1
|
Effect of two-week red beetroot juice consumption on modulation of gut microbiota in healthy human volunteers - A pilot study. Food Chem 2023; 406:134989. [PMID: 36527987 DOI: 10.1016/j.foodchem.2022.134989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
With very little research exploring intestinal effects of red beetroot consumption, the present pilot study investigated gut microbial changes following red beetroot consumption, via a 14-day intervention trial in healthy adults. Compared to baseline, the study demonstrates transient changes in abundance of some taxa e.g., Romboutsia and Christensenella, after different days of intervention (p < 0.05). Enrichment of Akkermansia muciniphila and decrease of Bacteroides fragilis (p < 0.05) were observed after 3 days of juice consumption, followed by restoration in abundance after 14 days. With native betacyanins and catabolites detected in stool after juice consumption, betacyanins were found to correlate positively with Bifidobacterium and Coprococcus, and inversely with Ruminococcus (p < 0.1), potentiating a significant rise in (iso)butyric acid content (172.7 ± 30.9 µmol/g stool). Study findings indicate the potential of red beetroot to influence gut microbial populations and catabolites associated with these changes, emphasizing the potential benefit of red beetroot on intestinal as well as systemic health.
Collapse
|
2
|
Wijesinghe VN, Choo WS. Antimicrobial betalains. J Appl Microbiol 2022; 133:3347-3367. [PMID: 36036373 PMCID: PMC9826318 DOI: 10.1111/jam.15798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/21/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
Betalains are nitrogen-containing plant pigments that can be red-violet (betacyanins) or yellow-orange (betaxanthins), currently employed as natural colourants in the food and cosmetic sectors. Betalains exhibit antimicrobial activity against a broad spectrum of microbes including multidrug-resistant bacteria, as well as single-species and dual-species biofilm-producing bacteria, which is highly significant given the current antimicrobial resistance issue reported by The World Health Organization. Research demonstrating antiviral activity against dengue virus, in silico studies including SARS-CoV-2, and anti-fungal effects of betalains highlight the diversity of their antimicrobial properties. Though limited in vivo studies have been conducted, antimalarial and anti-infective activities of betacyanin have been observed in living infection models. Cellular mechanisms of antimicrobial activity of betalains are yet unknown; however existing research has laid the framework for a potentially novel antimicrobial agent. This review covers an overview of betalains as antimicrobial agents and discussions to fully exploit their potential as therapeutic agents to treat infectious diseases.
Collapse
Affiliation(s)
| | - Wee Sim Choo
- School of ScienceMonash University MalaysiaBandar SunwaySelangorMalaysia
| |
Collapse
|
3
|
Madrigal-Santillán E, Portillo-Reyes J, Madrigal-Bujaidar E, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Izquierdo-Vega J, Delgado-Olivares L, Vargas-Mendoza N, Álvarez-González I, Morales-González Á, Morales-González JA. Opuntia spp. in Human Health: A Comprehensive Summary on Its Pharmacological, Therapeutic and Preventive Properties. Part 2. PLANTS 2022; 11:plants11182333. [PMID: 36145735 PMCID: PMC9505094 DOI: 10.3390/plants11182333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
Plants of the genus Opuntia spp are widely distributed in Africa, Asia, Australia and America. Specifically, Mexico has the largest number of wild species; mainly O. streptacantha, O. hyptiacantha, O. albicarpa, O. megacantha and O. ficus-indica. The latter being the most cultivated and domesticated species. Its main bioactive compounds include pigments (carotenoids, betalains and betacyanins), vitamins, flavonoids (isorhamnetin, kaempferol, quercetin) and phenolic compounds. Together, they favor the different plant parts and are considered phytochemically important and associated with control, progression and prevention of some chronic and infectious diseases. Part 1 collected information on its preventive actions against atherosclerotic cardiovascular diseases, diabetes and obesity, hepatoprotection, effects on human infertility and chemopreventive capacity. Now, this second review (Part 2), compiles the data from published research (in vitro, in vivo, and clinical studies) on its neuroprotective, anti-inflammatory, antiulcerative, antimicrobial, antiviral potential and in the treatment of skin wounds. The aim of both reviews is to provide scientific evidences of its beneficial properties and to encourage health professionals and researchers to expand studies on the pharmacological and therapeutic effects of Opuntia spp.
Collapse
Affiliation(s)
- Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
- Correspondence: (E.M.-S.); (J.A.M.-G.); Tel.: +52-55-5729-6300 (ext. 62753) (E.M.-S.)
| | - Jacqueline Portillo-Reyes
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico
| | - Manuel Sánchez-Gutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Jeannett A. Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Julieta Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Luis Delgado-Olivares
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Nancy Vargas-Mendoza
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
| | - Isela Álvarez-González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico
| | - José A. Morales-González
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
- Correspondence: (E.M.-S.); (J.A.M.-G.); Tel.: +52-55-5729-6300 (ext. 62753) (E.M.-S.)
| |
Collapse
|
4
|
Ríos‐Moreno G, Cruz‐Reyes I, Vargas‐Rodríguez P, Félix‐Flores MG, Quiñones‐Reyes G, Lozada‐Rodríguez L. Mathematical modeling of infrared drying of red pitaya pulp (
Stenocereus queretaroensis
) for potential use of its betalains. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Gustavo Ríos‐Moreno
- Universidad Autónoma de Zacatecas Unidad Académica de Ciencias Químicas Zacatecas Mexico
| | - Ivan Cruz‐Reyes
- Universidad Autónoma de Zacatecas Unidad Académica de Ciencias Químicas Zacatecas Mexico
| | | | | | | | | |
Collapse
|
5
|
González-Cortazar M, Gutiérrez-Román AS, Vargas-Ruiz R, Montiel-Ruiz RM, Ble-González EA, Pérez-Terán YY, Tortoriello J, Jiménez-Ferrer E. Antidiabetic Activity of Xoconostle Fruit from Opuntia matudae Scheivar in Mice. J Med Food 2022; 25:70-78. [PMID: 35029513 DOI: 10.1089/jmf.2021.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Mexico, Cactaceae plants are widely used in folk medicine for the treatment of diabetes. The genus Opuntia spp. Opuntia matudae Sheinvar prickly pears are known as xoconostle and are used in Mexican cuisine for their acidic flavor. Currently there are few reports of pharmacological properties of this plant, which include antioxidant and antimicrobial activities. This study focuses on the chemical characterization of the methanolic (OmMe) and aqueous (OmAq) extracts and the evaluation of the antidiabetic activity of O. matudae fruits in two biological models. For the in vivo model, streptozotocin (STZ)-induced diabetic mice were used, and for the in vitro model, liver sections isolated from healthy mice were used. The OmAq (100 mg/kg, oral pathway [p.o.]) extract decreased postprandial glucose peak at 0.5 h after glucose uptake by 43.1%, similarly, OmMe (100 mg/kg, p.o.) extract reduced postprandial glucose peak at 0.5 h by 34.1% in healthy mice. The effect of the two extracts and the fraction of the mixture of unidentified betalains (OmB) of O. matudae evaluated in the isolated mouse liver slice model showed a concentration-dependent decrease in hepatic glucose output (HGO) with and without insulin administration with the OmMe extract. The OmAq extract, however, showed concentration-dependent increases of HGO with and without insulin, and the OmB fraction generally exhibited an insulin mimetic effect. Moreover, both OmAq and OmMe extracts were tested in mice with STZ-induced diabetes (160 mg/kg, intraperitoneal route), using a semichronic daily administration (2-28 days after diabetes onset) of OmAq extract was able to reduce blood glucose by 34.3%, meanwhile OmMe extract reduced blood glucose by 22.9%, 28 days after diabetes onset. We identified five compounds (1-5) in the two extracts, consisting of two phenolic acids (1, 2), three flavanols (3-5), as well as two unidentified betalains. Therefore, we conclude that the aqueous extract of the xoconostle fruit where betalains are present may be useful for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Rodrigo Vargas-Ruiz
- South Biomedical Research Center, Mexican Institute of Social Security (IMSS), Xochitepec, Mexico
| | | | - Ever A Ble-González
- Academic Division of Basic Sciences, Autonomous Juárez University of Tabasco, Cunduacán, Mexico
| | | | - Jaime Tortoriello
- South Biomedical Research Center, Mexican Institute of Social Security (IMSS), Xochitepec, Mexico
| | - Enrique Jiménez-Ferrer
- South Biomedical Research Center, Mexican Institute of Social Security (IMSS), Xochitepec, Mexico
| |
Collapse
|
6
|
Nguyen TVL, Nguyen QD, Nguyen NN, Nguyen TTD. Comparison of Phytochemical Contents, Antioxidant and Antibacterial Activities of Various Solvent Extracts Obtained from 'Maluma' Avocado Pulp Powder. Molecules 2021; 26:7693. [PMID: 34946774 PMCID: PMC8709390 DOI: 10.3390/molecules26247693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Although avocado is a superfood rich in phytochemicals with high antioxidant activities, studies on the antibacterial properties of its pulp are limited, except for seed and peel portions. In this study, three types of solvent (acetone, methanol, and diethyl ether) were used to obtain the extracts from "Maluma" avocado pulp powder prepared by infrared drying. The extracts were analyzed for total polyphenols, phytopigments (total chlorophylls and carotenoids), antioxidant activities (ferric-reducing antioxidant power (FRAP), 2,2-Diphenyl-1-picrylhydrazyl (DPPH), and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays), and antibacterial activities against seven pathogens (Shigella sonnei ATCC 9290, Escherichia coli ATCC 8739, Salmonella typhi ATCC 6539, Vibrio parahaemolyticus ATCC 17802, Proteus mirabilis ATCC 25933, Staphylococcus aureus ATCC 6538, and Bacillus cereus ATCC 11778). The results showed that the acetone solvent could extract the highest polyphenols and chlorophylls with the highest antioxidant activity in terms of ABTS and DPPH assays. In contrast, diethyl ether exhibited the most significant content of carotenoids and FRAP values. However, the methanol extract was the best solvent, exerting the strongest antibacterial and meaningful antioxidant activities. For the bacterial activities, Gram-positive pathogens (Bacillus cereus and Staphylococcus aureus) were inhibited more efficiently by avocado extracts than Gram-negative bacteria. Therefore, the extracts from avocado powder showed great potential for applications in food processing and preservation, pharmaceuticals, and cosmetics.
Collapse
Affiliation(s)
- Thi-Van-Linh Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 754000, Vietnam; (Q.-D.N.); (N.-N.N.); (T.-T.-D.N.)
| | | | | | | |
Collapse
|
7
|
Antibacterial Activity of Defatted and Nondefatted Methanolic Extracts of Aframomum melegueta K. Schum. against Multidrug-Resistant Bacteria of Clinical Importance. ScientificWorldJournal 2021; 2020:4808432. [PMID: 32831805 PMCID: PMC7428896 DOI: 10.1155/2020/4808432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/11/2020] [Accepted: 06/22/2020] [Indexed: 11/17/2022] Open
Abstract
The antibacterial activity of the extracts of Aframomum melegueta including n-hexane extract (NHE), nondefatted methanol extract (NDME), and defatted methanol extract (DME) was investigated in this study. The NHE exhibited no antibacterial activity. The DME showed higher antibacterial activity than the NDME against the different isolates. At the highest concentration of 10 mg/mL in agar diffusion, NDME produced inhibition zones ranging from 11 to 29 mm against the microorganisms while DME produced inhibition zones ranging from 20 to 40 mm with the concentration of 10 mg/mL against the microorganisms. 0.1 mg/mL of the DME produced inhibition zones ranging between 12 and 14 mm in Aeromonas hydrophila ATCC 35654 and Pseudomonas aeruginosa ATCC 15442, respectively, while none of the isolates were inhibited by the NDME at a concentration of 1 mg/mL or less. In the agar dilution assay, the MICs of the NDME and DME ranged between 0.31 and 10 mg/mL, but more isolates were inhibited at 0.31 mg/mL of DME than those in NDME. In macrobroth assay, the MICs of the NDME ranged between 0.15 and 5.0 mg/mL and the MBCs ranged between 0.63 and 5.0 mg/mL, and the MICs of the DME ranged between 0.08 and 5.0 mg/mL and the MBCs were between 0.31 and 5.0 mg/mL. This study indicated that DME was more active with higher antibacterial activity than the NDME of this plant, and extracting the fatty portion of plant materials prior susceptibility testing would allow plant extracts to be more effective as well as justifying the use of Aframomum melegueta in traditional medicine for the treatment of bacterial infections.
Collapse
|
8
|
Sadowska-Bartosz I, Bartosz G. Biological Properties and Applications of Betalains. Molecules 2021; 26:2520. [PMID: 33925891 PMCID: PMC8123435 DOI: 10.3390/molecules26092520] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Betalains are water-soluble pigments present in vacuoles of plants of the order Caryophyllales and in mushrooms of the genera Amanita, Hygrocybe and Hygrophorus. Betalamic acid is a constituent of all betalains. The type of betalamic acid substituent determines the class of betalains. The betacyanins (reddish to violet) contain a cyclo-3,4-dihydroxyphenylalanine (cyclo-DOPA) residue while the betaxanthins (yellow to orange) contain different amino acid or amine residues. The most common betacyanin is betanin (Beetroot Red), present in red beets Beta vulgaris, which is a glucoside of betanidin. The structure of this comprehensive review is as follows: Occurrence of Betalains; Structure of Betalains; Spectroscopic and Fluorescent Properties; Stability; Antioxidant Activity; Bioavailability, Health Benefits; Betalains as Food Colorants; Food Safety of Betalains; Other Applications of Betalains; and Environmental Role and Fate of Betalains.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland;
| |
Collapse
|
9
|
Pérez-Soto E, Cenobio-Galindo ADJ, Espino-Manzano SO, Franco-Fernández MJ, Ludeña-Urquizo FE, Jiménez-Alvarado R, Zepeda-Velázquez AP, Campos-Montiel RG. The Addition of Microencapsulated or Nanoemulsified Bioactive Compounds Influences the Antioxidant and Antimicrobial Activities of a Fresh Cheese. Molecules 2021; 26:molecules26082170. [PMID: 33918775 PMCID: PMC8069165 DOI: 10.3390/molecules26082170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to compare the effects of the incorporation of microcapsules or nanoemulsions with Opuntiaoligacantha on the quality of fresh cheese. Three treatments were established: Control, cheese with microcapsules (Micro), and cheese with nanoemulsion (Nano). The parameters evaluated were physicochemical (moisture, ash, fat, proteins, and pH), microbiological (mesophilic aerobic bacteria, mold-yeast, and total coliforms), functional (total phenols, flavonoids, and antioxidant capacity), and texture (hardness, elasticity, cohesion, and chewiness) during storage for 45 days at 4 °C. The results showed that adding microcapsules and nanoemulsion did not affect the physicochemical parameters of the cheese. Total coliforms decreased in all samples from the first days of storage (Control: 4.23 ± 0.12, Micro: 3.27 ± 0.02, and Nano: 2.68 ± 0.08 Log10 CFU), as well as aerobic mesophiles and mold-yeast counts. Regarding the functional properties, an increase in total phenols was observed in all treatments. The texture profile analysis showed that the addition of microcapsules and nanoemulsion influenced hardness (Control: 8.60 ± 1.12, Micro: 1.61 ± 0.31, and Nano: 3.27 ± 0.37 N). The antimicrobial effect was greater when nanoemulsions were added, while adding microcapsules influenced the antioxidant activity more positively.
Collapse
Affiliation(s)
- Elizabeth Pérez-Soto
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1., Tulancingo Hidalgo C.P. 43600, Mexico; (E.P.-S.); (A.d.J.C.-G.); (M.J.F.-F.); (R.J.-A.); (A.P.Z.-V.)
| | - Antonio de Jesús Cenobio-Galindo
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1., Tulancingo Hidalgo C.P. 43600, Mexico; (E.P.-S.); (A.d.J.C.-G.); (M.J.F.-F.); (R.J.-A.); (A.P.Z.-V.)
| | - Salvador Omar Espino-Manzano
- Área Agroindustrial-Alimentaria, Universidad Tecnológica de Xicotepec de Juárez, Av. Universidad Tecnológica No. 1000, Tierra Negra, Xicotepec de Juárez, Puebla C.P. 73080, Mexico;
| | - Melitón Jesús Franco-Fernández
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1., Tulancingo Hidalgo C.P. 43600, Mexico; (E.P.-S.); (A.d.J.C.-G.); (M.J.F.-F.); (R.J.-A.); (A.P.Z.-V.)
| | - Fanny Emma Ludeña-Urquizo
- Facultad de Industria Alimentarias, Universidad Nacional Agraria La Molina, Av. la Molina s/n, La Molina, Lima Apdo 12-056, Peru;
| | - Rubén Jiménez-Alvarado
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1., Tulancingo Hidalgo C.P. 43600, Mexico; (E.P.-S.); (A.d.J.C.-G.); (M.J.F.-F.); (R.J.-A.); (A.P.Z.-V.)
| | - Andrea Paloma Zepeda-Velázquez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1., Tulancingo Hidalgo C.P. 43600, Mexico; (E.P.-S.); (A.d.J.C.-G.); (M.J.F.-F.); (R.J.-A.); (A.P.Z.-V.)
| | - Rafael Germán Campos-Montiel
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1., Tulancingo Hidalgo C.P. 43600, Mexico; (E.P.-S.); (A.d.J.C.-G.); (M.J.F.-F.); (R.J.-A.); (A.P.Z.-V.)
- Correspondence: ; Tel.: +52-771-717-2000 (ext. 2422)
| |
Collapse
|
10
|
Jurić S, Jurić M, Król-Kilińska Ż, Vlahoviček-Kahlina K, Vinceković M, Dragović-Uzelac V, Donsì F. Sources, stability, encapsulation and application of natural pigments in foods. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1837862] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Slaven Jurić
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Marina Jurić
- Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy, University of Zagreb, Zagreb, Croatia
| | - Żaneta Król-Kilińska
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Marko Vinceković
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, Department of Food Engineering, University of Zagreb, Zagreb, Croatia
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| |
Collapse
|
11
|
Madadi E, Mazloum-Ravasan S, Yu JS, Ha JW, Hamishehkar H, Kim KH. Therapeutic Application of Betalains: A Review. PLANTS 2020; 9:plants9091219. [PMID: 32957510 PMCID: PMC7569795 DOI: 10.3390/plants9091219] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
Anthocyanins, betalains, riboflavin, carotenoids, chlorophylls and caramel are the basic natural food colorants used in modern food manufacture. Betalains, which are composed of red–violet betacyanin and yellow betaxanthins, are water-soluble pigments that color flowers and fruits. Betalains are pigments primarily produced by plants of the order Caryophyllales. Because of their anti-inflammatory, cognitive impairment, anticancer and anti-hepatitis properties, betalains are useful as pharmaceutical agents and dietary supplements. Betalains also exhibit antimicrobial and antimalarial effects, and as an example, betalain-rich Amaranthus spinosus displays prominent antimalarial activity. Studies also confirmed the antidiabetic effect of betalains, which reduced glycemia by 40% without causing weight loss or liver impairment. These findings show that betalain colorants may be a promising alternative to the synthetic dyes currently used as food additives.
Collapse
Affiliation(s)
- Elaheh Madadi
- Biotechnology Research Center and Student’s Research Committee, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Sahand Mazloum-Ravasan
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (J.S.Y.); (J.W.H.)
| | - Ji Won Ha
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (J.S.Y.); (J.W.H.)
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran
- Correspondence: (H.H.); (K.H.K.); Tel.: +98-41-3336-3277 (H.H.); +82-31-290-7700 (K.H.K.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (J.S.Y.); (J.W.H.)
- Correspondence: (H.H.); (K.H.K.); Tel.: +98-41-3336-3277 (H.H.); +82-31-290-7700 (K.H.K.)
| |
Collapse
|
12
|
El Omari N, Akkaoui S, El Blidi O, Ghchime R, Bouyahya A, Kharbach M, Yagoubi M, Balahbib A, Chokairi O, Barkiyou M. HPLC-DAD/TOF-MS Chemical Compounds Analysis and Evaluation of Antibacterial Activity of Aristolochia longa Root Extracts. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20932753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present study aimed to determine the phenolic compounds of Aristolochia longa root extracts and to evaluate their antibacterial activities on multiresistant strains. Phytochemical analysis revealed the presence of flavonoids, tannins, terpenoids, and alkaloids. The HPLC-DAD analysis of A. longa extracts showed the presence of several major bioactive compounds such as ferulic acid, 4-hydroxycinnamic acid, citric acid, and quinic acid. The agar diffusion method was used for the sensitivity test, while minimal inhibitory concentration (MIC) and minimal bactericidal concentration values were determined by microdilution assay. Different tests were carried out on 3 clinical multiresistant strains and 3 reference strains. The diameter of inhibition of Staphylococcus aureus ATCC 25923 induced by the ethyl acetate fraction at 200 mg/mL was 25 ± 1 mm. Moreover, Escherichia coli ATCC 29522 showed a great sensitivity toward all the concentrations tested. The MICs of the active extracts vary between 12.5 and 100 mg/mL with a bacteriostatic effect on Pseudomonas aeruginosa ATCC 27853, Enterococcus faecalis, and S. aureus ATCC 25923.
Collapse
Affiliation(s)
- Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Sanae Akkaoui
- Research Laboratory on Oral Biology and Biotechnology, Faculty of Medicine Dentistry, Mohammed V University in Rabat, Morocco
| | - Omar El Blidi
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Rokia Ghchime
- Department of Clinical Neurophysiology, Hospital of Specialities, Ibn Sina University Hospital, Rabat Institute, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathology Biology, Faculty of Sciences, Genomic Center of Human Pathology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Mourad Kharbach
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, CePhaR, Vrije Universiteit Brussel (VUB), Belgium
- Bio-Pharmaceutical and Toxicological Analysis Research Team, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Morocco
| | - Maâmar Yagoubi
- Laboratory of Microbiology, Department of Clinical Medical Biology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Abdelaali Balahbib
- Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Omar Chokairi
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Malika Barkiyou
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| |
Collapse
|
13
|
Separation of betacyanins from Iresine herbstii Hook. ex Lindl. leaves by high-speed countercurrent chromatography in a polar solvent system. J Chromatogr A 2020; 1626:461370. [DOI: 10.1016/j.chroma.2020.461370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/13/2023]
|
14
|
Gokoglu N. Novel natural food preservatives and applications in seafood preservation: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2068-2077. [PMID: 30318589 DOI: 10.1002/jsfa.9416] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 05/09/2023]
Abstract
Food preservative additives are natural or synthetic substances which delay degradation in foods caused by microbial growth, enzyme activity, and oxidation. Until recently, the use of synthetic additives in food was more common. However, synthetic additives have not been widely accepted by consumers in recent years due to their assumed adverse effects on their health. Therefore, the tendency of consumers to natural additives is increasing day-by-day. Seafood is an easily perishable food due to its chemical composition. Immediately after harvest, changes in odor, taste, and texture in fishery products can be noticed. For this reason, measures to protect the product must be taken immediately after harvest or catching. Various preservation methods have been developed. In addition to various technological methods, preservative additives are used in fresh or processed seafood as well as in other foods. This review focuses on novel natural preservatives from different sources such as plants, bacteria, fungi, animals and algae, and their use in seafood to protect quality and prolong shelf life. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nalan Gokoglu
- Department of Fish Processing Technology, Fisheries Faculty, Akdeniz University, Antalya, Turkey
| |
Collapse
|
15
|
Cenobio-Galindo ADJ, Pimentel-González DJ, Del Razo-Rodríguez OE, Medina-Pérez G, Carrillo-Inungaray ML, Reyes-Munguía A, Campos-Montiel RG. Antioxidant and antibacterial activities of a starch film with bioextracts microencapsulated from cactus fruits ( Opuntia oligacantha). Food Sci Biotechnol 2019; 28:1553-1561. [PMID: 31695955 DOI: 10.1007/s10068-019-00586-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/16/2019] [Accepted: 02/11/2019] [Indexed: 11/26/2022] Open
Abstract
The use of unconventional sources is very relevant in the food area. In the present study the development of active films with the addition of bioextract (BE) or microencapsulated bioextract (MBE) from xoconostle (Opuntia oligacantha) on chayotextle starch was investigated. The film formulations were: 4 g of chayotextle starch, 2 g of glycerol and 180 g of water, three films with BE added (0.4, 0.8 and 1.2 g) and three films with MBE added (0.4, 0.8 and 1.2 g). Total phenols, total flavonoids, antioxidant activity (ABTS and DPPH), Salmonella typhimurium inhibition, color and mechanical properties of the films were analyzed. The film with 1.2 g of MBE showed high concentration of total phenols (54.12 ± 0.77 mg EAG/100 g), total flavonoids (16.65 ± 0.10 mg QE/100 g) and antioxidant activity (29.11 ± 0.48 and 41.42 ± 1.81 mg EAA for ABTS and DPPH respectively). The addition of bioextract from xoconostle is an option for the development of active films with antioxidant properties.
Collapse
Affiliation(s)
- Antonio de Jesus Cenobio-Galindo
- 1Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1, C.P. 43600 Tulancingo, HGO Mexico
| | - Diana Jaqueline Pimentel-González
- 1Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1, C.P. 43600 Tulancingo, HGO Mexico
| | - Oscar Enrique Del Razo-Rodríguez
- 1Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1, C.P. 43600 Tulancingo, HGO Mexico
| | - Gabriela Medina-Pérez
- 1Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1, C.P. 43600 Tulancingo, HGO Mexico
| | - María Luisa Carrillo-Inungaray
- 2Universidad Autónoma de San Luis Potosí, Unidad Académica Multidisciplinaria Zona Huasteca, Romualdo del campo No. 501, Fracc. Rafael Curiel, C.P. 79060 Ciudad Valles, SLP Mexico
| | - Abigail Reyes-Munguía
- 2Universidad Autónoma de San Luis Potosí, Unidad Académica Multidisciplinaria Zona Huasteca, Romualdo del campo No. 501, Fracc. Rafael Curiel, C.P. 79060 Ciudad Valles, SLP Mexico
| | - Rafael Germán Campos-Montiel
- 1Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1, C.P. 43600 Tulancingo, HGO Mexico
| |
Collapse
|
16
|
Spórna-Kucab A, Bernaś K, Grzegorczyk A, Malm A, Skalicka-Woźniak K, Wybraniec S. Liquid chromatographic techniques in betacyanin isomers separation from Gomphrena globosa L. flowers for the determination of their antimicrobial activities. J Pharm Biomed Anal 2018; 161:83-93. [DOI: 10.1016/j.jpba.2018.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/25/2022]
|
17
|
Aruwa CE, Amoo SO, Kudanga T. Opuntia (Cactaceae) plant compounds, biological activities and prospects - A comprehensive review. Food Res Int 2018; 112:328-344. [PMID: 30131144 DOI: 10.1016/j.foodres.2018.06.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 01/19/2023]
Abstract
Opuntia species are utilized as local medicinal interventions for chronic diseases and as food sources mainly because they possess nutritional properties and biological activities. The Opuntia plant is distributed worldwide and has great economic potential. Differences in Opuntia species phytochemical composition exist between wild and domesticated species, and within species. Opuntia aerial and underground parts exhibit beneficial properties due to their phenolic content, other antioxidants (for example ascorbate), pigments (carotenoids, betalains), and other unidentified components. This work comprehensively reviews the phytochemical composition of the different aerial and underground plant parts of Opuntia species. The applications of Opuntia compounds and their biological activities are also discussed. Other topical aspects covered include Opuntia spp. taurine composition, Opuntia side effects, Opuntia by-products valorisation and the role of Opuntia spp. in tackling antimicrobial resistance. Although biological activities have been extensively researched, much less information is available on reaction mechanisms, herbal mixtures toxicology and commercialisation prospects - aspects which should be considered for future research in this area.
Collapse
Affiliation(s)
- Christiana Eleojo Aruwa
- Department of Biotechnology and Food Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Stephen O Amoo
- Agricultural Research Council, Roodeplaat Vegetable and Ornamental Plants, Private Bag X293, Pretoria 0001, South Africa
| | - Tukayi Kudanga
- Department of Biotechnology and Food Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.
| |
Collapse
|
18
|
Pisoschi AM, Pop A, Georgescu C, Turcuş V, Olah NK, Mathe E. An overview of natural antimicrobials role in food. Eur J Med Chem 2017; 143:922-935. [PMID: 29227932 DOI: 10.1016/j.ejmech.2017.11.095] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023]
Abstract
The present paper aims to review the natural food preservatives with antimicrobial properties emphasizing their importance for the future of food manufacturing and consumers' health. The extraction procedures applied to natural antimicrobials will be considered, followed by the description of some natural preservatives' antimicrobial mechanism of action, including (i) membrane rupture with ATP-ase activity inhibition, (ii) leakage of essential biomolecules from the cell, (iii) disruption of the proton motive force and (iiii) enzyme inactivation. Moreover, a provenance-based classification of natural antimicrobials is discussed by considering the sources of origin for the major natural preservative categories: plants, animals, microbes and fungi. As well, the structure influence on the antimicrobial potential is considered. Natural preservatives could also constitute a viable alternative to address the critical problem of microbial resistance, and to hamper the negative side effects of some synthetic compounds, while meeting the requirements for food safety, and exerting no negative impact on nutritional and sensory attributes of foodstuffs.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Sector 5, Bucharest, Romania.
| | - Aneta Pop
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Sector 5, Bucharest, Romania
| | - Cecilia Georgescu
- "Lucian Blaga" University of Sibiu, Faculty of Agriculture Science, Food Industry and Environmental Protection, Dr. I. Ratiu str.7-9, 550012, Sibiu, Romania
| | - Violeta Turcuş
- Vasile Goldiş Western University of Arad, Faculty of Medicine, Department of Life Sciences, Liviu Rebreanu str.91-93, 310414, Arad, Romania
| | - Neli Kinga Olah
- Vasile Goldiş Western University of Arad, Faculty of Medicine, Department of Life Sciences, Liviu Rebreanu str.91-93, 310414, Arad, Romania
| | - Endre Mathe
- Vasile Goldiş Western University of Arad, Faculty of Medicine, Department of Life Sciences, Liviu Rebreanu str.91-93, 310414, Arad, Romania; University of Debrecen, Faculty of Agriculture and Food Sciences and Environmental Management, Institute of Food Technology, Böszörményi út 138, H-4032, Debrecen, Hungary
| |
Collapse
|
19
|
Mabrouki H, Duarte CMM, Akretche DE. Estimation of Total Phenolic Contents and In Vitro Antioxidant and Antimicrobial Activities of Various Solvent Extracts of Melissa officinalis L. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-3000-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Singh G, Passsari AK, Singh P, Leo VV, Subbarayan S, Kumar B, Singh BP, lalhlenmawia H, Kumar NS. Pharmacological potential of Bidens pilosa L. and determination of bioactive compounds using UHPLC-QqQ LIT-MS/MS and GC/MS. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:492. [PMID: 29145848 PMCID: PMC5689161 DOI: 10.1186/s12906-017-2000-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/10/2017] [Indexed: 12/27/2022]
Abstract
Background Research of natural products from traditionally used medicinal plants to fight against the human ailments is fetching attention of researchers worldwide. Bidens pilosa Linn. var. Radiata (Asteraceae) is well known for its folkloric medicinal use against various diseases from many decades. Mizoram, North East India, has high plant diversity and the use of this plant as herbal medicine is deep rooted in the local tribes. The present study was executed to understand the pharmacological potential of B. pilosa leaves extract. Methods The antimicrobial potential was determined using agar well diffusion and broth microdilution method against bacterial and yeast pathogens. Cytotoxicity was evaluated using MTT and apoptotic DNA fragmentation assays. Further, the antioxidant ability of the extract was analysed using DPPH and ABTS free radical scavenging assay. Mosquitocidal activity was evaluated against third in-star larvae of C. quinquefasciatus using dose response and time response larvicidal bioassay. Additionally, the major phenolic and volatile compounds were determined using UHPLC-QqQLIT-MS/MS and GC/MS respectively. Results We found that the extract showed highest antimicrobial activity against E. coli (MIC 80 μg/mL and IC50 110.04 μg/mL) and showed significant cytotoxicity against human epidermoid carcinoma (KB-3-1) cells with IC50 values of 99.56 μg/mL among the tested cancer cell lines. The IC50 values for scavenging DPPH and ABTS was 80.45 μg/mL and 171.6 μg/mL respectively. The extract also showed the high phenolics (72 μg GAE/mg extract) and flavonoids (123.3 μg Quercetin /mg extract). Lastly, five bioactive and six volatile compounds were detected using UHPLC-QqQLIT-MS/MS and GC-MS respectively which may be responsible for the plant’s bioactivities. An anticancerous compound, Paclitaxel was detected and quantified for the first time from B. pilosa leaves extract, which further showed the anticancerous potential of the tested extract. Conclusion On the basis of the present investigation, we propose that the leaf extract of B. pilosa might be a good candidate for the search of efficient environment friendly natural bioactive agent and pharmaceutically important compounds.
Collapse
|
21
|
Falowo AB, Muchenje V, Hugo CJ, Charimba G. In vitro antimicrobial activities of Bidens pilosa and Moringa oleifera leaf extracts and their effects on ground beef quality during cold storage. CYTA - JOURNAL OF FOOD 2016. [DOI: 10.1080/19476337.2016.1162847] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- A. B. Falowo
- Department of Livestock and Pasture Science, Faculty of Science and Agriculture, University of Fort Hare, Alice, South Africa
| | - V. Muchenje
- Department of Livestock and Pasture Science, Faculty of Science and Agriculture, University of Fort Hare, Alice, South Africa
| | - C. J. Hugo
- Department of Microbial Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - G. Charimba
- Department of Microbial Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
22
|
Antibacterial and Antioxidant Activities of Essential Oils from Artemisia herba-alba Asso., Pelargonium capitatum × radens and Laurus nobilis L. Foods 2016; 5:foods5020028. [PMID: 28231123 PMCID: PMC5302350 DOI: 10.3390/foods5020028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/04/2022] Open
Abstract
Essential oils are natural antimicrobials that have the potential to provide a safer alternative to synthetic antimicrobials currently used in the food industry. Therefore, the aim of this study was to evaluate the antimicrobial and antioxidant activities of essential oils from white wormwood, rose-scented geranium and bay laurel against Salmonella typhimurium and Escherichia coli O157:H7 on fresh produce and to examine consumer acceptability of fresh produce treated with these essential oils. Our results showed that essential oil derived from rose-scented geranium exhibited the most effective antimicrobial activity at the same and similar minimum inhibition concentration levels (0.4%, v/v and 0.4% and 0.5%, v/v) respectively against Salmonella typhimurium and Escherichia coli O157:H7. All three essential oils showed antioxidant properties, with the highest activity occurring in bay laurel essential oil. In a sensory test, tomatoes, cantaloupe and spinach sprayed with 0.4% rose-scented geranium essential oil received higher scores by panelists. In conclusion, rose-scented geranium essential oil could be developed into a natural antimicrobial to prevent contamination of Salmonella typhimurium and Escherichia coli O157:H7 in fresh produce, plus this oil would provide additional health benefits due to the antioxidant properties of its residue.
Collapse
|
23
|
Espinosa-Muñoz V, RoldáN-cruz C, HernáNdez-Fuentes A, Quintero-Lira A, Almaraz-Buendía I, Campos-Montiel R. Ultrasonic-Assisted Extraction of Phenols, Flavonoids, and Biocompounds with Inhibitory Effect AgainstSalmonella TyphimuriumandStaphylococcus Aureusfrom Cactus Pear. J FOOD PROCESS ENG 2016. [DOI: 10.1111/jfpe.12358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- V. Espinosa-Muñoz
- Instituto de Ciencias Agropecuarias; Universidad Autónoma del Estado de Hidalgo; C.P. 43600 México
| | - C.A. RoldáN-cruz
- Instituto de Ciencias Agropecuarias; Universidad Autónoma del Estado de Hidalgo; C.P. 43600 México
| | - A.D. HernáNdez-Fuentes
- Instituto de Ciencias Agropecuarias; Universidad Autónoma del Estado de Hidalgo; C.P. 43600 México
| | - A. Quintero-Lira
- Instituto de Ciencias Agropecuarias; Universidad Autónoma del Estado de Hidalgo; C.P. 43600 México
| | - I. Almaraz-Buendía
- Instituto de Ciencias Agropecuarias; Universidad Autónoma del Estado de Hidalgo; C.P. 43600 México
| | - R.G. Campos-Montiel
- Instituto de Ciencias Agropecuarias; Universidad Autónoma del Estado de Hidalgo; C.P. 43600 México
| |
Collapse
|
24
|
Gengatharan A, Dykes GA, Choo WS. Betalains: Natural plant pigments with potential application in functional foods. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.06.052] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Nisa H, Kamili AN, Bandh SA, Shajr-ul-Amin, Lone BA, Parray JA. Phytochemical screening, antimicrobial and antioxidant efficacy of different extracts of Rumex dentatus L. – A locally used medicinal herb of Kashmir Himalaya. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2013. [DOI: 10.1016/s2222-1808(13)60097-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|