1
|
Kodanch SM, Mukherjee S, Prabhu NB, Kabekkodu SP, Bhat SK, Rai PS. Altered mitochondrial homeostasis on bisphenol-A exposure and its association in developing polycystic ovary syndrome: A comprehensive review. Reprod Toxicol 2024; 130:108700. [PMID: 39181417 DOI: 10.1016/j.reprotox.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous endocrinopathy that is known to be one of the most common reproductive pathologies observed in premenopausal women around the globe and is particularly complex as it affects various endocrine and reproductive metabolic pathways. Endocrine-disrupting chemicals (EDCs) are considered to be environmental toxicants as they have hazardous health effects on the functioning of the human endocrine system. Among various classes of EDCs, bisphenol A (BPA) has been under meticulous investigation due to its ability to alter the endocrine processes. As there is emerging evidence suggesting that BPA-induced mitochondrial homeostasis dysfunction in various pathophysiological conditions, this review aims to provide a detailed review of how various pathways associated with ovarian mitochondrial homeostasis are impaired on BPA exposure and its mirroring effects on the PCOS phenotype. BPA exposure might cause significant damage to the mitochondrial morphology and functions through the generation of reactive oxygen species (ROS) and simultaneously downregulates the total antioxidant capacity, thereby leading to oxidative stress. BPA disrupts the mitochondrial dynamics in human cells by altering the expressions of mitochondrial fission and fusion genes, increases the senescence marker proteins, along with significant alterations in the mTOR/AMPK pathway, upregulates the expression of autophagy mediating factors, and downregulates the autophagic suppressor. Furthermore, an increase in apoptosis of the ovarian granulosa cells indicates impaired folliculogenesis. As all these key features are associated with the pathogenesis of PCOS, this review can provide a better insight into the possible associations between BPA-induced dysregulation of mitochondrial homeostasis and PCOS.
Collapse
Affiliation(s)
- Supraja M Kodanch
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sayantani Mukherjee
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Navya B Prabhu
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shashikala K Bhat
- Department of Obstetrics and Gynaecology, Dr T M A Pai Hospital, Udupi, Karnataka 576101, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
2
|
Huzayyin AAS, Ibrahim MK, Hassanein NMA, Ahmed HMS. Vitamin D3 and zinc supplements augment the antimanic efficacy of lithium and olanzapine treatments in an animal model of mania. Nutr Neurosci 2024; 27:1391-1404. [PMID: 38635860 DOI: 10.1080/1028415x.2024.2338344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Objective: Bipolar disorder (BD) is a challenging psychiatric disorder and a complex disease. The associated reduction in serum vitamin D3 (VitD3) levels in BD patients and the contribution of zinc (Zn) to the treatment, along with the severe side effects of lithium (Li) treatment, were encouraging to assess the efficacy of different correlated combinations of therapeutic/nutraceutical treatments such as olanzapine (Oln), VitD3, and Zn against Li. Methods: Mania was induced in C57BL/6 mice by administering methylphenidate (MPH) for 14 consecutive days. On the 8th day of MPH injection, different treatment regimens were administered, Li, Oln, VitD3/Zn, VitD3/Zn/Oln, VitD3 + Zn + Oln + Li50mg/kg (C50), and VitD3 + Zn + Oln + Li100mg/kg (C100). Both VitD3 (850 IU/kg) and Zn (180 mg/kg) were supplied with food for 2 weeks before starting the induction of mania, which continued until the end of MPH administration. Behavioral, brain oxidative stress, thyroid hormones, VitD3, Zn, GsK-3β, and Bcl2 levels, as well as brain histopathological alterations, were assessed. Results: Manic mice exhibited alterations in all tested parameters, and the histopathological examination of the cortex and hippocampus confirmed these results. The VitD3/Zn/Oln, C50, and C100 treatment regimens reversed most of the behavioral and pathophysiological alterations; however, the C50 treatment regimen was the most efficient. Conclusions: This study emphasizes the importance of combining different antimanic medications like Li and Oln with nutraceutical supplements to increase their antimanic efficacy, reduce their adverse effects, and, ideally, improve the BD patient's quality of life.
Collapse
Affiliation(s)
- Aya A S Huzayyin
- Central Administration of Drug Control, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Michael K Ibrahim
- Central Administration of Biological and Innovative Products and Clinical Studies, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Nahed M A Hassanein
- Developmental Pharmacology and Acute Toxicity Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Helmy M S Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy-Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Oztepe T, Sahin FI, Yilmaz AC, Baskin E, Haberal M, Terzi YK. Determination of the Frequency of BCL-2 Polymorphisms (c.-717C>A and c.*2364G>A) and LIF Polymorphism (c.*1414T>G) in Patients with Congenital Anomalies of the Kidney and Urinary Tract. Mol Syndromol 2024; 15:371-379. [PMID: 39359948 PMCID: PMC11444711 DOI: 10.1159/000538653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/31/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Congenital anomalies of the kidney and urinary tract (CAKUT) are characterized by several malformations. Its prevalence is 0.3-0.6% in live births. The B-cell lymphoma (BCL-2) gene regulates apoptosis, and the Leukemia Inhibitory Factor (LIF) gene plays a role in many biological processes, such as blastocyst growth and uterine preparation for implantation. In this study, two single nucleotide polymorphisms (SNPs) of the BCL-2 gene (rs2279115 and rs4987856) and one SNP of the LIF gene (rs929271) were investigated in CAKUT patients for the first time. Methods Hundred and twenty-nine CAKUT patients and 105 controls were enrolled in this study. We used polymerase chain reaction-restriction fragment length polymorphism for rs2279115 and rs929271 and SNaPshot for rs4987856. The χ2 test was used to compare discrete variables, and the independent sample t test was used to compare continuous variables. Results The allele frequencies for the rs2279115 and rs4987856 polymorphisms of BCL-2 and the rs929271 polymorphism of LIF were not significantly different between the patient and control groups (p = 0.162, p = 0.053, p = 0.635, respectively). However, the co-segregation analysis revealed a significant difference in the distribution of allele frequencies between the patient and control groups for two genetic variations: LIF rs929271 SNP and BCL-2 rs4987856 SNP (p = 0.034). The relative odds ratio was 2.444 (95% Confidence Interval (CI) 1.054-5.671). Conclusion This study, which is the first time in the literature, showed that changes in BCL-2 and LIF genes are associated with CAKUT disease.
Collapse
Affiliation(s)
- Tugce Oztepe
- Department of Medical Genetics, Baskent University, Ankara, Turkey
| | | | | | - Esra Baskin
- Department of Pediatric Nephrology, Baskent University, Ankara, Turkey
| | - Mehmet Haberal
- Division of Transplantation, Department of Surgery, Baskent University, Ankara, Turkey
| | | |
Collapse
|
4
|
Imam AL, Okesina AA, Sulaimon FA, Imam A, Ibiyeye RY, Oyewole LA, Biliaminu SA, Shehu M, Alli AO, Omoola OO, Ajao SM. Thymoquinone ameliorate oxidative stress, GABAergic neuronal depletion and memory impairment through Nrf2/ARE signaling pathway in the dentate gyrus following cypermethrin administration. BMC Neurosci 2024; 25:45. [PMID: 39333878 PMCID: PMC11428341 DOI: 10.1186/s12868-024-00896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Exposure to chemical toxins, including insecticides, harms bodily organs like the brain. This study examined the neuroprotective of thymoquinone on the cypermethrin's harmful effects on the histoarchitecture of the dentate gyrus and motor deficit in the dentate gyrus. METHODS Forty adult male rats (180-200 g) were randomly divided into 5 groups (n = 8 per group). Groups I, II, III, IV, and V received oral administration of 0.5 ml of phosphate-buffered saline, cypermethrin (20 mg/kg), thymoquinone (10 mg/kg), cypermethrin (20 mg/kg) + thymoquinone (5 mg/kg), and cypermethrin (20 mg/kg) + thymoquinone (10 mg/kg) for 14 days respectively. The novel object recognition test that assesses intermediate-term memory was done on days 14 and 21 of the experiment. At the end of these treatments, the animals were euthanized and taken for cytoarchitectural (hematoxylin and eosin; Cresyl violet) and immunohistochemical studies (Nuclear factor erythroid 2-related factor 2 (Nrf2), Parvalbumin, and B-cell lymphoma 2 (Bcl2). RESULT The study shows that thymoquinone at 5 and 10 mg/kg improved Novelty preference and discrimination index. Thymoquinone enhanced Nissl body integrity, increased GABBAergic interneuron expression, nuclear factor erythroid 2-derived factor 2, and enhanced Bcl-2 expression in the dentate gyrus. It also improved the concentration of nuclear factor erythroid 2-derived factor 2, increased the activities of superoxide dismutase and glutathione, and decreased the concentration of malondialdehyde level against cypermethrin-induced neurotoxicity. CONCLUSION thymoquinone could be a therapeutic agent against cypermethrin poisoning.
Collapse
Affiliation(s)
- Abubakar Lekan Imam
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Akeem Ayodeji Okesina
- Department of Clinical Medicine and Community Health, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.
| | - Fatimo Ajoke Sulaimon
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Aminu Imam
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Ruqayyah Yetunde Ibiyeye
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Kwara State University, Malete, Nigeria
| | - Lukuman Aboyeji Oyewole
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Sikiru Abayomi Biliaminu
- Department of Chemical Pathology, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Monsur Shehu
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Oluwatosin Olasheu Omoola
- Department of Human Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Ishaka/Bushenyi, Uganda
| | - Salihu Moyosore Ajao
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
5
|
Iyer P, Jasdanwala SS, Bhatia K, Bhatt S. Mitochondria and Acute Leukemia: A Clinician's Perspective. Int J Mol Sci 2024; 25:9704. [PMID: 39273651 PMCID: PMC11395402 DOI: 10.3390/ijms25179704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Acute leukemia is a group of aggressive hematological malignancies, with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) being the most common types. The biology of acute leukemia involves complex genetic and epigenetic alterations that lead to uncontrolled cell proliferation and resistance to apoptosis. Mitochondrial dysfunction is a feature of acute leukemia that results in altered energy production, unregulated cell death pathways, and increased cancer cell survival. Apoptosis, particularly via the mitochondrial pathway, is crucial for cellular homeostasis and cancer prevention. In acute leukemia, disruption of apoptosis is pivotal in disease development and progression, with elevated levels of anti-apoptotic proteins conferring a survival advantage to leukemia cells and promoting resistance to conventional therapies. Targeting mitochondrial apoptosis using BH3 mimetics and anti-apoptotic protein inhibitors is a viable therapeutic strategy. Alterations in the mitochondrial membrane potential, metabolism, and dynamics also contribute to the pathogenesis of acute leukemia. Continued research is vital for developing novel therapies and enhancing survival outcomes in patients with acute leukemia while minimizing the long-term adverse effects of treatment. In this narrative review, we provide a birds-eye view of the available scientific literature on the importance of mitochondria in acute leukemia, and discuss the role of BH3 mimetics in targeting the mitochondrial internal apoptotic machinery.
Collapse
Affiliation(s)
- Prasad Iyer
- Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore 229899, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | | | - Karanpreet Bhatia
- Department of Hematology and Medical Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Shruti Bhatt
- Department of Pharmacy, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
6
|
Bardaweel SK, Al-salamat H, Hajjo R, Sabbah D, Almutairi S. Unveiling the Intricacies of Monoamine Oxidase-A (MAO-A) Inhibition in Colorectal Cancer: Computational Systems Biology, Expression Patterns, and the Anticancer Therapeutic Potential. ACS OMEGA 2024; 9:35703-35717. [PMID: 39184489 PMCID: PMC11339988 DOI: 10.1021/acsomega.4c04100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
Colorectal cancer (CRC) remains a significant health burden globally, necessitating a deeper understanding of its molecular intricacies for effective therapeutic interventions. Elevated monoamine oxidase-A (MAO-A) expression has been consistently observed in CRC tissues, correlating with advanced disease stages and a poorer prognosis. This research explores the systems biology effects of MAO-A inhibition with small molecule inhibitor clorgyline regarding CRC. The applied systems biology approach starts with a chemocentric informatics approach to derive high-confidence hypotheses regarding the antiproliferative effects of MAO-A inhibitors and ends with experimental validation. Our computational results emphasized the anticancer effects of MAO-A inhibition and the chemogenomics similarities between clorgyline and structurally diverse groups of apoptosis inducers in addition to highlighting apoptotic, DNA-damage, and microRNAs in cancer pathways. Experimental validation results revealed that MAO inhibition results in antiproliferative antimigratory activities in addition to synergistic effects with doxorubicin. Moreover, the results demonstrated a putative role of MAO-A inhibition in commencing CRC cellular death by potentially mediating the induction of apoptosis.
Collapse
Affiliation(s)
- Sanaa K. Bardaweel
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman - 11942, Jordan
| | - Husam Al-salamat
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman - 11942, Jordan
| | - Rima Hajjo
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, P.O. Box 130, Amman - 11733, Jordan
- Laboratory
for Molecular Modeling, Division of Chemical Biology and Medicinal
Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Board
Member, Jordan CDC, Amman - 11183, Jordan
| | - Dima Sabbah
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, P.O. Box 130, Amman - 11733, Jordan
| | - Shriefa Almutairi
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman - 11942, Jordan
| |
Collapse
|
7
|
Khin M, Davis LJ, Lantvit DD, Orjala J, Burdette JE. Aulosirazole Stimulates FOXO3a Nuclear Translocation to Regulate Apoptosis and Cell-Cycle Progression in High-Grade Serous Ovarian Cancer (HGSOC) Cells. Mol Pharmacol 2024; 106:145-154. [PMID: 39079718 PMCID: PMC11331498 DOI: 10.1124/molpharm.124.000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/01/2024] [Indexed: 08/18/2024] Open
Abstract
Ovarian cancer, the fifth leading cause of cancer-related mortality in women, is the most lethal gynecological malignancy globally. Within various ovarian cancer subtypes, high-grade serous ovarian cancer is the most prevalent and there is frequent emergence of chemoresistance. Aulosirazole, an isothiazolonaphthoquinone alkaloid, isolated from the cyanobacterium Nostoc sp. UIC 10771, demonstrated cytotoxic activity against OVCAR3 cells (IC50 = 301 ± 80 nM). Using immunocytochemistry, OVCAR3 cells treated with aulosirazole demonstrated increased concentrations of phosphorylated protein kinase B and phosphorylated c-Jun N-terminal kinase with subsequent accumulation of forkhead box O3a (FOXO3a) in the nucleus. The combination of aulosirazole with protein kinase B inhibitors resulted in the most nuclear accumulation of FOXO3a aulosirazole-induced apoptosis based on cleavage of poly(ADP-ribose) polymerase, annexin V staining, and induction of caspase 3/7 activity in OVCAR3, OVCAR5, and OVCAR8. The expression of downstream targets of FOXO3a, including B-cell lymphoma 2 (BCL2) and p53-upregulator modulator of apoptosis, increased following aulosirazole treatment. Aulosirazole upregulated the FOXO3a target, cyclin-dependent kinase inhibitor 1, and increased cell-cycle arrest in the G0/G1 phase. The downregulation of FOXO3a by short hairpin RNA (shRNA) reduced the cytotoxicity after aulosirazole treatment by 3-fold IC50 (949 ± 16 nM) and eliminated its ability to regulate downstream targets of FOXO3a. These findings underscore FOXO3a as a critical mediator of aulosirazole-induced cytotoxicity. Additionally, aulosirazole was able to decrease migration and invasion while increasing cell death in 3D tumor spheroids. However, in vivo OVCAR8 tumor burden was not reduced by aulosirazole using an intraperitoneal tumor model. Given the mechanism of action of aulosirazole, this class of alkaloids represents promising lead compounds to develop treatments against FOXO3a-downregulated cancers. SIGNIFICANCE STATEMENT: Aulosirazole, an isothiazolonaphthoquinone alkaloid, exhibits potent cytotoxic effects against high-grade serous ovarian cancer by promoting forkhead box O3a (FOXO3a) nuclear accumulation and modulating downstream targets. These findings highlight the potential of aulosirazole as a promising therapeutic intervention for cancers characterized by FOXO3a downregulation.
Collapse
Affiliation(s)
- Manead Khin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois (M.K., D.D.L., J.O., J.E.B.); and Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina (L.J.D.)
| | - Lydia J Davis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois (M.K., D.D.L., J.O., J.E.B.); and Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina (L.J.D.)
| | - Daniel D Lantvit
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois (M.K., D.D.L., J.O., J.E.B.); and Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina (L.J.D.)
| | - Jimmy Orjala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois (M.K., D.D.L., J.O., J.E.B.); and Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina (L.J.D.)
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois (M.K., D.D.L., J.O., J.E.B.); and Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina (L.J.D.)
| |
Collapse
|
8
|
Bardaweel SK, AlOmari R, Hajjo R. Integrating computational and experimental chemical biology revealed variable anticancer activities of phosphodiesterase isoenzyme 5 inhibitors (PDE5i) in lung cancer. RSC Med Chem 2024; 15:2882-2899. [PMID: 39149110 PMCID: PMC11324042 DOI: 10.1039/d4md00364k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Phosphodiesterase 5 (PDE5), an enzyme responsible for catalyzing the degradation of cyclic guanosine monophosphate (cGMP), has been linked to the development of cancer. PDE5 inhibitors (PDE5i), such as sildenafil (Viagra) and tadalafil (Cialis), work by blocking the action of PDE5 and are used primarily as treatments for erectile dysfunction and arterial hypertension. Some studies suggested a potential link between PDE5i and increased cancer risk, while other studies showed preferable antitumor effects. The present study is attempting to shed light on the systems biology effects of PDE5i by applying an integrative informatics approach followed by experimental validation methods including cell viability, cell motility, and proliferation capacity. Cell cycle and apoptosis analyses were carried out using flow cytometry, while real-time polymerase chain reaction (PCR) and western blotting were used to determine the relative gene and protein expression respectively. Our results indicated that the examined PDE5i significantly inhibited the proliferation of lung cancer cells, in addition to reducing wound closure and the mean colony count and size. Furthermore, PDE5i increased the early and late apoptotic activities and suppressed the gene and protein expression of PDE5 in lung cancer cells. The combination of cisplatin and raloxifene with PDE5i resulted in a synergistic effect. This study provides solid evidence supporting the anti-tumorigenic effect of PDE5i in lung cancer cells.
Collapse
Affiliation(s)
- Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan Amman 11942 Jordan
| | - Rola AlOmari
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan Amman 11942 Jordan
| | - Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan P.O. Box 130 Amman 11733 Jordan
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill NC USA
- Board Member, Jordan CDC Amman Jordan
| |
Collapse
|
9
|
Wang K, Nguyen T, Gao Y, Guo R, Fan C, Liao H, Li J, Chai J, Xu X, Gong Y, Chen X. Androcin 18-1, a novel scorpion-venom peptide, shows a potent antitumor activity against human U87 cells via inducing mitochondrial dysfunction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 170:104137. [PMID: 38759703 DOI: 10.1016/j.ibmb.2024.104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Scorpion venom is a potent natural source for antitumor drug development due to the multiple action modes of anticancer components. Although the sequence of Androcin 18-1 has been identified from the transcriptome profile of the scorpion venom Androctonus bicolor, its bioactivity remains unclear. In this study, we described the antitumor mechanism whereby Androcin 18-1 inhibits the proliferation and induces apoptosis by inducing cell membrane disruption, ROS accumulation, and mitochondrial dysfunction in human U87 glioblastoma cells. Moreover, Androcin 18-1 could suppress cell migration via the mechanisms associated with cytoskeleton disorganization and MMPs/TIMPs expression regulation. The discovery of this work highlights the potential application of Androcin 18-1 in drug development for glioblastoma treatment.
Collapse
Affiliation(s)
- Kai Wang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Tienthanh Nguyen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Yihan Gao
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Ruiyin Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Chaofan Fan
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Hang Liao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Jiali Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Jinwei Chai
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Xueqing Xu
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China.
| | - Yuxin Gong
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
| |
Collapse
|
10
|
Sarkar E, Kotiya A, Khan A, Bhuyan R, Raza ST, Misra A, Mahdi AA. The combination of Curcumin and Doxorubicin on targeting PI3K/AKT/mTOR signaling pathway: an in vitro and molecular docking study for inhibiting the survival of MDA-MB-231. In Silico Pharmacol 2024; 12:58. [PMID: 38912326 PMCID: PMC11192715 DOI: 10.1007/s40203-024-00231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
The process of tumorigenesis is highly associated with the disruption of cell-cycle regulators and derangement of various signaling pathways, which end up with the inhibition of apoptosis and hyper-activation of survival pathways. The PI3K medicated AKT/mTOR pathway is the widely explained mechanism for cancer cell survival which causes the overexpression of MDM2 and downregulates the p53-BAX mediated apoptotic pathway. Curcumin (CUR), the phyto-compound, derived from Curcuma longa is currently being focused on for its anticancer activities against breast cancer cells, MDA-MB-231, not only because of its minimal cytotoxicity against healthy cells (HEK293) but also because it synergistically sensitizes the activity of Doxorubicin (DOXO) in lower doses, which can be a promising source for complementary drug development. This study aims to investigate the combinatorial effect of CUR and DOXO on PI3K/AKT/mTOR pathway proteins by sequential molecular docking analysis and MD simulation studies. The lower binding affinity of the sequentially docked protein-ligand complex proves the increasing binding affinity of CUR and DOXO in the combinatorial dose. The mRNA expressions of different genes of this pathway are observed and quantified using rt-qPCR, where the decreasing fold change (2-∆∆Ct) indicates the suppression of the AKT/mTOR pathway after co-treatment of CUR and DOXO against MDA-MB-231 cells. These in silico and in vitro findings can be a new horizon for further in vitro and clinical trials of breast cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00231-2.
Collapse
Affiliation(s)
- Esha Sarkar
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Lucknow, Uttar Pradesh 226003 India
| | - Akanksha Kotiya
- Department of Biosciences and Biotechnology, Banasthali Vidyapith, Radha Kishnpura, Rajasthan 304022 India
| | - Afreen Khan
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Lucknow, Uttar Pradesh 226003 India
| | - Rajabrata Bhuyan
- Department of Biosciences and Biotechnology, Banasthali Vidyapith, Radha Kishnpura, Rajasthan 304022 India
| | - Syed Tasleem Raza
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Lucknow, Uttar Pradesh 226003 India
| | - Aparna Misra
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Lucknow, Uttar Pradesh 226003 India
| | | |
Collapse
|
11
|
Nag S, Mitra O, Maturi B, Kaur SP, Saini A, Nama M, Roy S, Samanta S, Chacko L, Dutta R, Sayana SB, Subramaniyan V, Bhatti JS, Kandimalla R. Autophagy and mitophagy as potential therapeutic targets in diabetic heart condition: Harnessing the power of nanotheranostics. Asian J Pharm Sci 2024; 19:100927. [PMID: 38948399 PMCID: PMC11214300 DOI: 10.1016/j.ajps.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 03/29/2024] [Accepted: 04/13/2024] [Indexed: 07/02/2024] Open
Abstract
Autophagy and mitophagy pose unresolved challenges in understanding the pathology of diabetic heart condition (DHC), which encompasses a complex range of cardiovascular issues linked to diabetes and associated cardiomyopathies. Despite significant progress in reducing mortality rates from cardiovascular diseases (CVDs), heart failure remains a major cause of increased morbidity among diabetic patients. These cellular processes are essential for maintaining cellular balance and removing damaged or dysfunctional components, and their involvement in the development of diabetic heart disease makes them attractive targets for diagnosis and treatment. While a variety of conventional diagnostic and therapeutic strategies are available, DHC continues to present a significant challenge. Point-of-care diagnostics, supported by nanobiosensing techniques, offer a promising alternative for these complex scenarios. Although conventional medications have been widely used in DHC patients, they raise several concerns regarding various physiological aspects. Modern medicine places great emphasis on the application of nanotechnology to target autophagy and mitophagy in DHC, offering a promising approach to deliver drugs beyond the limitations of traditional therapies. This article aims to explore the potential connections between autophagy, mitophagy and DHC, while also discussing the promise of nanotechnology-based theranostic interventions that specifically target these molecular pathways.
Collapse
Affiliation(s)
- Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Oishi Mitra
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Bhanu Maturi
- Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Simran Preet Kaur
- Department of Microbiology, University of Delhi (South Campus), Benito Juarez Road, New Delhi 110021, India
| | - Ankita Saini
- Department of Microbiology, University of Delhi (South Campus), Benito Juarez Road, New Delhi 110021, India
| | - Muskan Nama
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Soumik Roy
- Department of Biotechnology, Indian Institute of Technology, Hyderabad (IIT-H), Sangareddy, Telangana 502284, India
| | - Souvik Samanta
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, 1601 Research Blvd, Rockville, MD, USA
| | - Rohan Dutta
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Suresh Babu Sayana
- Department of Pharmacology, Government Medical College, Suryapet, Telangana, India
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India
| |
Collapse
|
12
|
Maity J, Pal P, Pal R, Mukhopadhyay PK. Co-administration of L-Ascorbic Acid and α-Tocopherol Alleviates Arsenic-Induced Immunotoxicities in the Thymus and Spleen by Dwindling Oxidative Stress-Induced Inflammation. Biol Trace Elem Res 2024; 202:2199-2227. [PMID: 37704839 DOI: 10.1007/s12011-023-03841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Herein, we investigated whether L-ascorbic acid (L-AA) and α-tocopherol (α-T) co-administration has the potential to alleviate arsenic-induced immunotoxicities in the thymus, spleen, and circulating leukocytes. Forty-eight adult male Wistar rats were randomly divided into four groups before the treatment: group I (control); group II (sodium arsenite, 3 mg/kg/day/rat); group III (sodium arsenite + L-AA (200 mg/kg/day/rat) and α-T (400 mg/kg/day/rat)); group IV (L-AA and α-T). The result showed that sodium arsenite exposure (consecutive 30 days) caused weight reduction, structural alterations in the thymus and spleen, accompanied by a decrease in thymocyte and splenocyte count. Decreased superoxide dismutase and catalase activity, increased malondialdehyde and protein-carbonyl content, reduced Nrf2 and Bcl2 expression, and increased p-ERK, NF-kβ, Bax, and cleaved-caspase-3 expression were also observed in the thymus and spleen of arsenic-exposed rats. Enhanced plasma ACTH and corticosterone, ROS-induced apoptosis of lymphocytes were also observed. L-AA and α-T co-administration has the potential to abrogate the deleterious impact of arsenic on the thymus, spleen, and circulating lymphocytes. Whole transcriptome analysis of leukocytes revealed that arsenic treatment augmented the expression of Itga4, Itgam, and MMP9 genes, which might help in transient migration of the leukocytes through the endothelial cell layer. Co-administration with L-AA and α-T maintained Itga4, Itgam, and MMP9 gene expression within leukocytes at a lower level.
Collapse
Affiliation(s)
- Jeet Maity
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Priyankar Pal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Ranjana Pal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | | |
Collapse
|
13
|
Lin T, Liu D, Guan Z, Zhao X, Li S, Wang X, Hou R, Zheng J, Cao J, Shi M. CRISPR screens in mechanism and target discovery for AML. Heliyon 2024; 10:e29382. [PMID: 38660246 PMCID: PMC11040068 DOI: 10.1016/j.heliyon.2024.e29382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024] Open
Abstract
CRISPR-based screens have discovered novel functional genes involving in diverse tumor biology and elucidated the mechanisms of the cancer pathological states. Recently, with its randomness and unbiasedness, CRISPR screens have been used to discover effector genes with previously unknown roles for AML. Those novel targets are related to AML survival resembled cellular pathways mediating epigenetics, synthetic lethality, transcriptional regulation, mitochondrial and energy metabolism. Other genes that are crucial for pharmaceutical targeting and drug resistance have also been identified. With the rapid development of novel strategies, such as barcodes and multiplexed mosaic CRISPR perturbation, more potential therapeutic targets and mechanism in AML will be discovered. In this review, we present an overview of recent progresses in the development of CRISPR-based screens for the mechanism and target identification in AML and discuss the challenges and possible solutions in this rapidly growing field.
Collapse
Affiliation(s)
- Tian Lin
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Zhangchun Guan
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Xuan Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Xu Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Rui Hou
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| |
Collapse
|
14
|
Podolski-Renić A, Čipak Gašparović A, Valente A, López Ó, Bormio Nunes JH, Kowol CR, Heffeter P, Filipović NR. Schiff bases and their metal complexes to target and overcome (multidrug) resistance in cancer. Eur J Med Chem 2024; 270:116363. [PMID: 38593587 DOI: 10.1016/j.ejmech.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | | | - Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Óscar López
- Departamento de Química Organica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Julia H Bormio Nunes
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Nenad R Filipović
- Department of Chemistry and Biochemistry, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
15
|
Chatzikalil E, Roka K, Diamantopoulos PT, Rigatou E, Avgerinou G, Kattamis A, Solomou EE. Venetoclax Combination Treatment of Acute Myeloid Leukemia in Adolescents and Young Adult Patients. J Clin Med 2024; 13:2046. [PMID: 38610812 PMCID: PMC11012941 DOI: 10.3390/jcm13072046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Over the past two decades, the prognosis in adolescents and young adults (AYAs) diagnosed with acute myeloid leukemia (AML) has significantly improved. The standard intensive cytotoxic treatment approach for AYAs with AML, consisting of induction chemotherapy with anthracycline/cytarabine combination followed by consolidation chemotherapy or stem cell transplantation, has lately been shifting toward novel targeted therapies, mostly in the fields of clinical trials. One of the most recent advances in treating AML is the combination of the B-cell lymphoma 2 (Bcl-2) inhibitor venetoclax with hypomethylating agents, which has been studied in elderly populations and was approved by the Food and Drug Administration (FDA) for patients over 75 years of age or patients excluded from intensive chemotherapy induction schemas due to comorbidities. Regarding the AYA population, venetoclax combination therapy could be a therapeutic option for patients with refractory/relapsed (R/R) AML, although data from real-world studies are currently limited. Venetoclax is frequently used by AYAs diagnosed with advanced hematologic malignancies, mainly acute lymphoblastic leukemia and myelodysplastic syndromes, as a salvage therapeutic option with considerable efficacy and safety. Herein, we aim to summarize the evidence obtained from clinical trials and observational studies on venetoclax use in AYAs with AML. Based on the available evidence, venetoclax is a safe and effective therapeutic option for R/R AML AYA patients. However, further research in larger cohorts is needed to confirm these data, establishing the benefits of a venetoclax-based regimen for this special population.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Kleoniki Roka
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Panagiotis T. Diamantopoulos
- First Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Efthymia Rigatou
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Georgia Avgerinou
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Antonis Kattamis
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| |
Collapse
|
16
|
Boateng AK, Joseph R, Srivastava OP. Dysregulation of Autophagy Occurs During Congenital Cataract Development in βA3ΔG91 Mice. Invest Ophthalmol Vis Sci 2024; 65:4. [PMID: 38558092 PMCID: PMC10996937 DOI: 10.1167/iovs.65.4.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose To examine lens phenotypic characteristics in βA3ΔG91 mice and determine if βA3ΔG91 affects autophagy in the lens. Methods We generated a βA3ΔG91 mouse model using CRISPR/Cas9 methodology. Comparative phenotypic and biochemical characterizations of lenses from postnatal day 0 (P0), P15, and 1-month-old βA3ΔG91 and wild-type (WT) mice were performed. The methodologies used included non-invasive slit-lamp examination, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot, and immunohistochemical (IHC) analyses to determine the levels of autophagy-related genes and proteins. Transmission electron microscopy (TEM) analysis of lenses was performed to assess organelle degradation and the presence of autophagic vesicles. TUNEL staining was used to determine apoptosis in the lens. Results Relative to WT lenses, 1-month-old βA3ΔG91 mice developed congenital nuclear cataract and microphthalmia and showed an early loss of endoplasmic reticulum (ER) in the cortex and attenuation of nuclei degradation. This observation was confirmed by TEM analysis, as was the presence of autophagic vesicles in βA3ΔG91 lenses. Comparative IHC and RT-qPCR analyses showed relatively higher levels of autophagy markers (ubiquitinated proteins and p62, LC3, and LAMP2 proteins) in βA3ΔG91 lenses compared to WT lenses. Additionally, βA3ΔG91 lenses showed relatively greater numbers of apoptotic cells and higher levels of cleaved caspase-3 and caspase-9. Conclusions The deletion of G91 in βA3ΔG91 mice leads to higher levels of expression of autophagy-related proteins and their transcripts relative to WT lenses. Taken together, G91 deletion in βA3/A1-crystallin is associated with autophagy disruption, attenuation of nuclei degradation, and cellular apoptosis in the lens, which might be congenital cataract causative factors.
Collapse
Affiliation(s)
- Akosua K. Boateng
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Roy Joseph
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Om P. Srivastava
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
17
|
Gribbin C, Chen J, Martin P, Ruan J. Novel treatment for mantle cell lymphoma - impact of BTK inhibitors and beyond. Leuk Lymphoma 2024; 65:1-13. [PMID: 37800170 DOI: 10.1080/10428194.2023.2264430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
Mantle cell lymphoma (MCL) primarily affects older adults, accounting for 3-10% of all non-Hodgkin lymphoma (NHL) in western countries. The disease course of MCL is heterogenous; driven by clinical, cytogenetics, and molecular features that shape differences in outcomes, including proliferation index, MIPI scores, and mutational profile such as TP53 aberration. The advent of novel agents has fundamentally evolved the treatment landscape for MCL with treatment strategies that can now be more effectively tailored based on both patient- and disease-specific factors. In this review, we discuss the major classes of novel agents used for the treatment of MCL, focusing on efficacy and notable toxicities of BTK inhibitors. We further examine effective novel combination regimens and, lastly, discuss future directions for the evolution of targeted approaches for the treatment of MCL.
Collapse
Affiliation(s)
- Caitlin Gribbin
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jane Chen
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Peter Martin
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jia Ruan
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
18
|
Udompatanakorn C, Ratthawongjirakul P. A Combination of Curcumin and Lactobacillus rhamnosus GG Inhibits Viability and Induces Apoptosis in SCC-9 Human Oral Squamous Cell Carcinoma Cells. J Evid Based Integr Med 2024; 29:2515690X241258369. [PMID: 38778767 PMCID: PMC11113064 DOI: 10.1177/2515690x241258369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/04/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
The aim of this study was to evaluate the effect of curcumin combined with Lactobacillus rhamnosus GG cell-free supernatant (LGG CFS) on the proliferation and induction of apoptosis in SCC-9 oral squamous cell carcinoma (OSCC) cells. Curcumin (40 µg/ml) and 25% v/v LGG CFS (108 CFU/ml), both alone and in a combination regimen, significantly decreased the viability of SCC-9 cells and normal human gingival fibroblast (HGF) cells. Interestingly, the combination of low doses of curcumin (5 µg/ml) and 25% v/v LGG CFS (106 CFU/ml) had no effect on the HGF cells but significantly inhibited the viability of SCC-9 cells (p < 0.05). Flow cytometric analysis revealed that SCC-9 cells treated with the combination of low-dose curcumin and low-dose LGG CFS had a higher apoptotic rate than the cells in the control group and the single treatment groups (p < 0.05). The combined treatment also significantly increased the Bax/Bcl2 mRNA and protein expression in SCC-9 cells (p < 0.05) but not in HGF cells, indicating the underlying mechanism of the combination regimen. There was no significant difference in caspase-3 protein expression or the Bcl-xL/Bak and Mcl-1/Bak ratios between the treatment and control groups in both cell lines. These findings suggested that the coadministration of curcumin and LGG could exhibit anticancer effects in SCC-9 cells without causing toxicity to normal fibroblast cells.
Collapse
Affiliation(s)
- Chatchaphan Udompatanakorn
- Program of Molecular Sciences in Medical Microbiology and Immunology, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand
| | - Panan Ratthawongjirakul
- Research Unit of Innovative Diagnosis of Antimicrobial Resistance, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
19
|
Rostampour S, Eslami F, Babaei E, Mostafavi H, Mahdavi M. An Active Compound from the Pyrazine Family Induces Apoptosis by Targeting the Bax/Bcl2 and Survivin Expression in Chronic Myeloid Leukemia K562 Cells. Anticancer Agents Med Chem 2024; 24:203-212. [PMID: 38038011 DOI: 10.2174/0118715206272359231121105713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND It has been established that pyrazine derivatives, which have widespread bioactivities, can effectively treat cancer. OBJECTIVES In this study, we investigated the effects of 2-methoxy-5-(oxiran-2-ylmethyl) phenyl pyrazine-2- carboxylate (2-mOPP), a new pyrazine derivative, on proliferation, viability, and apoptosis induction in human leukemia K562 cells. METHODS For this purpose, the K562 cells were treated with various concentrations (20-120 μM) of the 2-mOPP for 24-72 hours. Cell viability was determined by MTT growth inhibition assay. Apoptotic activity of 2-mOPP was investigated morphologically by Hoechst staining, cell surface expression assay of phosphatidylserine by Annexin-V/PI technique, as well as DNA fragmentation assay. The effect of 2-mOPP on the K562 cell cycle was studied by flow cytometry. To determine the impact of 2-mOPP on the expression of intrinsic apoptosis-related genes, Bcl2 (anti-apoptotic), Bax (pro-apoptotic), and Survivin genes expression levels were evaluated before and after treatment with 2-mOPP through Real-Time PCR analysis. RESULTS The results revealed that 2-mOPP inhibited viability with IC50 of 25μM in 72 h. Morphological changes assessment by fluorescence microscopy, Annexin V/PI double staining by flow cytometry, and DNA ladders formation upon cell treatment with the 2-mOPP showed that this compound induces apoptosis at IC50 value. Cell cycle arrest was observed in the G0/G1 phase, and the sub-G1 cell population (the sign of apoptosis) increased in a time-dependent manner. Low expression levels of Bcl2 and Survivin in K562 cells were observed 24-72 h after treatment. Along with the down-regulation of Survivin and Bcl2, the expression of Bax was increased after treatment with 2-mOPP. CONCLUSION These findings demonstrate that the new pyrazine derivative plays a crucial role in blocking the proliferation of the leukemic cells by inducing cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Saeedeh Rostampour
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Farhad Eslami
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Esmaeil Babaei
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Hossein Mostafavi
- Department of Organic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
20
|
Nazmabadi R, Pooladi M, Amri J, Abbasi Y, Karami H, Darvish M. Dihydroartemisinin Enhances the Therapeutic Efficacy of BH3 Mimetic Inhibitor in Acute Lymphoblastic Leukemia Cells via Inhibition of Mcl-1. Asian Pac J Cancer Prev 2024; 25:325-332. [PMID: 38285800 PMCID: PMC10911722 DOI: 10.31557/apjcp.2024.25.1.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024] Open
Abstract
INTRODUCTION Up-regulation of the anti-apoptotic proteins such as Mcl-1 is associated with the primary and secondary resistance of tumor cells to ABT-737 Bcl-2 inhibitor. The combined treatment of Bcl-2 inhibitors with Mcl-1 inhibitors has been proposed as an attractive therapeutic strategy to overcome this drug resistance. Here, we investigated the effect of dihydroartemisinin on Mcl-1 expression and sensitization of T-ALL cells to ABT-737. METHODS The cell growth and survival were tested by the cell proliferation and MTT assays, respectively. The mRNA levels of Bcl-2, Mcl-1, Bax and P21 were examined by qRT-PCR. Apoptosis were detected by Hoechst 33342 staining and caspase-3 activity assay. RESULTS Our data showed that combination treatment with dihydroartemisinin and ABT-737 caused a significant decrease in the IC50 value and synergistically reduced the cell survival compared with dihydroartemisinin or ABT-737 alone. ABT-737 enhanced the Mcl-1 mRNA expression. Dihydroartemisinin also down-regulated the expression of Bcl-2 and Mcl-1 and enhanced the P21 and Bax expression. Moreover, dihydroartemisinin enhanced the apoptosis induced by ABT-737 in MOLT-4 and MOLT-17 cell lines. CONCLUSION In conclusion, dihydroartemisinin demonstrates anti-tumor activities in human ALL cells via inhibition of cell survival and growth. Dihydroartemisinin augments the apoptotic effect of ABT-737 by inhibiting the expression of Mcl-1.
Collapse
Affiliation(s)
- Roya Nazmabadi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Marziyeh Pooladi
- Department of Anatomy, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Jamal Amri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Yusef Abbasi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Hadi Karami
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
- Traditional and Complementary Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Maryam Darvish
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
21
|
Koirala R, Fongsaran C, Poston T, Rogge M, Rogers B, Thune R, Dubytska L. Edwardsiella ictaluri T3SS effector EseN is a phosphothreonine lyase that inactivates ERK1/2, p38, JNK, and PDK1 and modulates cell death in infected macrophages. Microbiol Spectr 2023; 11:e0300323. [PMID: 37796003 PMCID: PMC10714789 DOI: 10.1128/spectrum.03003-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE This work has global significance in the catfish industry, which provides food for increasing global populations. E. ictaluri is a leading cause of disease loss, and EseN is an important player in E. ictaluri virulence. The E. ictaluri T3SS effector EseN plays an essential role in establishing infection, but the specific role EseN plays is not well characterized. EseN belongs to a family of phosphothreonine lyase effectors that specifically target host mitogen activated protein kinase (MAPK) pathways important in regulating host responses to infection. No phosphothreonine lyase equivalents are known in eukaryotes, making this family of effectors an attractive target for indirect narrow-spectrum antibiotics. Targeting of major vault protein and PDK1 kinase by EseN has not been reported in EseN homologs in other pathogens and may indicate unique functions of E. ictaluri EseN. EseN targeting of PDK1 is particularly interesting in that it is linked to an extraordinarily diverse group of cellular functions.
Collapse
Affiliation(s)
- Ranjan Koirala
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Chanida Fongsaran
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Tanisha Poston
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Matthew Rogge
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin, USA
| | - Bryan Rogers
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Ronald Thune
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Lidiya Dubytska
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| |
Collapse
|
22
|
Alkhawaldeh A, Bardaweel S. Molecular Investigation of the Antitumor Effects of Monoamine Oxidase Inhibitors in Breast Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2592691. [PMID: 37841082 PMCID: PMC10569896 DOI: 10.1155/2023/2592691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023]
Abstract
The catalytic activity of monoamine oxidase A (MAO-A) has been linked to tumorigenesis due to the production of reactive oxygen species (ROS) and the resulting oxidative stress. MAO-A inhibition revealed a beneficial role in prostate and lung cancer treatment. This study is aimed at evaluating the effect of different monoamine oxidase A inhibitors (MAO-AIs) on the proliferation and progression of breast cancer cell lines. The cell viability assay was used to evaluate the antiproliferative and combined effects of MAO-AIs. Cell migration was evaluated using wound healing, invasion, and colony formation assays. The underlying mechanism of cell death was studied using flow cytometry. The real-time polymerase chain reaction was used to determine the relative gene expression. Finally, MAO-A activity in breast cancer cells was evaluated using an MAO-A activity assay. According to the results, the examined MAO-AIs significantly inhibited the proliferation of breast cancer cells in a dose-dependent manner. In breast cancer cells, the combination of anticancer drugs (doxorubicin or raloxifene) with MAO-AIs resulted in a synergistic effect. MAO-AIs significantly reduced wound closure and invasion ability in breast cancer cells. Also, MAO-AIs reduced the colony count and size of breast cancer cells. MAO-AIs resulted in significant proapoptotic activity in breast cancer cells. Finally, the MAO-AIs suppressed MAO-A, Bcl-2, and VEGF gene expressions in breast cancer cells relative to untreated cells. This study provides solid evidence supporting the anticancer effect of MAO-A inhibitors in breast cancer cells.
Collapse
Affiliation(s)
- Aseel Alkhawaldeh
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Queen Rania Street, Amman 11942, Jordan
| | - Sanaa Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Queen Rania Street, Amman 11942, Jordan
| |
Collapse
|
23
|
Lee YC, Chiou JT, Wang LJ, Chen YJ, Chang LS. Amsacrine downregulates BCL2L1 expression and triggers apoptosis in human chronic myeloid leukemia cells through the SIDT2/NOX4/ERK/HuR pathway. Toxicol Appl Pharmacol 2023; 474:116625. [PMID: 37451322 DOI: 10.1016/j.taap.2023.116625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Accumulating evidence indicates that the anticancer activity of acridine derivatives is mediated through the regulation of anti-apoptotic and pro-apoptotic BCL2 protein expression. Therefore, we investigated whether the cytotoxicity of amsacrine with an acridine structural scaffold in human chronic myeloid leukemia (CML) K562 cells was mediated by BCL2 family proteins. Amsacrine induced apoptosis, mitochondrial depolarization, and BCL2L1 (also known as BCL-XL) downregulation in K562 cells. BCL2L1 overexpression inhibited amsacrine-induced cell death and mitochondrial depolarization. Amsacrine treatment triggered SIDT2-mediated miR-25 downregulation, leading to increased NOX4-mediated ROS production. ROS-mediated inactivation of ERK triggered miR-22 expression, leading to increased HuR mRNA decay. As HuR is involved in stabilizing BCL2L1 mRNA, downregulation of BCL2L1 was noted in K562 cells after amsacrine treatment. In contrast, amsacrine-induced BCL2L1 downregulation was alleviated by restoring ERK phosphorylation and HuR expression. Altogether, the results of this study suggest that amsacrine triggers apoptosis in K562 cells by inhibiting BCL2L1 expression through the SIDT2/NOX4/ERK-mediated downregulation of HuR. Furthermore, a similar pathway also explains the cytotoxicity of amsacrine in CML MEG-01 and KU812 cells.
Collapse
Affiliation(s)
- Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
24
|
Moslehi AH, Hoseinpour F, Saber A, Akhavan Taheri M, Hashemian AH. Fertility-enhancing effects of inositol & vitamin C on cisplatin induced ovarian and uterine toxicity in rats via suppressing oxidative stress and apoptosis. Food Chem Toxicol 2023; 179:113995. [PMID: 37619831 DOI: 10.1016/j.fct.2023.113995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/22/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Cisplatin can lead to infertility due to its negative impact on the uterus and ovaries. This study aimed to explore the effects of Inositol and vitamin C on cisplatin-induced infertility. Forty-eight adult female Wistar rats were divided into eight groups (N = 6) and orally treated for 21 days. The treatments were as follows: negative control (saline), positive control (saline and cisplatin injected into the abdomen on day 15), T1-T3: rats given vitamin C (150 mg/kg), Inositol (420 mg/kg), and vitamin C + Inositol, respectively, along with cisplatin injected into the abdomen on day 15, T4-T6: rats given only vitamin C, Inositol, and vitamin C + Inositol, respectively. Vitamin C and Inositol enhanced cisplatin-induced histopathological improvements in the uterus and ovaries, raising progesterone and estradiol serum levels. Furthermore, the supplements enhanced ESR1 gene expression in the uterus and ovary, reducing uterine and ovarian apoptosis caused by cisplatin through modulation of caspase 3, 8, and Bcl-2 gene levels. These substances decreased ovarian and uterine malondialdehyde levels, boosted total antioxidant capacity and superoxide dismutase, and alleviated oxidative stress. The findings reveal that vitamin C and Inositol shield against cisplatin-related infertility by reducing oxidative stress and apoptosis in the uterus and ovaries.
Collapse
Affiliation(s)
- Amir Hosein Moslehi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Fatemeh Hoseinpour
- Department of Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| | - Amir Saber
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Maryam Akhavan Taheri
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Hashemian
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
25
|
Maffeo B, Panuzzo C, Moraca A, Cilloni D. A Leukemic Target with a Thousand Faces: The Mitochondria. Int J Mol Sci 2023; 24:13069. [PMID: 37685874 PMCID: PMC10487524 DOI: 10.3390/ijms241713069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
In the era of personalized medicine greatly improved by molecular diagnosis and tailor-made therapies, the survival rate of acute myeloid leukemia (AML) at 5 years remains unfortunately low. Indeed, the high heterogeneity of AML clones with distinct metabolic and molecular profiles allows them to survive the chemotherapy-induced changes, thus leading to resistance, clonal evolution, and relapse. Moreover, leukemic stem cells (LSCs), the quiescent reservoir of residual disease, can persist for a long time and activate the recurrence of disease, supported by significant metabolic differences compared to AML blasts. All these points highlight the relevance to develop combination therapies, including metabolism inhibitors to improve treatment efficacy. In this review, we summarized the metabolic differences in AML blasts and LSCs, the molecular pathways related to mitochondria and metabolism are druggable and targeted in leukemia therapies, with a distinct interest for Venetoclax, which has revolutionized the therapeutic paradigms of several leukemia subtype, unfit for intensive treatment regimens.
Collapse
Affiliation(s)
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (B.M.); (A.M.); (D.C.)
| | | | | |
Collapse
|
26
|
Keramidas P, Papachristou E, Papi RM, Mantsou A, Choli-Papadopoulou T. Inhibition of PERK Kinase, an Orchestrator of the Unfolded Protein Response (UPR), Significantly Reduces Apoptosis and Inflammation of Lung Epithelial Cells Triggered by SARS-CoV-2 ORF3a Protein. Biomedicines 2023; 11:1585. [PMID: 37371681 DOI: 10.3390/biomedicines11061585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
SARS-CoV-2 ORF3a accessory protein was found to be involved in virus release, immunomodulation and exhibited a pro-apoptotic character. In order to unravel a potential ORF3a-induced apoptotic and inflammatory death mechanism, lung epithelial cells (A549) were transfected with in vitro synthesized ORF3a mRNA. The protein's dynamic involvement as "stress factor" for the endoplasmic reticulum, causing the activation of PERK kinase and other UPR-involved proteins and therefore the upregulation of their signaling pathway executioners (ATF6, XBP-1s, PERK, phospho eIF2a, ATF4, CHOP, GADD34), has been clearly demonstrated. Furthermore, the overexpression of BAX and BH3-only pro-apoptotic protein PUMA, the upregulation of Bcl-2 family genes (BAX, BAK, BID, BAD), the reduced expression of Bcl-2 in mRNA and protein levels, and lastly, the cleavage of PARP-1 and caspase family members (caspase-3,-8 and -9) indicate that ORF3a displays its apoptotic character through the mitochondrial pathway of apoptosis. Moreover, the upregulation of NFκB, phosphorylation of p65 and IκΒα and the elevated expression of pro-inflammatory cytokines (IL-1b, IL-6, IL-8 and IL-18) in transfected cells with ORF3a mRNA indicate that this protein causes the inflammatory response through NFκB activation and therefore triggers lung injury. An intriguing finding of our study is that upon treatment of the ORF3a-transfected cells with GSK2606414, a selective PERK inhibitor, both complications (apoptosis and inflammatory response) were neutralized, and cell survival was favored, whereas treatment of transfected cells with z-VAD (a pan-caspase inhibitor) despite inhibiting cell death, could not ameliorate the inflammatory response of transfected A549 cells. Given the above, we point out that PERK kinase is a "master tactician" and its activation constitutes the main stimulus for the emergence of ORF3a apoptotic and inflammatory nature and therefore could serve as potential target for developing novel therapeutic approaches against COVID-19.
Collapse
Affiliation(s)
- Panagiotis Keramidas
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Eleni Papachristou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Rigini M Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Aglaia Mantsou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
27
|
Syed Abd Halim SA, Abd Rashid N, Woon CK, Abdul Jalil NA. Natural Products Targeting PI3K/AKT in Myocardial Ischemic Reperfusion Injury: A Scoping Review. Pharmaceuticals (Basel) 2023; 16:739. [PMID: 37242521 PMCID: PMC10221447 DOI: 10.3390/ph16050739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
This scoping review aimed to summarize the effects of natural products targeting phosphoinositide-3-kinases/serine/threonine kinase (PI3K/AKT) in myocardial ischemia-reperfusion injury (MIRI). The review details various types of natural compounds such as gypenoside (GP), gypenoside XVII (GP-17), geniposide, berberine, dihydroquercetin (DHQ), and tilianin which identified to reduce MIRI in vitro and in vivo by regulating the PI3K/AKT signaling pathway. In this study, 14 research publications that met the inclusion criteria and exclusion criteria were shortlisted. Following the intervention, we discovered that natural products effectively improved cardiac functions through regulation of antioxidant status, down-regulation of Bax, and up-regulation of Bcl-2 and caspases cleavage. Furthermore, although comparing outcomes can be challenging due to the heterogeneity in the study model, the results we assembled here were consistent, giving us confidence in the intervention's efficacy. We also discussed if MIRI is associated with multiple pathological condition such as oxidative stress, ERS, mitochondrial injury, inflammation, and apoptosis. This brief review provides evidence to support the huge potential of natural products used in the treatment of MIRI due to their various biological activities and drug-like properties.
Collapse
Affiliation(s)
| | - Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Petaling Jaya 47301, Selangor, Malaysia;
| | - Choy Ker Woon
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Nahdia Afiifah Abdul Jalil
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia;
| |
Collapse
|
28
|
Obeidat M, Al-Khraisat IF, Jaradat DMM, Ghanim BY, Abdallah QM, Arqoub DA, Sabbah D, Al-Sanabra OM, Arafat T, Qinna NA. Mellitin peptide quantification in seasonally collected crude bee venom and its anticancer effects on myelogenous K562 human leukaemia cell line. BMC Complement Med Ther 2023; 23:132. [PMID: 37098530 PMCID: PMC10127481 DOI: 10.1186/s12906-023-03897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/24/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Apitherapy is an emerging field in cancer research, particularly in developing communities. The potency of Melittin (MEL), a major constituent in bee venom is accounted for the cytotoxic capacity against cancer cells. It is postulated that the genotype of bees and the time of venom collection influences its specific activity against certain types of cancer. METHOD Hereby, Jordanian crude bee venom (JCBV) was collected during different seasons of the year, specifically spring, summer and autumn and investigated for in vitro antitumour effects. Venom collected during springtime comprised the highest quantity of MEL in comparison to venom collected some other time. Springtime-collected JCBV extract and MEL were tested on an immortal myelogenous leukaemia cell line, namely K562 leukemic cells. Treated cells were examined for cell modality via flow cytometry analysis and cell death mediating gene expressions. RESULTS Springtime-collected JCBV extract and MEL showed an IC50 of 3.7 ± 0.37 μg/ml and 1.84 ± 0.75 μg/ml, respectively. In comparison to JCBV and positive control, MEL-treated cells exhibited late apoptotic death with a moderate cellular arrest at G0/G1 and an increase of cell number at G2/M phase. Expression of NF-κB/MAPK14 axis was inhibited in MEL and JCBV-treated cells, as well as expression of c-MYC and CDK4. Moreover, marked upregulation in ABL1, JUN and TNF was observed. In conclusion, springtime-collected JCBV showed the highest content of MEL while both JCBV and pure MEL showed apoptotic, necrotic, and cell cycle arrest efficiency against K562 leukemic cells. CONCLUSION Integration of bee venom in chemotherapy needs more investigation and should be carefully translated into clinical use. During such translation, the correlation of bee genotype, collection time and concentration of MEL in CBV should be profiled.
Collapse
Affiliation(s)
- Maher Obeidat
- Department of Medical Laboratory Analysis, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Ihab F Al-Khraisat
- Department of Medical Laboratory Analysis, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Da'san M M Jaradat
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Bayan Y Ghanim
- Department of Pharmacology and Biomedical Sciences, University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, P.O. Box 961343, Amman, Jordan
| | - Qasem M Abdallah
- Department of Pharmacology and Biomedical Sciences, University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, P.O. Box 961343, Amman, Jordan
| | - Duaa Abu Arqoub
- Department of Pharmacology and Biomedical Sciences, University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, P.O. Box 961343, Amman, Jordan
| | - Duaa Sabbah
- Department of Pharmacology and Biomedical Sciences, University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, P.O. Box 961343, Amman, Jordan
| | - Ola M Al-Sanabra
- Department of Medical Laboratory Analysis, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Tawfiq Arafat
- Jordan Center for Pharmaceutical Research (JCPR), Amman, Jordan
| | - Nidal A Qinna
- Department of Pharmacology and Biomedical Sciences, University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, P.O. Box 961343, Amman, Jordan.
| |
Collapse
|
29
|
Pravdic Z, Vukovic NS, Gasic V, Marjanovic I, Karan-Djurasevic T, Pavlovic S, Tosic N. The influence of BCL2, BAX, and ABCB1 gene expression on prognosis of adult de novo acute myeloid leukemia with normal karyotype patients. Radiol Oncol 2023:raon-2023-0017. [PMID: 37078709 DOI: 10.2478/raon-2023-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/30/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Deregulation of the apoptotic process underlies the pathogenesis of many cancers, including leukemia, but is also very important for the success of chemotherapy treatment. Therefore, the gene expression profile of main apoptotic factors, such as anti-apoptotic BCL2 (B-cell lymphoma protein 2) and pro-apoptotic BAX (BCL2-associated X), as well as genes involved in the multi-drug resistance (ABCB1), could have significant impact on the prognosis and could be used as targets for specific therapy. PATIENTS AND METHODS We analyzed the expression of BCL2, BAX, and ABCB1 in bone-marrow samples collected at diagnosis from 51 adult patients with acute myeloid leukemia with normal karyotype (AML-NK) using real-time polymerase chain reaction method, and examined their prognostic potential. RESULTS Increased expression of BCL2 (BCL2 +) was associated with the presence of chemoresistance (p = 0.024), while patients with low BAX expression were more prone to relapse (p = 0.047). Analysis of the combined effect of BCL2 and BAX expression showed that 87% of patients with BAX/BCL2 low status were resistant to therapy (p = 0.044). High expression of ABCB1 was associated with BCL2 + status (p < 0.001), and with absence FLT3-ITD mutations (p = 0.019). CONCLUSIONS The present analysis of BCL2, BAX, and ABCB1 gene expression profiles is the first study focusing solely on AML-NK patients. Preliminary results showed that patients with high BCL2 expression are likely to experience resistance to chemotherapy, and may benefit from specific anti-BCL2 treatment. Further investigations conducted on a larger number of patients could elucidate actual prognostic significance of these genes in AML-NK patients.
Collapse
Affiliation(s)
- Zlatko Pravdic
- Clinic of Hematology, Clinical Center of Serbia, Belgrade, Serbia
| | - Nada Suvajdzic Vukovic
- Clinic of Hematology, Clinical Center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Serbia
| | - Vladimir Gasic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Serbia
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Serbia
| | | | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Serbia
| | - Natasa Tosic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Serbia
| |
Collapse
|
30
|
Opydo M, Mlyczyńska A, Mlyczyńska E, Rak A, Kolaczkowska E. Synergistic Action of MCL-1 Inhibitor with BCL-2/BCL-XL or MAPK Pathway Inhibitors Enhances Acute Myeloid Leukemia Cell Apoptosis and Differentiation. Int J Mol Sci 2023; 24:ijms24087180. [PMID: 37108344 PMCID: PMC10138770 DOI: 10.3390/ijms24087180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by excessive proliferation of abnormal myeloid precursors accompanied by a differentiation block and inhibition of apoptosis. Increased expression of an anti-apoptotic MCL-1 protein was shown to be critical for the sustained survival and expansion of AML cells. Therefore, herein, we examined the pro-apoptotic and pro-differentiating effects of S63845, a specific inhibitor of MCL-1, in a single-agent treatment and in combination with BCL-2/BCL-XL inhibitor, ABT-737, in two AML cell lines: HL-60 and ML-1. Additionally, we determined whether inhibition of the MAPK pathway had an impact on the sensitivity of AML cells to S63845. To assess AML cells' apoptosis and differentiation, in vitro studies were performed using PrestoBlue assay, Coulter electrical impedance method, flow cytometry, light microscopy and Western blot techniques. S63845 caused a concentration-dependent decrease in the viability of HL-60 and ML-1 cells and increased the percentage of apoptotic cells. Combined treatment with S63845 and ABT-737 or MAPK pathway inhibitor enhanced apoptosis but also induced differentiation of tested cells, as well as altering the expression of the MCL-1 protein. Taken together, our data provide the rationale for further studies regarding the use of MCL-1 inhibitor in combination with other pro-survival protein inhibitors.
Collapse
Affiliation(s)
- Małgorzata Opydo
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Anna Mlyczyńska
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Elzbieta Kolaczkowska
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
31
|
Sarkar A, Paul A, Banerjee T, Maji A, Saha S, Bishayee A, Maity TK. Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer. Eur J Pharmacol 2023; 944:175588. [PMID: 36791843 DOI: 10.1016/j.ejphar.2023.175588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Cancer is amongst the deadliest and most disruptive disorders, having a much higher death rate than other diseases worldwide. Human cancer rates continue to rise, thereby posing the most significant concerns for medical health professionals. In the last two decades, researchers have gone past several milestones in tackling cancer while gaining insight into the role of apoptosis in cancer or targeting various biomarker tools for prognosis and diagnosis. Apoptosis which is still a topic full of complexities, can be controlled considerably by B-cell lymphoma 2 (BCL-2) and its family members. Therefore, targeting proteins of this family to prevent tumorigenesis, is essential to focus on the pharmacological features of the anti-apoptotic and pro-apoptotic members, which will help to develop and manage this disorder. This review deals with the advancements of various epigenetic regulators to target BCL-2 family proteins, including the mechanism of several microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Similarly, a rise in natural and synthetic molecules' research over the last two decades has allowed us to acquire insights into understanding and managing the transcriptional alterations that have led to apoptosis and treating various neoplastic diseases. Furthermore, several inhibitors targeting anti-apoptotic proteins and inducers or activators targeting pro-apoptotic proteins in preclinical and clinical stages have been summarized. Overall, agonistic and antagonistic mechanisms of BCL-2 family proteins conciliated by epigenetic regulators, natural and synthetic agents have proven to be an excellent choice in developing cancer therapeutics.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| |
Collapse
|
32
|
Lee YC, Chiou JT, Chang LS. AMPK inhibition induces MCL1 mRNA destabilization via the p38 MAPK/miR-22/HuR axis in chronic myeloid leukemia cells. Biochem Pharmacol 2023; 209:115442. [PMID: 36720359 DOI: 10.1016/j.bcp.2023.115442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
The oncogenic and tumor-suppressive roles of AMPK in chronic myeloid leukemia (CML) are controvertible. This study aimed to investigate the cytotoxic effects of the AMPK inhibitor Compound C in the CML cell lines K562, KU812, and MEG-01. Compared to K562 cells, KU812 and MEG-01 cells were more sensitive to Compound C-mediated cytotoxicity. Moreover, Compound C induced SIRT3 upregulation in K562 cells but not in KU812 or MEG-01 cells. SIRT3 silencing increased the sensitivity of K562 cells to Compound C. Additionally; Compound C-induced autophagy attenuated its induced apoptosis in KU812 and MEG-01 cells. Compound C-induced ROS-mediated AMPKα inactivation resulted in the downregulation of apoptotic regulator MCL1 in KU812 and MEG-01 cells. Mechanistically, AMPK inhibition activated p38 MAPK-mediated miR-22 expression, which in turn inhibited HuR expression, thereby reducing MCL1 mRNA stability. Overexpression of constitutively active AMPKα1 and abolishment of the activation of p38 MAPK inhibited Compound C-induced cell death and MCL1 downregulation. Furthermore, Compound C synergistically enhanced the cytotoxicity of BCR-ABL inhibitors and the BCL2 inhibitor ABT-199. Collectively, this study indicates that Compound C induces MCL1 downregulation through the AMPK/p38 MAPK/miR-22/HuR pathway, thereby inducing apoptosis of KU812 and MEG-01 cells. Furthermore, our findings suggest that AMPK inhibition is a promising strategy for improving CML therapy.
Collapse
Affiliation(s)
- Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
33
|
Pandya JD, Musyaju S, Modi HR, Cao Y, Flerlage WJ, Huynh L, Kociuba B, Visavadiya NP, Kobeissy F, Wang K, Gilsdorf JS, Scultetus AH, Shear DA. Comprehensive evaluation of mitochondrial redox profile, calcium dynamics, membrane integrity and apoptosis markers in a preclinical model of severe penetrating traumatic brain injury. Free Radic Biol Med 2023; 198:44-58. [PMID: 36758906 DOI: 10.1016/j.freeradbiomed.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Traumatic Brain Injury (TBI) is caused by the external physical assaults damages the brain. It is a heterogeneous disorder that remains a leading cause of death and disability in the military and civilian population of the United States. Preclinical investigations of mitochondrial responses in TBI have ascertained that mitochondrial dysfunction is an acute indicator of cellular damage and plays a pivotal role in long-term injury progression through cellular excitotoxicity. The current study was designed to provide an in-depth evaluation of mitochondrial endpoints with respect to redox and calcium homeostasis, and cell death responses following penetrating TBI (PTBI). To evaluate these pathological cascades, anesthetized adult male rats (N = 6/group) were subjected to either 10% unilateral PTBI or Sham craniectomy. Animals were euthanized at 24 h post-PTBI, and purified mitochondrial fractions were isolated from the brain injury core and perilesional areas. Overall, increased reactive oxygen and nitrogen species (ROS/RNS) production, and elevated oxidative stress markers such as 4-hydroxynonenal (4-HNE), 3-nitrotyrosine (3-NT), and protein carbonyls (PC) were observed in the PTBI group compared to Sham. Mitochondrial antioxidants such as glutathione, peroxiredoxin (PRX-3), thioredoxin (TRX), nicotinamide adenine dinucleotide phosphate (NADPH), superoxide dismutase (SOD), and catalase (CAT) levels were significantly decreased after PTBI. Likewise, PTBI mitochondria displayed significant loss of Ca2+ homeostasis, early opening of mitochondrial permeability transition pore (mPTP), and increased mitochondrial swelling. Both, outer and inner mitochondrial membrane integrity markers, such as voltage-dependent anion channels (VDAC) and cytochrome c (Cyt C) expression were significantly decreased following PTBI. The apoptotic cell death was evidenced by significantly decreased B-cell lymphoma-2 (Bcl-2) and increased glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression after PTBI. Collectively, current results highlight the comprehensive picture of mitochondria-centric acute pathophysiological responses following PTBI, which may be utilized as novel prognostic indicators of disease progression and theragnostic indicators for evaluating neuroprotection therapeutics following TBI.
Collapse
Affiliation(s)
- Jignesh D Pandya
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA.
| | - Sudeep Musyaju
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - Hiren R Modi
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - Ying Cao
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - William J Flerlage
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - Linda Huynh
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - Brittany Kociuba
- Veterinary Services Program, Department of Pathology, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - Nishant P Visavadiya
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Kevin Wang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - Anke H Scultetus
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| |
Collapse
|
34
|
Kalın ŞN, Altay A, Budak H. Effect of evernic acid on human breast cancer MCF-7 and MDA-MB-453 cell lines via thioredoxin reductase 1: A molecular approach. J Appl Toxicol 2023. [PMID: 36807289 DOI: 10.1002/jat.4451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Thioredoxin reductase 1 (TrxR1) has emerged as an important target for anticancer drug development due to its overexpression in many human tumors including breast cancer. Due to the serious side effects of currently used commercial anticancer drugs, new natural compounds with very few side effects and high efficacy are of great importance in cancer treatment. Lichen secondary metabolites, known as natural compounds, have diverse biological properties, including antioxidant and anticancer activities. Herein, we aimed to determine the potential antiproliferative, antimigratory, and apoptotic effects of evernic acid, a lichen secondary metabolite, on breast cancer MCF-7 and MDA-MB-453 cell lines and afterward to investigate whether its anticancer effect is exerted by TrxR1-targeting. The cytotoxicity results indicated that evernic acid suppressed the proliferation of MCF-7 and MDA-MB-453 cells in a dose-dependent manner and the IC50 values were calculated as 33.79 and 121.40 μg/mL, respectively. Migration assay results revealed the notable antimigratory ability of evernic acid against both cell types. The expression of apoptotic markers Bcl2 associated X, apoptosis regulator, Bcl2 apoptosis regulator, and tumor protein p53 by quantitative real-time polymerase chain reaction and western blot analysis showed that evernic acid did not induce apoptosis in both cell lines, consistent with flow cytometry results. Evernic acid showed its anticancer effect via inhibiting TrxR1 enzyme activity rather than mRNA and protein expression levels in both cell lines. In conclusion, these findings suggest that evernic acid has the potential to be evaluated as a therapeutic agent in breast cancer treatment.
Collapse
Affiliation(s)
- Şeyda Nur Kalın
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey.,East Anatolia High Technology Application and Research Center, Atatürk University, Erzurum, Turkey
| | - Ahmet Altay
- Faculty of Science and Arts, Department of Chemistry, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Harun Budak
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
| |
Collapse
|
35
|
Ebrahimdoost M, Mohammadi M, Obeidi N, Mohammadi SA, Khamisipour G. A Pleurocidin-Like Peptide from Poecilia Mexicana Fish Induces Selective Cytotoxicity in Leukemia Jurkat Cells Through The Apoptosis Pathway. CELL JOURNAL 2023; 25:76-84. [PMID: 36840453 PMCID: PMC9968370 DOI: 10.22074/cellj.2022.557529.1062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Indexed: 02/26/2023]
Abstract
OBJECTIVE Some cationic anti-microbial peptides show a wide range of cytotoxic action versus malignant cells, which may lead to developing a novel group of antitumor medications. In the present study, the anticancer activity of pleurocidin-like peptide WF3 isoform X2 (AMP-WF3), from the Poecilia Mexicana fish, against leukemic cell line Jurkat was evaluated, and the cytotoxicity compared with the effects on normal cells, including peripheral blood mononuclear cells (PBMCs) and human dermal fibroblast (HDF) cells. MATERIALS AND METHODS In this experimental study, cells were treated with various dosages of AMP-WF3 for 24 hours. Using methyl thiazole tetrazolium salt reduction (MTT test), the effects of the AMP-WF3 on cell viability and toxicity were evaluated. The impact of this peptide on apoptotic pathways was examined using flow cytometry and Annexin V-PI stains. Additionally, the relative expression of the P53, P21 and BCL-2 genes was evaluated using a real-time polymerase chain reaction. RESULTS The Jurkat cell line was more susceptible to AMP-WF3 cytotoxicity [half-maximal inhibitory concentration (IC50)=50 μM], while normal cells (PBMCs and HDF) were less susceptible. Flow cytometry verified that the apoptotic activity of AMP-WF3 on Jurkat cells was significantly higher than that of HDF and PBMCs. Peptide-treated Jurkat cells were associated with increased expression of P21, and P53 genes. In contrast, the changes in P21, P53, and BCL-2 genes differed in PBMCs and HDF cells. In HDF cells, simultaneous increase of P21, P53, and BCL-2, and in PBMCs, only the increase of BCL-2 was observed. CONCLUSION Our research showed that AMP-WF3 could be developed as a novel treatment agent with minimum side effects for ALL patients.
Collapse
Affiliation(s)
- Mostafa Ebrahimdoost
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Mohammadi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr
University of Medical Sciences, Bushehr, Iran
| | - Narges Obeidi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyed Amin Mohammadi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Gholamreza Khamisipour
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran,P.O.Box: 7518759577Department of HematologyFaculty of Allied MedicineBushehr University of Medical SciencesBushehrIran
| |
Collapse
|
36
|
Pila P, Chuammitri P, Patchanee P, Pringproa K, Piyarungsri K. Evaluation of Bcl-2 as a marker for chronic kidney disease prediction in cats. Front Vet Sci 2023; 9:1043848. [PMID: 36699321 PMCID: PMC9870326 DOI: 10.3389/fvets.2022.1043848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/15/2022] [Indexed: 01/27/2023] Open
Abstract
Chronic kidney disease (CKD) is a frequent condition in elderly cats. Bcl-2 is linked to kidney disease through the processes of apoptosis and fibrosis. The purpose of this study is to examine Bcl-2 levels in CKD and clinically healthy age-matched cats in order to evaluate the relationship between Bcl-2 levels, signalment, and blood parameters in cats with CKD. The circulating levels of Bcl-2 were determined using an immunoassay in twenty-four CKD cats and eleven clinically healthy age-matched cats by the utilization of the general linear model (GLM), Pearson correlation, principal component analysis (PCA), ROC curves, the Cox hazard model, and Kaplan-Meier survival analysis. These were all conducted in order to explore Bcl-2 levels and their connection with other variables. The Bcl-2 immunohistochemical intensity was graded in each glomerulus and tubulointerstitium. McNemar's test was performed in order to compare the expression of Bcl-2 in the two renal tissue sites. The circulating Bcl-2 of CKD cats was significantly lower than those of clinically healthy age-matched cats (P = 0.034). The presence of circulating Bcl-2 (P < 0.01) and the severity of CKD (P = 0.02) were both linked with the survival time of cats with CKD. The area under the curve (AUC) of Bcl-2 for detection of CKD was 0.723. In cats, decreased circulating Bcl-2 was associated with increased blood BUN, creatinine levels, and CKD severity. Bcl-2 protein expression was reduced in the renal tissues of CKD cats as the disease progressed, resulting in a decrease in their survival time. This study demonstrated that Bcl-2 may be effective in diagnosing feline CKD.
Collapse
Affiliation(s)
- Pattiya Pila
- Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phongsakorn Chuammitri
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai, Thailand,Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prapas Patchanee
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kakanang Piyarungsri
- Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand,Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai, Thailand,*Correspondence: Kakanang Piyarungsri ✉
| |
Collapse
|
37
|
Li QZ, Zhou ZR, Hu CY, Li XB, Chang YZ, Liu Y, Wang YL, Zhou XW. Recent advances of bioactive proteins/polypeptides in the treatment of breast cancer. Food Sci Biotechnol 2023; 32:265-282. [PMID: 36619215 PMCID: PMC9808697 DOI: 10.1007/s10068-022-01233-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/24/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
Proteins do not only serve as nutrients to fulfill the demand for food, but also are used as a source of bioactive proteins/polypeptides for regulating physical functions and promoting physical health. Female breast cancer has the highest incidence in the world and is a serious threat to women's health. Bioactive proteins/polypeptides exert strong anti-tumor effects and exhibit inhibition of multiple breast cancer cells. This review discussed the suppressing effects of bioactive proteins/polypeptides on breast cancer in vitro and in vivo, and their mechanisms of migration and invasion inhibition, apoptosis induction, and cell cycle arrest. This may contribute to providing a basis for the development of bioactive proteins/polypeptides for the treatment of breast cancer. Graphical abstract
Collapse
Affiliation(s)
- Qi-Zhang Li
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Food and Biological Engineering, Hubei University of Technology, No.28, Nanli Road, Wuhan, 430068 Hubei People’s Republic of China
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Ze-Rong Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Food and Biological Engineering, Hubei University of Technology, No.28, Nanli Road, Wuhan, 430068 Hubei People’s Republic of China
| | - Cui-Yu Hu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Food and Biological Engineering, Hubei University of Technology, No.28, Nanli Road, Wuhan, 430068 Hubei People’s Republic of China
| | - Xian-Bin Li
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, Guangdong 510006 People’s Republic of China
| | - Yu-Zhou Chang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210 USA
| | - Yan Liu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Yu-Liang Wang
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Xuan-Wei Zhou
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| |
Collapse
|
38
|
Apoptotic Cell Death via Activation of DNA Degradation, Caspase-3 Activity, and Suppression of Bcl-2 Activity: An Evidence-Based Citrullus colocynthis Cytotoxicity Mechanism toward MCF-7 and A549 Cancer Cell Lines. SEPARATIONS 2022. [DOI: 10.3390/separations9120411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
The objectives of this study are to investigate the cytotoxic effect of different Citrullus colocynthis extracts on breast and lung cancer cell lines using flow cytometry to gain mechanistic insights. C. colocynthis was extracted sequentially using the Soxhlet method. We first tested the plant extracts’ cytotoxicity on non-malignant L929 cells and cancerous breast (MCF-7) and lung (A549) cell lines. We observed that the IC50 of the methanol extract on the viability of MCF-7 and A549 cell lines was 81.08 µg/mL and 17.84 µg/mL, respectively, using the MTT assay. The aqueous and methanol extracts were less toxic when tested against the non-cancerous L929 cell line, with IC50 values of 235.48 µg/mL and 222.29 µg/mL, respectively. Then, using flow cytometry, we investigated the underlying molecular pathways with Annexin-V, Anti-Bcl-2, Caspase-3, and DNA fragmentation (TUNEL) assays. Flow cytometric and molecular marker analyses revealed that the methanol extract activated caspase-3 and inhibited Bcl-2 protein, causing early and late apoptosis, as well as cell death via DNA damage in breast and lung cancer cells. These findings indicate that the methanol extract of C. colocynthis is cytotoxic to breast and lung cancer cell lines. The total phenolic and flavonoid content analysis results showed the methanolic extract of C. colocynthis has a concentration of 326.25 μg GAE/g dwt and 274.61 μg QE/g dwt, respectively. GC-MS analysis of the methanol extract revealed phytochemicals relevant to its cytotoxicity.
Collapse
|
39
|
David KI, Ravikumar TS, Sethuraman S, Krishnan UM. Investigations of an organic-inorganic nanotheranostic hybrid for pancreatic cancer therapy using cancer-in-a-dish and in vivomodels. Biomed Mater 2022; 18. [PMID: 36270604 DOI: 10.1088/1748-605x/ac9cb2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 10/21/2022] [Indexed: 12/14/2022]
Abstract
The incidence of highly aggressive pancreatic cancer is increasing across the globe and is projected to increase to 18.6% by 2050. The mortality rate for this form of cancer is very high and the 5 y relative survival rate is only about 9%-10%. The 3D pancreatic cancer microenvironment exerts a major influence on the poor survival rate. A key factor is the prevention of the penetration of the chemotherapeutic drugs in the three-dimensional (3D) microenvironment leading to the development of chemoresistance which is a major contributor to the survival rates. Hence,in vitrostudies using 3D cultures represent a better approach to understand the effect of therapeutic formulations on the cancer cells when compared to conventional 2D cultures. In the present study, we have explored three different conditions for the development of a 3D pancreatic tumour spheroid model from MiaPaCa-2 and PanC1 cells cultured for 10 days using Matrigel matrix. This optimized spheroid model was employed to evaluate a multi-functional nanotheranostic system fabricated using chitosan nanoparticles co-encapsulated with the chemotherapeutic agent gemcitabine and gold-capped iron oxide nanoparticles for multimodal imaging. The effect of the single and multiple-dose regimens of the theranostic system on the viability of 3D spheroids formed from the two pancreatic cancer cell lines was studied. It was observed that the 3D tumour spheroids cultured for 10 days exhibited resistance towards free gemcitabine drug, unlike the 2D culture. The administration of the multifunctional nanotheranostic system on alternate days effectively reduced the cancer cell viability after five doses to about 20% when compared with other groups. The repeated doses of the nanotheranostic system were found to be more effective than the single dose. Cell line-based differences in internalization of the carrier was also reflected in their response to the nanocarrier with PanC1 showing better sensitivity to the treatment.In vivostudies revealed that the combination of gemcitabine and magnetic field induced hypothermia produced superior regression in cancer when compared with the chemotherapeutic agent alone by a combination of activating the pro-apoptotic pathway and heat-induced necrosis. Our results reveal that this multi-functional system holds promise to overcome the current challenges to treat pancreatic cancers.
Collapse
Affiliation(s)
- Karolyn Infanta David
- Centre for Nanotechnology and Advanced Biomaterials, SASTRA Deemed University, Thanjavur, TamilNadu 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TamilNadu 613401, India
| | - T S Ravikumar
- Formerly at Sri Venkateswara Institute of Medical Sciences (SVIMS) Tirupati 517507, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology and Advanced Biomaterials, SASTRA Deemed University, Thanjavur, TamilNadu 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TamilNadu 613401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials, SASTRA Deemed University, Thanjavur, TamilNadu 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TamilNadu 613401, India.,School of Arts, Sciences, Humanities and Education, SASTRA Deemed University, Thanjavur, TamilNadu 613401, India
| |
Collapse
|
40
|
Madushani KP, Shanaka KASN, Wijerathna HMSM, Lim C, Jeong T, Jung S, Lee J. Molecular characterization and expression analysis of B-cell lymphoma-2 protein in Amphiprion clarkii and its role in virus infections. FISH & SHELLFISH IMMUNOLOGY 2022; 130:206-214. [PMID: 36100068 DOI: 10.1016/j.fsi.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Amphiprion clarkii is increasingly being used as a captive-bred ornamental fish in South Korea. However, its breeding has recently been greatly hindered by destructive diseases due to pathogens. B-cell lymphoma-2 (Bcl2), a mitochondrial apoptosis regulatory gene involved in immune responses, has not been investigated in anemonefish, including A. clarkii. Herein, we aimed to annotate Bcl2 in the A. clarkii transcriptome and examined its role against virus infections. Sequence analysis indicated that Bcl2 in A. clarkii (AcBcl2) contained all four Bcl-2 homology domains. The structure of AcBcl2 closely resembled those of previously analyzed anti-apoptotic Bcl2 proteins in mammals. Expression analysis showed that the highest level of AcBcl2 was expressed in blood. AcBcl2 expression in the blood was downregulated within 24 hpi when challenged with immune stimulants poly I:C and lipopolysaccharides. AcBcl2 reduced poly I:C-induced cell death. The propagation of viral hemorrhagic septicemia virus (VHSV) was higher in the presence of AcBcl2. Cell mortality was higher in AcBcl2 when transfected cells were infected with VHSV, and a higher viral transcript was observed compared to their respective controls. In conclusion, AcBcl2 is an anti-apoptotic protein, and its activity may facilitate the propagation of VHSV.
Collapse
Affiliation(s)
- K P Madushani
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - H M S M Wijerathna
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
41
|
Dou J, Mi Y, Daneshmand S, Heidari Majd M. The effect of magnetic nanoparticles containing hyaluronic acid and methotrexate on the expression of genes involved in apoptosis and metastasis in A549 lung cancer cell lines. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
42
|
Baek EB, Hwang YH, Park S, Hong EJ, Won YS, Kwun HJ. Eriochloa villosa Alleviates Progression of Benign Prostatic Hyperplasia in vitro and in vivo. Res Rep Urol 2022; 14:313-326. [PMID: 36187165 PMCID: PMC9519014 DOI: 10.2147/rru.s381713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Benign prostatic hyperplasia (BPH) is a non-neoplastic proliferative disease of the prostate. Eriochloa villosa (EV) reportedly possesses various pharmacological activities, including anti-lipase activity and modulation of various antioxidative enzymes. In this study, we investigate the therapeutic potential of EV against BPH in a testosterone-induced BPH rat model. Methods Rats were subjected to a daily subcutaneous injection of testosterone (3 mg kg−1) for 4 weeks to induce BPH. Along with testosterone, rats in the treatment group were administered finasteride (10 mg kg−1) or EV (150 mg kg−1) via oral gavage. Prostatic cancer (LNCaP) cell line was used to examine the effect of EV. Results Finasteride and EV significantly decrease the relative prostate weight, serum levels of dihydrotestosterone and testosterone, and prostate epithelial thickness. Testosterone injection induced prostatic hyperplasia and proliferating cell nuclear antigen expression; however, EV treatment significantly attenuated these effects. Moreover, finasteride- and EV-treated rats exhibit an increase in the number of TUNEL-positive cells and reduced Bcl-2 expression in the prostate tissues compared with the testosterone-treated animals. Furthermore, EV suppresses inflammatory cytokines, including interleukin (IL)-6 and IL-8, in the prostate tissues. Meanwhile, the expression of inflammatory mediator cyclooxygenase-2 is consistently upregulated in testosterone-treated rats, whereas EV treatment significantly reverses this effect. Notably, EV treatment suppresses malondialdehyde (MDA) levels and upregulates testosterone-induced catalase (CAT) expression. In addition, EV suppresses expression of androgen receptor (AR) and prostate-specific antigen (PSA) induced by testosterone in LNCaP cells. Conclusion The present study results suggest that EV regulates prostatic proliferation, apoptosis, response to inflammation, and oxidative stress in the BPH rat model, and may, therefore, serve as a useful therapeutic agent for BPH.
Collapse
Affiliation(s)
- Eun Bok Baek
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Youn-Hwan Hwang
- Herbal Medicine Research Division, Korean Institute of Oriental Medicine, Daejeon, Korea
| | - Suyoung Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Eun-Ju Hong
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korean Research Institute of Bioscience and Biotechnology, Chungbuk, Korea
| | - Hyo-Jung Kwun
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
- Correspondence: Hyo-Jung Kwun, Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon, 34134, Korea, Tel +82-42-821-6751, Fax +82-42-821-8903, Email
| |
Collapse
|
43
|
Zakaria ZZ, Mahmoud NN, Benslimane FM, Yalcin HC, Al Moustafa AE, Al-Asmakh M. Developmental Toxicity of Surface-Modified Gold Nanorods in the Zebrafish Model. ACS OMEGA 2022; 7:29598-29611. [PMID: 36061724 PMCID: PMC9434790 DOI: 10.1021/acsomega.2c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND nanotechnology is one of the fastest-growing areas, and it is expected to have a substantial economic and social impact in the upcoming years. Gold particles (AuNPs) offer an opportunity for wide-ranging applications in diverse fields such as biomedicine, catalysis, and electronics, making them the focus of great attention and in parallel necessitating a thorough evaluation of their risk for humans and ecosystems. Accordingly, this study aims to evaluate the acute and developmental toxicity of surface-modified gold nanorods (AuNRs), on zebrafish (Danio rerio) early life stages. METHODS in this study, zebrafish embryos were exposed to surface-modified AuNRs at concentrations ranging from 1 to 20 μg/mL. Lethality and developmental endpoints such as hatching, tail flicking, and developmental delays were assessed until 96 h post-fertilization (hpf). RESULTS we found that AuNR treatment decreases the survival rate in embryos in a dose-dependent manner. Our data showed that AuNRs caused mortality with a calculated LC50 of EC50,24hpf of AuNRs being 9.1 μg/mL, while a higher concentration of AuNRs was revealed to elicit developmental abnormalities. Moreover, exposure to high concentrations of the nanorods significantly decreased locomotion compared to untreated embryos and caused a decrease in all tested parameters for cardiac output and blood flow analyses, leading to significantly elevated expression levels of cardiac failure markers ANP/NPPA and BNP/NPPB. CONCLUSIONS our results revealed that AuNR treatment at the EC50 induces apoptosis significantly through the P53, BAX/BCL-2, and CASPASE pathways as a suggested mechanism of action and toxicity modality.
Collapse
Affiliation(s)
- Zain Zaki Zakaria
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
| | - Nouf N. Mahmoud
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
| | | | - Huseyin C. Yalcin
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
| | - Ala-Eddin Al Moustafa
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
- College
of Medicine, QU Health, Qatar University, PO Box 2713, Doha 122104, Qatar
| | - Maha Al-Asmakh
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
| |
Collapse
|
44
|
Abstract
The mechanisms underlying depletion of CD4 T cells during acute HIV-1 infection are not well understood. Here we show that caspase-1-induced pyroptosis, a highly inflammatory programmed cell death pathway, is the dominant mechanism responsible for the rapid depletion of CD4 T cells in gut-associated lymphatic tissue (GALT), spleen, and lymph nodes during acute simian immunodeficiency virus (SIV) infection in rhesus macaques. Upregulation of interferon-gamma inducible factor 16, a host DNA sensor that triggers pyroptosis, was also observed in tissue-resident CD4 T cells and correlated with viral loads and CD4 T cell loss. In contrast, caspase-3-mediated apoptosis and viral cytotoxicity only accounted for a small fraction of CD4 T cell death. Other programmed cell death mechanisms, including mitochondria-induced caspase-independent cell death, necroptosis, and autophagy, did not significantly contribute to CD4 T cell depletion. These data support a model in which caspase-1-mediated pyroptosis is the principal mechanism that results in CD4 T cell loss in the GALT and lymphoid organs and release of proinflammatory cytokines. These findings contribute to our understanding of the pathogenesis of acute SIV infection and have important implications for the development of therapeutic strategies. IMPORTANCE Different mechanisms for CD4 T cell depletion during acute HIV-1 infection have been proposed. In this study, we demonstrate that in early simian immunodeficiency virus infection, depletion of CD4 T cells is primarily due to pyroptosis. Other mechanisms may also contribute in a minor way to CD4 T cell depletion.
Collapse
|
45
|
Pal R, Rakshit S, Shanmugam G, Paul N, Bhattacharya D, Chatterjee A, Singh A, George M, Sarkar K. Involvement of Xeroderma Pigmentosum Complementation Group G (XPG) in epigenetic regulation of T-Helper (T H) cell differentiation during breast cancer. Immunobiology 2022; 227:152259. [PMID: 36037675 DOI: 10.1016/j.imbio.2022.152259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 11/05/2022]
Abstract
TNFα and IFN-γ secreted by CD4+T-Helper (TH) cells have antitumor activity followed by polarisation of TH1 phenotype in response to IL-12 secreted by dendritic cells, inducing expression of XPG, Nucleotide-Excision Repair (NER) complex component, which is downregulated in breast cancer. Therefore, we investigated the involvement of XPG in TH-cell differentiation in breast cancer. XPG knock-out (KO) PBMC and TH1 polarised CD4+ TH-cells isolated from breast cancer and control subjects blood samples were used to observe mRNA expressions of associated genes, % enrichment of corresponding epigenetic markers, and m6A RNA methylation levels to study the molecular mechanisms involved. Assays to investigate Cytotoxic T Lymphocyte (CTL) activity after cross-checking extracellular secretion levels. Our XPGKO results indicated upregulation of TH2 and Treg, downregulation of TH1, and negligible change for TH17; reduced expression of genes associated with tumour suppression (TP53, BRCA1) and DNA repair (H2AFX, ATM) for breast cancer TH-cells. CTCF associated TH1 specific function, reduced %enrichment of XPG, CSA, and ERCC1, increased %enrichment of γH2A.X, and altered histone modifications (methylation, deacetylation) at the IFN-γ gene locus in XPGKO breast cancer TH1-cells. Increased m6A RNA methylation mediated by XPG leads to TH1 cell specificity, further inducing CTL activity by releasing extracellular IFG-γ, which activates CD8+ CTLs. This article explores the association of the vital NER protein, XPG with the epigenetic modifications behind TH1 cell differentiation, augmenting the expressions of TH1-network genes to evoke protective immunity in breast cancer.
Collapse
Affiliation(s)
- Riasha Pal
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nilanjan Paul
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Deep Bhattacharya
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Arya Chatterjee
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Arunangsu Singh
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Melvin George
- Department of Clinical Pharmacology, SRM Medical College Hospital and Research Centre, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
46
|
Marconi GD, Della Rocca Y, Fonticoli L, Melfi F, Rajan TS, Carradori S, Pizzicannella J, Trubiani O, Diomede F. C-Myc Expression in Oral Squamous Cell Carcinoma: Molecular Mechanisms in Cell Survival and Cancer Progression. Pharmaceuticals (Basel) 2022; 15:ph15070890. [PMID: 35890188 PMCID: PMC9316231 DOI: 10.3390/ph15070890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 12/16/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) represents 90% of malignant epithelial cancer that occurs in the oral cavity. The c-Myc factor is expressed in multiple types of cancer, comprising head and neck squamous cell carcinoma (HNSCC), where it plays a fundamental role in tumor prognosis and in the self-renewal of tumor stem cells. However, the role of c-Myc in controlling OSCC cells is not well-known. The aim of the present study is the evaluation of the biological roles and regulatory mechanism of c-Myc in the pathogenesis of OSCC. Results indicated that c-Myc, c-Jun, Bcl-2, hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), ERK 1/2 and pERK1/2 were overexpressed in a cellular model of squamous cell carcinoma, Cal-27. Doxorubicin (Doxo), a common chemotherapeutic agent, inhibited cell invasion, hypoxia, angiogenesis and inflammation in a cellular model of Cal-27 cells as indicated by downregulation of MMP-9, VEGF, ERK 1/2 and pERK 1/2 as well as promoted apoptosis as evidenced by the downregulation of Bcl-2 protein. This work aimed at underlying the functional relevance of c-Myc in OSCC and the HIF-Myc collaboration by integrating the knowledge on this molecular link in an OSCC tumor microenvironment. The results obtained showed for the first time the vital role of c-Myc in Cal-27 in cell survival/proliferation and tumor growth as well as the negative regulatory effect of Doxo against c-Myc signaling pathway.
Collapse
Affiliation(s)
- Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy;
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (L.F.); (O.T.); (F.D.)
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (L.F.); (O.T.); (F.D.)
| | - Francesco Melfi
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.M.); (S.C.)
| | - Thangavelu Soundara Rajan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641021, India;
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Simone Carradori
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.M.); (S.C.)
| | - Jacopo Pizzicannella
- Ss. Annunziata Hospital, ASL 02 Lanciano-Vasto-Chieti, 66100 Chieti, Italy
- Correspondence:
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (L.F.); (O.T.); (F.D.)
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (L.F.); (O.T.); (F.D.)
| |
Collapse
|
47
|
Prune homolog 2 with BCH domain (PRUNE2) gene expression is associated with feed efficiency-related traits in Nelore steers. Mamm Genome 2022; 33:629-641. [PMID: 35840822 DOI: 10.1007/s00335-022-09960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Animal feeding is a critical factor in increasing producer profitability. Improving feed efficiency can help reduce feeding costs and reduce the environmental impact of beef production. Candidate genes previously identified for this trait in differential gene expression studies (e.g., case-control studies) have not examined continuous gene-phenotype variation, which is a limitation. The aim of this study was to investigate the association between the expression of five candidate genes in the liver, measured by quantitative real-time PCR and feed-related traits. We adopted a linear mixed model to associate liver gene expression from 52 Nelore steers with the following production traits: average daily gain (ADG), body weight (BW), dry matter intake (DMI), feed conversion ratio (FCR), feed efficiency (FE), Kleiber index (KI), metabolic body weight (MBW), residual feed intake (RFI), and relative growth ratio (RGR). The total expression of the prune homolog 2 (PRUNE2) gene was significantly associated with DMI, FCR, FE, and RFI (P < 0.05). Furthermore, we have identified a new transcript of PRUNE2 (TCONS_00027692, GenBank MZ041267) that was inversely correlated with FCR and FE (P < 0.05), in contrast to the originally identified PRUNE2 transcript. The cytochrome P450 subfamily 2B (CYP2B6), early growth response protein 1 (EGR1), collagen type I alpha 1 chain (COL1A1), and connective tissue growth factor (CTGF) genes were not associated with any feed efficiency-related traits (P > 0.05). The findings reported herein suggest that PRUNE2 expression levels affects feed efficiency-related traits variation in Nelore steers.
Collapse
|
48
|
Yu Y, Velu P, Ma Y, Vijayalakshmi A. Nerolidol induced apoptosis via PI3K/JNK regulation through cell cycle arrest in MG-63 osteosarcoma cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:1750-1758. [PMID: 35357761 DOI: 10.1002/tox.23522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The aim of the present study was to determine the cell proliferation, apoptotic pathway analysis through protein, mRNA and cell cycle arrest mechanism in nerolidol induced osteosarcoma MG-63 cells. The osteosarcoma MG-63 cells were treated with various doses of nerolidol (15 and 20 μM/ml) for 24 h. Cell proliferation was examined using assist method of MTT assay, fixed the IC50 value of nerolidol 15 μM/ml. Reactive oxygen species (ROS) generation was analyzed by DCFH-DA dye, mitochondrial potential detected by Rh-123 dye, apoptotic morphological changes identified by AO/EtBr, PI, DAPI staining, and cell adhesion were detected by using fluorescence microscope. Cell proliferation, and apoptotic molecular protein and mRNA expressions such as ERK, P38, p-PI3K, p-JNK, Bcl-2, JNK, p-P38, cyclin-D1, and Bax were analyzed in osteosarcoma MG-63 cells. Nerolidol significantly suppressed the osteosarcoma cells progression in a dose dependent manner (p < .05) evident in the oxidative stress induction and apoptotic morphological changes. Nerolidol also regulated the protein PI3K/AKT mechanistically via induction of apoptosis Nerolidol suppresses osteosarcoma MG-63 cells by PI3K/AKT by cell cycle arrest at early phase of G0/G1. To sum up, nerolidol suppressed the growth of bone cancer cells and can be finally targeted as a potent drug for analyzing its chemotherapeutic effects in future.
Collapse
Affiliation(s)
- Yang Yu
- Department of Traumatic Joint Surgery, 3201 Hospital, Hanzhong, China
| | - Periyannan Velu
- Department of Biotechnology and Biochemistry, Annamalai University, Chidambaram, India
| | - Yulong Ma
- Department of Orthopedics and Burn Plastic Surgery, Xi'an Children's Hospital, Xi'an, China
| | - Annamalai Vijayalakshmi
- PG & Research Department of Biochemistry, Rabiammal Ahamed Maideen College for Women, Thiruvarur, India
| |
Collapse
|
49
|
Leenutaphong P, Tancharoen S, Nararatwanchai T, Phruksaniyom C, Sarikaphuti A, Palungwachira P, Chaichalotornkul S. Induction of Human Oral Squamous Carcinoma Apoptosis by Derris scandens Benth and Elephantopus scaber Linn Extracts. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221107970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
D scandens ( Derris scandens Benth.) and E scaber ( Elephantopus scaber Linn.) contain flavonoids and phenolic acids, which have antitumor activity in various cancer cell lines. Oral cancer is among the most common cancers in Southeast Asia, and the survival rate remains low. Thus, this study screened 2 ethanolic plant extracts for cytotoxicity on the oral human squamous carcinoma cell line (HSC-2), and compared the mechanisms of action. Extracts of D scandens and E scaber showed cytotoxicity against HSC-2 cells in a dose-dependent manner. Observation of nuclear morphology by Hoechst 33342 staining revealed chromatin condensation. Apoptosis was confirmed by Annexin V-FITC staining and cell sorting (fluorescence-activated cell sorting) analysis. We demonstrated that cancer apoptosis was accompanied by changes in the expression of procaspase 3 and that D scandens-mediated apoptosis in HSC-2 cells was potentiated by protein kinase B (Akt) and B-cell lymphoma-2 (Bcl-2), while E scaber apoptosis was mediated by mitogen-activated protein kinase (MAPK) pathways, involving stress-activated protein kinases/jun amino-terminal kinase (SAPK/JNK) and p38-MAPK. Further investigation into targets for apoptosis induction by these plant extracts may have potential in oral cancer therapy.
Collapse
Affiliation(s)
| | - Salunya Tancharoen
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | | | - Ariya Sarikaphuti
- School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Pakhawadee Palungwachira
- Department of Emergency Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | | |
Collapse
|
50
|
Adinew GM, Messeha SS, Taka E, Badisa RB, Antonie LM, Soliman KFA. Thymoquinone Alterations of the Apoptotic Gene Expressions and Cell Cycle Arrest in Genetically Distinct Triple-Negative Breast Cancer Cells. Nutrients 2022; 14:2120. [PMID: 35631261 PMCID: PMC9144154 DOI: 10.3390/nu14102120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/08/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in women worldwide, and it is one of the leading causes of cancer death in women. triple-negative breast Cancer (TNBC), a subtype of BC, is typically associated with the highest pathogenic grade and incidence in premenopausal and young African American (AA) women. Chemotherapy, the most common treatment for TNBC today, can lead to acquired resistance and ineffective treatment. Therefore, novel therapeutic approaches are needed to combat medication resistance and ineffectiveness in TNBC patients. Thymoquinone (TQ) is shown to have a cytotoxic effect on human cancer cells in vitro. However, TQ's mode of action and precise mechanism in TNBC disease in vitro have not been adequately investigated. Therefore, TQ's effects on the genetically different MDA-MB-468 and MDA-MB-231 human breast cancer cell lines were assessed. The data obtained show that TQ displayed cytotoxic effects on MDA-MB-468 and MDA-MB-231 cells in a time- and concentration-dependent manner after 24 h, with IC50 values of 25.37 µM and 27.39 µM, respectively. Moreover, MDA-MB-231 and MDA-MB-468 cells in a scratched wound-healing assay displayed poor wound closure, inhibiting invasion and migration via cell cycle blocking after 24 h. TQ arrested the cell cycle phase in MDA-MB-231 and MDA-MB-468 cells. The three cell cycle stages in MDA-MB-468 cells were significantly affected at 15 and 20 µM for G0/G1 and S phases, as well as all TQ concentrations for G2/M phases. In MDA-MB-468 cells, there was a significant decrease in G0/G1 phases with a substantial increase in the S phase and G2/M phases. In contrast, MDA-MB-231 showed a significant effect only during the two cell cycle stages (S and G2/M), at concentrations of 15 and 20 µM for S phases and all TQ values for G2/M phases. The TQ effect on the apoptotic gene profiles indicated that TQ upregulated 15 apoptotic genes in MDA-MB-231 TNBC cells, including caspases, GADD45A, TP53, DFFA, DIABLO, BNIP3, TRAF2/3, and TNFRSF10A. In MDA-MB-468 cells, 16 apoptotic genes were upregulated, including TNFRSF10A, TNF, TNFRSF11B, FADD TNFRSF10B, CASP2, and TRAF2, all of which are important for the apoptotic pathway andsuppress the expression of one anti-apoptotic gene, BIRC5, in MDA-MB-231 cells. Compared to MDA-MB-231 cells, elevated levels of TNF and their receptor proteins may contribute to their increased sensitivity to TQ-induced apoptosis. It was concluded from this study that TQ targets the MDA-MB-231 and MDA-MB-468 cells differently. Additionally, due to the aggressive nature of TNBC and the lack of specific therapies in chemoresistant TNBC, our findings related to the identified apoptotic gene profile may point to TQ as a potential agent for TNBC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, Institute of Public Health, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.S.M.); (E.T.); (R.B.B.); (L.M.A.)
| |
Collapse
|