1
|
Liu S, Liu B, Li Q, Zheng T, Liu B, Li M, Chen Z. Transplantation of fibrin-thrombin encapsulated human induced neural stem cells promotes functional recovery of spinal cord injury rats through modulation of the microenvironment. Neural Regen Res 2024; 19:440-446. [PMID: 37488909 PMCID: PMC10503599 DOI: 10.4103/1673-5374.379049] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/02/2023] [Accepted: 05/29/2023] [Indexed: 07/26/2023] Open
Abstract
Recent studies have mostly focused on engraftment of cells at the lesioned spinal cord, with the expectation that differentiated neurons facilitate recovery. Only a few studies have attempted to use transplanted cells and/or biomaterials as major modulators of the spinal cord injury microenvironment. Here, we aimed to investigate the role of microenvironment modulation by cell graft on functional recovery after spinal cord injury. Induced neural stem cells reprogrammed from human peripheral blood mononuclear cells, and/or thrombin plus fibrinogen, were transplanted into the lesion site of an immunosuppressed rat spinal cord injury model. Basso, Beattie and Bresnahan score, electrophysiological function, and immunofluorescence/histological analyses showed that transplantation facilitates motor and electrophysiological function, reduces lesion volume, and promotes axonal neurofilament expression at the lesion core. Examination of the graft and niche components revealed that although the graft only survived for a relatively short period (up to 15 days), it still had a crucial impact on the microenvironment. Altogether, induced neural stem cells and human fibrin reduced the number of infiltrated immune cells, biased microglia towards a regenerative M2 phenotype, and changed the cytokine expression profile at the lesion site. Graft-induced changes of the microenvironment during the acute and subacute stages might have disrupted the inflammatory cascade chain reactions, which may have exerted a long-term impact on the functional recovery of spinal cord injury rats.
Collapse
Affiliation(s)
- Sumei Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Baoguo Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Qian Li
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Tianqi Zheng
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Bochao Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Mo Li
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
2
|
Hasanzadeh E, Seifalian A, Mellati A, Saremi J, Asadpour S, Enderami SE, Nekounam H, Mahmoodi N. Injectable hydrogels in central nervous system: Unique and novel platforms for promoting extracellular matrix remodeling and tissue engineering. Mater Today Bio 2023; 20:100614. [PMID: 37008830 PMCID: PMC10050787 DOI: 10.1016/j.mtbio.2023.100614] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Repairing central nervous system (CNS) is difficult due to the inability of neurons to recover after damage. A clinically acceptable treatment to promote CNS functional recovery and regeneration is currently unavailable. According to recent studies, injectable hydrogels as biodegradable scaffolds for CNS tissue engineering and regeneration have exceptionally desirable attributes. Hydrogel has a biomimetic structure similar to extracellular matrix, hence has been considered a 3D scaffold for CNS regeneration. An interesting new type of hydrogel, injectable hydrogels, can be injected into target areas with little invasiveness and imitate several aspects of CNS. Injectable hydrogels are being researched as therapeutic agents because they may imitate numerous properties of CNS tissues and hence reduce subsequent injury and regenerate neural tissue. Because of their less adverse effects and cost, easier use and implantation with less pain, and faster regeneration capacity, injectable hydrogels, are more desirable than non-injectable hydrogels. This article discusses the pathophysiology of CNS and the use of several kinds of injectable hydrogels for brain and spinal cord tissue engineering, paying particular emphasis to recent experimental studies.
Collapse
Affiliation(s)
- Elham Hasanzadeh
- Immunogenetics Research Center, Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, 2 Royal College Street, London, UK
| | - Amir Mellati
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jamileh Saremi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Mahmoodi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Fiani B, Arshad MA, Shaikh ES, Baig A, Farooqui M, Ayub MA, Zafar A, Quadri SA. Current updates on various treatment approaches in the early management of acute spinal cord injury. Rev Neurosci 2021; 32:513-530. [PMID: 33565738 DOI: 10.1515/revneuro-2020-0148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023]
Abstract
Spinal cord injury (SCI) is a debilitating condition which often leads to a severe disability and ultimately impact patient's physical, psychological, and social well-being. The management of acute SCI has evolved over the couple of decades due to improved understanding of injury mechanisms and increasing knowledge of disease. Currently, the early management of acute SCI patient includes pharmacological agents, surgical intervention and newly experimental neuroprotective strategies. However, many controversial areas are still surrounding in the current treatment strategies for acute SCI, including the optimal timing of surgical intervention, early versus delayed decompression outcome benefits, the use of methylprednisolone. Due to the lack of consensus, the optimal standard of care has been varied across treatment centres. The authors have shed a light on the current updates on early treatment approaches and neuroprotective strategies in the initial management of acute SCI in order to protect the early neurologic injury and reduce the future disability.
Collapse
Affiliation(s)
- Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, 1150 N. Indian Canyon Drive, Palm Springs, CA92262, USA
| | - Mohammad Arsal Arshad
- Department of Neurosurgery, Desert Regional Medical Center, 1150 N. Indian Canyon Drive, Palm Springs, CA92262, USA
| | - Emad Salman Shaikh
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Aqsa Baig
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Mudassir Farooqui
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Muhammed Abubakar Ayub
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Atif Zafar
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Syed A Quadri
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Taha HS, Moustafa EM, Moawed FSM, Hegazy MGA. Curative role of mesenchymal stromal cells in chronic pancreatitis: Modulation of MAPK and TGF-β1/SMAD factors. Int J Immunopathol Pharmacol 2021; 35:20587384211054036. [PMID: 34696610 PMCID: PMC8552371 DOI: 10.1177/20587384211054036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/29/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Living organisms respond to physical, chemical, and biological threats with a potent inflammatory response which alters organ cell signaling and leads to dysfunction. We evaluated the therapeutic effect of bone marrow-based mesenchymal stromal cell (BM-MSC) transplanted in rats to preserve tissue integrity and to restore homeostasis and function in the pancreatitis experimental pattern. METHODS This study involved 40 adult male Wister rats. Repeated L-arginine injections caused chronic pancreatitis (CP), leading to the development of pancreatic damage and shifting the intracellular signaling pathways. Rats were then infused with BM-MSC labeled with PKH26 fluorescent linker dye for 12 weeks. RESULTS Cell-surface indicators of BM-MSCs such as CD 90 and CD29 were expressed with the lack of CD34 expression. BM-MSC treatment considerably improved the alterations induced in a series of inflammatory markers, including IL-18, TNF-α, CRP, PGE2, and MCP-1. Furthermore, improvement was found in digestive enzymes and lipid profile with amelioration in myeloperoxidase activity. BM-MSC treatment also regulated the (TGF-/p-38MPAK/SMAD2/3) signaling factors that enhances repair of damaged pancreatic tissue, confirmed by reversed alteration of histopathological examination. CONCLUSION our results further bring to light the promise of cell transplant therapy for chronic pancreatitis.
Collapse
Affiliation(s)
- Hager S Taha
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Enas M Moustafa
- Radiation Biology Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Fatma SM Moawed
- Health Radiation Research Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Marwa GA Hegazy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Ahuja CS, Mothe A, Khazaei M, Badhiwala JH, Gilbert EA, van der Kooy D, Morshead CM, Tator C, Fehlings MG. The leading edge: Emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury. Stem Cells Transl Med 2020; 9:1509-1530. [PMID: 32691994 PMCID: PMC7695641 DOI: 10.1002/sctm.19-0135] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/01/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injuries (SCIs) are associated with tremendous physical, social, and financial costs for millions of individuals and families worldwide. Rapid delivery of specialized medical and surgical care has reduced mortality; however, long-term functional recovery remains limited. Cell-based therapies represent an exciting neuroprotective and neuroregenerative strategy for SCI. This article summarizes the most promising preclinical and clinical cell approaches to date including transplantation of mesenchymal stem cells, neural stem cells, oligodendrocyte progenitor cells, Schwann cells, and olfactory ensheathing cells, as well as strategies to activate endogenous multipotent cell pools. Throughout, we emphasize the fundamental biology of cell-based therapies, critical features in the pathophysiology of spinal cord injury, and the strengths and limitations of each approach. We also highlight salient completed and ongoing clinical trials worldwide and the bidirectional translation of their findings. We then provide an overview of key adjunct strategies such as trophic factor support to optimize graft survival and differentiation, engineered biomaterials to provide a support scaffold, electrical fields to stimulate migration, and novel approaches to degrade the glial scar. We also discuss important considerations when initiating a clinical trial for a cell therapy such as the logistics of clinical-grade cell line scale-up, cell storage and transportation, and the delivery of cells into humans. We conclude with an outlook on the future of cell-based treatments for SCI and opportunities for interdisciplinary collaboration in the field.
Collapse
Affiliation(s)
- Christopher S. Ahuja
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Andrea Mothe
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Mohamad Khazaei
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Jetan H. Badhiwala
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
| | - Emily A. Gilbert
- Division of Anatomy, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
| | - Derek van der Kooy
- Department of Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | - Cindi M. Morshead
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Division of Anatomy, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Charles Tator
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Michael G. Fehlings
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| |
Collapse
|
6
|
Morgado PI, Palacios M, Larrain J. In situ injectable hydrogels for spinal cord regeneration: advances from the last 10 years. Biomed Phys Eng Express 2019; 6:012002. [PMID: 33438588 DOI: 10.1088/2057-1976/ab52e8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) is a tremendously devastating disorder with no effective therapy. Neuroprotective strategies have been applied aiming to prevent secondary cell death but no successful and robust effects have been observed. Recently, combinatorial approaches using biomaterials with cells and/or growth factors have demonstrated promising therapeutic effects because of the improvement of axonal growth and in vivo functional recovery in model organisms. In situ injectable hydrogels are a particularly attractive neuroregenerative approach to improve spinal cord repair and regeneration since they can be precisely injected into the lesion site filling the space prior to gelification, decrease scarring and promote axon growth due to the hydrogel's soft structure. Important advances regarding the use of hydrogels as potential therapeutic approaches has been reported during the last 10 years. Injectable alginate hydrogel loaded with GDNF, thermoresponsives heparin-poloxamer loaded with NGF and imidazole-poly(organophosphazenes) hydrogels are just three examples of biomaterials that can promote neurite, axon growth and improve functional recovery in hemisected and resected rats. Here we will review the status of in situ injectable hydrogels for spinal cord regeneration with special focus in the advantages of using hydrogel scaffolds, the ideal polymers to be used, the gelification process and the cells or growth factors combined. The in vitro and in vivo results reported for those biomaterials will be presented, compared and discussed.
Collapse
|
7
|
Lang C, Shu X, Peng L, Yu X. The ERK signaling pathway is involved in cardiotrophin-1-induced neural differentiation of human umbilical cord blood mesenchymal stem cells in vitro. Cytotechnology 2019; 71:977-988. [PMID: 31489528 DOI: 10.1007/s10616-019-00339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 08/20/2019] [Indexed: 11/29/2022] Open
Abstract
Central nervous system diseases remain the most challenging pathologies, with limited or even no therapeutic possibilities and a poor prognosis. This study aimed to investigate the differentiation properties of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) transfected with recombinant adenovirus expressing enhanced green fluorescence protein cardiotrophin-1 (Adv-EGFP-CT-1) and the possible mechanisms involved. Cells were isolated, and MSC immunophenotypes were confirmed. The resulting differentiated cells treated with Adv-EGFP-CT-1 and cultured in neural induction medium (NIM) expressed higher levels of Nestin, neuronal nuclei (NeuN) and glial fibrillary acidic protein (GFAP) markers than cells in other treatments. Expression of glycoprotein 130/leukemia inhibitory factor receptor β (gp130/LiFRβ), Raf-1, phosphorylated Raf-1 (p-Raf-1), extracellular signal-regulated kinase 1/2 (ERK1/2) and phospho-ERK1/2 (p-ERK1/2) increased gradually within 72 h after transfection with Adv-EGFP-CT-1 and NIM culture. Additionally, inhibition of extracellular signal-regulated kinase kinase (MEK) abrogated expression of p-ERK1/2, Nestin, GFAP and NeuN. Thus, the ERK1/2 pathway may contribute to CT1-stimulated neural differentiation of hUCB-MSCs.
Collapse
Affiliation(s)
- Changhui Lang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Xiaomei Shu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China.
| | - Longying Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Xiaohua Yu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| |
Collapse
|
8
|
Hakim R, Covacu R, Zachariadis V, Frostell A, Sankavaram S, Svensson M, Brundin L. Syngeneic, in contrast to allogeneic, mesenchymal stem cells have superior therapeutic potential following spinal cord injury. J Neuroimmunol 2019; 328:5-19. [PMID: 30551037 DOI: 10.1016/j.jneuroim.2018.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 01/11/2023]
Abstract
We evaluated the importance of histocompatibility of transplanted MSCs in terms of therapeutic potential. Mouse syngeneic MSCs or allogeneic MSCs were transplanted following SCI in mouse. In this study we found that syngeneic, but not allogeneic, MSCs alternatively activated macrophages resulting in a down-regulation of pro-inflammation. Syngeneic MSCs also had a general suppressive effect on the immune response as compared to allogeneic MSCs. Additionally, syngeneic, but not allogeneic, MSCs significantly enhanced the recovery of hind limb function. In this study we show that the histocompatibility of transplanted MSCs is of importance for their therapeutic potential.
Collapse
Affiliation(s)
- Ramil Hakim
- Center for Molecular Medicine, Karolinska Institutet, Solna 17176, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Solna 17176, Stockholm, Sweden.
| | - Ruxandra Covacu
- Center for Molecular Medicine, Karolinska Institutet, Solna 17176, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Solna 17176, Stockholm, Sweden.
| | - Vasilios Zachariadis
- Department of Oncology and Pathology, Karolinska Institutet, Solna 17176, Stockholm, Sweden.
| | - Arvid Frostell
- Department of Clinical Neuroscience, Karolinska Institutet, Solna 17176, Stockholm, Sweden.
| | - Sreenivasa Sankavaram
- Center for Molecular Medicine, Karolinska Institutet, Solna 17176, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Solna 17176, Stockholm, Sweden.
| | - Mikael Svensson
- Department of Neurology and Neurosurgery, Karolinska University Hospital, BioClinicum, Solnavägen 30, Solna, Stockholm 17176, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Solna 17176, Stockholm, Sweden.
| | - Lou Brundin
- Department of Neurology and Neurosurgery, Karolinska University Hospital, BioClinicum, Solnavägen 30, Solna, Stockholm 17176, Sweden; Center for Molecular Medicine, Karolinska Institutet, Solna 17176, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Solna 17176, Stockholm, Sweden.
| |
Collapse
|
9
|
Fan B, Wei Z, Yao X, Shi G, Cheng X, Zhou X, Zhou H, Ning G, Kong X, Feng S. Microenvironment Imbalance of Spinal Cord Injury. Cell Transplant 2018; 27:853-866. [PMID: 29871522 PMCID: PMC6050904 DOI: 10.1177/0963689718755778] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injury (SCI), for which there currently is no cure, is a heavy burden on
patient physiology and psychology. The microenvironment of the injured spinal cord is
complicated. According to our previous work and the advancements in SCI research,
‘microenvironment imbalance’ is the main cause of the poor regeneration and recovery of
SCI. Microenvironment imbalance is defined as an increase in inhibitory factors and
decrease in promoting factors for tissues, cells and molecules at different times and
spaces. There are imbalance of hemorrhage and ischemia, glial scar formation,
demyelination and re-myelination at the tissue’s level. The cellular level imbalance
involves an imbalance in the differentiation of endogenous stem cells and the
transformation phenotypes of microglia and macrophages. The molecular level includes an
imbalance of neurotrophic factors and their pro-peptides, cytokines, and chemokines. The
imbalanced microenvironment of the spinal cord impairs regeneration and functional
recovery. This review will aid in the understanding of the pathological processes involved
in and the development of comprehensive treatments for SCI.
Collapse
Affiliation(s)
- Baoyou Fan
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhijian Wei
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Yao
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Guidong Shi
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Cheng
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xianhu Zhou
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hengxing Zhou
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangzhi Ning
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohong Kong
- 2 Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, China
| | - Shiqing Feng
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
10
|
The Effect of Human Mesenchymal Stem Cells Derived from Wharton's Jelly in Spinal Cord Injury Treatment Is Dose-Dependent and Can Be Facilitated by Repeated Application. Int J Mol Sci 2018; 19:ijms19051503. [PMID: 29772841 PMCID: PMC5983761 DOI: 10.3390/ijms19051503] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Human mesenchymal stem cells derived from Wharton’s jelly (WJ-MSCs) were used for the treatment of the ischemic-compression model of spinal cord injury in rats. To assess the effectivity of the treatment, different dosages (0.5 or 1.5 million cells) and repeated applications were compared. Cells or saline were applied intrathecally by lumbar puncture for one week only, or in three consecutive weeks after injury. Rats were assessed for locomotor skills (BBB, rotarod, flat beam) for 9 weeks. Spinal cord tissue was morphometrically analyzed for axonal sprouting, sparing of gray and white matter and astrogliosis. Endogenous gene expression (Gfap, Casp3, Irf5, Cd86, Mrc1, Cd163) was studied with quantitative Real-time polymerase chain reaction (qRT PCR). Significant recovery of functional outcome was observed in all of the treated groups except for the single application of the lowest number of cells. Histochemical analyses revealed a gradually increasing effect of grafted cells, resulting in a significant increase in the number of GAP43+ fibers, a higher amount of spared gray matter and reduced astrogliosis. mRNA expression of macrophage markers and apoptosis was downregulated after the repeated application of 1.5 million cells. We conclude that the effect of hWJ-MSCs on spinal cord regeneration is dose-dependent and potentiated by repeated application.
Collapse
|
11
|
Yang C, Wang G, Ma F, Yu B, Chen F, Yang J, Feng J, Wang Q. Repeated injections of human umbilical cord blood-derived mesenchymal stem cells significantly promotes functional recovery in rabbits with spinal cord injury of two noncontinuous segments. Stem Cell Res Ther 2018; 9:136. [PMID: 29751769 PMCID: PMC5948759 DOI: 10.1186/s13287-018-0879-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/08/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
Background Spinal cord injuries (SCIs) are sustained by an increasing number of patients each year worldwide. The treatment of SCIs has long been a hard nut to crack for doctors around the world. Mesenchymal stem cells (MSCs) have shown benefits for the repair of SCI and recovery of function. Our present study aims to investigate the effects of intravenously infused human umbilical cord blood-derived MSCs (hUCB-MSCs) on functional recovery after subacute spinal cord compression injury of two noncontinuous segments. In addition, we compared the effects of single infusion and repeated intravenous (i.v.) injections on the recovery of spinal cord function. Methods A total of 43 adult rabbits were randomly divided into four groups: control, single injection (SI), repeated injection at a 3-day (3RI) or repeated injection at a 7-day interval (7RI) groups. Non-immunosuppressed rabbits in the transplantation groups were infused with either a single complete dose or three divided doses of 2 × 106 hUCB-MSCs (3-day or 7-day intervals) on the first day post decompression. Behavioural scores and somatosensory evoked potentials (SEPs) were used to evaluate hindlimb functional recovery. The survival and differentiation of the transplanted human cells and the activation of the host glial and inflammatory reaction in the injured spinal cord were studied by immunohistochemical staining. Results Our results showed that hUCB-MSCs survived, proliferated, and primarily differentiated into oligodendrocytes in the injured area. Treatment with hUCB-MSCs reduced the extent of astrocytic activation, increased axonal preservation, potentially promoted axonal regeneration, decreased the number of Iba-1+ and TUNEL+ cells, increased the amplitude and decreased the onset latency of SEPs and significantly promoted functional improvement. However, these effects were more pronounced in the 3RI group compared with the SI and 7RI groups. Conclusions Our results suggest that treatment with i.v. injected hUCB-MSCs after subacute spinal cord compression injury of two noncontinuous segments can promote functional recovery through the differentiation of hUCB-MSCs into specific cell types and the enhancement of anti-inflammatory, anti-astrogliosis, anti-apoptotic and axonal preservation effects. Furthermore, the recovery was more pronounced in the rabbits repeatedly injected with cells at 3-day intervals. The results of this study may provide a novel and useful treatment strategy for the transplantation treatment of SCI. Electronic supplementary material The online version of this article (10.1186/s13287-018-0879-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chaohua Yang
- Department of Spine Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang Area, Luzhou, 646000, Sichuan, China
| | - Gaoju Wang
- Department of Spine Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang Area, Luzhou, 646000, Sichuan, China
| | - Fenfen Ma
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Baoqing Yu
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, China
| | - Fancheng Chen
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, China
| | - Jin Yang
- Department of Spine Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang Area, Luzhou, 646000, Sichuan, China
| | - Jianjun Feng
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, China.
| | - Qing Wang
- Department of Spine Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang Area, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
12
|
Venkatachalam S, Neelamegan S, Okuda T, Marcus A, Woodbury D, Grumet M. Potential risk of clonally expanded amnion mesenchymal stem cell transplants in contused spinal cords. Restor Neurol Neurosci 2018; 36:387-396. [PMID: 29614703 DOI: 10.3233/rnn-170786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Mesenchymal stem/stromal cells (MSC) promote recovery after spinal cord injury (SCI) using adult bone marrow MSC (BM-MSC). Newborn tissues are a convenient source of MSC that does not involve an invasive procedure for cell collection. In this study the authors tested the effects of rat amnion MSC clone (rAM-MSC) in SCI. METHODS We tested intra-parenchymal injection of a GFP+ rat rAM-MSC clone derived from E18.5 rats in rat SCI and measured behavioral recovery (BBB scores), histology and X-ray opacity. Expression of aggrecan was measured in culture after treatment with TGFß. RESULTS Injection of rAM-MSC after SCI did not improve BBB scores compared to control vehicle injections; rather they reduced scores significantly over 6 weeks. Spinal cords injected with rAM-MSC were hard in regions surrounding the SCI site, which was confirmed by X-ray opacity. Whole mount imaging of these cords showed minimal tissue loss in the SCI site that occurred in SCI controls, and persistence of GFP+ rAM-MSC. Mason's Trichrome staining of tissue sections showed more intense staining for extracellular matrix (ECM) surrounding and extending beyond the SCI site with injections of rAM-MSC but not in controls. In response to TGF-ß treatment in culture, chondrogenic aggrecan was expressed at higher levels in rAM-MSC than in rBM-MSC, suggesting that the upregulation of TGF-ß in SCI sites may promote chondrogenic differentiation. CONCLUSION Acute injection after SCI of a clonally expanded rAM-MSC resulted in aberrant differentiation towards a chondrocytic phenotype that disrupts the spinal cord and inhibits behavioral recovery after SCI. It will be critical to ensure that injection of extensively expanded neonatal cells do not differentiate aberrantly in traumatic CNS tissue and disrupt recovery.
Collapse
Affiliation(s)
- Sankar Venkatachalam
- Department of Cell Biology and Neuroscience, W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA.,Department of Anatomy, University of Madras, Taramani Campus, Chennai, Tamilnadu, India
| | - Sridharan Neelamegan
- Department of Anatomy, University of Madras, Taramani Campus, Chennai, Tamilnadu, India
| | - Tetsuhito Okuda
- Department of Cell Biology and Neuroscience, W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Akiva Marcus
- The Ira B. Black Center for Stem Cell Research and The Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Dale Woodbury
- The Ira B. Black Center for Stem Cell Research and The Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Martin Grumet
- Department of Cell Biology and Neuroscience, W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
13
|
Zhu H, Poon W, Liu Y, Leung GKK, Wong Y, Feng Y, Ng SCP, Tsang KS, Sun DTF, Yeung DK, Shen C, Niu F, Xu Z, Tan P, Tang S, Gao H, Cha Y, So KF, Fleischaker R, Sun D, Chen J, Lai J, Cheng W, Young W. Phase I-II Clinical Trial Assessing Safety and Efficacy of Umbilical Cord Blood Mononuclear Cell Transplant Therapy of Chronic Complete Spinal Cord Injury. Cell Transplant 2018; 25:1925-1943. [PMID: 27075659 DOI: 10.3727/096368916x691411] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Umbilical cord blood-derived mononuclear cell (UCB-MNC) transplants improve recovery in animal spinal cord injury (SCI) models. We transplanted UCB-MNCs into 28 patients with chronic complete SCI in Hong Kong (HK) and Kunming (KM). Stemcyte Inc. donated UCB-MNCs isolated from human leukocyte antigen (HLA ≥4:6)-matched UCB units. In HK, four patients received four 4-μl injections (1.6 million cells) into dorsal entry zones above and below the injury site, and another four received 8-μl injections (3.2 million cells). The eight patients were an average of 13 years after C5-T10 SCI. Magnetic resonance diffusion tensor imaging of five patients showed white matter gaps at the injury site before treatment. Two patients had fiber bundles growing across the injury site by 12 months, and the rest had narrower white matter gaps. Motor, walking index of SCI (WISCI), and spinal cord independence measure (SCIM) scores did not change. In KM, five groups of four patients received four 4-μl (1.6 million cells), 8-μl (3.2 million cells), 16-μl injections (6.4 million cells), 6.4 million cells plus 30 mg/kg methylprednisolone (MP), or 6.4 million cells plus MP and a 6-week course of oral lithium carbonate (750 mg/day). KM patients averaged 7 years after C3-T11 SCI and received 3-6 months of intensive locomotor training. Before surgery, only two patients walked 10 m with assistance and did not need assistance for bladder or bowel management before surgery. The rest could not walk or do their bladder and bowel management without assistance. At about a year (41-87 weeks), WISCI and SCIM scores improved: 15/20 patients walked 10 m ( p = 0.001) and 12/20 did not need assistance for bladder management ( p = 0.001) or bowel management ( p = 0.002). Five patients converted from complete to incomplete (two sensory, three motor; p = 0.038) SCI. We conclude that UCB-MNC transplants and locomotor training improved WISCI and SCIM scores. We propose further clinical trials.
Collapse
Affiliation(s)
- Hui Zhu
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Waisang Poon
- Prince of Wales Hospital, Division of Neurosurgery, Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Yansheng Liu
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | | | - Yatwa Wong
- Queen Mary Hospital, University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Yaping Feng
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China
| | - Stephanie C P Ng
- Prince of Wales Hospital, Division of Neurosurgery, Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Kam Sze Tsang
- Prince of Wales Hospital, Division of Neurosurgery, Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - David T F Sun
- Prince of Wales Hospital, Division of Neurosurgery, Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - David K Yeung
- Prince of Wales Hospital, Division of Neurosurgery, Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Caihong Shen
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Fang Niu
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Zhexi Xu
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Pengju Tan
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Shaofeng Tang
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China
| | - Hongkun Gao
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Yun Cha
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China
| | - Kwok-Fai So
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Science, The University of Hong Kong, SAR, P.R. China.,GHM Institute of CNS Regeneration, and Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P.R. China.,China Spinal Cord Injury Network, Hong Kong Science Technology Park, Hong Kong, SAR, P.R. China
| | | | - Dongming Sun
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - John Chen
- China Spinal Cord Injury Network, Hong Kong Science Technology Park, Hong Kong, SAR, P.R. China
| | - Jan Lai
- China Spinal Cord Injury Network, Hong Kong Science Technology Park, Hong Kong, SAR, P.R. China
| | - Wendy Cheng
- China Spinal Cord Injury Network, Hong Kong Science Technology Park, Hong Kong, SAR, P.R. China
| | - Wise Young
- China Spinal Cord Injury Network, Hong Kong Science Technology Park, Hong Kong, SAR, P.R. China.,W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
14
|
Fu Q, Liu Y, Liu X, Zhang Q, Chen L, Peng J, Ao J, Li Y, Wang S, Song G, Yu L, Liu J, Zhang T. Engrafted peripheral blood-derived mesenchymal stem cells promote locomotive recovery in adult rats after spinal cord injury. Am J Transl Res 2017; 9:3950-3966. [PMID: 28979672 PMCID: PMC5622241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Spinal cord injury (SCI) is a severe trauma of central nervous system (CNS). Numerous stem cells have been applied for SCI therapy. Peripheral blood-derived mesenchymal stem cells (PBMSCs) have captured researchers' attention by virtue of pluripotency and effectiveness. However, little work has been performed on whether PBMSCs play roles and what role, if any, in the lesion microenvironment. Through the investigation of the differentiation, neuroprotection and immunoloregulation of engrafted PBMSCs, we found that the expression of glial fibrillary acidic protein (GFAP) was inhibited. Meanwhile, myelin basic protein (MBP), neurofilament protein-200 (NF-200) and microtubule associated protein-2 (MAP-2) were promoted after PBMSC transplantation (PBMSCT) by immunohistochemistry. Though engrafted PKH26+PBMSCs could survive in vivo for at least 8 w, they could not respectively express GFAP, MBP and neuronal specific neucleoprotein (NeuN) by immunofluorescence. Additionally, Flow cytometry demonstrated that the number of CD4+IL17+Th17 cells decreased while CD4+CD25+Foxp3+Treg ones increased after PBMSCT (P < 0.01). Immunohistochemistry and Elisa both showed a lower expression of IL-6 and IL-17a while a higher expression of TGF-β after PBMSCT (P < 0.05). RT-PCR indicated that Th17-relevant genes including RORγT, IL-6 and IL-21 were inhibited and resulted in the decrease of IL-23a and IL-22 secretion (P < 0.05); Treg-relevant genes including FoxP3 and TGF-β and the secretion of IL-10 were improved (P < 0.05). Accordingly, we concluded that the PBMSCT-relevant therapy took effect not through the differentiation of PBMSCs into CNS cells, but through regulating Th17/Treg-relevant gene expression, inhibiting Th17-relevant gene expression and meanwhile promoting Treg-relevant gene expression, and eventually resulted in promotion of the functional recovery of SCI rats.
Collapse
Affiliation(s)
- Qiang Fu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of ChinaChengdu, Sichuan, China
| | - Yi Liu
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
| | - Xiu Liu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical CollegeZunyi, Guizhou, China
| | - Long Chen
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
- Experimental Centre, Affiliated Dongfeng General Hospital of Hubei University of MedicineShiyan, Hubei, China
| | - Jiachen Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
| | - Jun Ao
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
| | - Yuwan Li
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
| | - Shengmin Wang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
| | - Gongyu Song
- Department of Human Anatomy, Zunyi Medical CollegeZunyi, Guizhou, China
| | - Limei Yu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
| | - Jinwei Liu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical CollegeZunyi, Guizhou, China
| |
Collapse
|
15
|
Xiong LL, Liu F, Deng SK, Liu J, Dan QQ, Zhang P, Zou Y, Xia QJ, Wang TH. Transplantation of Hematopoietic Stem Cells Promotes Functional Improvement Associated with NT-3-MEK-1 Activation in Spinal Cord-Transected Rats. Front Cell Neurosci 2017; 11:213. [PMID: 28769769 PMCID: PMC5515877 DOI: 10.3389/fncel.2017.00213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/04/2017] [Indexed: 02/05/2023] Open
Abstract
Transected spinal cord injury (SCT) is a devastating clinical disease that strongly affects a patient’s daily life and remains a great challenge for clinicians. Stem-cell therapy has been proposed as a potential therapeutic modality for SCT. To investigate the effects of hematopoietic stem cells (HSCs) on the recovery of structure and function in SCT rats and to explore the mechanisms associated with recovery, 57 adult Sprague-Dawley rats were randomly divided into sham (n = 15), SCT (n = 24), and HSC transplantation groups (n = 15). HSCs (passage 3) labeled by Hoechst 33342, were transplanted intraspinally into the rostral, scar and caudal sites of the transected lesion at 14 days post-operation. Both in vitro and in vivo, HSCs exhibited a capacity for cell proliferation and differentiation. Following HSC transplantation, the animals’ Basso, Beattie, and Bresnahan (BBB). locomotion scale scores increased significantly between weeks 4 and 24 post-SCT, which corresponded to an increased number of 5-hydroxytryptamine (5-HT) fibers and oligodendrocytes. The amount of astrogliosis indicated by immunohistochemical staining, was markedly decreased. Moreover, the decreased expression of neurotrophin- 3 (NT-3) and mitogen-activated protein kinase kinase-1 (MEK-1) after SCT was effectively restored by HSC transplantation. The data from the current study indicate that intraspinally administered HSCs in the chronic phase of SCT results in an improvement in neurological function. Further, the results indicate that intraspinally administered HSCs benefit the underlying mechanisms involved in the enhancement of 5-HT-positive fibers and oligogenesis, the suppression of excessive astrogliosis and the upregulation of NT3-regulated MEK-1 activation in the spinal cord. These crucial findings reveal not only the mechanism of cell therapy, but may also contribute to a novel therapeutic target for the treatment of spinal cord injury (SCI).
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Fei Liu
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Shi-Kang Deng
- Institute of Neuroscience, Kunming Medical UniversityKunming, China
| | - Jia Liu
- Institute of Neuroscience, Kunming Medical UniversityKunming, China
| | - Qi-Qin Dan
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Piao Zhang
- Institute of Neuroscience, Kunming Medical UniversityKunming, China
| | - Yu Zou
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Qing-Jie Xia
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China.,Institute of Neuroscience, Kunming Medical UniversityKunming, China
| |
Collapse
|
16
|
Sarveazad A, Babahajian A, Bakhtiari M, Soleimani M, Behnam B, Yari A, Akbari A, Yousefifard M, Janzadeh A, Amini N, Agah S, Fallah A, Joghataei MT. The combined application of human adipose derived stem cells and Chondroitinase ABC in treatment of a spinal cord injury model. Neuropeptides 2017; 61:39-47. [PMID: 27484347 DOI: 10.1016/j.npep.2016.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/10/2016] [Accepted: 07/10/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Although stem cell therapy has become a major focus as a new option for management of spinal cord injury (SCI), its effectiveness should be promoted. In this study, we investigated the effects of co-administrating human adipose-derived stem cells (hADSCs) and Chondroitinase ABC (ChABC) in a rat model of spinal cord injury. MATERIAL AND METHODS hADSCs derived from superficial layer of abdominal adipose tissue were used to treat a contusion-induced SCI. Animals were randomly allocated to five equal groups including sham (only laminectomy), SCI (SCI+vehicle injection), hADSCs (1×10⁶ hADSCs/10μl intra-spinal injection), ChABC (10μl of 100U/ml ChABC intra-spinal injection injection), and hADSCs+ChABC. Basso, Beattie and Bresnahan tests were used to evaluate locomotor function. 8weeks after treatment, cavity size, myelination, cell differentiation (neuron and astrocyte), and chondroitin sulfate amount were analyzed. RESULTS hADSC transplanted animals, ChABC injected animals (P<0.001), and hADSC+ChABC treated rats (P<0.001) displayed significant motor improvement compared to SCI group. Combination therapy of hADSCs and ChABC led to greater locomotor recovery compared to using hADSCs (P<0.001) or ChABC (P<0.01) alone. Spinal cords in the combined and single therapy groups had cavities filled with myelinated areas and less chondroitin sulfate content in comparison with the control group (P<0.001). hADSCs expressed GFAP, B III tubulin and Map2. CONCLUSION Combination therapy with ChABC and hADSCs exhibits more significant functional recovery than single therapy using either. This result may be applicable in selection of the best therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Asrin Babahajian
- Liver & Digestive Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mehrdad Bakhtiari
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Behnam
- Department of Medical Genetics and Molecular Biology, Iran University of Medical Sciences (IUMS), Tehran, Iran; NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, Maryland, USA Office of the Clinical Director, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Abazar Yari
- Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Naser Amini
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Salem N, Salem MY, Elmaghrabi MM, Elawady MA, Elawady MA, Sabry D, Shamaa A, Elkasapy AHH, Ibrhim N, Elamir A. Does vitamin C have the ability to augment the therapeutic effect of bone marrow-derived mesenchymal stem cells on spinal cord injury? Neural Regen Res 2017; 12:2050-2058. [PMID: 29323045 PMCID: PMC5784354 DOI: 10.4103/1673-5374.221163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Methylprednisolone (MP) is currently the only drug confirmed to exhibit a neuroprotective effect on acute spinal cord injury (SCI). Vitamin C (VC) is a natural water-soluble antioxidant that exerts neuroprotective effects through eliminating free radical damage to nerve cells. Bone marrow mesenchymal stem cells (BMMSCs), as multipotent stem cells, are promising candidates in SCI repair. To evaluate the therapeutic effects of MP, VC and BMMSCs on traumatic SCI, 80 adult male rats were randomly divided into seven groups: control, SCI (SCI induction by weight-drop method), MP (SCI induction, followed by administration of 30 mg/kg MP via the tail vein, once every other 6 hours, for five times), VC (SCI induction, followed by intraperitoneal administration of 100 mg/kg VC once a day, for 28 days), MP + VC (SCI induction, followed by administration of MP and VC as the former), BMMSCs (SCI induction, followed by injection of 3 × 106 BMMSCs at the injury site), and BMMSCs + VC (SCI induction, followed by BMMSCs injection and VC administration as the former). Locomotor recovery was assessed using the Basso Mouse Scale. Injured spinal cord tissue was evaluated using hematoxylin-eosin staining and immunohistochemical staining. Expression of transforming growth factor-beta, tumor necrosis factor-alpha, and matrix metalloproteinase-2 genes was determined using real-time quantitative PCR. BMMSCs intervention better promoted recovery of nerve function of rats with SCI, mitigated nerve cell damage, and decreased expression of transforming growth factor-beta, tumor necrosis factor-alpha, and matrix metalloproteinase-2 genes than MP and/or VC. More importantly, BMMSCs in combination with VC induced more obvious improvements. These results suggest that VC can enhance the neuroprotective effects of BMMSCs against SCI.
Collapse
Affiliation(s)
- Nesrine Salem
- Department of Histology and Cell Biology, Faculty of Medicine, Banha University, Banha, Egypt
| | - Mohamed Y Salem
- Department of Histology and Cell Biology, Faculty of Medicine, Banha University, Banha, Egypt
| | | | - Moataz A Elawady
- Department of Neurosurgery, Faculty of Medicine, Banha University, Banha, Egypt
| | - Mona A Elawady
- Department of Community Medicine, Faculty of Medicine, Banha University, Banha, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ashraf Shamaa
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Noha Ibrhim
- Department of Medical Physiology, Faculty of Medicine, Banha University, Banha, Egypt
| | - Azza Elamir
- Department of Medical Biochemistry, Faculty of Medicine, El Fayoum University, Egyptian, Egypt
| |
Collapse
|
18
|
Satti HS, Waheed A, Ahmed P, Ahmed K, Akram Z, Aziz T, Satti TM, Shahbaz N, Khan MA, Malik SA. Autologous mesenchymal stromal cell transplantation for spinal cord injury: A Phase I pilot study. Cytotherapy 2016; 18:518-22. [PMID: 26971680 DOI: 10.1016/j.jcyt.2016.01.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/04/2016] [Accepted: 01/07/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cell (MSC) transplantation has immerged as promising therapeutic approach to treat spinal cord injury (SCI). In this pilot study, we investigated the safety of intrathecal injection of autologous bone marrow-derived MSCs in nine patients with SCI. METHODS Patients with complete SCI at the thoracic level were divided into two groups: chronic (>6 months, group 1) and sub-acute SCI (<6 months, group 2), according to time elapsed since injury. MSCs were isolated by density gradient separation of autologous bone marrow harvested from the iliac crest. Cells were cultured in a Good Manufacturing Practice-compliant facility to produce clinical scale dose. After quality control testing, MSCs were injected back to patients by intrathecal injection. Safety was defined as absence of adverse event and side effects after 1 month after receiving the injection. RESULTS Six patients had chronic SCI with a median duration of 33 months since date of injury (range: 10-55 months), and three patients were in sub-acute phase of disease. Each patient received two or three injections with a median of 1.2 × 10(6) MSCs/kg body weight. No treatment-related adverse event was observed during median follow-up of 720 days (range: 630-826 days) in group 1 and 366 days (range: 269-367 days) in group 2, respectively. DISCUSSION This pilot study demonstrated that autologous MSCs can be safely administered through intrathecal injection in spinal cord injury patients. Further investigation through randomized, placebo-controlled trials is needed.
Collapse
Affiliation(s)
- Humayoon Shafique Satti
- Armed Forces Bone Marrow Transplant Centre, Rawalpindi, Pakistan; Quaid-i-Azam University, Islamabad, Pakistan.
| | - Akhtar Waheed
- Armed Forces Institute of Rehabilitation Medicine, Rawalpindi, Pakistan
| | - Parvez Ahmed
- Armed Forces Bone Marrow Transplant Centre, Rawalpindi, Pakistan
| | - Khalil Ahmed
- Armed Forces Institute of Rehabilitation Medicine, Rawalpindi, Pakistan
| | - Zaineb Akram
- Armed Forces Bone Marrow Transplant Centre, Rawalpindi, Pakistan; Quaid-i-Azam University, Islamabad, Pakistan
| | - Tariq Aziz
- Armed Forces Institute of Rehabilitation Medicine, Rawalpindi, Pakistan
| | | | - Nighat Shahbaz
- Armed Forces Bone Marrow Transplant Centre, Rawalpindi, Pakistan
| | - Mehreen Ali Khan
- Armed Forces Bone Marrow Transplant Centre, Rawalpindi, Pakistan
| | | |
Collapse
|
19
|
Local versus distal transplantation of human neural stem cells following chronic spinal cord injury. Spine J 2016; 16:764-9. [PMID: 26698654 DOI: 10.1016/j.spinee.2015.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/10/2015] [Accepted: 12/02/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Previous studies have demonstrated functional recovery of rats with spinal cord contusions after transplantation of neural stem cells adjacent to the site of acute injury. PURPOSE The purpose of the study was to determine if the local or distal injection of neural stem cells can cause functional difference in recovery after chronic spinal cord injury. STUDY DESIGN/SETTING Twenty-four adult female Long-Evans hooded rats were randomized into four groups, with six animals in each group: two experimental and two control groups. Functional assessment was measured after injury and then weekly for 6 weeks using the Basso, Beattie, and Bresnahan locomotor rating score. Data were analyzed using two-sample t test and linear mixed-effects model analysis. METHODS Posterior exposure and laminectomy at the T10 level was used. Moderate spinal cord contusion was induced by the Multicenter Animal Spinal Cord Injury Study Impactor with 10-g weight dropped from a height of 25 mm. Experimental subjects received either a subdural injection of human neural stem cells (hNSCs) locally at the injury site or intrathecal injection of hNSCs through a separate distal laminotomy 4 weeks after injury. Controls received control media injection either locally or distally. RESULTS A statistically significant functional improvement in subjects that received hNSCs injected distally to the site of injury was observed when compared with the control (p=.042). The difference between subjects that received hNSCs locally and the control did not reach statistical significance (p=.085). CONCLUSIONS The transplantation of hNSCs into the contused spinal cord of a rat led to significant functional recovery of the spinal cord when injected distally but not locally to the site of chronic spinal cord injury.
Collapse
|
20
|
Mukhamedshina YO, Garanina EE, Masgutova GA, Galieva LR, Sanatova ER, Chelyshev YA, Rizvanov AA. Assessment of Glial Scar, Tissue Sparing, Behavioral Recovery and Axonal Regeneration following Acute Transplantation of Genetically Modified Human Umbilical Cord Blood Cells in a Rat Model of Spinal Cord Contusion. PLoS One 2016; 11:e0151745. [PMID: 27003408 PMCID: PMC4803326 DOI: 10.1371/journal.pone.0151745] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 03/03/2016] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE AND METHODS This study investigated the potential for protective effects of human umbilical cord blood mononuclear cells (UCB-MCs) genetically modified with the VEGF and GNDF genes on contusion spinal cord injury (SCI) in rats. An adenoviral vector was constructed for targeted delivery of VEGF and GDNF to UCB-MCs. Using a rat contusion SCI model we examined the efficacy of the construct on tissue sparing, glial scar severity, the extent of axonal regeneration, recovery of motor function, and analyzed the expression of the recombinant genes VEGF and GNDF in vitro and in vivo. RESULTS Transplantation of UCB-MCs transduced with adenoviral vectors expressing VEGF and GDNF at the site of SCI induced tissue sparing, behavioral recovery and axonal regeneration comparing to the other constructs tested. The adenovirus encoding VEGF and GDNF for transduction of UCB-MCs was shown to be an effective and stable vehicle for these cells in vivo following the transplantation into the contused spinal cord. CONCLUSION Our results show that a gene delivery using UCB-MCs-expressing VEGF and GNDF genes improved both structural and functional parameters after SCI. Further histological and behavioral studies, especially at later time points, in animals with SCI after transplantation of genetically modified UCB-MCs (overexpressing VEGF and GDNF genes) will provide additional insight into therapeutic potential of such cells.
Collapse
Affiliation(s)
- Yana O. Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Tatarstan, Kazan, Russia
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Tatarstan, Kazan, Russia
| | - Galina A. Masgutova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Tatarstan, Kazan, Russia
| | - Luisa R. Galieva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Tatarstan, Kazan, Russia
| | - Elvira R. Sanatova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Tatarstan, Kazan, Russia
| | - Yurii A. Chelyshev
- Department of histology, Kazan State Medical University, Tatarstan, Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Tatarstan, Kazan, Russia
- * E-mail:
| |
Collapse
|
21
|
Human Umbilical Tissue-Derived Cells Promote Synapse Formation and Neurite Outgrowth via Thrombospondin Family Proteins. J Neurosci 2016; 35:15649-65. [PMID: 26609158 DOI: 10.1523/jneurosci.1364-15.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Cell therapy demonstrates great potential for the treatment of neurological disorders. Human umbilical tissue-derived cells (hUTCs) were previously shown to have protective and regenerative effects in animal models of stroke and retinal degeneration, but the underlying therapeutic mechanisms are unknown. Because synaptic dysfunction, synapse loss, degeneration of neuronal processes, and neuronal death are hallmarks of neurological diseases and retinal degenerations, we tested whether hUTCs contribute to tissue repair and regeneration by stimulating synapse formation, neurite outgrowth, and neuronal survival. To do so, we used a purified rat retinal ganglion cell culture system and found that hUTCs secrete factors that strongly promote excitatory synaptic connectivity and enhance neuronal survival. Additionally, we demonstrated that hUTCs support neurite outgrowth under normal culture conditions and in the presence of the growth-inhibitory proteins chondroitin sulfate proteoglycan, myelin basic protein, or Nogo-A (reticulon 4). Furthermore, through biochemical fractionation and pharmacology, we identified the major hUTC-secreted synaptogenic factors as the thrombospondin family proteins (TSPs), TSP1, TSP2, and TSP4. Silencing TSP expression in hUTCs, using small RNA interference, eliminated both the synaptogenic function of these cells and their ability to promote neurite outgrowth. However, the majority of the prosurvival functions of hUTC-conditioned media was spared after TSP knockdown, indicating that hUTCs secrete additional neurotrophic factors. Together, our findings demonstrate that hUTCs affect multiple aspects of neuronal health and connectivity through secreted factors, and each of these paracrine effects may individually contribute to the therapeutic function of these cells. SIGNIFICANCE STATEMENT Human umbilical tissue-derived cells (hUTC) are currently under clinical investigation for the treatment of geographic atrophy secondary to age-related macular degeneration. These cells show great promise for the treatment of neurological disorders; however, the therapeutic effects of these cells on CNS neurons are not fully understood. Here we provide compelling evidence that hUTCs secrete multiple factors that work synergistically to enhance synapse formation and function, and support neuronal growth and survival. Moreover, we identified thrombospondins (TSPs) as the hUTC-secreted factors that mediate the synaptogenic and growth-promoting functions of these cells. Our findings highlight novel paracrine effects of hUTC on CNS neuron health and connectivity and begin to unravel potential therapeutic mechanisms by which these cells elicit their effects.
Collapse
|
22
|
Zhou J, Tian G, Wang J, Luo X, Zhang S, Li J, Li L, Xu B, Zhu F, Wang X, Jia C, Zhao W, Zhao D, Xu A. Neural cell injury microenvironment induces neural differentiation of human umbilical cord mesenchymal stem cells. Neural Regen Res 2014; 7:2689-97. [PMID: 25337115 PMCID: PMC4200737 DOI: 10.3969/j.issn.1673-5374.2012.34.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/23/2012] [Indexed: 12/31/2022] Open
Abstract
This study aimed to investigate the neural differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs) under the induction of injured neural cells. After in vitro isolation and culture, passage 5 hUCMSCs were used for experimentation. hUCMSCs were co-cultured with normal or Aβ1-40-injured PC12 cells, PC12 cell supernatant or PC12 cell lysate in a Transwell co-culture system. Western blot analysis and flow cytometry results showed that choline acetyltransferase and microtubule-associated protein 2, a specific marker for neural cells, were expressed in hUCMSCs under various culture conditions, and highest expression was observed in the hUCMSCs co-cultured with injured PC12 cells. Choline acetyltransferase and microtubule-associated protein 2 were not expressed in hUCMSCs cultured alone (no treatment). Cell Counting Kit-8 assay results showed that hUCMSCs under co-culture conditions promoted the proliferation of injured PC12 cells. These findings suggest that the microenvironment during neural tissue injury can effectively induce neural cell differentiation of hUCMSCs. These differentiated hUCMSCs likely accelerate the repair of injured neural cells.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Guoping Tian
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Jinge Wang
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Xiaoguang Luo
- First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Siyang Zhang
- College of Basic Medical Sciences, China Medical University, Shenyang 110001, Liaoning Province, China
| | - Jianping Li
- Liaoning Provincial Blood Center, Shenyang 110044, Liaoning Province, China
| | - Li Li
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Bing Xu
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Feng Zhu
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Xia Wang
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Chunhong Jia
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Weijin Zhao
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Danyang Zhao
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Aihua Xu
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| |
Collapse
|
23
|
Abdanipour A, Tiraihi T, Taheri T. Intraspinal transplantation of motoneuron-like cell combined with delivery of polymer-based glial cell line-derived neurotrophic factor for repair of spinal cord contusion injury. Neural Regen Res 2014; 9:1003-13. [PMID: 25206752 PMCID: PMC4146307 DOI: 10.4103/1673-5374.133159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2014] [Indexed: 12/28/2022] Open
Abstract
To evaluate the effects of glial cell line-derived neurotrophic factor transplantation combined with adipose-derived stem cells-transdifferentiated motoneuron delivery on spinal cord contusion injury, we developed rat models of spinal cord contusion injury, 7 days later, injected adipose-derived stem cells-transdifferentiated motoneurons into the epicenter, rostral and caudal regions of the impact site and simultaneously transplanted glial cell line-derived neurotrophic factor-gelfoam complex into the myelin sheath. Motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery reduced cavity formations and increased cell density in the transplantation site. The combined therapy exhibited superior promoting effects on recovery of motor function to transplantation of glial cell line-derived neurotrophic factor, adipose-derived stem cells or motoneurons alone. These findings suggest that motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery holds a great promise for repair of spinal cord injury.
Collapse
Affiliation(s)
- Alireza Abdanipour
- Shefa Neuroscience Research Center at Khatam Al-Anbia Hospital, Tehran, Iran
| | - Taki Tiraihi
- Shefa Neuroscience Research Center at Khatam Al-Anbia Hospital, Tehran, Iran
| | - Taher Taheri
- Shefa Neuroscience Research Center at Khatam Al-Anbia Hospital, Tehran, Iran
| |
Collapse
|
24
|
Martinez AMB, Goulart CDO, Ramalho BDS, Oliveira JT, Almeida FM. Neurotrauma and mesenchymal stem cells treatment: From experimental studies to clinical trials. World J Stem Cells 2014; 6:179-94. [PMID: 24772245 PMCID: PMC3999776 DOI: 10.4252/wjsc.v6.i2.179] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/26/2014] [Accepted: 03/11/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy has attracted the attention of scientists and clinicians around the world. Basic and pre-clinical experimental studies have highlighted the positive effects of MSC treatment after spinal cord and peripheral nerve injury. These effects are believed to be due to their ability to differentiate into other cell lineages, modulate inflammatory and immunomodulatory responses, reduce cell apoptosis, secrete several neurotrophic factors and respond to tissue injury, among others. There are many pre-clinical studies on MSC treatment for spinal cord injury (SCI) and peripheral nerve injuries. However, the same is not true for clinical trials, particularly those concerned with nerve trauma, indicating the necessity of more well-constructed studies showing the benefits that cell therapy can provide for individuals suffering the consequences of nerve lesions. As for clinical trials for SCI treatment the results obtained so far are not as beneficial as those described in experimental studies. For these reasons basic and pre-clinical studies dealing with MSC therapy should emphasize the standardization of protocols that could be translated to the clinical set with consistent and positive outcomes. This review is based on pre-clinical studies and clinical trials available in the literature from 2010 until now. At the time of writing this article there were 43 and 36 pre-clinical and 19 and 1 clinical trials on injured spinal cord and peripheral nerves, respectively.
Collapse
Affiliation(s)
- Ana Maria Blanco Martinez
- Ana Maria Blanco Martinez, Camila de Oliveira Goulart, Bruna dos Santos Ramalho, Júlia Teixeira Oliveira, Fernanda Martins Almeida, Laboratory of Neurodegeneration and Repair, Institute of Biomedical Sciences, Health Science Center, 21941-902, Rio de Janeiro, Brazil
| | - Camila de Oliveira Goulart
- Ana Maria Blanco Martinez, Camila de Oliveira Goulart, Bruna dos Santos Ramalho, Júlia Teixeira Oliveira, Fernanda Martins Almeida, Laboratory of Neurodegeneration and Repair, Institute of Biomedical Sciences, Health Science Center, 21941-902, Rio de Janeiro, Brazil
| | - Bruna Dos Santos Ramalho
- Ana Maria Blanco Martinez, Camila de Oliveira Goulart, Bruna dos Santos Ramalho, Júlia Teixeira Oliveira, Fernanda Martins Almeida, Laboratory of Neurodegeneration and Repair, Institute of Biomedical Sciences, Health Science Center, 21941-902, Rio de Janeiro, Brazil
| | - Júlia Teixeira Oliveira
- Ana Maria Blanco Martinez, Camila de Oliveira Goulart, Bruna dos Santos Ramalho, Júlia Teixeira Oliveira, Fernanda Martins Almeida, Laboratory of Neurodegeneration and Repair, Institute of Biomedical Sciences, Health Science Center, 21941-902, Rio de Janeiro, Brazil
| | - Fernanda Martins Almeida
- Ana Maria Blanco Martinez, Camila de Oliveira Goulart, Bruna dos Santos Ramalho, Júlia Teixeira Oliveira, Fernanda Martins Almeida, Laboratory of Neurodegeneration and Repair, Institute of Biomedical Sciences, Health Science Center, 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Neirinckx V, Cantinieaux D, Coste C, Rogister B, Franzen R, Wislet-Gendebien S. Concise Review: Spinal Cord Injuries: How Could Adult Mesenchymal and Neural Crest Stem Cells Take Up the Challenge? Stem Cells 2014; 32:829-43. [DOI: 10.1002/stem.1579] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/03/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Virginie Neirinckx
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
| | - Dorothée Cantinieaux
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
| | - Cécile Coste
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
| | - Bernard Rogister
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
- GIGA, Development, Stem Cells and Regenerative Medicine Unit; University of Liège; Liège Belgium
- Department of Neurology; Centre Hospitalier Universitaire de Liège; Liège Belgium
| | - Rachelle Franzen
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
| | - Sabine Wislet-Gendebien
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
| |
Collapse
|
26
|
Wang M, Li P, Liu M, Song W, Wu Q, Fan Y. Potential protective effect of biphasic electrical stimulation against growth factor-deprived apoptosis on olfactory bulb neural progenitor cells through the brain-derived neurotrophic factor-phosphatidylinositol 3'-kinase/Akt pathway. Exp Biol Med (Maywood) 2014; 238:951-9. [PMID: 23970410 DOI: 10.1177/1535370213494635] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stem cell therapy may provide a therapeutic method for the replacement and regeneration of damaged neurons of the central nervous system. However, neural stem cells (NSCs) and neural precursor cells (NPCs) are especially vulnerable after transplantation due to a lack of sufficient growth factors at the transplant site. Electrical stimulation (ES) has recently been found to participate in the regulation of cell proliferation, growth, differentiation, and migration, but its underlying anti-apoptotic effects remain unclear. This study investigated the protective effects of biphasic electrical stimulation (BES) on olfactory bulb NPCs against growth factor-deprived apoptosis, examining the survival and apoptotic features of the cells. Differentiation was assessed by neuronal and glial markers. Brain-derived neurotrophic factor-phosphatidylinositol 3'-kinase (BDNF)-PI3K/Akt pathway activation was determined by enzyme-linked immunosorbent assay and Western blot. The chemical inhibitor wortmannin was used to inhibit the PI3K/Akt pathway. BES exerts a protective effect against growth factor-deprived apoptosis in the NPCs. BES enhanced cell survival and decreased the apoptotic/necrotic rate. Expression of phosphorylated Akt and BDNF secretion increased with BES for 12 h. Furthermore, the protective effects of BES were inhibited by blocking PI3K/AKT signalling. These results suggest that BES prevents growth factor-deprived apoptosis through the BDNF-PI3K/Akt signalling. This work strengthens the opinion that BES may be used as an auxiliary strategy for improving cell survival and preventing cell apoptosis in stem cell-based transplantation therapy.
Collapse
Affiliation(s)
- Menghang Wang
- School of Biological Science and Medical Engineering, Beihang University, Hai Dian District 100191, Beijing, China
| | | | | | | | | | | |
Collapse
|
27
|
Zeng Y, Rong M, Liu Y, Liu J, Lu M, Tao X, Li Z, Chen X, Yang K, Li C, Liu Z. Electrophysiological characterisation of human umbilical cord blood-derived mesenchymal stem cells induced by olfactory ensheathing cell-conditioned medium. Neurochem Res 2013; 38:2483-9. [PMID: 24185490 DOI: 10.1007/s11064-013-1186-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 09/04/2013] [Accepted: 09/18/2013] [Indexed: 01/17/2023]
Abstract
Umbilical cord blood-derived marrow stromal cells (UCB-MSCs) with high proliferation capacity and immunomodulatory properties are considered to be a good candidate for cell-based therapies. But until now, little work has been focused on the differentiation of UCB-MSCs. In this work, UCB-MSCs were demonstrated to be negative for CD34 and CD45 expression but positive for CD90 and CD105 expression. The gate values of UCB-MSCs for CD90 and CD105 were 99.3 and 98.6 %, respectively. Two weeks after treatment, the percentage of neuron-like cells differentiated from UCB-MSCs was increased to 84 ± 12 % in the experimental group [treated with olfactory ensheathing cells (OECs)-conditioned medium] and they were neuron-specific enolase positive; few neuron-like cells were found in the control group (without OECs-conditioned medium). Using whole-cell recording, sodium and potassium currents were recorded in UCB-MSCs after differentiation by OECs. Thus, human UCB-MSCs could be differentiated to neural cells by secreted secretion from OECs and exhibited electrophysiological properties similar to mature neurons after 2 weeks post-induction. These results imply that OECs can be used as a new strategy for stem cell differentiation and provide an alternative neurogenesis pathway for generating sufficient numbers of neural cells for cell therapy.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Managing inflammation after spinal cord injury through manipulation of macrophage function. Neural Plast 2013; 2013:945034. [PMID: 24288627 PMCID: PMC3833318 DOI: 10.1155/2013/945034] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/17/2013] [Indexed: 12/23/2022] Open
Abstract
Spinal cord injury (SCI) triggers inflammation with activation of innate immune responses that contribute to secondary injury including oligodendrocyte apoptosis, demyelination, axonal degeneration, and neuronal death. Macrophage activation, accumulation, and persistent inflammation occur in SCI. Macrophages are heterogeneous cells with extensive functional plasticity and have the capacity to switch phenotypes by factors present in the inflammatory microenvironment of the injured spinal cord. This review will discuss the role of different polarized macrophages and the potential effect of macrophage-based therapies for SCI.
Collapse
|
29
|
Cantinieaux D, Quertainmont R, Blacher S, Rossi L, Wanet T, Noël A, Brook G, Schoenen J, Franzen R. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS One 2013; 8:e69515. [PMID: 24013448 PMCID: PMC3754952 DOI: 10.1371/journal.pone.0069515] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/10/2013] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury triggers irreversible loss of motor and sensory functions. Numerous strategies aiming at repairing the injured spinal cord have been studied. Among them, the use of bone marrow-derived mesenchymal stem cells (BMSCs) is promising. Indeed, these cells possess interesting properties to modulate CNS environment and allow axon regeneration and functional recovery. Unfortunately, BMSC survival and differentiation within the host spinal cord remain poor, and these cells have been found to have various adverse effects when grafted in other pathological contexts. Moreover, paracrine-mediated actions have been proposed to explain the beneficial effects of BMSC transplantation after spinal cord injury. We thus decided to deliver BMSC-released factors to spinal cord injured rats and to study, in parallel, their properties in vitro. We show that, in vitro, BMSC-conditioned medium (BMSC-CM) protects neurons from apoptosis, activates macrophages and is pro-angiogenic. In vivo, BMSC-CM administered after spinal cord contusion improves motor recovery. Histological analysis confirms the pro-angiogenic action of BMSC-CM, as well as a tissue protection effect. Finally, the characterization of BMSC-CM by cytokine array and ELISA identified trophic factors as well as cytokines likely involved in the beneficial observed effects. In conclusion, our results support the paracrine-mediated mode of action of BMSCs and raise the possibility to develop a cell-free therapeutic approach.
Collapse
Affiliation(s)
- Dorothée Cantinieaux
- GIGA-Neuroscience, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Renaud Quertainmont
- GIGA-Neuroscience, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Silvia Blacher
- GIGA-Cancer, Laboratory of Biology of Tumour and Development, University of Liege, Liege, Belgium
| | - Loïc Rossi
- GIGA-Neuroscience, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Thomas Wanet
- GIGA-Neuroscience, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Agnès Noël
- GIGA-Cancer, Laboratory of Biology of Tumour and Development, University of Liege, Liege, Belgium
| | - Gary Brook
- Department of Neuropathology, University of Aachen, Aachen, Germany
| | - Jean Schoenen
- GIGA-Neuroscience, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Rachelle Franzen
- GIGA-Neuroscience, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| |
Collapse
|
30
|
Neirinckx V, Coste C, Rogister B, Wislet-Gendebien S. Concise review: adult mesenchymal stem cells, adult neural crest stem cells, and therapy of neurological pathologies: a state of play. Stem Cells Transl Med 2013; 2:284-96. [PMID: 23486833 PMCID: PMC3659839 DOI: 10.5966/sctm.2012-0147] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/16/2013] [Indexed: 12/14/2022] Open
Abstract
Adult stem cells are endowed with in vitro multilineage differentiation abilities and constitute an attractive autologous source of material for cell therapy in neurological disorders. With regard to lately published results, the ability of adult mesenchymal stem cells (MSCs) and neural crest stem cells (NCSCs) to integrate and differentiate into neurons once inside the central nervous system (CNS) is currently questioned. For this review, we collected exhaustive data on MSC/NCSC neural differentiation in vitro. We then analyzed preclinical cell therapy experiments in different models for neurological diseases and concluded that neural differentiation is probably not the leading property of adult MSCs and NCSCs concerning neurological pathology management. A fine analysis of the molecules that are secreted by MSCs and NCSCs would definitely be of significant interest regarding their important contribution to the clinical and pathological recovery after CNS lesions.
Collapse
Affiliation(s)
| | | | - Bernard Rogister
- Neurosciences Unit and
- Development, Stem Cells and Regenerative Medicine Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée, University of Liège, Liège, Belgium
- Neurology Department, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | | |
Collapse
|
31
|
Roh DH, Seo MS, Choi HS, Park SB, Han HJ, Beitz AJ, Kang KS, Lee JH. Transplantation of human umbilical cord blood or amniotic epithelial stem cells alleviates mechanical allodynia after spinal cord injury in rats. Cell Transplant 2013; 22:1577-90. [PMID: 23294734 DOI: 10.3727/096368912x659907] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stem cell therapy is a potential treatment for spinal cord injury (SCI), and a variety of different stem cell types have been grafted into humans suffering from spinal cord trauma or into animal models of spinal injury. Although several studies have reported functional motor improvement after transplantation of stem cells into injured spinal cord, the benefit of these cells for treating SCI-induced neuropathic pain is not clear. In this study, we investigated the therapeutic effect of transplanting human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) or amniotic epithelial stem cells (hAESCs) on SCI-induced mechanical allodynia (MA) and thermal hyperalgesia (TH) in T13 spinal cord hemisected rats. Two weeks after SCI, hUCB-MSCs or hAESCs were transplanted around the spinal cord lesion site, and behavioral tests were performed to evaluate changes in SCI-induced MA and TH. Immunohistochemical and Western blot analyses were also performed to evaluate possible therapeutic effects on SCI-induced inflammation and the nociceptive-related phosphorylation of the NMDA NR1 receptor subunit. While transplantation of hUCB-MSCs showed a tendency to reduce MA, transplantation of hAESCs significantly reduced MA. Neither hUCB-MSC nor hAESC transplantation had any effect on SCI-induced TH. Transplantation of hAESCs also significantly reduced the SCI-induced increase in NMDA receptor NR1 subunit phosphorylation (pNR1) expression in the spinal cord. Both hUCB-MSCs and hAESCs reduced the SCI-induced increase in spinal cord expression of the microglial marker, F4/80, but not the increased expression of GFAP or iNOS. Taken together, these findings demonstrate that the transplantation of hAESCs into the injured spinal cord can suppress mechanical allodynia, and this effect seems to be closely associated with the modulation of spinal cord microglia activity and NR1 phosphorylation.
Collapse
Affiliation(s)
- Dae-Hyun Roh
- Department of Maxillofacial Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|