1
|
Saadat S, Ghasemi Z, Memarzia A, Behrouz S, Aslani MR, Boskabady MH. An overview of pharmacological effects of Crocus sativous and its constituents. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:391-417. [PMID: 38419885 PMCID: PMC10897555 DOI: 10.22038/ijbms.2023.73410.15950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/30/2023] [Indexed: 03/02/2024]
Abstract
Crocus sativus L. was used for the treatment of a wide range of disorders in traditional medicine. Due to the extensive protective and treatment properties of C. sativus and its constituents in various diseases, the purpose of this review is to collect a summary of its effects, on experimental studies, both in vitro and in vivo. Databases such as PubMed, Science Direct, and Scopus were explored until January 2023 by employing suitable keywords. Several investigations have indicated that the therapeutic properties of C. sativus may be due to its anti-oxidant and anti-inflammatory effects on the nervous, cardiovascular, immune, and respiratory systems. Further research has shown that its petals also have anticonvulsant properties. Pharmacological studies have shown that crocetin and safranal have anti-oxidant properties and through inhibiting the release of free radicals lead to the prevention of disorders such as tumor cell proliferation, atherosclerosis, hepatotoxicity, bladder toxicity, and ethanol induced hippocampal disorders. Numerous studies have been performed on the effect of C. sativus and its constituents in laboratory animal models under in vitro and in vivo conditions on various disorders. This is necessary but not enough and more clinical trials are needed to investigate unknown aspects of the therapeutic properties of C. sativus and its main constituents in different disorders.
Collapse
Affiliation(s)
- Saeideh Saadat
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- These authors contributed equally to this work
| | - Zahra Ghasemi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- These authors contributed equally to this work
| | - Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Behrouz
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Aslani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Lung Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Sanaie S, Nikanfar S, Kalekhane ZY, Azizi-Zeinalhajlou A, Sadigh-Eteghad S, Araj-Khodaei M, Ayati MH, Andalib S. Saffron as a promising therapy for diabetes and Alzheimer's disease: mechanistic insights. Metab Brain Dis 2023; 38:137-162. [PMID: 35986812 DOI: 10.1007/s11011-022-01059-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/29/2022] [Indexed: 02/03/2023]
Abstract
The prevalence of both Alzheimer's disease (AD) and diabetes mellitus is increasing with the societies' aging and has become an essential social concern worldwide. Accumulation of amyloid plaques and neurofibrillary tangles (NFTs) of tau proteins in the brain are hallmarks of AD. Diabetes is an underlying risk factor for AD. Insulin resistance has been proposed to be involved in amyloid-beta (Aβ) aggregation in the brain. It seems that diabetic conditions can result in AD pathology by setting off a cascade of processes, including inflammation, mitochondrial dysfunction, and ROS and advanced glycation end products (AGEs) synthesis. Due to the several side effects of chemical drugs and their high cost, using herbal medicine has recently attracted attention for the treatment of diabetes and AD. Saffron and its active ingredients have been used for its anti-inflammatory, anti-oxidant, anti-diabetic, and anti-AD properties. Therefore, in the present review paper, we take account of the clinical, in vivo and in vitro evidence regarding the anti-diabetic and anti-AD effects of saffron and discuss the preventive or postponing properties of saffron or its components on AD development via its anti-diabetic effects.
Collapse
Affiliation(s)
- Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Nikanfar
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Yousefi Kalekhane
- Research Center of Psychiatry and Behavioral Sciences, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Tabriz, Tabriz, Iran
| | - Akbar Azizi-Zeinalhajlou
- Student Research Committee, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-Khodaei
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hossein Ayati
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sasan Andalib
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, Odense University Hospital, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
3
|
Zul Aznal AN, Mohamad Nor Hazalin NA, Hassan Z, Mat NH, Chear NJY, Teh LK, Salleh MZ, Suhaimi FW. Adolescent kratom exposure affects cognitive behaviours and brain metabolite profiles in Sprague-Dawley rats. Front Pharmacol 2022; 13:1057423. [PMID: 36518677 PMCID: PMC9744228 DOI: 10.3389/fphar.2022.1057423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 08/05/2023] Open
Abstract
Adolescence is a critical developmental period during which exposure to psychoactive substances like kratom (Mitragyna speciosa) can cause long-lasting deleterious effects. Here, we evaluated the effects of mitragynine, the main alkaloid of kratom, and lyophilised kratom decoction (LKD) on cognitive behaviours and brain metabolite profiles in adolescent rats. Male Sprague-Dawley rats (Postnatal day, PND31) were given vehicle, morphine (5 mg/kg), mitragynine (3, 10, or 30 mg/kg), or LKD (equivalent dose of 30 mg/kg mitragynine) for 15 consecutive days. Later, a battery of behavioural testing was conducted, brain was extracted and metabolomic analysis was performed using LCMS-QTOF. The results showed that mitragynine did not affect the recognition memory in the novel object recognition task. In the social interaction task, morphine, mitragynine, and LKD caused a marked deficit in social behaviour, while in Morris water maze task, mitragynine and LKD only affected reference memory. Metabolomic analysis revealed distinct metabolite profiles of animals with different treatments. Several pathways that may be involved in the effects of kratom exposure include arachidonic acid, pantothenate and CoA, and tryptophan pathways, with several potential biomarkers identified. These findings suggest that adolescent kratom exposure can cause cognitive behavioural deficits that may be associated with changes in the brain metabolite profiles.
Collapse
Affiliation(s)
| | - Nurul Aqmar Mohamad Nor Hazalin
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Noorul Hamizah Mat
- Centre for Drug Research, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | | | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Malaysia
| | | |
Collapse
|
4
|
Kuchta K, Aritake K, Urade Y, Tung NH, Yuan CS, Sasaki Y, Shimizu K, Shoyama Y. Preventing Dementia Using Saffron, The Kampo Medicine, Kamiuntanto, and Their Combination, Kamiuntantokabankoka. Front Pharmacol 2022; 12:779821. [PMID: 35310894 PMCID: PMC8931200 DOI: 10.3389/fphar.2021.779821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
The objective of this review is to evaluate the anti-dementia activities of saffron and its combination with Kampo medicine. The Kampo formula Kamiuntanto composed of 13 crude drugs is well known for its anti-dementia activity. A significant increase in choline acetyltransferase activity and mRNA levels were observed. Polygala radix was identified as the most essential component drug in Kamiuntanto, probably due to the saponins, tenuifolin, and sinapinic acid. Ginseng was also identified as an essential Kamiuntanto component in terms of its synergistic functions with Polygala radix. Saffron, which was recommended in the Bencao Gangmu for memory and dementia, and is used as an anti-spasmodic, anti-catarrhal, and sedative herbal drug. Saffron and its major constituent, crocin were shown to enhance learning-memory, non-rapid eye movement (rem) sleep, and inhibit depression and neuronal cell death due to strong anti-oxidant and anti-inflammation activities. In addition based on the epidemiological studies such as the treatment of sleeping disorders and the clinical trials of saffron for Alzheimer patients, we demonstrated the indirect and direct anti-dementia activities of crocin and saffron.
Collapse
Affiliation(s)
- Kenny Kuchta
- Forschungsstelle für Fernöstliche Medizin, Department of Vegetation Analysis and Phytodiversity, Albrecht von Haller Institute of Plant Sciences, Georg August University, Göttingen, Germany
| | | | | | | | - Chun-Su Yuan
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, United States
| | - Yui Sasaki
- Association for Health Economics Research and Social Insurance and Welfare, Tokyo, Japan
| | - Koichi Shimizu
- Association for Health Economics Research and Social Insurance and Welfare, Tokyo, Japan
| | - Yukihiro Shoyama
- Faculty of Pharmacy, Nagasaki International University, Sasebo, Japan
- *Correspondence: Yukihiro Shoyama,
| |
Collapse
|
5
|
Butnariu M, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Singh L, Aborehab NM, Bouyahya A, Venditti A, Sen S, Acharya K, Bashiry M, Ezzat SM, Setzer WN, Martorell M, Mileski KS, Bagiu IC, Docea AO, Calina D, Cho WC. The Pharmacological Activities of Crocus sativus L.: A Review Based on the Mechanisms and Therapeutic Opportunities of its Phytoconstituents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8214821. [PMID: 35198096 PMCID: PMC8860555 DOI: 10.1155/2022/8214821] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022]
Abstract
Crocus species are mainly distributed in North Africa, Southern and Central Europe, and Western Asia, used in gardens and parks as ornamental plants, while Crocus sativus L. (saffron) is the only species that is cultivated for edible purpose. The use of saffron is very ancient; besides the use as a spice, saffron has long been known also for its medical and coloring qualities. Due to its distinctive flavor and color, it is used as a spice, which imparts food preservative activity owing to its antimicrobial and antioxidant activity. This updated review discusses the biological properties of Crocus sativus L. and its phytoconstituents, their pharmacological activities, signaling pathways, and molecular targets, therefore highlighting it as a potential herbal medicine. Clinical studies regarding its pharmacologic potential in clinical therapeutics and toxicity studies were also reviewed. For this updated review, a search was performed in the PubMed, Science, and Google Scholar databases using keywords related to Crocus sativus L. and the biological properties of its phytoconstituents. From this search, only the relevant works were selected. The phytochemistry of the most important bioactive compounds in Crocus sativus L. such as crocin, crocetin, picrocrocin, and safranal and also dozens of other compounds was studied and identified by various physicochemical methods. Isolated compounds and various extracts have proven their pharmacological efficacy at the molecular level and signaling pathways both in vitro and in vivo. In addition, toxicity studies and clinical trials were analyzed. The research results highlighted the various pharmacological potentials such as antimicrobial, antioxidant, cytotoxic, cardioprotective, neuroprotective, antidepressant, hypolipidemic, and antihyperglycemic properties and protector of retinal lesions. Due to its antioxidant and antimicrobial properties, saffron has proven effective as a natural food preservative. Starting from the traditional uses for the treatment of several diseases, the bioactive compounds of Crocus sativus L. have proven their effectiveness in modern pharmacological research. However, pharmacological studies are needed in the future to identify new mechanisms of action, pharmacokinetic studies, new pharmaceutical formulations for target transport, and possible interaction with allopathic drugs.
Collapse
Affiliation(s)
- Monica Butnariu
- 1Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timișoara, Romania
| | - Cristina Quispe
- 2Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- 3Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- 4Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | | | - Laxman Singh
- 6G.B. Pant National Institute of Himalayan Environment & Sustainable Development Kosi-Katarmal, Almora, Uttarakhand, India
| | - Nora M. Aborehab
- 7Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - Abdelhakim Bouyahya
- 8Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Morocco
| | - Alessandro Venditti
- 9Dipartimento di Chimica, “Sapienza” Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Surjit Sen
- 10Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- 11Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal 743331, India
| | - Krishnendu Acharya
- 10Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Moein Bashiry
- 12Department of Food Science and Technology, Nutrition and Food Sciences Faculty, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahira M. Ezzat
- 13Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt
- 14Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - William N. Setzer
- 15Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Miquel Martorell
- 16Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Ksenija S. Mileski
- 17Department of Morphology and Systematic of Plants, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Iulia-Cristina Bagiu
- 18Victor Babes University of Medicine and Pharmacy of Timisoara Discipline of Microbiology, Timișoara, Romania
- 19Multidisciplinary Research Center on Antimicrobial Resistance, Timișoara, Romania
| | - Anca Oana Docea
- 20Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- 21Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- 22Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
6
|
Hosseini Dastgerdi A, Radahmadi M, Pourshanazari AA. Comparing the effects of crocin at different doses on excitability and long-term potentiation in the CA1 area, as well as the electroencephalogram responses of rats under chronic stress. Metab Brain Dis 2021; 36:1879-1887. [PMID: 34216349 DOI: 10.1007/s11011-021-00747-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/29/2021] [Indexed: 11/26/2022]
Abstract
Stress adversely affects the cellular and electrophysiological mechanisms of memory; however, crocin has beneficial effects on brain functions. Nonetheless, the electrophysiological effects of using this active saffron component at different doses are not yet studied in rats under chronic restraint stress. Therefore, this study compared the impact of crocin at different doses on the excitability and long-term potentiation (LTP) in the CA1 area of rats, as well as their electroencephalogram (EEG) responses, hippocampal and frontal cortical glucose levels under chronic restraint stress (an emotional stress model). Forty rats were allocated into five groups of control, sham, restraint stress (6 h/day/21 days), and two stress groups receiving intraperitoneal injections of crocin (30, 60 mg/kg/day). Besides measuring the slope and amplitude of field excitatory postsynaptic potentials (fEPSPs) in the input-output and LTP curves, the EEG waves and hippocampal and frontal cortical glucose levels were assessed in all groups. Chronic restraint stress significantly decreased the fEPSP slope and amplitude in the input-output curves and after LTP induction. Both doses of crocin (60 and particularly 30 mg/kg) significantly improved fEPSP slope and amplitude in the stressed groups. Also, stress and crocin only at a dose of 30 mg/kg altered the EEG waves. Hippocampal and frontal cortical glucose levels displayed no significant differences in the experimental groups. Crocin at doses of 60 mg/kg/day and particularly 30 mg/kg/day reversed the harmful effects of chronic restraint stress on LTP as a cellular memory-related mechanism. However, only the lower dose of crocin affected the electrical brain activity in EEG.
Collapse
Affiliation(s)
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ali Asghar Pourshanazari
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Abu-Izneid T, Rauf A, Khalil AA, Olatunde A, Khalid A, Alhumaydhi FA, Aljohani ASM, Sahab Uddin M, Heydari M, Khayrullin M, Shariati MA, Aremu AO, Alafnan A, Rengasamy KRR. Nutritional and health beneficial properties of saffron ( Crocus sativus L): a comprehensive review. Crit Rev Food Sci Nutr 2020; 62:2683-2706. [PMID: 33327732 DOI: 10.1080/10408398.2020.1857682] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Saffron (Crocus sativus L., family Iridaceae) is used traditionally for medicinal purpose in Chinese, Ayurvedic, Persian and Unani medicines. The bioactive constituents such as apocarotenoids, monoterpenoids, flavonoids, phenolic acids and phytosterols are widely investigated in experimental and clinical studies for a wide range of therapeutic effects, especially on the nervous system. Some of the active constituents of saffron have high bioavailability and bioaccessibility and ability to pass the blood-brain barrier. Multiple preclinical and clinical studies have supported neuroprotective, anxiolytic, antidepressant, learning and memory-enhancing effect of saffron and its bioactive constituents (safranal, crocin, and picrocrocin). Thus, this plant and its active compounds could be a beneficial medicinal food ingredient in the formation of drugs targeting nervous system disorders. This review focuses on phytochemistry, bioaccessibility, bioavailability, and bioactivity of phytochemicals in saffron. Furthermore, the therapeutic effect of saffron against different nervous system disorders has also been discussed in detail.
Collapse
Affiliation(s)
- Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain, United Arab Emirates
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Anees Ahmed Khalil
- Faculty of Allied Health Sciences, Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Ahood Khalid
- Faculty of Allied Health Sciences, Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Mojtaba Heydari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mars Khayrullin
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation.,Plekhanov Russian University of Economics, Moscow, Russian Federation.,A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Adeyemi Oladapo Aremu
- Faculty of Natural and Agricultural Sciences, Indigenous Knowledge Systems Centre, North-West University, Mahikeng, North West Province, South Africa
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Kannan R R Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
8
|
Bian Y, Zhao C, Lee SMY. Neuroprotective Potency of Saffron Against Neuropsychiatric Diseases, Neurodegenerative Diseases, and Other Brain Disorders: From Bench to Bedside. Front Pharmacol 2020; 11:579052. [PMID: 33117172 PMCID: PMC7573929 DOI: 10.3389/fphar.2020.579052] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
The increasing morbidity rates of brain disorders and conditions such as anxiety, depression, Alzheimer’s disease, and Parkinson’s disease have become a severe problem in recent years. Although researchers have spent considerable time studying these diseases and reported many positive outcomes, there still are limited drugs available for their treatment. As a common traditional Chinese medicine (TCM), saffron was employed to treat depression and some other inflammatory diseases in ancient China due to its antioxidant, anti-inflammatory, and antidepressant properties. In modern times, saffron and its constituents have been utilized, alone and in TCM formulas, to treat neuropsychiatric and neurodegenerative diseases. In this review, we mainly focus on recent clinical and preclinical trials of brain disorders in which saffron was applied, and summarize the neuroprotective properties of saffron and its constituents from chemical, pharmacokinetic, and pharmacological perspectives. We discuss the properties of saffron and its constituents, as well as their applications for treating brain disorders; we hope that this review will serve as a comprehensive reference for studies aimed at developing therapeutic drugs based on saffron.
Collapse
Affiliation(s)
- Yaqi Bian
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Chen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
9
|
Rajabian A, Hosseini A, Hosseini M, Sadeghnia HR. A Review of Potential Efficacy of Saffron ( Crocus sativus L.) in Cognitive Dysfunction and Seizures. Prev Nutr Food Sci 2019; 24:363-372. [PMID: 31915630 PMCID: PMC6941716 DOI: 10.3746/pnf.2019.24.4.363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/05/2019] [Indexed: 12/21/2022] Open
Abstract
Crocus sativus (saffron) is traditionally used to relieve several ailments. Experimental researches have also investigated applications of saffron and its active constituents for the treatment of a wide spectrum of disorders. This review discusses pharmacological/therapeutic properties of saffron and its main components on memory function, learning ability and seizures, to highlight their merit for alleviating these disorders. An extensive literature review was carried out using various databases including ISI Web of Knowledge, Medline/PubMed, Science Direct, Scopus, Google Scholar, Embase, Biological Abstracts, and Chemical Abstracts. The growing body of evidence showed the value of saffron and its' components, alone, or in combination with the other pharmaceuticals, for improving learning and memory abilities and controlling seizures. These findings may provide pharmacological basis for the use of saffron in cognitive disturbance and epilepsy. However, further preclinical and clinical studies are necessary.
Collapse
Affiliation(s)
- Arezoo Rajabian
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 9177944553, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 9177944553, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad 9177944553, Iran
| | - Hamid Reza Sadeghnia
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad 9177944553, Iran
| |
Collapse
|
10
|
Effect of oleuropein on morphine-induced hippocampus neurotoxicity and memory impairments in rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1383-1391. [PMID: 31236657 DOI: 10.1007/s00210-019-01678-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022]
Abstract
Oleuropein, as an olive leaf extract antioxidant polyphenol, has been reported to be a free radical scavenger. This study was done to investigate the effects of oleuropein, against morphine-induced hippocampus neurotoxicity and memory impairment in rats. The Morris water maze (MWM) test was used to assess the effect of oleuropein (5, 15, and 30 mg/kg, i.p., co-administrated with morphine) on spatial learning and memory of male Wistar rats which were treated with morphine sulfate (45 mg/kg, s.c., 4 weeks). In order to evaluate the cleaved caspase-3, Bax, and Bcl2 protein expression (as biochemical markers of apoptosis) in CA1 area of hippocampus tissue, the western blot test was used. Also, to evaluate the oxidative stress status of hippocampus CA1 area tissue, the malondialdehyde (MDA) level, superoxide dismutase (SOD) activity, and glutathione peroxidase (GPx) activity were assessed. The data showed that oleuropein treatment (15 and 30 mg/kg) improves the spatial learning and memory impairments in morphine-treated animals. Also, oleuropein treatment decreased the apoptosis and oxidative stress levels in the hippocampus CA1 area of morphine-treated rats. Oleuropein can prevent the spatial learning and memory impairments in morphine-treated rats. Molecular mechanisms underlying the observed effects could be at least partially related to the inhibition of neuronal apoptosis and oxidative stress in the hippocampus CA1 area of morphine-treated rats.
Collapse
|
11
|
Abstract
We first considered that saffron is really safety food because it has a long-use history. The neuroprotective activities of saffron and its major constituent, crocin, are separately discussed in vitro and in vivo. We reviewed the inhibitory activities of crocin against PC-12 cell apoptosis. The oxidative stress decreased the cellular levels of glutathione (GSH) which is an inhibitor of neutral sphingomyelinase (N-SMase). Therefore, the level of GSH was assayed by the addition of crocin resulted in the activation of glutathione reductase (GR). It became evident that crocin treatment prevents the N-SMase activation resulting in the decrease of ceramide release. From these evidences we summarized the role of crocin for neuronal cell death. We used the ethanol-blocking assay system for learning and memory activities. The effect of saffron and crocin on improving ethanol-induced impairment of learning behaviors of mice in passive avoidance tasks has been clear. Further, we did make clear that saffron and crocin prevent the inhibitory effect of ethanol on long-term potentiation (LTP) in the dentate gyrus. Finally we found that 100 mg/kg of crocin gave non-rapid eye movement sleep (non-REM sleep) although mice were started to be active during night time.
Collapse
|
12
|
Bavarsad K, Hadjzadeh MAR, Hosseini M, Pakdel R, Beheshti F, Bafadam S, Ashaari Z. Effects of levothyroxine on learning and memory deficits in a rat model of Alzheimer’s disease: the role of BDNF and oxidative stress. Drug Chem Toxicol 2018; 43:57-63. [DOI: 10.1080/01480545.2018.1481085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kowsar Bavarsad
- Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mousa-Al-Reza Hadjzadeh
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Pakdel
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Farimah Beheshti
- Department of Basic Sciences and Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Soleyman Bafadam
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Ashaari
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
José Bagur M, Alonso Salinas GL, Jiménez-Monreal AM, Chaouqi S, Llorens S, Martínez-Tomé M, Alonso GL. Saffron: An Old Medicinal Plant and a Potential Novel Functional Food. Molecules 2017; 23:E30. [PMID: 29295497 PMCID: PMC5943931 DOI: 10.3390/molecules23010030] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
The spice saffron is made from the dried stigmas of the plant Crocus sativus L. The main use of saffron is in cooking, due to its ability to impart colour, flavour and aroma to foods and beverages. However, from time immemorial it has also been considered a medicinal plant because it possesses therapeutic properties, as illustrated in paintings found on the island of Santorini, dated 1627 BC. It is included in Catalogues of Medicinal Plants and in the European Pharmacopoeias, being part of a great number of compounded formulas from the 16th to the 20th centuries. The medicinal and pharmaceutical uses of this plant largely disappeared with the advent of synthetic chemistry-produced drugs. However, in recent years there has been growing interest in demonstrating saffron's already known bioactivity, which is attributed to the main components-crocetin and its glycosidic esters, called crocins, and safranal-and to the synergy between the compounds present in the spice. The objective of this work was to provide an updated and critical review of the research on the therapeutic properties of saffron, including activity on the nervous and cardiovascular systems, in the liver, its antidepressant, anxiolytic and antineoplastic properties, as well as its potential use as a functional food or nutraceutical.
Collapse
Affiliation(s)
- María José Bagur
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain; (M.J.B.); (S.C.)
- Department of Food Science, Universidad de Murcia, Regional Campus of International Excellence, Campus International de Excelencia Regional “Campus Mare Nostrum”, CIBERobn, ISCIII, 30100 Murcia, Spain; (A.M.J.-M.); (M.M.-T.)
| | | | - Antonia M. Jiménez-Monreal
- Department of Food Science, Universidad de Murcia, Regional Campus of International Excellence, Campus International de Excelencia Regional “Campus Mare Nostrum”, CIBERobn, ISCIII, 30100 Murcia, Spain; (A.M.J.-M.); (M.M.-T.)
| | - Soukaina Chaouqi
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain; (M.J.B.); (S.C.)
- Laboratory of Materials, Environment and Electrochemistry, Faculty of Science, Ibn Tofaïl University, P.O. Box 242, 14000 Kénitra, Morocco
| | - Silvia Llorens
- Department of Medical Sciences, School of Medicine and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 02008 Albacete, Spain;
| | - Magdalena Martínez-Tomé
- Department of Food Science, Universidad de Murcia, Regional Campus of International Excellence, Campus International de Excelencia Regional “Campus Mare Nostrum”, CIBERobn, ISCIII, 30100 Murcia, Spain; (A.M.J.-M.); (M.M.-T.)
| | - Gonzalo L. Alonso
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain; (M.J.B.); (S.C.)
| |
Collapse
|
14
|
Hosseini M, Anaeigoudari A, Beheshti F, Soukhtanloo M, Nosratabadi R. Protective effect against brain tissues oxidative damage as a possible mechanism for beneficial effects of L-arginine on lipopolysaccharide induced memory impairment in rats. Drug Chem Toxicol 2017. [PMID: 28640652 DOI: 10.1080/01480545.2017.1336173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
L-Arginine (LA) and nitric oxide (NO) have been suggested to have some effects on learning, memory, brain tissues oxidative damage, and neuroinflammation. In this study, protective effect against brain tissues oxidative damage as a possible mechanism for beneficial effects of LA on lipopolysaccharide (LPS) induced memory impairment was investigated. The rats were grouped into and treated by (1) control (saline), (2) LPS (1 mg/kg, IP), (3) LA (200 mg/kg) - LPS (4) LA. In passive avoidance (PA) test, LPS administration shortened the latency to enter the dark compartment in LPS group compared to control (p < .001) which was accompanied with a high level of malondialdehyde (MDA) and NO metabolite concentrations in the hippocampal tissues (p < .001and p < .05, respectively). Pretreatment with LA prolonged the latency in LA-LPS group compared with LPS group (p < .01-.001) and re-stored MDA and NO metabolites in the hippocampal tissues (p < .05). LPS also reduced superoxide dismutase (SOD) and catalase (CAT) activities and thiol content in the hippocampal tissues in LPS group compared to control (p < .05 and p < .001, respectively) which improved by LA when it was administered before LPS in LA-LPS group (p < .05 and p < .001). Finally, the serum TNFα level of LPS group was higher than the control (p < .01) while, in LA-LPS group it was lower than LPS group (p < .01). It seems that the beneficial effects of LA on memory impairment of LPS-treated rats may be due to its protective effects against brain tissues oxidative damage.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- a Division of Neurocognitive Sciences , Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Akbar Anaeigoudari
- b Department of Physiology, School of Medicine , Jiroft University of medical Sciences , Jiroft , Iran
| | - Farimah Beheshti
- c Neurogenic Inflammation Research Center and Department of Physiology, School of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Soukhtanloo
- d Department of Biochemistry, School of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Reza Nosratabadi
- e Immunology of Infectious Diseases Research Center , Rafsanjan University of Medical Sciences , Rafsanjan , Iran
| |
Collapse
|
15
|
Beheshti F, Karimi S, Vafaee F, Shafei MN, Sadeghnia HR, Hadjzadeh MAR, Hosseini M. The effects of vitamin C on hypothyroidism-associated learning and memory impairment in juvenile rats. Metab Brain Dis 2017; 32:703-715. [PMID: 28127705 DOI: 10.1007/s11011-017-9954-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/18/2017] [Indexed: 01/06/2023]
Abstract
In this study the effects of Vitamin C (Vit C) on hypothyroidism-associated learning and memory impairment in juvenile rats was investigated. The pregnant rats were kept in separate cages. After delivery, they were randomly divided into six groups and treated: (1) Control; (2) Propylthiouracil (PTU) which 0.005% PTU in their drinking; (3-5) Propylthiouracil- Vit C groups; besides PTU, dams in these groups received 10, 100 and 500 mg/kg Vit C respectively, (6) one group as a positive control; the intact rats received an effective dose, 100 mg/kg Vit. C. After delivery, the pups were continued to receive the experimental treatments in their drinking water up to 56th day of their life. Ten male offspring of each group were randomly selected and tested in the Morris water maze (MWM) and passive avoidance (PA) which were started at 63th day (one week after stopping of the treatments). Brains were then removed for biochemical measurements. PTU increased time latency and traveled distance during 5 days in MWM while, reduced the spent time in target quadrant in MWM and step-trough latency (STL) in PA. PTU decreased thiol content, superoxide dismutase (SOD) and catalase (CAT) activities in the brain while, increased molondialdehyde (MDA). In MWM test, 10, 100 and 500 mg/kg Vit C reduced time latency and traveled distance without affecting the traveling speed during 5 days. All doses of Vit C increased the spent time in target quadrant in probe trail of MWM and also increased STL in PA test. Vit C increased thiol, SOD and CAT in the brain tissues while, reduced MDA. Results of present study confirmed the beneficial effects of Vit C on learning and memory. It also demonstrated that Vit C has protective effects on hypothyroidism-associated learning and memory impairment in juvenile rats which might be elucidated by the antioxidative effects.
Collapse
Affiliation(s)
- Farimah Beheshti
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sareh Karimi
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Naser Shafei
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad, University of Medical Sciences, Mashhad, Iran
| | - Mosa Al Reza Hadjzadeh
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Finley JW, Gao S. A Perspective on Crocus sativus L. (Saffron) Constituent Crocin: A Potent Water-Soluble Antioxidant and Potential Therapy for Alzheimer's Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1005-1020. [PMID: 28098452 DOI: 10.1021/acs.jafc.6b04398] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, in which the death of brain cells causes memory loss and cognitive decline. Several factors are thought to play roles in the development and course of AD. Existing medical therapies only modestly alleviate and delay cognitive symptoms. Current research has been focused on developing antibodies to remove the aggregates of amyloid-β (Aβ) and tau protein. This approach has achieved removal of Aβ; however, no cognitive improvement in AD patients has been reported. The biological properties of saffron, the dry stigma of the plant Crocus sativus L., and particularly its main constituent crocin, have been studied extensively for many conditions including dementia and traumatic brain injury. Crocin is a unique antioxidant because it is a water-soluble carotenoid. Crocin has shown potential to improve learning and memory as well as protect brain cells. A search of the studies on saffron and crocin that have been published in recent years for their impact on AD as well as crocin's effects on Aβ and tau protein has been conducted. This review demonstrates that crocin exhibits multifunctional protective activities in the brain and could be a promising agent applied as a supplement or drug for prevention or treatment of AD.
Collapse
Affiliation(s)
- John W Finley
- Adjunct Professor, Department of Nutrition and Food Science, 111 Food Science Building, Louisiana State University , Baton Rouge, Louisiana 70803, United States
- 14719 Secret Harbor Place, Bradenton, Florida 34202, United States
| | - Song Gao
- Quality Phytochemicals LLC , 13 Dexter Road, East Brunswick, New Jersey 08816, United States
| |
Collapse
|
17
|
Karimi S, Hejazian SH, Alikhani V, Hosseini M. The effects of tamoxifen on spatial and nonspatial learning and memory impairments induced by scopolamine and the brain tissues oxidative damage in ovariectomized rats. Adv Biomed Res 2015; 4:196. [PMID: 26601084 PMCID: PMC4620616 DOI: 10.4103/2277-9175.166132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 06/06/2015] [Indexed: 12/16/2022] Open
Abstract
Background: Modulatory effects of tamoxifen (TAM) on the central nervous system have been reported. The effects of TAM on spatial and nonspatial learning and memory impairments induced by scopolamine and the brain tissues oxidative damage was investigated. Materials and Methods: The ovariectomized (OVX) rats were divided and treated: (1) Control (saline), (2) scopolamine (Sco; 2 mg/kg, 30 min before behavioral tests), (3–5) Sco-TAM 1, Sco-TAM 3 and Sco-TAM 10. TAM (1, 3 or 10 mg/kg; i.p.) was daily administered for 6 weeks. Results: In Morris water maze (MWM), both the latency and traveled distance in the Sco-group were higher than control (P < 0.001) while, in the Sco-TAM 10 group it was lower than Sco-group (P < 0.05). In passive avoidance test, the latency to enter the dark compartment was higher than control (P < 0.05 – P < 0.01). Pretreatment by all three doses of TAM prolonged the latency to enter the dark compartment compared to Sco-group (P < 0.05 – P < 0.001). The brain tissues malondialdehyde (MDA) concentration was increased while, superoxide dismutase activity (SOD) decreased in the Sco-group compared to control (P < 0.05 – P < 0.01). Pretreatment by TAM lowered the concentration of MDA while, increased SOD compared to Sco-group (P < 0.05 – P < 0.001). Conclusions: It is suggested that TAM prevents spatial and nonspatial learning and memory impairments induced by scopolamine in OVX rats. The possible mechanism(s) might at least in part be due to protection against the brain tissues oxidative damage.
Collapse
Affiliation(s)
- Sareh Karimi
- Department of Physiology, Shahid Sadoghi University of Medical Sciences, Yazd, Iran
| | | | - Vajiheh Alikhani
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Seghatoleslam M, Alipour F, Shafieian R, Hassanzadeh Z, Edalatmanesh MA, Sadeghnia HR, Hosseini M. The effects of Nigella sativa on neural damage after pentylenetetrazole induced seizures in rats. J Tradit Complement Med 2015; 6:262-8. [PMID: 27419091 PMCID: PMC4936772 DOI: 10.1016/j.jtcme.2015.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/07/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023] Open
Abstract
Nigella sativa (NS) has been suggested to have neuroprotective and anti-seizures properties. The aim of current study was to investigate the effects of NS hydro-alcoholic extract on neural damage after pentylenetetrazole (PTZ) - induced repeated seizures. The rats were divided into five groups: (1) control (saline), (2) PTZ (50 mg/kg, i.p.), (3-5) PTZ-NS 100, PTZ-NS 200 and PTZ-NS 400 (100, 200 and 400 mg/kg of NS extract respectively, 30 min prior to each PTZ injection on 5 consecutive days). The passive avoidance (PA) test was done and the brains were then removed for histological measurements. The PTZ-NS 100, PTZ-NS 200 and PTZ-NS 400 groups had lower seizure scores than PTZ group (P < 0.01 and P < 0.001). The latency to enter the dark compartment by the animals of PTZ group was lower than control in PA test (P < 0.01). Pre-treatment by 400 mg/kg of the extract increased the latency to enter the dark compartment (P < 0.05). Meanwhile, different doses of the extract inhibited production of dark neurons in different regions of hippocampus (P < 0.001). The present study allows us to suggest that the NS possesses a potential ability to prevent hippocampal neural damage which is accompanied with improving effects on memory.
Collapse
Affiliation(s)
- Masoumeh Seghatoleslam
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Alipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Shafieian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Hassanzadeh
- Neurogenic Inflammation Research Center and Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Beneficial Effects of Teucrium polium and Metformin on Diabetes-Induced Memory Impairments and Brain Tissue Oxidative Damage in Rats. Int J Alzheimers Dis 2015; 2015:493729. [PMID: 25810947 PMCID: PMC4354963 DOI: 10.1155/2015/493729] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/01/2015] [Accepted: 01/26/2015] [Indexed: 02/04/2023] Open
Abstract
Objective. The effects of hydroalcoholic extract of Teucrium polium and metformin on diabetes-induced memory impairment and brain tissues oxidative damage were investigated. Methods. The rats were divided into: (1) Control, (2) Diabetic, (3) Diabetic-Extract 100 (Dia-Ext 100), (4) Diabetic-Extract 200 (Dia-Ext 200), (5) Diabetic-Extract 400 (Dia-Ext 400), and (6) Diabetic-Metformin (Dia-Met). Groups 3–6 were treated by 100, 200, and 400 mg/kg of the extract or metformin, respectively, for 6 weeks (orally). Results. In passive avoidance test, the latency to enter the dark compartment in Diabetic group was lower than that of Control group (P < 0.01). In Dia-Ext 100, Dia-Ext 200, and Dia-Ext 400 and Metformin groups, the latencies were higher than those of Diabetic group (P < 0.01). Lipid peroxides levels (reported as malondialdehyde, MDA, concentration) in the brain of Diabetic group were higher than Control (P < 0.001). Treatment by all doses of the extract and metformin decreased the MDA concentration (P < 0.01). Conclusions. The results of present study showed that metformin and the hydroalcoholic extract of Teucrium polium prevent diabetes-induced memory deficits in rats. Protection against brain tissues oxidative damage might have a role in the beneficial effects of the extract and metformin.
Collapse
|
20
|
Vafaee F, Hosseini M, Hassanzadeh Z, Edalatmanesh MA, Sadeghnia HR, Seghatoleslam M, Mousavi SM, Amani A, Shafei MN. The Effects of Nigella Sativa Hydro-alcoholic Extract on Memory and Brain Tissues Oxidative Damage after Repeated Seizures in Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2015; 14:547-57. [PMID: 25901163 PMCID: PMC4403072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Regarding the therapeutic properties of Nigella sativa (NS), the effects of the plant hydro - alcoholic extract on learning, memory and brain tissues oxidative damage were investigated in penthylenetetrazole (PTZ) - induced repeated seizures. There were 4 experimental groups including: 1- control group; received saline, 2- PTZ group ; received saline and PTZ (50 mg/Kg, i.p) , 3-PTZ- NS 200 and 4- PTZ- NS 400 ; received 200 and 400 mg/Kg of NS extract respectively, before PTZ injection in 5 consecutive days. Seizure scores were lower in PTZ - NS 200 and 400, furthermore the seizure onset latencies were higher in these groups than PTZ group (P<0.05 and P<0.01 ). In Morris water maze, the time spent in target quadrant by PTZ group was lower than control group (P<0.05); while, 400 mg/Kg of the extract increased it (P<0.01). In the passive avoidance test, delay time to enter the dark by PTZ group was lower than control at 1 and 24 hours after training (P<0.01- P<0.001); while, 400 mg/Kg of the extract increased it (P<0.05). The total thiol concentration in hippocampal and cortical tissues of PTZ group was reduced while, MDA concentration was higher than control (p<0.05 - p<0.001). Administration of the extract increased the total thiol and decreased the MDA concentrations (p<0.01- p<0.001). It is concluded that the hydro-alcoholic extract of NS possess beneficial effects on learning and memory impairments in repeated seizures model which is accompanied by antioxidant effects in the brain.
Collapse
Affiliation(s)
- Farzaneh Vafaee
- Neurogenic Inflammation Research Center, Department of Physiology, School of Medicine, Mashhad, University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Hosseini
- Neurocognitive Research Center, Department of Physiology, School of Medicine, Mashhad, University of Medical Sciences, Mashhad, Iran. ,E-mail:
| | - Zahra Hassanzadeh
- Department of Physiology, College of Science, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | | | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Masoumeh Seghatoleslam
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mojtaba Mousavi
- Neurogenic Inflammation Research Center, Department of Physiology, School of Medicine, Mashhad, University of Medical Sciences, Mashhad, Iran.
| | - Atefeh Amani
- Neurocognitive Research Center, Department of Physiology, School of Medicine, Mashhad, University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Naser Shafei
- Neurogenic Inflammation Research Center, Department of Physiology, School of Medicine, Mashhad, University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Khazdair MR, Boskabady MH, Hosseini M, Rezaee R, M. Tsatsakis A. The effects of Crocus sativus (saffron) and its constituents on nervous system: A review. AVICENNA JOURNAL OF PHYTOMEDICINE 2015; 5:376-91. [PMID: 26468457 PMCID: PMC4599112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Saffron or Crocus sativus L. (C. sativus) has been widely used as a medicinal plant to promote human health, especially in Asia. The main components of saffron are crocin, picrocrocin and safranal. The median lethal doses (LD50) of C. sativus are 200 mg/ml and 20.7 g/kg in vitro and in animal studies, respectively. Saffron has been suggested to be effective in the treatment of a wide range of disorders including coronary artery diseases, hypertension, stomach disorders, dysmenorrhea and learning and memory impairments. In addition, different studies have indicated that saffron has anti-inflammatory, anti-atherosclerotic, antigenotoxic and cytotoxic activities. Antitussive effects of stigmas and petals of C. sativus and its components, safranal and crocin have also been demonstrated. The anticonvulsant and anti-Alzheimer properties of saffron extract were shown in human and animal studies. The efficacy of C. sativus in the treatment of mild to moderate depression was also reported in clinical trial. Administration of C. sativus and its constituents increased glutamate and dopamine levels in the brain in a dose-dependent manner. It also interacts with the opioid system to reduce withdrawal syndrome. Therefore, in the present article, the effects of C. sativus and its constituents on the nervous system and the possible underlying mechanisms are reviewed. Our literature review showed that C. sativus and its components can be considered as promising agents in the treatment of nervous system disorders.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Neurogenic Inflammation Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Postal Code 9177948564, Iran,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Postal Code 9177948564, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Postal Code 9177948564, Iran,Corresponding Author: Tel:+98513800222, Fax:+985138828564,
| | - Ramin Rezaee
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Aristidis M. Tsatsakis
- Center of Toxicology Science and Research, Division of Morphology, Medical School, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
22
|
Zabihi H, Hosseini M, Pourganji M, Oryan S, Soukhtanloo M, Niazmand S. The effects of tamoxifen on learning, memory and brain tissues oxidative damage in ovariectomized and naïve female rats. Adv Biomed Res 2014; 3:219. [PMID: 25371876 PMCID: PMC4219215 DOI: 10.4103/2277-9175.143297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/15/2013] [Indexed: 12/18/2022] Open
Abstract
Background: Regarding the modulatory effects of tamoxifen (TAM) on the actions of estrogen in the present study, the effects of TAM on learning, memory and brain tissues oxidative damage in ovariectomized (OVX) and naοve female rats was investigated. Materials and Methods: The animals were divided into: (1) Sham, (2) OVX, (3) Sham-tamoxifen (Sham-TAM) and (4) ovariectomized-tamoxifen (OVX-TAM). The animals of the Sham-TAM and OVX-TAM groups were treated by TAM (1 mg/kg; 4 weeks). Results: In Morris water maze, the escape latency in the OVX group was higher than in the Sham group (P < 0.01). The time latency in the animals of OVX-TAM group was lower than that of OVX group (P < 0.01); however, there were no significant differences between the Sham-TAM and Sham groups. In the probe trial, the time spent in target quadrant (Q1) by the animals of OVX group was lower than that of Sham group (P < 0.01). Interestingly, the animals of OVX-TAM group spent more times in target quadrant (Q1) compared with OVX group (P < 0.01). In passive avoidance test, the animals of OVX group had lower latencies to enter the dark compartment compared with the Sham group (P < 0.05). The time latency to enter the dark compartment by animals of OVX-TAM group was higher than in OVX group (P < 0.01). In OVX-TAM group, the total thiol concentration was significantly higher (P < 0.05) and malondialdehyde concentration was lower (P < 0.01) than OVX group. Conclusions: These results allow us to propose that TAM enhances learning and memory of OVX rats. The possible mechanism may be due to the protective effects against brain tissues oxidative damage.
Collapse
Affiliation(s)
- Hoda Zabihi
- Department of Biology, Faculty of Science, Tarbiat Moallem University of Tehran, Tehran, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoume Pourganji
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahrbanoo Oryan
- Department of Biology, Faculty of Science, Tarbiat Moallem University of Tehran, Tehran, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Niazmand
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Pourganji M, Hosseini M, Soukhtanloo M, Zabihi H, Hadjzadeh MAR. Protective role of endogenous ovarian hormones against learning and memory impairments and brain tissues oxidative damage induced by lipopolysaccharide. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 16:e13954. [PMID: 24829769 PMCID: PMC4005431 DOI: 10.5812/ircmj.13954] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/05/2013] [Accepted: 12/16/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND The contribution of neuroinflammation in Alzheimer's disease (AD) has been widely reported. The effects of female gonadal hormones in both neuroinflammation and brain cognitive functions have also been well considered. OBJECTIVES In the present study, the possible protective role for endogenous ovarian hormones against learning and memory impairment as well as brain tissues oxidative damage induced by lipopolysachride (LPS) was investigated in rats. MATERIALS AND METHODS THE RATS WERE DIVIDED INTO FOUR GROUPS: Sham-LPS, Ovariectomized (OVX)-LPS, Sham, and OVX. The animals of sham group were in proestrous phase in which the serum concentration of estradiol is high. The Sham-LPS and OVX-LPS groups were treated with LPS (250 µg/kg) before acquisition. The animals were examined using passive avoidance (PA) test. The brains were then removed and malondialdehyde (MDA) and total thiol groups concentrations were measured. RESULTS The time latency to enter the dark compartment by OVX-LPS group was shorter than that of OVX at both first and 24th hours after the shock (P < 0.05 - P < 0.001). In Sham-LPS and OVX-LPS groups, total thiol concentration in hippocampal and cortical tissues were significantly lower while MDA concentrations were higher than that of Sham and OVX groups (P < 0.05 - P < 0.001). ). The hippocampal MDA concentration in OVX-LPS group was higher than Sham- LPS group (P < 0.01). CONCLUSIONS Brain tissue oxidative damage contributed in deleterious effects of LPS on learning and memory. Some protective effects for the endogenous ovarian hormones against damaging effects of LPS on learning and memory function, as well as brain tissues oxidative damage could be postulated; however, it needs more investigation.
Collapse
Affiliation(s)
- Masoume Pourganji
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
- Corresponding Author: Mahmoud Hosseini, Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran. Tel: +98-05118828565, Fax: +98-05118828564, E-mail:
| | - Mohammad Soukhtanloo
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Hoda Zabihi
- Department of Biology, Faculty of Biological Sciences, Kharazmi University of Tehran, Tehran, IR Iran
| | - Mosa Al-reza Hadjzadeh
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| |
Collapse
|