1
|
Hu Y, Liu X, Song Y, Zhang Y, Li W, Zhang L, Wang A, Su Q, Yang Z, Zou L. Exploring the anti-inflammatory ingredients and potential of golden buckwheat ( Fagopyrum dibotrys) on the TLR4/NLRP3 pathway in acute lung injury. Food Sci Nutr 2024; 12:5426-5441. [PMID: 39139945 PMCID: PMC11317744 DOI: 10.1002/fsn3.4193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 08/15/2024] Open
Abstract
Golden buckwheat, also called Fagopyrum dibotrys (D. Don) H. Hara, is a plant of the genus Buckwheat in the buckwheat family. The aim of this study was to screen the bioactive ingredients of golden buckwheat extract and investigate the protective effect on acute lung injury (ALI). The ethyl acetate extract (EAE) was identified as the active fraction in LPS-induced RAW264.7 cells, with gallic acid, proanthocyanidin B2, and epicatechin at 0.0563%, 0.3707%, and 0.3868%, respectively. At the same time, 20 compounds (mainly flavonoids and organic acids) were identified by UPLC-Q-Exactive Orbitrap-HRMS in EAE. Furthermore, the EAE reduced lung histopathology scores in mice with ALI, decreased the dry-to-wet weight ratio of lung tissue, and significantly inhibited the concentrations of IL-1β, TNFα, and IL-6 in bronchoalveolar lavage fluid (BALF). It also reduced the number of leukocytes, decreased the activity of MPO in lung tissue, and inhibited the levels of TLR4/NLRP3 pathway mRNA and protein in lung tissue. Our study indicated that golden buckwheat as a source of functional food prevents or treats associated lung diseases by modulating the activation of the TLR4/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Yingfan Hu
- School of Preclinical MedicineChengdu UniversityChengduSichuanChina
- State Key Laboratory of Quality Research in Chinese MedicineUniversity of MacauMacaoChina
| | - Xiaomin Liu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural AffairsChengdu UniversityChengduSichuanChina
| | - Yu Song
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural AffairsChengdu UniversityChengduSichuanChina
| | - Yan Zhang
- School of Preclinical MedicineChengdu UniversityChengduSichuanChina
| | - Wei Li
- School of Preclinical MedicineChengdu UniversityChengduSichuanChina
| | - Lele Zhang
- School of Preclinical MedicineChengdu UniversityChengduSichuanChina
| | - Anqi Wang
- School of Preclinical MedicineChengdu UniversityChengduSichuanChina
| | - Qian Su
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengduSichuanChina
| | - Zhiyong Yang
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengduSichuanChina
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural AffairsChengdu UniversityChengduSichuanChina
| |
Collapse
|
2
|
Nery-Flores SD, Castro-López CM, Martínez-Hernández L, García-Chávez CV, Palomo-Ligas L, Ascacio-Valdés JA, Flores-Gallegos AC, Campos-Múzquiz LG, Rodríguez-Herrera R. Grape Pomace Polyphenols Reduce Acute Inflammatory Response Induced by Carrageenan in a Murine Model. Chem Biodivers 2024; 21:e202302065. [PMID: 38768437 DOI: 10.1002/cbdv.202302065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/20/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Grape pomace (GP), a by-product of wine production, contains bioactive polyphenols with potential health benefits. This study investigates the anti-inflammatory properties of a polyphenolic fraction derived from GP, obtained by ultrasound-microwave hybrid extraction and purified using ion-exchange chromatography. In the inflammation model, mice were divided into six groups: intact, carrageenan, indomethacin, and three GP polyphenols treatment groups. Paw edema was induced by subplantar injection of carrageenan, and the GP polyphenols were administered intraperitoneally at doses of 10, 20, and 40 mg/kg. The anti-inflammatory effect was evaluated by measuring paw volume, and expression of inflammatory markers: cyclooxygenase-2 (COX-2), myeloperoxidase (MPO), and cytokines (IL-1β and IL-6), along with lipid peroxidation levels. The GP polyphenols significantly reduced paw edema and expression levels of COX-2, MPO, and cytokines in a dose-dependent manner effect, with the highest dose showing the greatest reduction. Additionally, lipid peroxidation levels were also decreased by GP polyphenols treatment at doses of 10 and 20 mg/kg. These findings suggest that ultrasound-microwave extraction combined with amberlite purification proved to be effective in obtaining a polyphenolic-rich fraction from GP. Thus, GP polyphenols may serve as a natural anti-inflammatory and antioxidant agent for treating inflammation and oxidative stress-related diseases.
Collapse
Affiliation(s)
| | | | | | | | - Lissethe Palomo-Ligas
- School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Coahuila, 25280, México
| | | | | | | | - Raúl Rodríguez-Herrera
- School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Coahuila, 25280, México
| |
Collapse
|
3
|
Wu X, Li W, Luo Z, Chen Y. Exploring the efficacy and molecular mechanism of Danhong injection comprehensively in the treatment of idiopathic pulmonary fibrosis by combining meta-analysis, network pharmacology, and molecular docking methods. Medicine (Baltimore) 2024; 103:e38133. [PMID: 38728523 PMCID: PMC11081554 DOI: 10.1097/md.0000000000038133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Danhong injection, a compound injection of Chinese herbal medicine, has been widely used in idiopathic pulmonary fibrosis (IPF) at present as an adjuvant treatment. However, the clinical efficacy and molecular mechanism of IPF are still unclear. This study will evaluate and explore the clinical efficacy and molecular mechanism of Danhong injection in the treatment of IPF. METHODS In meta-analysis, the computer was used to search 8 databases (PubMed, EMbase, CENTRAL, MEDLINE, CBM, CNKI, WanFang, and VIP) to collect the RCTs, and RevMan 5.3 and Stata 14.0 were used for statistical analysis. It has been registered on PROSPERO: CRD42020221096. In network pharmacology, the main chemical components and targets of the chemical components of Danhong injection were obtained in TCMSP and Swiss Target Prediction databases. The main targets of IPF were obtained through Gencards, Disgenet, OMIM, TTD, and DRUGBANK databases. The String platform was used to construct PPI networks. Cytoscape 3.8.2 was used to construct the "Danhong components - IPF targets-pathways" network. The molecular docking verification was conducted by Auto Dock. RESULTS Twelve RCTs were finally included with a total of 896 patients. The meta-analysis showed that Danhong injection could improve the clinical efficiency ([OR] = 0.25, 95% CI [0.15, 0.41]), lung function, arterial blood gas analysis, inflammatory cytokines, and serum cytokines associated with pulmonary fibrosis of IPF patients, respectively (P < .05). The core active components of Danhong injection on IPF were Luteolin, Quercetin, and Kaempferol, and the core targets were PTGS2, AR, ESR1, PPARG, and RELA. Danhong injection mainly improved IPF through PD-L1 expression and PD-1 checkpoint path in cancer, pathways in cancer, PI3K-Akt signaling pathway, etc. CONCLUSION These results provided scientific basis for the clinical use of Danhong injection for the treatment of IPF, and provided a new direction to explore the potential mechanism of action of Danhong injection.
Collapse
Affiliation(s)
- Xiaozheng Wu
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wen Li
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhenliang Luo
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yunzhi Chen
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
4
|
Gao S, Gao Y, Cai L, Qin R. Luteolin attenuates Staphylococcus aureus-induced endometritis through inhibiting ferroptosis and inflammation via activating the Nrf2/GPX4 signaling pathway. Microbiol Spectr 2024; 12:e0327923. [PMID: 38169293 PMCID: PMC10846197 DOI: 10.1128/spectrum.03279-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024] Open
Abstract
Endometritis, a local inflammatory disease, has been known as the most common cause of infertility in mares. In this study, we investigated the protective effects of luteolin on endometritis induced by Staphylococcus aureus (S. aureus) and further clarified the possible molecular mechanisms. An S. aureus-induced endometritis model was established by the infusion of S. aureus into the uterus. Luteolin was intraperitoneally administered to mice 1 h before S. aureus treatment. The results showed that the mice of the S. aureus group showed severe histological changes of uterine tissues, increased myeloperoxidase (MPO) activity, and elevated TNF-α, IL-1β, and IL-6 levels. These changes induced by S. aureus were dose-dependently inhibited by luteolin. Furthermore, luteolin inhibited MDA and Fe2+ production and increased the production of GSH decreased by S. aureus. Luteolin prevented S. aureus-induced endometrial barrier disruption through up-regulating ZO-1 and occludin expression. Luteolin dramatically inhibited S. aureus-induced NF-κB activation. The expression of Nrf2 and HO-1 was increased by luteolin. In addition, the inhibitory effects of luteolin on S. aureus-induced endometritis were reversed in Nrf2 knockdown mice. In conclusion, these data indicated that luteolin protected mice against S. aureus-induced endometritis through inhibiting inflammation and ferroptosis via regulating the Nrf2 signaling pathway.IMPORTANCEEndometritis is an inflammatory disease of the endometrium, which is a common gynecological disease. Up to now, there is no evidence for the protective effects of luteolin on endometritis. The purpose of this study was to investigate whether luteolin has protective effects against S. aureus-induced endometritis and attempts to clarify the mechanism.
Collapse
Affiliation(s)
- Shouyang Gao
- Department of Obstetrics, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lifu Cai
- Department of Obstetrics, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Rui Qin
- Department of Gynecology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Li Q, Chen J, Ren Y, Yang Z, Wang M, Zhang W, Cao L, Sun H, Nie S, Sun Z. Protective Effects and Mechanisms of Luteolin against Acute Respiratory Distress Syndrome: Network Pharmacology and In vivo and In vitro Studies. Curr Pharm Des 2024; 30:1404-1418. [PMID: 38616753 DOI: 10.2174/0113816128289341240327072531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Acute Respiratory Distress Syndrome (ARDS) is an acute life-threatening disease, and luteolin has the potential to become a therapeutic agent for ARDS. However, its mechanism of action has not yet been clarified. OBJECTIVE The present study explored the potential effects and mechanisms of luteolin in the treatment of ARDS through network pharmacology analysis and verified them through biological experiments. METHODS The potential targets of luteolin and ARDS were obtained from online databases. Functional enrichment and protein-protein interaction (PPI) analyses were performed to explore the underlying molecular mechanisms and to identify hub targets. Molecular docking was used to verify the relationship between luteolin and target proteins. Finally, the effects of luteolin on key signaling pathways and biological processes were verified by in vitro and in vivo experiments. RESULTS A total of 146 luteolin- and 496 ARDS-related targets were extracted from public databases. The network pharmacological analysis suggested that luteolin could inhibit ARDS through the following potential therapeutic targets: AKT1, RELA, and NFKBIA. Inflammatory and oxidative stress responses were the main biological processes involved, with the AKT/NF-κB signaling pathway being the key signaling pathway targeted by luteolin for the treatment of ARDS. Molecular docking analysis indicated that luteolin had a good binding affinity to AKT1, RELA, and NFKBIA. The in vitro and in vivo experiments revealed that luteolin could regulate the inflammatory response and oxidative stress in the treatment of ARDS by inhibiting the AKT/NF- κB signaling pathway. CONCLUSION Luteolin could reduce the production of reactive oxygen species and inflammatory factors by inhibiting the AKT/NF-κB signaling pathway, thus reducing apoptosis and attenuating ARDS.
Collapse
Affiliation(s)
- Quan Li
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
- Department of Intensive Care Unit, Suqian First Hospital, Suqian 223800, PR China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Juan Chen
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
| | - Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
- Department of Emergency Medicine, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, PR China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
| | - Liping Cao
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
| | - Haijun Sun
- Department of Intensive Care Unit, Suqian First Hospital, Suqian 223800, PR China
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
- Department of Emergency Medicine, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, PR China
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
- Department of Emergency Medicine, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, PR China
| |
Collapse
|
6
|
Liu M, Wang Q, Xu W, Wu J, Xu X, Yang H, Li X. Natural products for treating cytokine storm-related diseases: Therapeutic effects and mechanisms. Biomed Pharmacother 2023; 167:115555. [PMID: 37776639 DOI: 10.1016/j.biopha.2023.115555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND A cytokine storm (CS) is a rapidly occurring, complex, and highly lethal systemic acute inflammatory response induced by pathogens and other factors. Currently, no clinical therapeutic drugs are available with a significant effect and minimal side effects. Given the pathogenesis of CS, natural products have become important resources for bioactive agents in the discovery of anti-CS drugs. PURPOSE This study aimed to provide guidance for preventing and treating CS-related diseases by reviewing the natural products identified to inhibit CS in recent years. METHODS A comprehensive literature review was conducted on CS and natural products, utilizing databases such as PubMed and Web of Science. The quality of the studies was evaluated and summarized for further analysis. RESULTS This study summarized more than 30 types of natural products, including 9 classes of flavonoids, phenols, and terpenoids, among others. In vivo and in vitro experiments demonstrated that these natural products could effectively inhibit CS via nuclear factor kappa-B, mitogen-activated protein kinase, and Mammalian target of rapamycin (mTOR) signaling pathways. Moreover, the enzyme inhibition assays revealed that more than 20 chemical components had the potential to inhibit ACE2, 3CL-protease, and papain-like protease activity. The experimental results were obtained using advanced technologies such as biochips and omics. CONCLUSIONS Various natural compounds in traditional Chinese medicine (TCM) extracts could directly or indirectly inhibit CS occurrence, potentially serving as effective drugs for treating CS-related diseases. This study may guide further exploration of the therapeutic effects and biochemical mechanisms of natural products on CS.
Collapse
Affiliation(s)
- Mei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wanai Xu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, China
| | - Jingyu Wu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, China
| | - Xingyue Xu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
7
|
Alanazi AS, Alanazi MM, Elekhnawy E, Attallah NGM, Negm WA, El-Kadem AH. Plausible Protective Role of Encephalartos villosus Extract in Acetic-Acid-Induced Ulcerative Colitis in Rats. Pharmaceuticals (Basel) 2023; 16:1431. [PMID: 37895902 PMCID: PMC10609761 DOI: 10.3390/ph16101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory ailment of the intestine associated with the upregulation of oxidative stress and pro-inflammatory cytokines. Here, we aimed to assess the consequences of Encephalartos villosus (EV) Lem extract on acetic acid (AA)-induced UC. Rats were randomly classified into five groups, as follows: control, AA, AA + mesalazine, AA + EV (50 mg/kg), and AA + EV (100 mg/kg) groups. EV (50 mg/kg and 100 mg/kg) and mesalzine (100 mg/kg) were administered orally for 14 days before the induction of UC. On the last day of the experiment, colitis was provoked via the intra-rectal delivery of 3% AA. Then, after 24 h, the rats were sacrificed and their colon tissues were isolated and inspected. Interestingly, EV pretreatment substantially (p < 0.05) reduced the elevated colon weight/length ratio and ulcer area and normalized the histological changes and immunohistochemical features. In addition, EV efficiently reduced the levels of myeloperoxidase (MPO) and increased the activity of glutathione peroxidase (GS-PX) and catalase (CAT). EV (100 mg/kg) resulted in a downregulation of toll-like receptor 4 (TLR-4) and upregulation of heme oxygenase 1 (HO-1) and occludin expression levels. Concerning the anti-inflammatory mechanisms, EV reduced the levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and nuclear transcription factor kappa B (NF-ĸB) and inhibited cyclooxygenase-2 (COX-2) expression levels. It also decreased caspase-3 levels. Our results indicate that the oral intake of EV improves AA-induced colitis in rats through its antioxidative effects and the modulation of pro-inflammatory cytokines, as well as the restoration of mucosal integrity. Consequently, EV may be an efficient therapeutic candidate for UC.
Collapse
Affiliation(s)
- Ashwag S. Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | | | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Aya H. El-Kadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
8
|
Han Y, Xiao Y, Yu L, Chen J, Yang X, Cui H, Liang J. Advances in the Mechanism of Luteolin against Hepatocellular Carcinoma Based on Bioinformatics and Network Pharmacology. J Cancer 2023; 14:966-980. [PMID: 37151401 PMCID: PMC10158511 DOI: 10.7150/jca.80456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/03/2023] [Indexed: 05/09/2023] Open
Abstract
As one of the most common malignant tumors, hepatocellular carcinoma (HCC) has a rising incidence rate and also seriously endangers human life and health. According to research reports, hepatitis B, hepatitis C, intake of aflatoxin in the diet, and the effects of alcohol and other chemicals can induce an increase in the incidence of liver cancer. However, in the current clinical treatment of HCC, most of the drugs are chemical drugs, which have relatively large side effects and are prone to drug resistance. Therefore, the development of natural compounds to treat HCC has become a new treatment strategy. Several studies have shown that flavonoids have shown outstanding effects and exhibit strong tumor growth inhibitory effects in vivo experimental studies. Luteolin, as a natural flavonoid, has anti-tumor, anti-inflammatory, anti-viral, anti-oxidation, immune regulation, and other pharmacological effects. The anti-cancer mechanism of luteolin mainly directly acts on tumor cells to inhibit their growth, induce cell apoptosis, reduce tumor tissue angiogenesis, regulate long non-coding RNA, affect immunogenic cell death, and regulate autophagy. As well as improving the curative effect of radiotherapy and chemotherapy and chemoprevention. In this study, we evaluated the function of luteolin in regulating cancer cell proliferation, migration, and invasion will summarize and analyze luteolin and its mechanism of regulating HCC to improve the role of luteolin in the clinical prevention and treatment of HCC.
Collapse
Affiliation(s)
- Yunqi Han
- The Affiliated People's Hospital of Inner Mongolia Medical University/Inner Mongolia Autonomous Region Cancer Hospital, Hohhot 010050, China
| | - Yunfeng Xiao
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China
| | - Lei Yu
- Department of Pharmacy, Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot 010020, China
| | - Jing Chen
- Department of Medicine, Ordos Institute of Technology, Inner Mongolia Autonomous Region, Ordos 017000, China
| | - Xudong Yang
- Department of Urology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Hongwei Cui
- The Affiliated People's Hospital of Inner Mongolia Medical University/Inner Mongolia Autonomous Region Cancer Hospital, Hohhot 010050, China
| | - Junqing Liang
- The Affiliated People's Hospital of Inner Mongolia Medical University/Inner Mongolia Autonomous Region Cancer Hospital, Hohhot 010050, China
| |
Collapse
|
9
|
Application Potential of Luteolin in the Treatment of Viral Pneumonia. J Food Biochem 2023. [DOI: 10.1155/2023/1810503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Aim of the Review. This study aims to summarize the therapeutic effect of luteolin on the pathogenesis of viral pneumonia, explore its absorption and metabolism in the human body, evaluate the possibility of luteolin as a drug to treat viral pneumonia, and provide a reference for future research. Materials and Methods. We searched MEDLINE/PubMed, Web of Science, China National Knowledge Infrastructure, and Google Scholar and collected research on luteolin in the treatment of viral pneumonia and related diseases since 2003. Then, we summarized the efficacy and potential of luteolin in directly inhibiting viral activity, limiting inflammatory storms, reducing pulmonary inflammation, and treating pneumonia complications. Results and Conclusion. Luteolin has the potential to treat viral pneumonia in multiple ways. Luteolin has a direct inhibitory effect on coronavirus, influenza virus, and respiratory syncytial virus. Luteolin can alleviate the inflammatory factor storm induced by multiple factors by inhibiting the function of macrophages or mast cells. Luteolin can reduce pulmonary inflammation, pulmonary edema, or pulmonary fibrosis induced by multiple factors. In addition, viral pneumonia may cause multisystem complications, while luteolin has extensive protective effects on the gastrointestinal system, cardiovascular system, and nervous system. However, due to the first-pass metabolism mediated by phase II enzymes, the bioavailability of oral luteolin is low. The bioavailability of luteolin can be improved, and its potential value can be further developed by changing the dosage form or route of administration.
Collapse
|
10
|
Novalia Rahmawati Sianipar R, Suryanegara L, Fatriasari W, Tangke Arung E, Wijaya Kusuma I, Setiati Achmadi S, Izyan Wan Azelee N, Ain Abdul Hamid Z. The Role of Selected Flavonoids from Bajakah Tampala (Spatholobus littoralis Hassk.) Stem on Cosmetic Properties: A Review. Saudi Pharm J 2023; 31:382-400. [PMID: 37026052 PMCID: PMC10071331 DOI: 10.1016/j.jsps.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Cosmetics made from natural ingredients are increasingly popular because they contain bioactive compounds which can provide many health benefits, more environmentally friendly and sustainable. The health benefits obtained from natural-based ingredients include anti-aging, photoprotective, antioxidant, and anti-inflammatory. This article reviewed the potential of selected flavonoids from bajakah tampala (Spatholobus littoralis Hassk.) as the native plant in Indonesia. We present in silico, in vitro, in vivo, and clinical research data on the use of selected flavonoids that have been reported in other extracts.
Collapse
|
11
|
Saadat S, Beigoli S, Khazdair MR, Amin F, Boskabady MH. Experimental and Clinical Studies on the Effects of Natural Products on Noxious Agents-Induced Lung Disorders, a Review. Front Nutr 2022; 9:867914. [PMID: 35662950 PMCID: PMC9158561 DOI: 10.3389/fnut.2022.867914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/16/2022] [Indexed: 12/27/2022] Open
Abstract
The harmful effects of various noxious agents (NA) are well-known and there are reports regarding the induction of various lung disorders due to exposure to these agents both in animal and human studies. In addition, various studies have shown the effects of natural products (NP) on NA-induced lung disorders. The effects of various NP, including medicinal plants and their derivatives, on lung injury induced by NA, were reviewed in this study. The improving effects of various NP including medicinal plants, such as Aloe vera, Anemarrhena asphodeloides, Avena sativa, Crocus sativus, Curcuma longa, Dioscorea batatas, Glycyrrhiza glabra, Gentiana veitchiorum, Gentiopicroside, Houttuynia cordata, Hibiscus sabdariffa, Hochu-ekki-to, Hippophae rhamnoides, Juglans regia, Melanocarpa fruit juice, Mikania glomerata, Mikania laevigata, Moringa oleifera, Myrtus communis L., Lamiaceae, Myrtle, Mosla scabra leaves, Nectandra leucantha, Nigella sativa, Origanum vulgare L, Pulicaria petiolaris, Paulownia tomentosa, Pomegranate seed oil, Raphanus sativus L. var niger, Rosa canina, Schizonepeta tenuifolia, Thymus vulgaris, Taraxacum mongolicum, Tribulus Terrestris, Telfairia occidentalis, Taraxacum officinale, TADIOS, Xuebijing, Viola yedoensis, Zataria multiflora, Zingiber officinale, Yin-Chiao-San, and their derivatives, on lung injury induced by NA were shown by their effects on lung inflammatory cells and mediators, oxidative stress markers, immune responses, and pathological changes in the experimental studies. Some clinical studies also showed the therapeutic effects of NP on respiratory symptoms, pulmonary function tests (PFT), and inflammatory markers. Therefore, the results of this study showed the possible therapeutic effects of various NP on NA-induced lung disorders by the amelioration of various features of lung injury. However, further clinical studies are needed to support the therapeutic effects of NP on NA-induced lung disorders for clinical practice purposes.
Collapse
Affiliation(s)
- Saeideh Saadat
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Amin
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- *Correspondence: Mohammad Hossein Boskabady ;
| |
Collapse
|
12
|
Elucidation of the Metabolite Profile of Yucca gigantea and Assessment of Its Cytotoxic, Antimicrobial, and Anti-Inflammatory Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041329. [PMID: 35209125 PMCID: PMC8878216 DOI: 10.3390/molecules27041329] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
The acute inflammation process is explained by numerous hypotheses, including oxidative stress, enzyme stimulation, and the generation of pro-inflammatory cytokines. The anti-inflammatory activity of Yucca gigantea methanol extract (YGME) against carrageenan-induced acute inflammation and possible underlying mechanisms was investigated. The phytochemical profile, cytotoxic, and antimicrobial activities were also explored. LC-MS/MS was utilized to investigate the chemical composition of YGME, and 29 compounds were tentatively identified. In addition, the isolation of luteolin-7-O-β-d-glucoside, apigenin-7-O-β-d-glucoside, and kaempferol-3-O-α-l-rhamnoside was performed for the first time from the studied plant. Inflammation was induced by subcutaneous injection of 100 μL of 1% carrageenan sodium. Rats were treated orally with YGME 100, 200 mg/kg, celecoxib (50 mg/kg), and saline, respectively, one hour before carrageenan injection. The average volume of paws edema and weight were measured at several time intervals. Levels of NO, GSH, TNF-α, PGE-2, serum IL-1β, IL-6 were measured. In additionally, COX-2 immunostaining and histopathological examination of paw tissue were performed. YGME displayed a potent anti-inflammatory influence by reducing paws edema, PGE-2, TNF-α, NO production, serum IL-6, IL-1β, and COX-2 immunostaining. Furthermore, it replenished the diminished paw GSH contents and improved the histopathological findings. The best cytotoxic effect of YGME was against human melanoma cell line (A365) and osteosarcoma cell line (MG-63). Moreover, the antimicrobial potential of the extract was evaluated against bacterial and fungal isolates. It showed potent activity against Gram-negative, Gram-positive, and fungal Candida albicans isolates. The promoting multiple effects of YGME could be beneficial in the treatment of different ailments based on its anti-inflammatory, antimicrobial, and cytotoxic effects.
Collapse
|
13
|
Alotaibi B, Mokhtar FA, El-Masry TA, Elekhnawy E, Mostafa SA, Abdelkader DH, Elharty ME, Saleh A, Negm WA. Antimicrobial Activity of Brassica rapa L. Flowers Extract on Gastrointestinal Tract Infections and Antiulcer Potential Against Indomethacin-Induced Gastric Ulcer in Rats Supported by Metabolomics Profiling. J Inflamm Res 2021; 14:7411-7430. [PMID: 35002276 PMCID: PMC8721290 DOI: 10.2147/jir.s345780] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The gastrointestinal tract (GIT) is vulnerable to various diseases. In this study, we explored the therapeutic effects of Brassica rapa flower extract (BRFE) on GIT diseases. METHODS Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was used for phytochemical identification of the compounds in BRFE. The antibacterial activity of BRFE was investigated, and its impact on the bacterial outer and inner membrane permeability and membrane depolarization (using flow cytometry) was studied. In addition, the immunomodulatory activity of BRFE was investigated in vitro on lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs) using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, the anti-inflammatory activity of BRFE was investigated by histopathological examination and qRT-PCR on indomethacin-induced gastric ulcers in rats. RESULTS AND DISCUSSION LC-ESI-MS/MS phytochemically identified 57 compounds in BRFE for the first time. BRFE displayed antibacterial activity against bacteria that cause GIT infections, with increasing outer and inner membrane permeability. However, membrane depolarization was unaffected. BRFE also exhibited immunomodulatory activity in LPS-stimulated PBMCs by attenuating the upregulation of cyclooxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), and nuclear factor kappa B (NF-κB) gene expression compared with untreated LPS-stimulated PBMCs. In addition, BRFE exhibited anti-inflammatory activity required for maintaining gastric mucosa homeostasis by decreasing neutrophil infiltration with subsequent myeloperoxidase production, in addition to an increase in glutathione peroxidase (GPx) activity. Histopathological findings presented the gastroprotective effects of BRFE, as a relatively normal stomach mucosa was found in treated rats. In addition, BRFE modulated the expression of genes encoding IL-10, NF-κB, GPx, and myeloperoxidase (MPO). CONCLUSION BRFE can be a promising source of therapeutic agents for treatment of GIT diseases.
Collapse
Affiliation(s)
- Badriyah Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, ALsalam University, Al Gharbiyah, Egypt
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| | - Sally A Mostafa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, 35511, Egypt
| | - Dalia H Abdelkader
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| | - Mohamed E Elharty
- Study Master in Pharmaceutical Science at the Institute of Research and Environmental Studies, El Sadat City, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| |
Collapse
|
14
|
Sun PY, Wang AS, Zhang ZF, Zhang YL, Zheng X. Network pharmacology-based strategy to investigate the active ingredients and molecular mechanisms of Scutellaria Barbata D. Don against radiation pneumonitis. Medicine (Baltimore) 2021; 100:e27957. [PMID: 34964782 PMCID: PMC8615305 DOI: 10.1097/md.0000000000027957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/05/2021] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Herbal medicines combined with radiotherapy significantly reduced the incidence of radiation pneumonitis (RP), and the Scutellaria barbata D. Don (SBD) is a perennial herb that has been reported to protect against radiation-induced pneumonitis. However, the exact molecular mechanism is not known. The objective of this research was to investigate the against radiation pneumonitis ingredients and their functional mechanisms in SBD. METHODS Based on the network pharmacology approaches, we collected active ingredients and target genes in SBD against RP through Traditional Chinese Medicine System Pharmacology (TCMSP) Database, and the "Herb-Ingredients-Target Genes-Disease" Network was constructed by using of Cytoscape. STRING analysis was performed to reveal the protein-protein interactions, and then we applied enrichment analysis on these target proteins, gene function, and pathways. RESULTS A total of 18 ingredients in SBD regulate 65 RP related target proteins, which show that quercetin, luteolin, baicalein, wogonin may be the key active ingredients, while IL6, AKT1, VEGFA, MMP9, CCL2, prostaglandin-endoperoxide synthase 2 (PTGS2) (cyclooxygenase-2 [COX-2]), CXCL8, IL1B, mitogen-activated protein kinase (MAPK1), and IL10 were identified as critical targets. Besides, the results of Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that predicted targets of SBD are mostly associated with the pathological process of oxidative stress and inflammation. AGE- Receptor of Advanced Glycation Endproducts (RAGE) signaling pathway in diabetic complications, IL-17 signaling pathway, hypoxia-inducible factor-1 (HIF-1) signaling pathway, NF-kappa B signaling pathway might serve as the principal pathways for RP treatment. CONCLUSION In our study, the pharmacological and molecular mechanism of SBD against RP was predicted from a holistic perspective, and the results provided theoretical guidance for researchers to explore the mechanism in further research.
Collapse
Affiliation(s)
- Ping-Yi Sun
- Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Ai-Shuai Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250000, China
| | - Zhen-Fei Zhang
- Heze Hospital of traditional Chinese Medicine, Heze 274000, China
| | - Yan-Li Zhang
- Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Xin Zheng
- Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), Qingdao 266000, China
| |
Collapse
|
15
|
Zhang ZT, Zhang DY, Xie K, Wang CJ, Xu F. Luteolin activates Tregs to promote IL-10 expression and alleviating caspase-11-dependent pyroptosis in sepsis-induced lung injury. Int Immunopharmacol 2021; 99:107914. [PMID: 34246059 DOI: 10.1016/j.intimp.2021.107914] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Acute respiratory distress syndrome (ARDS) is characterized by an excessive pulmonary inflammatory response. Pyroptosis is a newly form of programmed inflammatory cell death that is triggered by inflammatory caspases. Studies have shown that Luteolin has powerful anti-inflammation effects through activating the function of regulatory T cells (Tregs). The study aimed at investigating the effects of Luteolin on CLP-induced ALI. METHODS In our study, we employed the mouse cecal ligation and puncture (CLP) model to explore whether Luteolin contributed to alleviated lung injury in vivo. H&E staining and wet/dry (W/D) weight ratios were used to evaluate the severity of lung injury. The serum and BALF of cytokines were assessed by ELISA. The number of neutrophils in the BALF was counted. Immunohistochemistry of IL-10 and MPO in lung tissue was detected. The ROS level in lung was tested by ROS Assay Kit and expression of Gpx4 in lung tissue was detected by qRT-PCR and Western blotting. The regulatory T cells (Treg) population was analyzed in spleen and Peripheral blood mononuclear cells (PBMCs). The levels of caspase-11 protein, caspase-1 protein, GSDMD protein, IL-1α and IL-1β protein in the lung tissue was evaluated by Western blotting. RESULTS We found Luteolin significantly inhibits inflammation and attenuated CLP-induced lung injury in vivo, and the levels of, caspase-11, caspase-1, GSDMD, IL-1α and IL-1β protein in the lungs of CLP mice decreased significantly after pretreatment with Luteolin. Furthermore, the results showed that Luteolin could increase Treg frequencies and IL-10 levels in serum and BALF of CLP mice. It is noteworthy that depleting Tregs reverse Luteolin ameliorated lung injury, and IL-10 neutralizing antibodies treatment aggravated lung pyroptosis. CONCLUSIONS Our study illustrated that Luteolin contributed to alleviated lung injury, and attenuated caspase-11-dependent pyroptosis in the lung tissue of the CLP-induced ALI mouse model. The mechanisms could be related to regulating the frequency of Tregs and the levels of Treg derived IL-10. Treg cells were show to produce IL-10 and could alleviating caspase-11-dependent lung pyroptosis.
Collapse
Affiliation(s)
- Zheng-Tao Zhang
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan-Ying Zhang
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Xie
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan-Jiang Wang
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Fang Xu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
16
|
Khazdair MR, Saadat S, Aslani MR, Shakeri F, Boskabady MH. Experimental and clinical studies on the effects of Portulaca oleracea L. and its constituents on respiratory, allergic, and immunologic disorders, a review. Phytother Res 2021; 35:6813-6842. [PMID: 34462981 DOI: 10.1002/ptr.7268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
Various pharmacological effects for Portulaca oleracea were shown in previous studies. Therefore, the effects of P. oleracea and its derivatives on respiratory, allergic, and immunologic diseases according to update experimental and clinical studies are provided in this review article. PubMed/Medline, Scopus, and Google Scholar were searched using appropriate keywords until the end of December 2020. The effects of P. oleracea and its constituents such as quercetin and kaempferol on an animal model of asthma were shown. Portulaca oleracea and its constituents also showed therapeutic effects on chronic obstructive pulmonary disease and chronic bronchitis in both experimental and clinical studies. The possible bronchodilatory effect of P. oleracea and its ingredients was also reported. Portulaca oleracea and its constituents showed the preventive effect on lung cancer and a clinical study showed the effect of P. oleracea on patients with lung adenocarcinoma. In addition, a various constituents of P. oleracea including, quercetin and kaempferol showed therapeutic effects on lung infections. This review indicates the therapeutic effect of P. oleracea and its constituents on various lung and allergic disorders but more clinical studies are required to establish the clinical efficacy of this plant and its constituents on lung and allergic disorders.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeideh Saadat
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Reza Aslani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Lung Inflammatory Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Bittencourt-Mernak MI, Pinheiro NM, da Silva RC, Ponci V, Banzato R, Pinheiro AJMCR, Olivo CR, Tibério IFLC, Lima Neto LG, Santana FPR, Lago JHG, Prado CM. Effects of Eugenol and Dehydrodieugenol B from Nectandra leucantha against Lipopolysaccharide (LPS)-Induced Experimental Acute Lung Inflammation. JOURNAL OF NATURAL PRODUCTS 2021; 84:2282-2294. [PMID: 34264084 DOI: 10.1021/acs.jnatprod.1c00386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acute lung injury (ALI) is an important public health problem. The present work investigated whether dehydrodieugenol B treatment, a compound isolated from Brazilian plant Nectandra leucantha (Lauraceae), modulates experimental ALI and compared the observed effects to eugenol. Effects of dehydrodieugenol B in vitro in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were evaluated. The lung and systemic inflammatory profile, lung function, and possible mechanisms involved in BALB/C male mice (6-8 weeks) with ALI induced by LPS instillation (5 mg/kg) was assayed. Dehydrodieugenol B did not affect the cell viability and inhibited the increase in NO release and IL-1β and IL-6 gene expression induced by LPS. In vivo, both compounds reduced lung edema, inflammatory cells, and the IL-6 and IL-1 β levels in bronchoalveolar lavage fluid, as well as reduced inflammatory cell infiltration and those positive to iNOS, MMP-9, and TIMP-1, and reduced the collagen content and the 8-isoprostane expression in lung tissue. Eugenol and dehydrodieugenol B also inhibited the phosphorylation of Jc-Jun-NH2 terminal Kinase (JNK), a signaling protein involved in the MAPKinase pathway. There was no effect of these compounds in lung function. Therefore, eugenol and dehydrodieugenol B ameliorates several features of experimental ALI and could be considered as a pharmacological tool to ameliorate acute lung inflammation.
Collapse
Affiliation(s)
| | - Nathalia M Pinheiro
- Department of Bioscience, Federal University of São Paulo, Santos, SP, 11015-020, Brazil
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, 01246-000, Brazil
| | - Rafael C da Silva
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, 09913-030, Brazil
| | - Vitor Ponci
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, 09913-030, Brazil
| | - Rosana Banzato
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, 01246-000, Brazil
| | - Aruanã J M C R Pinheiro
- Universidade CEUMA, São Luís, MA, 65075-120, Brazil
- Programa de Pós-Graduação da Rede BIONORTE, São Luís, MA, 65055-310, Brazil
| | - Clarice R Olivo
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, 01246-000, Brazil
| | - Iolanda F L C Tibério
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, 01246-000, Brazil
| | - Lídio G Lima Neto
- Universidade CEUMA, São Luís, MA, 65075-120, Brazil
- Programa de Pós-Graduação da Rede BIONORTE, São Luís, MA, 65055-310, Brazil
| | - Fernanda P R Santana
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, 09913-030, Brazil
- Department of Medicine-Nephrology, Federal University of São Paulo, São Paulo, SP, 04023-062, Brazil
| | - João H G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo André, SP, 09210-170, Brazil
| | - Carla M Prado
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, 09913-030, Brazil
- Department of Bioscience, Federal University of São Paulo, Santos, SP, 11015-020, Brazil
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, 01246-000, Brazil
| |
Collapse
|
18
|
Gour A, Manhas D, Bag S, Gorain B, Nandi U. Flavonoids as potential phytotherapeutics to combat cytokine storm in SARS-CoV-2. Phytother Res 2021; 35:4258-4283. [PMID: 33786876 PMCID: PMC8250405 DOI: 10.1002/ptr.7092] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 01/08/2023]
Abstract
Emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, COVID-19, has become the global panic since December 2019, which urges the global healthcare professionals to identify novel therapeutics to counteract this pandemic. So far, there is no approved treatment available to control this public health issue; however, a few antiviral agents and repurposed drugs support the patients under medical supervision by compromising their adverse effects, especially in emergency conditions. Only a few vaccines have been approved to date. In this context, several plant natural products-based research studies are evidenced to play a crucial role in immunomodulation that can prevent the chances of infection as well as combat the cytokine release storm (CRS) generated during COVID-19 infection. In this present review, we have focused on flavonoids, especially epicatechin, epigallocatechin gallate, hesperidin, naringenin, quercetin, rutin, luteolin, baicalin, diosmin, ge nistein, biochanin A, and silymarin, which can counteract the virus-mediated elevated levels of inflammatory cytokines leading to multiple organ failure. In addition, a comprehensive discussion on available in silico, in vitro, and in vivo findings with critical analysis has also been evaluated, which might pave the way for further development of phytotherapeutics to identify the potential lead candidatetoward effective and safe management of the SARS-CoV-2 disease.
Collapse
Affiliation(s)
- Abhishek Gour
- PK‐PD, Toxicology and Formulation DivisionCSIR‐Indian Institute of Integrative MedicineJammuIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadUttar PradeshIndia
| | - Diksha Manhas
- PK‐PD, Toxicology and Formulation DivisionCSIR‐Indian Institute of Integrative MedicineJammuIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadUttar PradeshIndia
| | - Swarnendu Bag
- Proteomics DivisionCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical SciencesTaylor's UniversitySubang JayaMalaysia
| | - Utpal Nandi
- PK‐PD, Toxicology and Formulation DivisionCSIR‐Indian Institute of Integrative MedicineJammuIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadUttar PradeshIndia
| |
Collapse
|
19
|
The Clinical Efficiency and the Mechanism of Sanzi Yangqin Decoction for Chronic Obstructive Pulmonary Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5565562. [PMID: 34221077 PMCID: PMC8213503 DOI: 10.1155/2021/5565562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/24/2021] [Accepted: 05/27/2021] [Indexed: 11/18/2022]
Abstract
This work is carried out to evaluate the clinical efficacy of Sanzi Yangqin decoction (SZYQD) treating chronic obstructive pulmonary disease (COPD) and to analyze its mechanism. The clinical efficacy of SZYQD treating COPD was evaluated by meta-analysis, and its mechanism was analyzed by network pharmacology. Molecular docking validation of the main active compounds and the core targets was performed by AutoDock vina software. A cigarette smoke (CS) and LPS-induced COPD model in ICR mice was constructed to confirm the effects of luteolin on COPD. Results showed that SZYQD has a greater benefit on the total effect (OR = 3.85, 95% CI [3.07, 4.83], P=1) in the trial group compared with the control group. The percentage of forced expiratory volume in one second (FEV1%) (MD = 0.5, 95% CI [0.41, 0.59], P < 0.00001) and first seconds breathing volume percentage of forced vital capacity (FEV1%/FVC) were improved (MD = 5.97, 95% CI [3.23, 8.71], P < 0.00001). There are 27 compounds in SZYQD targeting 104 disease targets related to COPD. PPI network analysis indicated that EGFR, MMP9, PTGS2, MMP2, APP, and ERBB2 may be the core targets for the treatment of COPD. Molecular docking demonstrated that luteolin in SZYQD showed the strongest binding activity to core targets. Experimental results revealed that the expression of COPD-related targets in lung tissue was significantly increased in the COPD group and was improved in the luteolin group. Our data indicated that SZYQD has a curative effect on COPD and luteolin is a candidate compound for COPD treatment by regulating EGFR, MMP9, PTGS2, MMP2, APP, and ERBB2.
Collapse
|
20
|
Hong YH, Song C, Shin KK, Choi E, Hwang SH, Jang YJ, Taamalli A, Yum J, Kim JH, Kim E, Cho JY. Tunisian Olea europaea L. leaf extract suppresses Freund's complete adjuvant-induced rheumatoid arthritis and lipopolysaccharide-induced inflammatory responses. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113602. [PMID: 33246116 DOI: 10.1016/j.jep.2020.113602] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Olea europaea L. (olive) is traditionally used as a folk remedy and functional food in Europe and Mediterranean countries to treat inflammatory diseases. O. europaea contains phenolic compounds and have been reported to prevent cartilage degradation. However, the function and mechanism of O. europaea in rheumatoid arthritis are not known. AIM OF THE STUDY In this study, we aimed to examine anti-inflammatory and anti-arthritic effects of Tunisian O. europaea L. leaf ethanol extract (Oe-EE). MATERIALS AND METHODS To do this, we employed an in vitro macrophage-like cell line and an in vivo Freund's complete adjuvant (AIA)-induced arthritis model. Levels of inflammatory genes and mediators were determined from in vivo samples. RESULTS The Oe-EE clearly reduced the production of the lipopolysaccharide-mediated inflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2), in RAW264.7 cells. The results of HPLC showed that Oe-EE contained many active compounds such as oleuropein and flavonoids. In AIA-treated rats, swelling of paws, pain, and cartilage degeneration were alleviated by oral Oe-EE administration. Correlating with in vitro data, PGE2 production was significantly reduced in paw samples. Furthermore, the molecular mechanism of Oe-EE was dissected, and Oe-EE regulated the gene expression of interleukin (IL)-6, inducible NO synthase (iNOS), and MMPs and inflammatory signaling activation. CONCLUSION Consequently, Oe-EE possesses anti-inflammatory and anti-rheumatic effects and is a potential effective treatment for rheumatoid arthritis.
Collapse
Affiliation(s)
- Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Chaoran Song
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Kon Kuk Shin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Eunju Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - So-Hyeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Young-Jin Jang
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| | - Amani Taamalli
- Laboratory of Olive Biotechnology, Center of Biotechnology-Technopole of Borj-Cedria, BP 901, Hammam-Lif, 2050, Tunisia; Department of Chemistry, College of Sciences, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin, 39524, Saudi Arabia.
| | - Jinwhoa Yum
- National Institute of Biological Resources, Ministry of Environment, Incheon, 22689, Republic of Korea.
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| | - Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
21
|
Wang S, Yang X, Wang W, Zhang Y, Li T, Zhao L, Bao Y, Meng X. Interpretation of the absorbed constituents and pharmacological effect of Spica Schizonepetae extract on non-small cell lung cancer. PLoS One 2021; 16:e0248700. [PMID: 33730076 PMCID: PMC7968677 DOI: 10.1371/journal.pone.0248700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/03/2021] [Indexed: 12/09/2022] Open
Abstract
As a traditional Chinese medicine (TCM) with a usage history of over 2,000 years in China, Spica Schizonepetae possesses definite clinical activity in the treatment of non-small cell lung cancer (NSCLC). However, its active ingredients and mechanism of action remain unclear at present. The further exploration of its active components and underlying mechanism will provide a basis for the development of candidate anti-tumor drugs. Our previous study explored the chemical constituents of Spica Schizonepetae extract (SSE). On this basis, molecular networking technology was applied in analyzing the QTOF-MS/MS data of rat plasma after intragastric administration of SSE using the GNPS database platform. A total of 26 components were found, including 9 proterotype components and 17 metabolites, which revealed the potential active ingredients of SSE. Later, the Lewis lung cancer mouse model was established, and the inhibition rate and histopathological sections were used as the indicators to investigate the anti-tumor effect of SSE, whereas the body weight, survival rate, thymus index and spleen index served as the indicators to explore the pharmacological effects of SSE on improving mouse immunity. The results showed that SSE had comparable anti-tumor efficacy to cisplatin, which enhanced the immunity, improved the quality of life, and extended the survival time of lung cancer mice. Furthermore, human A549 lung tumor cells were selected to explore the mechanism of SSE in treating NSCLC based on cell metabonomics. After data mining by the MPP software, 23 differential endogenous metabolites were identified between SSE and tumor groups. Moreover, results of pathway enrichment analysis using the MetaboAnalyst 4.0 software indicated that these metabolites were mainly enriched in four metabolic pathways (p < 0.1). By adopting the network pharmacology method, the metabolic pathways discovered by cell metabolomics were verified against the ChEMBL, STITCH, UniProt and TCGA databases, and differences in the underlying mechanism between cells and humans were found. It was proved that SSE affected the metabolism of purine, arachidonic acid and histidine to exert the anti-tumor efficacy. Furthermore, the multi-target, multi-pathway, and immunoenhancement mechanism of SSE in anti-tumor treatment was revealed, which provided a scientific basis for new drug development and the rational application of Spica Schizonepetae in clinic.
Collapse
Affiliation(s)
- Shuai Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
| | - Xinxin Yang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
| | - Wei Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yunkun Zhang
- The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tianjiao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
| | - Lin Zhao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yongrui Bao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
- * E-mail: (YB); (XM)
| | - Xiansheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
- * E-mail: (YB); (XM)
| |
Collapse
|
22
|
Khalil A, Tazeddinova D. The upshot of Polyphenolic compounds on immunity amid COVID-19 pandemic and other emerging communicable diseases: An appraisal. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:411-429. [PMID: 33057955 PMCID: PMC7558243 DOI: 10.1007/s13659-020-00271-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/06/2020] [Indexed: 05/15/2023]
Abstract
Polyphenols are a large family of more than 10,000 naturally occurring compounds, which exert countless pharmacological, biological and physiological benefits for human health including several chronic diseases such as cancer, diabetes, cardiovascular, and neurological diseases. Their role in traditional medicine, such as the use of a wide range of remedial herbs (thyme, oregano, rosemary, sage, mint, basil), has been well and long known for treating common respiratory problems and cold infections. This review reports on the most highlighted polyphenolic compounds present in up to date literature and their specific antiviral perceptive properties that might enhance the body immunity facing COVID-19, and other viral infectious diseases. In fact, several studies and clinical trials increasingly proved the role of polyphenols in controlling numerous human pathogens including SARS and MERS, which are quite similar to COVID-19 through the enhancement of host immune response against viral infections by different biological mechanisms. Thus, polyphenols ought to be considered as a potential and valuable source for designing new drugs that could be used effectively in the combat against COVID-19 and other rigorous diseases.
Collapse
Affiliation(s)
- Ayman Khalil
- Department of Food Technology, South Ural State University, Chelyabinsk, Russian Federation
| | - Diana Tazeddinova
- Department of Food Technology, South Ural State University, Chelyabinsk, Russian Federation
| |
Collapse
|
23
|
Lv H, Zhang S, Hao X. Swainsonine protects H9c2 cells against lipopolysaccharide-induced apoptosis and inflammatory injury via down-regulating miR-429. Cell Cycle 2019; 19:207-217. [PMID: 31876239 DOI: 10.1080/15384101.2019.1706902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pediatric myocarditis (PM) is usually related to myocardial dysfunction. Generally, 30% of PM patients will die or undergo heart transplantation. Swainsonine (SW) is a natural alkaloid and an anti-cancer substance. Our goal was to determine the roles of SW in PM in current study. H9c2 cells were pre-treated by lipopolysaccharide (LPS). Viability and apoptosis were evaluated utilizing CCK-8 assay and flow cytometry. Inflammatory cytokines' mRNA expression and production were assessed by western blot and ELISA. Western blot was utilized to distinguish apoptosis and immune-related factors expression. Sequentially, the abovementioned parameters were reassessed when miR-429 was overexpressed. LPS declined viability as well as raised apoptosis and inflammatory injury in H9c2 cells. SW alleviated apoptosis and inflammatory injury induced by LPS. MiR-429 expression was elevated by LPS and suppressed by SW. SW-induced the increasing of viability and the reduction of inflammatory injury were reversed by overexpression of miR-429. Eventually, SW inhibited p38MAPK/NF-κB pathway which activated by LPS via overexpressing miR-429. SW exerted its anti-apoptosis and anti-inflammatory function in LPS-treated H9c2 cells through p38MAPK/NF-κB pathway and down-regulation of miR-429.
Collapse
Affiliation(s)
- Hongyan Lv
- Department of Pediatrics, Jining No.1 People's Hospital, Jining, China
| | - Su Zhang
- Department of Nursing, Jining No.1 People's Hospital, Jining, China
| | - Xiaohong Hao
- Department of Pediatrics, Jining No.1 People's Hospital, Jining, China
| |
Collapse
|
24
|
Zhang Z, Zhang Y, Zhou R. Loss of Annexin A5 expression attenuates the lipopolysaccharide-induced inflammatory response of rat alveolar macrophages. Cell Biol Int 2019; 44:391-401. [PMID: 31502716 DOI: 10.1002/cbin.11239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/08/2019] [Indexed: 12/26/2022]
Abstract
Acute lung injury (ALI) is a common respiratory syndrome accompanied with an inflammation response. Annexin A5 (AnxA5) has anti-thrombotic, anti-apoptotic, and anti-inflammatory properties. The current study aims to explore the potential effect of AnxA5 on lipopolysaccharide (LPS)-induced inflammatory response in alveolar macrophages (AMs). Rat AMs (NR8383) were used in this study, and the cell viabilities at 4, 8, and 16 h after LPS administration with gradient concentrations were determined using cell counting kit-8 assay. Cell apoptosis and expressions of messenger RNAs (mRNAs) and protein were determined by flow cytometry, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot, respectively. We found that LPS suppressed the viability of AMs in a dose-dependent manner, and it elevated the expression of AnxA5 in AMs. Inhibition of AnxA5 improved the cell viability compared with the LPS group and could reduce the apoptosis rate in comparison with LPS treatment. The knockdown of AnxA5 suppressed the expressions of tumor necrosis factor-α (TNF-α), interleukin (IL-1β), and IL-6 at both protein and mRNA levels and regulated the expressions of apoptosis-related molecules (Bax, Bcl-2, and caspase-3). Moreover, the knockdown of AnxA5 improved the expression levels of inhibitory κB (IκB) and nuclear factor E2-related factor 2 (Nrf2) but inhibited the expression of nuclear transcription factor κB (NF-κB), compared with the LPS group. SN50 and ML385 were used to validate this signaling, and the inhibition of AnxA5 suppressed the LPS-induced inflammation, indicating that AnxA5 may be a potential anti-inflammatory target. In addition, NF-κB/Nrf2 signaling pathway may also be involved in the LPS-induced inflammatory response of rat alveolar macrophages.
Collapse
Affiliation(s)
- Zhizhong Zhang
- Department of Emergency, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yuanbo Zhang
- Department of Cardiovascular Medicine, The Seventh Medical Center, General Hospital of the Chinese PLA, Beijing, 100700, China
| | - Rongbin Zhou
- Department of Emergency, The Seventh Medical Center, General Hospital of the Chinese PLA, Beijing, 100700, China
| |
Collapse
|
25
|
Patil KR, Mahajan UB, Unger BS, Goyal SN, Belemkar S, Surana SJ, Ojha S, Patil CR. Animal Models of Inflammation for Screening of Anti-inflammatory Drugs: Implications for the Discovery and Development of Phytopharmaceuticals. Int J Mol Sci 2019; 20:E4367. [PMID: 31491986 PMCID: PMC6770891 DOI: 10.3390/ijms20184367] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation is one of the common events in the majority of acute as well as chronic debilitating diseases and represent a chief cause of morbidity in today's era of modern lifestyle. If unchecked, inflammation leads to development of rheumatoid arthritis, diabetes, cancer, Alzheimer's disease, and atherosclerosis along with pulmonary, autoimmune and cardiovascular diseases. Inflammation involves a complex network of many mediators, a variety of cells, and execution of multiple pathways. Current therapy for inflammatory diseases is limited to the steroidal and non-steroidal anti-inflammatory agents. The chronic use of these drugs is reported to cause severe adverse effects like gastrointestinal, cardiovascular, and renal abnormalities. There is a massive need to explore new anti-inflammatory agents with selective action and lesser toxicity. Plants and isolated phytoconstituents are promising and interesting sources of new anti-inflammatories. However, drug development from natural sources has been linked with hurdles like the complex nature of extracts, difficulties in isolation of pure phytoconstituents, and the yield of isolated compounds in minute quantities that is insufficient for subsequent lead development. Although various in-vivo and in-vitro models for anti-inflammatory drug development are available, judicious selection of appropriate animal models is a vital step in the early phase of drug development. Systematic evaluation of phytoconstituents can facilitate the identification and development of potential anti-inflammatory leads from natural sources. The present review describes various techniques of anti-inflammatory drug screening with its advantages and limitations, elaboration on biological targets of phytoconstituents in inflammation and biomarkers for the prediction of adverse effects of anti-inflammatory drugs. The systematic approach proposed through present article for anti-inflammatory drug screening can rationalize the identification of novel phytoconstituents at the initial stage of drug screening programs.
Collapse
Affiliation(s)
- Kalpesh R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist- Dhule, Maharashtra, India.
| | - Umesh B Mahajan
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist- Dhule, Maharashtra, India
| | - Banappa S Unger
- Pharmacology & Toxicology Division, ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Sameer N Goyal
- SVKM's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sateesh Belemkar
- School of Pharmacy and Technology Management, SVKM's NMIMS, MPTP, Shirpur 425405, Dist- Dhule, Maharashtra, India
| | - Sanjay J Surana
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist- Dhule, Maharashtra, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, PO Box 17666, United Arab Emirates.
| | - Chandragouda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist- Dhule, Maharashtra, India.
| |
Collapse
|
26
|
Huang JJ, Xia J, Huang LL, Li YC. HIF‑1α promotes NLRP3 inflammasome activation in bleomycin‑induced acute lung injury. Mol Med Rep 2019; 20:3424-3432. [PMID: 31432144 DOI: 10.3892/mmr.2019.10575] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 07/12/2019] [Indexed: 11/05/2022] Open
Abstract
The inflammatory response is one of the most important factors in the occurrence and development of acute lung injury (ALI). Hypoxia‑inducible factor‑1α (HIF‑1α) and the NOD‑like receptor 3 (NLRP3) inflammasome have been demonstrated to serve an important role in the pathogenesis of ALI. The objective of the present study was to investigate whether HIF‑1α could regulate activation of the NLRP3 inflammasome and its potential function and specific mechanism in bleomycin (BLM)‑induced ALI. Activation of the NLRP3 inflammasome and secretion of IL‑1β were detected following silencing of HIF‑1α or NF‑κB, respectively, in BLM‑treated A549 and RLE‑6TN cells. The results demonstrated that the NLRP3 inflammasome could be activated after BLM treatment. HIF‑1α and NF‑κB expression significantly increased in the BLM group. The levels of NF‑κB‑ and NLRP3 inflammasome‑associated proteins, including NLRP3, apoptosis‑associated speck‑like protein containing CARD and caspase‑1, markedly decreased after treating A549 and RLE‑6TN cells with HIF‑1α small interfering RNA. Activation of the NLRP3 inflammasome was also inhibited after silencing NF‑κB. Furthermore, the levels of IL‑1β markedly decreased in the cellular culture supernatants following inhibition of HIF‑1α and NF‑κB. Therefore, the present study indicated that HIF‑1α could modulate the activation of the NLRP3 inflammasome and the secretion of IL‑1β through NF‑κB signaling in BLM‑induced ALI. The current results improve understanding of the mechanism of ALI and may provide new ideas for identifying therapeutic targets of ALI.
Collapse
Affiliation(s)
- Jun-Jun Huang
- Department of Geriatric Rehabilitation, Geriatric Rehabilitation Hospital of Nantong, Branch of Nantong University's Affiliated Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Jie Xia
- Department of Gastroenterology, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213164, P.R. China
| | - Li-Li Huang
- Department of Geriatric Rehabilitation, Geriatric Rehabilitation Hospital of Nantong, Branch of Nantong University's Affiliated Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Ya-Chun Li
- Department of Anesthesiology, The Central Hospital of Songjiang, Songjiang Branch of Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai 201600, P.R. China
| |
Collapse
|
27
|
Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:342-358. [PMID: 29801717 DOI: 10.1016/j.jep.2018.05.019] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Luteolin (3', 4', 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using various models and exhibited anti-inflammatory activity. AIM OF THE REVIEW This paper uses recent research findings with a broad range of study models to describe the anti-inflammatory activity of luteolin, particularly its mechanisms at the molecular level; provide guidance for future research; and evaluate the feasibility of developing luteolin into an anti-inflammatory drug. MATERIALS AND METHODS We summarize reports about the anti-inflammatory activity of luteolin published since 2009, which we found in MEDLINE/PubMed, Scopus, Web of Knowledge, and Google Scholar. To acquire broad information, we extended our search to online FDA documents. RESULTS Luteolin is a flavonoid commonly found in medicinal plants and has strong anti-inflammatory activity in vitro and in vivo. Some of its derivatives, such as luteolin-7-O-glucoside, have also shown anti-inflammatory activity. The action mechanism of luteolin varies, but Src in the nuclear factor (NF)-κB pathway, MAPK in the activator protein (AP)- 1 pathway, and SOCS3 in the signal transducer and activator of transcription 3 (STAT3) pathway are its major target transcription factors. A clinical trial with a formulation containing luteolin showed excellent therapeutic effect against inflammation-associated diseases. CONCLUSION In silico, in vitro, in vivo, and clinical studies strongly suggest that the major pharmacological mechanism of luteolin is its anti-inflammatory activity, which derives from its regulation of transcription factors such as STAT3, NF-κB, and AP-1. Much work remains to ensure the safety, quality, and efficacy of luteolin before it can be used to treat inflammation-related diseases in humans.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
28
|
Yang SC, Chen PJ, Chang SH, Weng YT, Chang FR, Chang KY, Chen CY, Kao TI, Hwang TL. Luteolin attenuates neutrophilic oxidative stress and inflammatory arthritis by inhibiting Raf1 activity. Biochem Pharmacol 2018; 154:384-396. [PMID: 29883707 DOI: 10.1016/j.bcp.2018.06.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/04/2018] [Indexed: 11/30/2022]
Abstract
Neutrophils play a significant role in inflammatory tissue injury. Activated neutrophils produce reactive oxygen species (ROS), release proteases, and form neutrophil extracellular traps (NETs), significantly affecting the pathogenesis of inflammatory arthritis. We examined the therapeutic effects of luteolin, a flavone found in many plants, in neutrophilic inflammation and on acute inflammatory arthritis. Luteolin significantly inhibited superoxide anion generation, ROS production, and NET formation in human neutrophils. The increase in elastase release, CD11b expression, and chemotaxis was also inhibited by luteolin. Luteolin significantly suppressed phosphorylation of extracellular signal-regulated kinase (Erk) and mitogen-activated protein kinase kinase-1 (MEK-1), but not c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Analysis of the molecular mechanism further revealed that luteolin acts as a Raf-1 inhibitor. In mice with complete Freund's adjuvant-induced arthritis, luteolin ameliorated neutrophil infiltration as well as the thickness of paw edema and ROS production. In conclusion, in addition to its known ROS scavenging effect, this study is the first to provide evidence that luteolin diminishes human neutrophil inflammatory responses by inhibiting Raf1-MEK-1-Erk. Our results focused on the importance of neutrophil activation in inflammatory tissue injury and offer opportunities for the development of luteolin's therapeutic potential to attenuate neutrophilic inflammatory diseases.
Collapse
Affiliation(s)
- Shun-Chin Yang
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan; Graduate Institute of Natural Products and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Po-Jen Chen
- Graduate Institute of Natural Products and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Cosmetic Science, Providence University, Taichung 433, Taiwan
| | - Shih-Hsin Chang
- Graduate Institute of Natural Products and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Yu-Ting Weng
- Graduate Institute of Natural Products and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kuang-Yi Chang
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan
| | - Chun-Yu Chen
- Graduate Institute of Natural Products and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Ting-I Kao
- Graduate Institute of Natural Products and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Division of Chinese Internal Medicine, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan.
| |
Collapse
|
29
|
Almeida VG, Avelar-Freitas BA, Santos MG, Costa LA, Silva TJ, Pereira WF, Amorim MLL, Grael CFF, Gregório LE, Rocha-Vieira E, Brito-Melo GEA. Inhibitory effect of the Pseudobrickellia brasiliensis (Spreng) R.M. King & H. Rob. aqueous extract on human lymphocyte proliferation and IFN-γ and TNF-α production in vitro. ACTA ACUST UNITED AC 2017; 50:e5163. [PMID: 28700031 PMCID: PMC5505519 DOI: 10.1590/1414-431x20175163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/10/2017] [Indexed: 12/25/2022]
Abstract
Pseudobrickellia brasiliensis (Asteraceae) is a plant commonly known as arnica-do-campo and belongs to the native flora of the Brazilian Cerrado. The alcoholic extract of the plant has been used as an anti-inflammatory agent in folk medicine, but the biological mechanism of action has not been elucidated. The present study evaluated the composition of P. brasiliensis aqueous extract and its effects on pro-inflammatory cytokine production and lymphocyte proliferation. The extracts were prepared by sequential maceration of P. brasiliensis leaves in ethanol, ethyl acetate, and water. Extract cytotoxicity was evaluated by trypan blue exclusion assay, and apoptosis and necrosis were measured by staining with annexin V-FITC and propidium iodide. The ethanolic (ETA) and acetate (ACE) extracts showed cytotoxic effects. The aqueous extract (AQU) was not cytotoxic. Peripheral blood mononuclear cells stimulated with phorbol myristate acetate and ionomycin and treated with AQU (100 μg/mL) showed reduced interferon (IFN)-γ and tumor necrosis factor (TNF)-α expression. AQU also inhibited lymphocyte proliferative response after nonspecific stimulation with phytohemagglutinin. The aqueous extract was analyzed by liquid chromatography coupled with photodiode array detection and mass spectrometry. Quinic acid and its derivatives 5-caffeoylquinic acid and 3,5-dicaffeoylquinic acid, as well as the flavonoids luteolin and luteolin dihexoside, were detected. All these compounds are known to exhibit anti-inflammatory activity. Taken together, these findings demonstrate that P. brasiliensis aqueous extract can inhibit the pro-inflammatory cytokine production and proliferative response of lymphocytes. These effects may be related to the presence of chemical substances with anti-inflammatory actions previously reported in scientific literature.
Collapse
Affiliation(s)
- V G Almeida
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil.,Laboratório de Imunologia, Centro Integrado de Pós-Graduação e Pesquisa em Saúde do Vale do Jequitinhonha, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - B A Avelar-Freitas
- Laboratório de Imunologia, Centro Integrado de Pós-Graduação e Pesquisa em Saúde do Vale do Jequitinhonha, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - M G Santos
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil.,Laboratório de Imunologia, Centro Integrado de Pós-Graduação e Pesquisa em Saúde do Vale do Jequitinhonha, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - L A Costa
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil.,Laboratório de Imunologia, Centro Integrado de Pós-Graduação e Pesquisa em Saúde do Vale do Jequitinhonha, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - T J Silva
- Laboratório de Imunologia, Centro Integrado de Pós-Graduação e Pesquisa em Saúde do Vale do Jequitinhonha, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - W F Pereira
- Laboratório de Imunologia, Centro Integrado de Pós-Graduação e Pesquisa em Saúde do Vale do Jequitinhonha, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - M L L Amorim
- Laboratório de Farmacognosia, Departamento de Farmácia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - C F F Grael
- Laboratório de Farmacognosia, Departamento de Farmácia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - L E Gregório
- Laboratório de Insumos Naturais e Sintéticos, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brasil
| | - E Rocha-Vieira
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil.,Laboratório de Imunologia, Centro Integrado de Pós-Graduação e Pesquisa em Saúde do Vale do Jequitinhonha, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - G E A Brito-Melo
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil.,Laboratório de Imunologia, Centro Integrado de Pós-Graduação e Pesquisa em Saúde do Vale do Jequitinhonha, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| |
Collapse
|
30
|
Ho YC, Lee SS, Yang ML, Huang-Liu R, Lee CY, Li YC, Kuan YH. Zerumbone reduced the inflammatory response of acute lung injury in endotoxin-treated mice via Akt-NFκB pathway. Chem Biol Interact 2017; 271:9-14. [PMID: 28442377 DOI: 10.1016/j.cbi.2017.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/31/2017] [Accepted: 04/20/2017] [Indexed: 01/03/2023]
Abstract
Zerumbone, a cyclic eleven-membered sesquiterpene, is the major component of the essential oil isolated from the wild ginger, Zingiber zerumbet. There are several beneficial pharmacological activities of zerumbone including anti-inflammatory, antioxidant, and anticancer activities. Acute lung injury (ALI) is an acute pulmonary inflammatory disorder with high morbidity and mortality rate. In present study, we aimed to investigate the protective effects and mechanisms of zerumbone on endotoxin, lipopolysaccharide (LPS)-induced ALI. Mice were pretreated with zerumbone at various concentrations for 30 min followed by intratracheal administration of LPS for 6 h. Pretreatment with zerumbone not only reduced leukocytes infiltration into the alveolar space but also inhibited lung edema in LPS-induced ALI. Decreased secretion of proinflammatory cytokines such as TNFα and IL-6 caused by LPS were reversed by zerumbone. LPS-induced expressions of proinflammatory mediators, iNOS and COX-2, were inhibited by zerumbone. In addition, NFκB activation and Akt phosphorylation were inhibited by zerumbone in LPS-induced ALI. All these results suggested that the protective mechanisms of zerumbone on endotoxin-induced ALI were via inhibition of Akt-NFκB activation.
Collapse
Affiliation(s)
- Yung-Chyuan Ho
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Rosa Huang-Liu
- School of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Ying Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Ching Li
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
31
|
Abstract
The objective of the study is to investigate the role and specific molecular mechanism of interleukin-33 (IL-33) acted on acute lung injury (ALI) induced by lipopolysaccharide (LPS). C57BL/6 mice intratracheally instilled LPS to induce ALI model. The mice were randomly divided into three groups: the sham operation group (Sham), ALI group (ALI), and pretreatment with IL-33 of ALI group (IL-33). By observing the survival rate, inflammatory cytokines in bronchoalveolar lavage fluid (BALF), myeloperoxidase (MPO) levels in lung tissue, lung histopathological examination, pulmonary capillary leakage, lung wet/dry (W/D) weight ratio, fibrosis levels in lung tissue, and associated pathways changes among the different groups, comparing to explore the role of IL-33 pretreatment on ALI mice and the possible molecular mechanisms. IL-33 pretreatment overall decreased the survival rate of ALI mice. IL-33 aggravated inflammation reaction showing as increasing the release of proinflammatory cytokines TNF-α and IL-6, increasing MPO levels in lung tissue, and aggravating lung pathology injury. In addition, IL-33 pretreatment further destroyed adherens junctions (AJs) by increasing the phosphorylation of VE-cadherin, resulting in the concomitantly pulmonary capillary barrier damage and pulmonary edema. During this process, mitogen-activated protein kinase (MAPK) pathways further activated. However, IL-33 pretreatment had no significant impact on collagen content of lung tissue. Our results indicated that IL-33 aggravated inflammatory reaction and increased microvascular permeability, but had little effect on pulmonary fibrosis, associated with the further activation of MAPK family proteins in the process. To sum up, IL-33 decreased survival rate and aggravated LPS-induced ALI.
Collapse
|
32
|
Sun HL, Peng ML, Lee SS, Chen CJ, Chen WY, Yang ML, Kuan YH. Endotoxin-induced acute lung injury in mice is protected by 5,7-dihydroxy-8-methoxyflavone via inhibition of oxidative stress and HIF-1α. ENVIRONMENTAL TOXICOLOGY 2016; 31:1700-1709. [PMID: 26213241 DOI: 10.1002/tox.22172] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/05/2015] [Accepted: 07/06/2015] [Indexed: 01/13/2025]
Abstract
Up to date, the morbidity and mortality rates of acute lung injury (ALI) still rank high among clinical illnesses. Endotoxin, also called lipopolysaccharide (LPS), induced sepsis is the major cause for ALI. Beneficial biological effects, such as antioxidation, anti-inflammation, and neuroprotection was found to express by 5,7-dihydroxy-8-methoxyflavone (DHMF). The purpose of present study was to investigate the potential protective effects of DHMF and the possibile mechanisms involved in LPS-induced ALI. In our experimental model, ALI was induced in mice by intratracheal injection of LPS, and DHMF at various concentrations was injected intraperitoneally for 30 min prior to LPS administration. Pretreatment with DHMF inhibited not only the histolopatholgical changes occurred in lungs but also leukocytes infiltration in LPS-induced ALI. Decreased activity of antioxidative enzymes (AOE) such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) caused by LPS was reversed by DHMF. LPS-induced lipid peroxidation HIF-1α accumulation, NF-κB phosphorylation, and IκBα degradation were all inhibited by DHMF. In addition, LPS-induced expression of proinflammatory mediators such as TNF-α and IL-1β were also inhibited by 5,7-dihydroxy-8-methoxyflavone. These results suggested that the protective mechanisms of DHMF on endotoxin-induced ALI might be via up-regulation of antioxidative enzymes, inhibition of NFκB phosphorylation, and HIF-1α accumulation. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1700-1709, 2016.
Collapse
Affiliation(s)
- Hai-Lun Sun
- Department of Pediatric, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Mei-Ling Peng
- Department of Ophthalmology, School of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
33
|
He W, Jiang J, Yu ZQ, Zhou JH. Novel 5-Hydroxy, 5-Substituted Benzenesulfonamide Pyrimidine-2,4,6-Triones Attenuate Lipopolysaccharide-Induced Acute Lung Injury via Inhibition of the Gelatinases, MMP-2 and MMP-9. Drug Dev Res 2016; 77:251-7. [PMID: 27455162 DOI: 10.1002/ddr.21319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/16/2016] [Indexed: 01/03/2023]
Abstract
Preclinical Research A novel series of ten 5-hydroxy, 5-substituted benzene sulfonamide pyrimidine-2,4,6-triones were synthesized and their structures ascertained using (1) H-NMR, (13) C-NMR, mass and elemental analysis. These compounds were subsequently tested for inhibition of MMP-2 and MMP-9 where most exhibited activity with compound 5i being the most potent against MMP-2 and MMP-9 with IC50 values of 2.35 nM and 8.24 nM, respectively. Compound 5i was further analyzed in a mouse LPS-induced acute lung injury model where it had protective activity. Histochemical studies indicated that 5i improved the vascular integrity of the lung. Drug Dev Res 77 : 251-257, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wei He
- Department of Cardiothoracic Surgery, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Jie Jiang
- Department of Cardiothoracic Surgery, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Ze-Qian Yu
- Department of Hepatobiliary Surgery, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Jia-Hua Zhou
- Department of Hepatobiliary Surgery, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| |
Collapse
|
34
|
Huang YC, Horng CT, Chen ST, Lee SS, Yang ML, Lee CY, Kuo WH, Yeh CH, Kuan YH. Rutin improves endotoxin-induced acute lung injury via inhibition of iNOS and VCAM-1 expression. ENVIRONMENTAL TOXICOLOGY 2016; 31:185-191. [PMID: 25080890 DOI: 10.1002/tox.22033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/14/2014] [Accepted: 07/18/2014] [Indexed: 06/03/2023]
Abstract
Endotoxins exist anywhere including in water pools, dust, humidifier systems, and machining fluids. The major causal factor is endotoxins in many serious diseases, such as fever, sepsis, multi-organ failure, meningococcemia, and severe morbidities like neurologic disability, or hearing loss. Endotoxins are also called lipopolysaccharide (LPS) and are important pathogens of acute lung injury (ALI). Rutin has potential beneficial effects including anti-inflammation, antioxidation, anti-hyperlipidemia, and anti-platelet aggregation. Pre-treatment with rutin inhibited LPS-induced neutrophil infiltration in the lungs. LPS-induced expression of vascular cell adhesion molecule (VCAM)-1 and inducible nitric oxide synthase (iNOS) was suppressed by rutin, but there was no influence on expression of intercellular adhesion molecule-1 and cyclooxygenase-2. In addition, activation of the nuclear factor (NF)κB was reduced by rutin. Furthermore, we found that the inhibitory concentration of rutin on expression of VCAM-1 and iNOS was similar to NFκB activation. In conclusion, rutin is a potential protective agent for ALI via inhibition of neutrophil infiltration, expression of VCAM-1 and iNOS, and NFκB activation.
Collapse
Affiliation(s)
- Yi-Chun Huang
- School of Health, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Chi-Ting Horng
- Medical Education Center, Kaohsiung Armed Forced General Hospital, Kaohsiung, Taiwan
- Department of Ophthalmology, Kaohsiung Armed Forced General Hospital, Kaohsiung, Taiwan
| | - Shyan-Tarng Chen
- School of Optometry, Chung Shan Medical University, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Ying Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wu-Hsien Kuo
- Department of Medicine, Kaohsiung Armed Forced General Hospital,Taiwan, Kaohsiung, Taiwan
- Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Chung-Hsin Yeh
- Department of Neurology, Show Chwan Memorial Hospital, Changhua, Taiwan
- Department of Nursing, College of Medicine & Nursing, Hung Kuang University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
35
|
Yeh YC, Yang CP, Lee SS, Horng CT, Chen HY, Cho TH, Yang ML, Lee CY, Li MC, Kuan YH. Acute lung injury induced by lipopolysaccharide is inhibited by wogonin in mice via reduction of Akt phosphorylation and RhoA activation. J Pharm Pharmacol 2016; 68:257-63. [DOI: 10.1111/jphp.12500] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/28/2015] [Indexed: 12/24/2022]
Abstract
Abstract
Objectives
Neutrophil infiltration into the lung is the critical characteristic of acute lung injury (ALI), which is a clinical state with acute inflammatory syndrome. Up to now, there is no effective medicine for ALI. Wogonin has been shown to posses serval biological activities including anti-inflammation, anti-oxidant and anti-carcinoma.
Methods
Acute lung injury was induced by intratracheal injection of LPS, and wogonin at various concentrations was injected intraperitoneally 30 min prior to LPS. Contents of myeloperoxidase (MPO) and expression of chemokines and adhesion molecules were determined by commercially and ELISA assay kits, respectively. Akt phosphorylation and RhoA activation were measured by western blot and RhoA pull-down activation assay, respectively.
Key finding
Neutrophil infiltration was reduced by wogonin in a concentration-dependent manner in the LPS-induced ALI mice model. LPS-induced proinflammatory cytokines and adhesion molecules were inhibited by wogonin in bronchoalveolar lavage fluid (BALF) with LPS-induced ALI. Furthermore, wogonin suppressed Akt phosphorylation and RhoA activation in lungs in LPS-induced ALI. The similar parallel trend was observed as wogonin reduced LPS-induced neutrophils infiltration, proinflammatory cytokines generation, adhesion molecules expression, Akt phosphorylation, and RhoA activation.
Summary
These results suggested that the effects of wogonin in LPS-induced ALI were induced by inhibition of Akt phosphorylation and RhoA activation.
Collapse
Affiliation(s)
- Yen-Cheng Yeh
- Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ching-Ping Yang
- Department of Biotechology and Laboratory Science in Medicine, Yang-Ming University, Taipei, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Chi-Ting Horng
- Medical Education Center, Kaohsiung Armed Forces General Hospitl, Kaohsiung City, Taiwan
- Institute of Biochemistry and Biotechnology, Chung Shang Medical University, Taichung, Taiwan
| | - Hung-Yi Chen
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Ta-Hsiung Cho
- Department of Optometry, Shu Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Ying Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University,, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Miao-Cing Li
- Department of Pharmacology, School of Medicine, Chung Shan Medical University,, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University,, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
36
|
Yeh CH, Shih HC, Hong HM, Lee SS, Yang ML, Chen CJ, Kuan YH. Protective effect of wogonin on proinflammatory cytokine generation via Jak1/3-STAT1/3 pathway in lipopolysaccharide stimulated BV2 microglial cells. Toxicol Ind Health 2015; 31:960-966. [PMID: 23592745 DOI: 10.1177/0748233713485886] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Wogonin is a flavonoid compound which exhibits antioxidation, anti-inflammation, neuroprotection, and antitumorgenesis functions. However, the mechanism of how wogonin reduces proinflammatory cytokine generation in activated microglia is unclear. At present, we found wogonin inhibited lipopolysaccharide (LPS)-/interferon-γ (INF-γ)-induced generation of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Wogonin exhibited parallel inhibition on LPS-/INF-γ-induced expression of IL-6 and TNF-α messenger RNA at the same concentration range. LPS-/INF-γ-induced phosphorylation of signal transduction and transcription 1 and 3 (STAT1/3) were also inhibited by wogonin. Although wogonin expressed only weak inhibitory effect on LPS-/INF-γ-induced phosphorylation of Janus kinase-2 (Jak-2) and tyrosine kinase (Tyk)-2, it significantly attenuated the phosphorylation of Jak-1 and Jak-3. These results indicated that the blockade of IL-6 and TNF-α production by wogonin in LPS-/INF-γ-stimulated BV2 microglial cells was attributed mainly to the interference in Jak-1/-3-STAT1/3 signaling pathway.
Collapse
Affiliation(s)
- Chung-Hsin Yeh
- Department of Neurology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Hung-Che Shih
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taiwan Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Mei Hong
- School of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan Center for General Education, Tunghai University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taiwan Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
37
|
Heat-Processed Scutellariae Radix Enhances Anti-Inflammatory Effect against Lipopolysaccharide-Induced Acute Lung Injury in Mice via NF- κ B Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:456846. [PMID: 26167192 PMCID: PMC4488546 DOI: 10.1155/2015/456846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/07/2015] [Accepted: 05/28/2015] [Indexed: 01/24/2023]
Abstract
The present study was conducted to examine whether heat-processed Scutellariae Radix has an ameliorative effect on lipopolysaccharide- (LPS-) induced acute lung injury in mice. The effects of Scutellariae Radix heat-processed at 160°C (HSR) were compared with those of nonheat-processed Scutellariae Radix (NSR). The LPS-treated group displayed a markedly decreased body weight and significantly increased lung weight; however, the administration of NSR or HSR improved both the body and lung weights. The increased oxidative stress and inflammatory biomarker levels in the serum and lung were reduced significantly with HSR. The reduced superoxide dismutase and catalase increased significantly by both NSR and HSR. Also, the dysregulated oxidative stress and inflammation were significantly ameliorated by NSR and HSR. The expression of inflammatory mediators and cytokines by nuclear factor-kappa B activation was modulated through inhibition of a nuclear factor kappa Bα degradation. Also, lung histological change was markedly suppressed by HSR rather than NSR. Overall, the ameliorative effects of HSR were superior to those when being nonheat-processed. The representative flavonoid contents of Scutellariae Radix that include baicalin, baicalein, and wogonin were greater by heat process. These data reveal heat-processed Scutellariae Radix may be a critical factor involved in the improvement of lung disorders caused by LPS.
Collapse
|
38
|
A Standardized Traditional Chinese Medicine Preparation Named Yejuhua Capsule Ameliorates Lipopolysaccharide-Induced Acute Lung Injury in Mice via Downregulating Toll-Like Receptor 4/Nuclear Factor-κB. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:264612. [PMID: 25878714 PMCID: PMC4386677 DOI: 10.1155/2015/264612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/11/2023]
Abstract
A standardized traditional Chinese medicine preparation named Yejuhua capsule (YJH) has been clinically used in treatments of various acute respiratory system diseases with high efficacy and low toxicity. In this study, we were aiming to evaluate potential effects and to elucidate underlying mechanisms of YJH against lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in mice. Moreover, the chemical analysis and chromatographic fingerprint study were performed for quality evaluation and control of this drug. ALI was induced by intratracheal instillation of LPS (5 mg/kg) into the lung in mice and dexamethasone (5 mg/kg, p.o.) was used as a positive control drug. Results demonstrated that pretreatments with YJH (85, 170, and 340 mg/kg, p.o.) effectively abated LPS-induced histopathologic changes, attenuated the vascular permeability enhancement and edema, inhibited inflammatory cells migrations and protein leakages, suppressed the ability of myeloperoxidase, declined proinflammatory cytokines productions, and downregulated activations of nuclear factor-κB (NF-κB) and expressions of toll-like receptor 4 (TLR4). This study demonstrated that YJH exerted potential protective effects against LPS-induced ALI in mice and supported that YJH was a potential therapeutic drug for ALI in clinic. And its mechanisms were at least partially associated with downregulations of TLR4/NF-κB pathways.
Collapse
|
39
|
Yeh CH, Yang ML, Lee CY, Yang CP, Li YC, Chen CJ, Kuan YH. Wogonin attenuates endotoxin-induced prostaglandin E2 and nitric oxide production via Src-ERK1/2-NFκB pathway in BV-2 microglial cells. ENVIRONMENTAL TOXICOLOGY 2014; 29:1162-1170. [PMID: 23362215 DOI: 10.1002/tox.21847] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/25/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
Microglia are the major component of intrinsic brain immune system in neuroinflammation. Although wogonin expresses anti-inflammatory function in microglia, little is known about the molecular mechanisms of the protective effect of wogonin against microglia activation. The aim of this study was to evaluate how wogonin exerts its anti-inflammatory function in BV2 microglial cells after LPS/INFγ administration. Wogonin not only inhibited LPS/ INFγ-induced PGE2 and NO production without affecting cell viability but also exhibited parallel inhibition on LPS/INFγ-induced expression of iNOS and COX-2 in the same concentration range. While LPS/INFγ-induced expression of P-p65 and P-IκB was inhibited by wogonin-only weak inhibition on P-p38 and P-JNK were observed, whereas it significantly attenuated the P-ERK1/2 and its upstream activators P-MEK1/2 and P-Src in a parallel concentration-dependent manner. These results indicated that the blockade of PGE2 and NO production by wogonin in LPS/INFγ-stimulated BV2 cells is attributed mainly to interference in the Src-MEK1/2-ERK1/2-NFκB-signaling pathway.
Collapse
Affiliation(s)
- Chung-Hsin Yeh
- Department of Neurology, Show Chwan Memorial Hospital, Changhua, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
40
|
Chen WY, Huang YC, Yang ML, Lee CY, Chen CJ, Yeh CH, Pan PH, Horng CT, Kuo WH, Kuan YH. Protective effect of rutin on LPS-induced acute lung injury via down-regulation of MIP-2 expression and MMP-9 activation through inhibition of Akt phosphorylation. Int Immunopharmacol 2014; 22:409-13. [PMID: 25091621 DOI: 10.1016/j.intimp.2014.07.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 12/13/2022]
|
41
|
Rabdosia japonica var. glaucocalyx Flavonoids Fraction Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:894515. [PMID: 25013450 PMCID: PMC4074978 DOI: 10.1155/2014/894515] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/18/2014] [Indexed: 11/17/2022]
Abstract
Rabdosia japonica var. glaucocalyx (Maxim.) Hara, belonging to the Labiatae family, is widely used as an anti-inflammatory and antitumor drug for the treatment of different inflammations and cancers. Aim of the Study. To investigate therapeutic effects and possible mechanism of the flavonoids fraction of Rabdosia japonica var. glaucocalyx (Maxim.) Hara (RJFs) in acute lung injury (ALI) mice induced by lipopolysaccharide (LPS). Materials and Methods. Mice were orally administrated with RJFs (6.4, 12.8, and 25.6 mg/kg) per day for 7 days, consecutively, before LPS challenge. Lung specimens and the bronchoalveolar lavage fluid (BALF) were isolated for histopathological examinations and biochemical analysis. The level of complement 3 (C3) in serum was quantified by a sandwich ELISA kit. Results. RJFs significantly attenuated LPS-induced ALI via reducing productions of the level of inflammatory mediators (TNF- α , IL-6, and IL-1 β ), and significantly reduced complement deposition with decreasing the level of C3 in serum, which was exhibited together with the lowered myeloperoxidase (MPO) activity and nitric oxide (NO) and protein concentration in BALF. Conclusions. RJFs significantly attenuate LPS-induced ALI via reducing productions of proinflammatory mediators, decreasing the level of complement, and reducing radicals.
Collapse
|
42
|
Yeh CH, Yang JJ, Yang ML, Li YC, Kuan YH. Rutin decreases lipopolysaccharide-induced acute lung injury via inhibition of oxidative stress and the MAPK-NF-κB pathway. Free Radic Biol Med 2014; 69:249-57. [PMID: 24486341 DOI: 10.1016/j.freeradbiomed.2014.01.028] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 01/17/2014] [Accepted: 01/22/2014] [Indexed: 12/17/2022]
Abstract
Acute lung injury (ALI) is a serious disease with unacceptably high mortality and morbidity rates. Up to now, no effective therapeutic strategy for ALI has been established. Rutin, quercetin-3-rhamnosyl glucoside, expresses a wide range of biological activities and pharmacological effects, such as anti-inflammatory, antihypertensive, anticarcinogenic, vasoprotective, and cardioprotective activities. Pretreatment with rutin inhibited not only histopathological changes in lung tissues but also infiltration of polymorphonuclear granulocytes into bronchoalveolar lavage fluid in lipopolysaccharide (LPS)-induced ALI. In addition, LPS-induced inflammatory responses, including increased secretion of proinflammatory cytokines and lipid peroxidation, were inhibited by rutin in a concentration-dependent manner. Furthermore, rutin suppressed phosphorylation of NF-κB and MAPK and degradation of IκB, an NF-κB inhibitor. Decreased activities of antioxidative enzymes such as superoxide dismutase, catalase, glutathione peroxidase, and heme oxygenase-1 caused by LPS were reversed by rutin. At the same time, we found that ALI amelioration by chelation of extracellular metal ions with rutin is more efficacious than with deferoxamine. These results indicate that the protective mechanism of rutin is through inhibition of MAPK-NF-κB activation and upregulation of antioxidative enzymes.
Collapse
Affiliation(s)
- Chung-Hsin Yeh
- Department of Neurology, Show Chwan Memorial Hospital, Changhua, Taiwan; Department of Nursing, College of Medicine & Nursing, Hung Kuang University, Taichung, Taiwan
| | - Jiann-Jou Yang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Ching Li
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
43
|
Ding Y, Shi X, Shuai X, Xu Y, Liu Y, Liang X, Wei D, Su D. Luteolin prevents uric acid-induced pancreatic β-cell dysfunction. J Biomed Res 2014; 28:292-8. [PMID: 25050113 PMCID: PMC4102843 DOI: 10.7555/jbr.28.20130170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/07/2013] [Accepted: 01/16/2014] [Indexed: 11/24/2022] Open
Abstract
Elevated uric acid causes direct injury to pancreatic β-cells. In this study, we examined the effects of luteolin, an important antioxidant, on uric acid-induced β-cell dysfunction. We first evaluated the effect of luteolin on nitric oxide (NO) formation in uric acid-stimulated Min6 cells using the Griess method. Next, we performed transient transfection and reporter assays to measure transcriptional activity of nuclear factor (NF)-κB. Western blotting assays were also performed to assess the effect of luteolin on the expression of MafA and inducible NO synthase (iNOS) in uric acid-treated cells. Finally, we evaluated the effect of luteolin on uric acid-induced inhibition of glucose-stimulated insulin secretion (GSIS) in Min6 cells and freshly isolated mouse pancreatic islets. We found that luteolin significantly inhibited uric acid-induced NO production, which was well correlated with reduced expression of iNOS mRNA and protein. Furthermore, decreased activity of NF-κB was implicated in inhibition by luteolin of increased iNOS expression induced by uric acid. Besides, luteolin significantly increased MafA expression in Min6 cells exposed to uric acid, which was reversed by overexpression of iNOS. Moreover, luteolin prevented uric acid-induced inhibition of GSIS in both Min6 cells and mouse islets. In conclusion, luteolin protects pancreatic β-cells from uric acid-induced dysfunction and may confer benefit on the protection of pancreatic β-cells in hyperuricemia-associated diabetes.
Collapse
Affiliation(s)
- Ying Ding
- Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuhui Shi
- Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuanyu Shuai
- Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuemei Xu
- Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yun Liu
- Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiubin Liang
- Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dong Wei
- Department of Endocrinology, the Second People's Hospital of Chengdu, Sichuan 610017, China
| | - Dongming Su
- Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, Jiangsu 210029, China. ; Center of Cellular Therapy, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
44
|
Kuan YH, Huang FM, Lee SS, Li YC, Chang YC. Bisgma stimulates prostaglandin E2 production in macrophages via cyclooxygenase-2, cytosolic phospholipase A2, and mitogen-activated protein kinases family. PLoS One 2013; 8:e82942. [PMID: 24376609 PMCID: PMC3871582 DOI: 10.1371/journal.pone.0082942] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/07/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Bisphenol A-glycidyl-methacrylate (BisGMA) employs as a monomer in dental resins. The leakage of BisGMA from composite resins into the peripheral environment can result in inflammation via macrophage activation. Prostaglandin E2 (PGE2) is a key regulator of immunopathology in inflammatory reactions. Little is known about the mechanisms of BisGMA-induced PGE2 expression in macrophage. The aim of this study was to evaluate the signal transduction pathways of BisGMA-induced PGE2 production in murine RAW264.7 macrophages. METHODOLOGY/PRINCIPAL FINDINGS Herein, we demonstrate that BisGMA can exhibit cytotoxicity to RAW264.7 macrophages in a dose- and time-dependent manner (p<0.05). In addition, PGE2 production, COX-2 expression, and cPLA2 phosphorylation were induced by BisGMA on RAW264.7 macrophages in a dose- and time-dependent manner (p<0.05). Moreover, BisGMA could induce the phosphorylation of ERK1/2 pathway (MEK1/2, ERK1/2, and Elk), p38 pathway (MEK3/6, p38, and MAPKAPK2), and JNK pathway (MEK4, JNK, and c-Jun) in a dose- and time-dependent manner (p<0.05). Pretreatment with AACOCF3, U0126, SB203580, and SP600125 significantly diminished the phosphorylation of cPLA2, ERK1/2, p38, and JNK stimulated by BisGMA, respectively (p<0.05). BisGMA-induced cytotoxicity, cPLA2 phosphorylation, PGE2 generation, and caspases activation were reduced by AACOCF3, U0126, SB203580, and SP600125, respectively (p<0.05). CONCLUSIONS These results suggest that BisGMA induced-PGE2 production may be via COX-2 expression, cPLA2 phosphorylation, and the phosphorylation of MAPK family. Cytotoxicity mediated by BisGMA may be due to caspases activation through the phosphorylation of cPLA2 and MAPKs family.
Collapse
Affiliation(s)
- Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan
| | - Fu-Mei Huang
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Ching Li
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chao Chang
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
45
|
Cornélio Favarin D, Robison de Oliveira J, Jose Freire de Oliveira C, de Paula Rogerio A. Potential effects of medicinal plants and secondary metabolites on acute lung injury. BIOMED RESEARCH INTERNATIONAL 2013; 2013:576479. [PMID: 24224172 PMCID: PMC3810192 DOI: 10.1155/2013/576479] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/16/2013] [Accepted: 08/23/2013] [Indexed: 12/20/2022]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome that causes high morbidity and mortality worldwide. ALI is characterized by increased permeability of the alveolar-capillary membrane, edema, uncontrolled neutrophils migration to the lung, and diffuse alveolar damage, leading to acute hypoxemic respiratory failure. Although corticosteroids remain the mainstay of ALI treatment, they cause significant side effects. Agents of natural origin, such as medicinal plants and their secondary metabolites, mainly those with very few side effects, could be excellent alternatives for ALI treatment. Several studies, including our own, have demonstrated that plant extracts and/or secondary metabolites isolated from them reduce most ALI phenotypes in experimental animal models, including neutrophil recruitment to the lung, the production of pro-inflammatory cytokines and chemokines, edema, and vascular permeability. In this review, we summarized these studies and described the anti-inflammatory activity of various plant extracts, such as Ginkgo biloba and Punica granatum, and such secondary metabolites as epigallocatechin-3-gallate and ellagic acid. In addition, we highlight the medical potential of these extracts and plant-derived compounds for treating of ALI.
Collapse
Affiliation(s)
- Daniely Cornélio Favarin
- Departamento de Clínica Médica, Laboratório de ImunoFarmacologia Experimental, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Rua Manoel Carlos 162, 38025-380 Uberaba, MG, Brazil
| | - Jhony Robison de Oliveira
- Departamento de Clínica Médica, Laboratório de ImunoFarmacologia Experimental, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Rua Manoel Carlos 162, 38025-380 Uberaba, MG, Brazil
| | | | - Alexandre de Paula Rogerio
- Departamento de Clínica Médica, Laboratório de ImunoFarmacologia Experimental, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Rua Manoel Carlos 162, 38025-380 Uberaba, MG, Brazil
| |
Collapse
|
46
|
Galangin Abrogates Ovalbumin-Induced Airway Inflammation via Negative Regulation of NF-κB. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:767689. [PMID: 23762160 PMCID: PMC3677671 DOI: 10.1155/2013/767689] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/14/2013] [Accepted: 04/25/2013] [Indexed: 01/21/2023]
Abstract
Persistent activation of nuclear factor κB (NF-κB) has been associated with the development of asthma. Galangin, the active pharmacological ingredient from Alpinia galanga, is reported to have a variety of anti-inflammatory properties in vitro via negative regulation of NF-κB. This study aimed to investigate whether galangin can abrogate ovalbumin- (OVA-) induced airway inflammation by negative regulation of NF-κB. BALB/c mice sensitized and challenged with OVA developed airway hyperresponsiveness (AHR) and inflammation. Galangin dose dependently inhibited OVA-induced increases in total cell counts, eosinophil counts, and interleukin-(IL-) 4, IL-5, and IL-13 levels in bronchoalveolar lavage fluid, and reduced serum level of OVA-specific IgE. Galangin also attenuated AHR, reduced eosinophil infiltration and goblet cell hyperplasia, and reduced expression of inducible nitric oxide synthase and vascular cell adhesion protein-1 (VCAM-1) levels in lung tissue. Additionally, galangin blocked inhibitor of κB degradation, phosphorylation of the p65 subunit of NF-κB, and p65 nuclear translocation from lung tissues of OVA-sensitized mice. Similarly, in normal human airway smooth muscle cells, galangin blocked tumor necrosis factor-α induced p65 nuclear translocation and expression of monocyte chemoattractant protein-1, eotaxin, CXCL10, and VCAM-1. These results suggest that galangin can attenuate ovalbumin-induced airway inflammation by inhibiting the NF-κB pathway.
Collapse
|
47
|
The cardioprotective effects of citric Acid and L-malic Acid on myocardial ischemia/reperfusion injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:820695. [PMID: 23737849 PMCID: PMC3666396 DOI: 10.1155/2013/820695] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 12/21/2022]
Abstract
Organic acids in Chinese herbs, the long-neglected components, have been reported to possess antioxidant, anti-inflammatory, and antiplatelet aggregation activities; thus they may have potentially protective effect on ischemic heart disease. Therefore, this study aims to investigate the protective effects of two organic acids, that is, citric acid and L-malic acid, which are the main components of Fructus Choerospondiatis, on myocardial ischemia/reperfusion injury and the underlying mechanisms. In in vivo rat model of myocardial ischemia/reperfusion injury, we found that treatments with citric acid and L-malic acid significantly reduced myocardial infarct size, serum levels of TNF-α, and platelet aggregation. In vitro experiments revealed that both citric acid and L-malic acid significantly reduced LDH release, decreased apoptotic rate, downregulated the expression of cleaved caspase-3, and upregulated the expression of phosphorylated Akt in primary neonatal rat cardiomyocytes subjected to hypoxia/reoxygenation injury. These results suggest that both citric acid and L-malic acid have protective effects on myocardial ischemia/reperfusion injury; the underlying mechanism may be related to their anti-inflammatory, antiplatelet aggregation and direct cardiomyocyte protective effects. These results also demonstrate that organic acids, besides flavonoids, may also be the major active ingredient of Fructus Choerospondiatis responsible for its cardioprotective effects and should be attached great importance in the therapy of ischemic heart disease.
Collapse
|
48
|
Huang CH, Yang ML, Tsai CH, Li YC, Lin YJ, Kuan YH. Ginkgo biloba leaves extract (EGb 761) attenuates lipopolysaccharide-induced acute lung injury via inhibition of oxidative stress and NF-κB-dependent matrix metalloproteinase-9 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:303-309. [PMID: 23219342 DOI: 10.1016/j.phymed.2012.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/25/2012] [Accepted: 11/03/2012] [Indexed: 06/01/2023]
Abstract
Acute lung injury (ALI) presents high mortality and morbidity clinically and by far no effective preventive strategy has been established. Extract of Ginkgo biloba leaves, EGb 761, is a complex mixture that possesses several clinical beneficial effects such as anti-oxidation, anti-inflammation, anti-tumor, and cardioprotective property. With EGb 761 pretreatment, both lipopolysaccharide (LPS)-induced protein leakage and neutrophil infiltration, and LPS-induced inflammatory responses including increased myeloperoxidase (MPO) activity, lipid peroxidation, and metalloproteinase (MMP)-9 activity, were inhibited; LPS-suppressed activation of antioxidative enzymes (AOE) were reversed; and not only the phosphorylation of NF-κB but also the degradation of its inhibitor, IκB, were suppressed. These results suggested that the protection mechanism of EGb 761 is by inhibition of NFκB activation, possibly via the up-regulation of antioxidative enzymes. More studies are needed to further evaluate whether EGb 761 is a suitable candidate as an effective dietary strategy to reduce the incidence of endotoxin-induced ALI.
Collapse
Affiliation(s)
- Chun-Hsiung Huang
- Department of Internal Medicine, Division of Geriatric Medicine, Changhua Christian Hospital, Changhua, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
49
|
Bellik Y, Boukraâ L, Alzahrani HA, Bakhotmah BA, Abdellah F, Hammoudi SM, Iguer-Ouada M. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: an update. Molecules 2012; 18:322-53. [PMID: 23271469 PMCID: PMC6269762 DOI: 10.3390/molecules18010322] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/06/2012] [Accepted: 12/14/2012] [Indexed: 12/18/2022] Open
Abstract
The resort worldwide to edible medicinal plants for medical care has increased significantly during the last few years. Currently, there is a renewed interest in the search for new phytochemicals that could be developed as useful anti-inflammatory and anti-allergic agents to reduce the risk of many diseases. The activation of nuclear transcription factor-kappa B (NF-κB) has now been linked to a variety of inflammatory diseases, while data from numerous studies underline the importance of phytochemicals in inhibiting the pathway that activates this transcription factor. Moreover, the incidence of type I allergic disorders has been increasing worldwide, particularly, the hypersensitivity to food. Thus, a good number of plant products with anti-inflammatory and anti-allergic activity have been documented, but very few of these compounds have reached clinical use and there is scant scientific evidence that could explain their mode of action. Therefore, this paper intends to review the most salient recent reports on the anti-inflammatory and anti-allergic properties of phytochemicals and the molecular mechanisms underlying these properties.
Collapse
Affiliation(s)
- Yuva Bellik
- Laboratory of Research on Local Animal Products, Ibn-Khaldoun University of Tiaret, Tiaret 14000, Algeria; E-Mails: (Y.B.); (F.A.); (S.M.H.)
- Faculty of Nature and Life Sciences, Abderrahmane Mira University, Béjaia 06000, Algeria; E-Mail:
| | - Laïd Boukraâ
- Laboratory of Research on Local Animal Products, Ibn-Khaldoun University of Tiaret, Tiaret 14000, Algeria; E-Mails: (Y.B.); (F.A.); (S.M.H.)
- Mohammad Hussein Al Amoudi Chair for Diabetic Foot Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; E-Mails: (H.A.A.); (B.A.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +213-795-306-930
| | - Hasan A. Alzahrani
- Mohammad Hussein Al Amoudi Chair for Diabetic Foot Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; E-Mails: (H.A.A.); (B.A.B.)
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Balkees A. Bakhotmah
- Mohammad Hussein Al Amoudi Chair for Diabetic Foot Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; E-Mails: (H.A.A.); (B.A.B.)
- Department of Nutrition Food Sciences, Arts and Design College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatiha Abdellah
- Laboratory of Research on Local Animal Products, Ibn-Khaldoun University of Tiaret, Tiaret 14000, Algeria; E-Mails: (Y.B.); (F.A.); (S.M.H.)
| | - Si M. Hammoudi
- Laboratory of Research on Local Animal Products, Ibn-Khaldoun University of Tiaret, Tiaret 14000, Algeria; E-Mails: (Y.B.); (F.A.); (S.M.H.)
| | - Mokrane Iguer-Ouada
- Faculty of Nature and Life Sciences, Abderrahmane Mira University, Béjaia 06000, Algeria; E-Mail:
| |
Collapse
|
50
|
Kuan YH, Huang FM, Li YC, Chang YC. Proinflammatory activation of macrophages by bisphenol A-glycidyl-methacrylate involved NFκB activation via PI3K/Akt pathway. Food Chem Toxicol 2012; 50:4003-9. [DOI: 10.1016/j.fct.2012.08.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 08/03/2012] [Accepted: 08/09/2012] [Indexed: 10/28/2022]
|