although it is well known that biological systems exploit an interplay of genetic and physical mechanisms, instructive factors such as transmembrane potential (Vmem) have not been integrated into full GRN models. Here we extend regulatory networks to include bioelectric signalling, developing a novel synthesis: the bioelectricity-integrated gene and reaction (BIGR) network. Using in silico simulations, we highlight the capacity for Vmem to alter steady-state concentrations of key signalling molecules inside and out of cells. We characterize fundamental feedbacks where Vmem both controls, and is in turn regulated by, biochemical signals and thereby demonstrate Vmem homeostatic control, Vmem memory and Vmem controlled state switching. BIGR networks demonstrating hysteresis are identified as a mechanisms through which more complex patterns of stable Vmem spots and stripes, along with correlated concentration patterns, can spontaneously emerge. As further proof of principle, we present and analyse a BIGR network model that mechanistically explains key aspects of the remarkable regenerative powers of creatures such as planarian flatworms. The functional properties of BIGR networks generate the first testable, quantitative hypotheses for biophysical mechanisms underlying the stability and adaptive regulation of anatomical bioelectric pattern.
Collapse
Affiliation(s)
- Alexis Pietak
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
| |
Collapse
|
12
|
Orbital autoimmune inflammatory disorders - Protein regional variability might explain specific lesion location. Med Hypotheses 2017; 98:15-17. [DOI: 10.1016/j.mehy.2016.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/17/2016] [Indexed: 12/28/2022]
|
13
|
Pai VP, Martyniuk CJ, Echeverri K, Sundelacruz S, Kaplan DL, Levin M. Genome-wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation. ACTA ACUST UNITED AC 2015; 3:3-25. [PMID: 27499876 PMCID: PMC4857752 DOI: 10.1002/reg2.48] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 12/14/2022]
Abstract
Endogenous bioelectric signaling via changes in cellular resting potential (Vmem) is a key regulator of patterning during regeneration and embryogenesis in numerous model systems. Depolarization of Vmem has been functionally implicated in dedifferentiation, tumorigenesis, anatomical re‐specification, and appendage regeneration. However, no unbiased analyses have been performed to understand genome‐wide transcriptional responses to Vmem change in vivo. Moreover, it is unknown which genes or gene networks represent conserved targets of bioelectrical signaling across different patterning contexts and species. Here, we use microarray analysis to comparatively analyze transcriptional responses to Vmem depolarization. We compare the response of the transcriptome during embryogenesis (Xenopus development), regeneration (axolotl regeneration), and stem cell differentiation (human mesenchymal stem cells in culture) to identify common networks across model species that are associated with depolarization. Both subnetwork enrichment and PANTHER analyses identified a number of key genetic modules as targets of Vmem change, and also revealed important (well‐conserved) commonalities in bioelectric signal transduction, despite highly diverse experimental contexts and species. Depolarization regulates specific transcriptional networks across all three germ layers (ectoderm, mesoderm, and endoderm) such as cell differentiation and apoptosis, and this information will be used for developing mechanistic models of bioelectric regulation of patterning. Moreover, our analysis reveals that Vmem change regulates transcripts related to important disease pathways such as cancer and neurodegeneration, which may represent novel targets for emerging electroceutical therapies.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Biology Department and Center for Regenerative and Developmental Biology Tufts University Medford Massachusetts 02155 USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology and Department of Physiological Sciences UF Genetics Institute, University of Florida Gainesville Florida 32611 USA
| | - Karen Echeverri
- Department of Genetics, Cell Biology and Development University of Minnesota Minneapolis Minnesota 55455 USA
| | - Sarah Sundelacruz
- Department of Biomedical Engineering Tufts University Medford Massachusetts 02155 USA
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University Medford Massachusetts 02155 USA
| | - Michael Levin
- Biology Department and Center for Regenerative and Developmental Biology Tufts University Medford Massachusetts 02155 USA
| |
Collapse
|
14
|
Pai VP, Lemire JM, Paré JF, Lin G, Chen Y, Levin M. Endogenous gradients of resting potential instructively pattern embryonic neural tissue via Notch signaling and regulation of proliferation. J Neurosci 2015; 35:4366-85. [PMID: 25762681 PMCID: PMC4355204 DOI: 10.1523/jneurosci.1877-14.2015] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 12/21/2014] [Accepted: 01/14/2015] [Indexed: 12/26/2022] Open
Abstract
Biophysical forces play important roles throughout embryogenesis, but the roles of spatial differences in cellular resting potentials during large-scale brain morphogenesis remain unknown. Here, we implicate endogenous bioelectricity as an instructive factor during brain patterning in Xenopus laevis. Early frog embryos exhibit a characteristic hyperpolarization of cells lining the neural tube; disruption of this spatial gradient of the transmembrane potential (Vmem) diminishes or eliminates the expression of early brain markers, and causes anatomical mispatterning of the brain, including absent or malformed regions. This effect is mediated by voltage-gated calcium signaling and gap-junctional communication. In addition to cell-autonomous effects, we show that hyperpolarization of transmembrane potential (Vmem) in ventral cells outside the brain induces upregulation of neural cell proliferation at long range. Misexpression of the constitutively active form of Notch, a suppressor of neural induction, impairs the normal hyperpolarization pattern and neural patterning; forced hyperpolarization by misexpression of specific ion channels rescues brain defects induced by activated Notch signaling. Strikingly, hyperpolarizing posterior or ventral cells induces the production of ectopic neural tissue considerably outside the neural field. The hyperpolarization signal also synergizes with canonical reprogramming factors (POU and HB4), directing undifferentiated cells toward neural fate in vivo. These data identify a new functional role for bioelectric signaling in brain patterning, reveal interactions between Vmem and key biochemical pathways (Notch and Ca(2+) signaling) as the molecular mechanism by which spatial differences of Vmem regulate organogenesis of the vertebrate brain, and suggest voltage modulation as a tractable strategy for intervention in certain classes of birth defects.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts 02155-4243 and
| | - Joan M Lemire
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts 02155-4243 and
| | - Jean-François Paré
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts 02155-4243 and
| | - Gufa Lin
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota 55455
| | - Ying Chen
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael Levin
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts 02155-4243 and
| |
Collapse
|
15
|
PAI VAIBHAVP, LEMIRE JOANM, CHEN YING, LIN GUFA, LEVIN MICHAEL. Local and long-range endogenous resting potential gradients antagonistically regulate apoptosis and proliferation in the embryonic CNS. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2015; 59:327-40. [PMID: 26198142 PMCID: PMC10505512 DOI: 10.1387/ijdb.150197ml] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bioelectric signals, particularly transmembrane voltage potentials (Vmem), play an important role in large-scale patterning during embryonic development. Endogenous bioelectric gradients across tissues function as instructive factors during eye, brain, and other morphogenetic processes. An important and still poorly-understood aspect is the control of cell behaviors by the voltage states of distant cell groups. Here, experimental alteration of endogenous Vmem was induced in Xenopus laevis embryos by misexpression of well-characterized ion channel mRNAs, a strategy often used to identify functional roles of Vmem gradients during embryonic development and regeneration. Immunofluorescence analysis (for activated caspase 3 and phosphor-histone H3P) on embryonic sections was used to characterize apoptosis and proliferation. Disrupting local bioelectric signals (within the developing neural tube region) increased caspase 3 and decreased H3P in the brain, resulting in brain mispatterning. Disrupting remote (ventral, non-neural region) bioelectric signals decreased caspase 3 and highly increased H3P within the brain, with normal brain patterning. Disrupting both the local and distant bioelectric signals produced antagonistic effects on caspase 3 and H3P. Thus, two components of bioelectric signals regulate apoptosis-proliferation balance within the developing brain and spinal cord: local (developing neural tube region) and distant (ventral non-neural region). Together, the local and long-range bioelectric signals create a binary control system capable of fine-tuning apoptosis and proliferation with the brain and spinal cord to achieve correct pattern and size control. Our data suggest a roadmap for utilizing bioelectric state as a diagnostic modality and convenient intervention parameter for birth defects and degenerative disease states of the CNS.
Collapse
Affiliation(s)
- VAIBHAV P. PAI
- Biology Department, and Center for Regenerative and Developmental Biology Tufts University, Medford, MA, USA
| | - JOAN M. LEMIRE
- Biology Department, and Center for Regenerative and Developmental Biology Tufts University, Medford, MA, USA
| | - YING CHEN
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - GUFA LIN
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - MICHAEL LEVIN
- Biology Department, and Center for Regenerative and Developmental Biology Tufts University, Medford, MA, USA
| |
Collapse
|
16
|
Levin M. Reprogramming cells and tissue patterning via bioelectrical pathways: molecular mechanisms and biomedical opportunities. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2013; 5:657-76. [PMID: 23897652 PMCID: PMC3841289 DOI: 10.1002/wsbm.1236] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/16/2013] [Accepted: 06/21/2013] [Indexed: 12/17/2022]
Abstract
Transformative impact in regenerative medicine requires more than the reprogramming of individual cells: advances in repair strategies for birth defects or injuries, tumor normalization, and the construction of bioengineered organs and tissues all require the ability to control large-scale anatomical shape. Much recent work has focused on the transcriptional and biochemical regulation of cell behavior and morphogenesis. However, exciting new data reveal that bioelectrical properties of cells and their microenvironment exert a profound influence on cell differentiation, proliferation, and migration. Ion channels and pumps expressed in all cells, not just excitable nerve and muscle, establish resting potentials that vary across tissues and change with significant developmental events. Most importantly, the spatiotemporal gradients of these endogenous transmembrane voltage potentials (Vmem ) serve as instructive patterning cues for large-scale anatomy, providing organ identity, positional information, and prepattern template cues for morphogenesis. New genetic and pharmacological techniques for molecular modulation of bioelectric gradients in vivo have revealed the ability to initiate complex organogenesis, change tissue identity, and trigger regeneration of whole vertebrate appendages. A large segment of the spatial information processing that orchestrates individual cells' programs toward the anatomical needs of the host organism is electrical; this blurs the line between memory and decision-making in neural networks and morphogenesis in nonneural tissues. Advances in cracking this bioelectric code will enable the rational reprogramming of shape in whole tissues and organs, revolutionizing regenerative medicine, developmental biology, and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Tufts University, Department of Biology and Tufts Center for Regenerative and Developmental Biology, 200 Boston Ave., Suite 4600, Medford, MA 02155
| |
Collapse
|
17
|
Blackiston DJ, Levin M. Inversion of left-right asymmetry alters performance of Xenopus tadpoles in nonlateralized cognitive tasks. Anim Behav 2013; 86:459-466. [PMID: 24039274 PMCID: PMC3768024 DOI: 10.1016/j.anbehav.2013.05.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Left-right behavioural biases are well documented across the animal kingdom, and handedness has long been associated with cognitive performance. However, the relationship between body laterality and cognitive ability is poorly understood. The embryonic pathways dictating normal left-right patterning have been molecularly dissected in model vertebrates, and numerous genetic and pharmacological treatments now facilitate experimental randomization or reversal of the left-right axis in these animals. Several recent studies showed a link between brain asymmetry and strongly lateralized behaviours such as eye use preference. However, links between laterality of the body and performance on cognitive tasks utilizing nonlateralized cues remain unknown. Xenopus tadpoles are an established model for the study of early left-right patterning, and protocols were recently developed to quantitatively evaluate learning and memory in these animals. Using an automated testing and training platform, we tested wild-type, left-right-randomized and left-right-reversed tadpoles for their ability to learn colour cues in an automated assay. Our results indicate that animals with either randomization or reversal of somatic left-right patterning learned more slowly than wild-type siblings, although all groups were able to reach the same performance optimum given enough training sessions. These results are the first analysis of the link between body laterality and learning of nonlateralized cues, and they position the Xenopus tadpole as an attractive and tractable model for future studies of the links between asymmetry of the body, lateralization of the brain and behaviour.
Collapse
Affiliation(s)
- Douglas J. Blackiston
- Center for Regenerative and Developmental Biology, Department of Biology, Tufts University, Medford, MA, U.S.A
| | - Michael Levin
- Center for Regenerative and Developmental Biology, Department of Biology, Tufts University, Medford, MA, U.S.A
| |
Collapse
|
18
|
Vandenberg LN, Levin M. A unified model for left-right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. Dev Biol 2013; 379:1-15. [PMID: 23583583 PMCID: PMC3698617 DOI: 10.1016/j.ydbio.2013.03.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 12/31/2022]
Abstract
Understanding how and when the left-right (LR) axis is first established is a fundamental question in developmental biology. A popular model is that the LR axis is established relatively late in embryogenesis, due to the movement of motile cilia and the resultant directed fluid flow during late gastrulation/early neurulation. Yet, a large body of evidence suggests that biophysical, molecular, and bioelectrical asymmetries exist much earlier in development, some as early as the first cell cleavage after fertilization. Alternative models of LR asymmetry have been proposed that accommodate these data, postulating that asymmetry is established due to a chiral cytoskeleton and/or the asymmetric segregation of chromatids. There are some similarities, and many differences, in how these various models postulate the origin and timing of symmetry breaking and amplification, and these events' linkage to the well-conserved subsequent asymmetric transcriptional cascades. This review examines experimental data that lend strong support to an early origin of LR asymmetry, yet are also consistent with later roles for cilia in the amplification of LR pathways. In this way, we propose that the various models of asymmetry can be unified: early events are needed to initiate LR asymmetry, and later events could be utilized by some species to maintain LR-biases. We also present an alternative hypothesis, which proposes that individual embryos stochastically choose one of several possible pathways with which to establish their LR axis. These two hypotheses are both tractable in appropriate model species; testing them to resolve open questions in the field of LR patterning will reveal interesting new biology of wide relevance to developmental, cell, and evolutionary biology.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155
| | - Michael Levin
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155
| |
Collapse
|