1
|
Sidiropoulou P, Katsarou M, Sifaki M, Papasavva M, Drakoulis N. Topical calcineurin and mammalian target of rapamycin inhibitors in inflammatory dermatoses: Current challenges and nanotechnology‑based prospects (Review). Int J Mol Med 2024; 54:85. [PMID: 39129316 PMCID: PMC11335355 DOI: 10.3892/ijmm.2024.5409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/06/2024] [Indexed: 08/13/2024] Open
Abstract
Topical therapy remains a critical component in the management of immune‑mediated inflammatory dermatoses such as psoriasis and atopic dermatitis. In this field, macrolactam immunomodulators, including calcineurin and mammalian target of rapamycin inhibitors, can offer steroid‑free therapeutic alternatives. Despite their potential for skin‑selective treatment compared with topical corticosteroids, the physicochemical properties of these compounds, such as high lipophilicity and large molecular size, do not meet the criteria for efficient penetration into the skin, especially with conventional topical vehicles. Thus, more sophisticated approaches are needed to address the pharmacokinetic limitations of traditional formulations. In this regard, interest has increasingly focused on nanoparticulate systems to optimize penetration kinetics and enhance the efficacy and safety of topical calcineurin and mTOR inhibitors in inflamed skin. Several types of nanovectors have been explored as topical carriers to deliver tacrolimus in both psoriatic and atopic skin, while preclinical data on nanocarrier‑based delivery of topical sirolimus in inflamed skin are also emerging. Given the promising preliminary outcomes and the complexities of drug delivery across inflamed skin, further research is required to translate these nanotherapeutics into clinical settings for inflammatory skin diseases. The present review outlined the dermatokinetic profiles of topical calcineurin and mTOR inhibitors, particularly tacrolimus, pimecrolimus and sirolimus, focusing on their penetration kinetics in psoriatic and atopic skin. It also summarizes the potential anti‑inflammatory benefits of topical sirolimus and explores novel preclinical studies investigating dermally applied nanovehicles to evaluate and optimize the skin delivery, efficacy and safety of these 'hard‑to‑formulate' macromolecules in the context of psoriasis and atopic dermatitis.
Collapse
Affiliation(s)
- Polytimi Sidiropoulou
- 1st Department of Dermatology-Venereology, School of Medicine, National and Kapodistrian University of Athens, 'A. Sygros' Hospital for Skin and Venereal Diseases, 16121 Athens, Greece
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Martha Katsarou
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Sifaki
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
- SkinClinic Private Practice, 71405 Heraklion, Greece
| | - Maria Papasavva
- Department of Pharmacy, School of Health Sciences, Frederick University, 1036 Nicosia, Cyprus
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
2
|
Ramalingam S, Chandrasekar MJN, Krishnan GGN, Nanjan MJ. Plant-based Natural Products as inhibitors for Efflux Pumps to Reverse Multidrug Resistance in Staphylococcus aureus: A Mini Review. Mini Rev Med Chem 2024; 24:272-288. [PMID: 37038687 DOI: 10.2174/1389557523666230406092128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 04/12/2023]
Abstract
Wounds provide a favourable site for microbial infection. Wound infection makes the healing more complex and does not proceed in an orchestrated manner leading to the chronic wound. Clinically infected wounds require proper antimicrobial therapy. Broad-spectrum antibiotics are usually prescribed first before going to targeted therapy. The current conventional mode of therapy mainly depends on the use of antibiotics topically or systemically. Repeated and prolonged use of antibiotics, however, leads to multidrug resistance. Staphylococcus aureus is the most common multidrugresistant microorganism found in wounds. It effectively colonizes the wound and produces many toxins, thereby reducing the host immune response and causing recurrent infection, thus making the wound more complex. The overexpression of efflux pumps is one of the major reasons for the emergence of multidrug resistance. Inhibition of efflux pumps is, therefore, a potential strategy to reverse this resistance. The effective therapy to overcome this antibiotic resistance is to use combination therapy, namely the combination of an inhibitor, and a non-antibiotic compound with an antibiotic for their dual function. Many synthetic efflux pump inhibitors to treat wound infections are still under clinical trials. In this connection, several investigations have been carried out on plant-based natural products as multidrug resistance-modifying agents as they are believed to be safe, inexpensive and suitable for chronic wound infections.
Collapse
Affiliation(s)
- Shalini Ramalingam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643001, India
| | - Moola Joghee Nanjan Chandrasekar
- School of Life Sciences, JSS Academy of Higher Education & Research (Ooty Campus), Longwood, Mysuru Road, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Ganesh G N Krishnan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643001, India
| | | |
Collapse
|
3
|
Ko MJ, Peng YS, Wu HY. Uremic pruritus: pathophysiology, clinical presentation, and treatments. Kidney Res Clin Pract 2023; 42:39-52. [PMID: 35545226 PMCID: PMC9902728 DOI: 10.23876/j.krcp.21.189] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/25/2021] [Indexed: 11/04/2022] Open
Abstract
Uremic pruritus is one of the most common and bothersome symptoms in patients with end-stage renal disease. Most patients with uremic pruritus experience a prolonged and relapsing course and significant impairments of quality of life. The pathophysiology of uremic pruritus is not completely understood. A complex interplay among cutaneous biology and the nervous and immune systems has been implicated, with the involvement of various inflammatory mediators, neurotransmitters, and opioids. Uremic pruritus treatment outcomes are often unsatisfactory. Clinical trials have mostly been small in scale and have reported inconsistent results. Recent evidence shows that gabapentinoids, nalfurafine, and difelikefalin are effective for relieving uremic pruritus in hemodialysis patients. This review provides an overview of the epidemiology and proposed mechanisms of uremic pruritus, then highlights the manifestations of and clinical approach to uremic pruritus. Current evidence regarding treatment options, including topical treatments, treatment of underlying disease, phototherapy, and systemic treatments, is also outlined. With a better understanding of uremic pruritus, more therapeutic options can be expected in the near future.
Collapse
Affiliation(s)
- Mei-Ju Ko
- Department of Dermatology, Taipei City Hospital, Taipei City, Taiwan,Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei City, Taiwan
| | - Yu-Sen Peng
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan,Department of Applied Cosmetology, Lee-Ming Institute of Technology, New Taipei City, Taiwan,Department of Healthcare Administration, Asia Eastern University of Science and Technology, New Taipei City, Taiwan
| | - Hon-Yen Wu
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City, Taiwan,Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei City, Taiwan,Correspondence: Hon-Yen Wu Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist., New Taipei City 220, Taiwan. E-mail:
| |
Collapse
|
4
|
Alsmeirat O, Lakhani S, Egaimi M, Idris O, Elkhalifa M. The Efficacy and Safety of Pimecrolimus in Patients With Facial Seborrheic Dermatitis: A Systematic Review of Randomized Controlled Trials. Cureus 2022; 14:e27622. [PMID: 36072203 PMCID: PMC9436712 DOI: 10.7759/cureus.27622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/05/2022] Open
Abstract
Facial seborrheic dermatitis (SD) is a chronic inflammatory skin condition that can affect the quality of life with frequent recurrences. There is no medication as yet to cure this disease completely. There are four general categories of agents that are used to treat SD: antifungal agents, keratolytics, corticosteroids, and lastly calcineurin inhibitors. Topical therapies are the mainstream line of treatment to be used for this skin condition. The objective of this article is to critically review the published data in the literature on the use of topical pimecrolimus 1% topical cream as an option for treating facial SD. The final purpose of this review is to answer two questions: whether pimecrolimus topical cream is effective for the treatment of SD compared to the conventional current treatments and how safe is this treatment. The PubMed, Clinicaltrials.gov, MEDLINE + Embase, and Cochrane library databases were searched for original randomized clinical trials (RCTs) evaluating pimecrolimus 1% topical cream and comparing it with other topical treatments for SD. A systematic review and meta-analysis were then conducted on the selected studies by grading the evidence and qualitative comparison of results among and within studies. A total of five studies were included in the review; however, only four were eligible for inclusion in the meta-analysis, in which pimecrolimus was compared with other treatments for the management of facial SD. Pimecrolimus was found to be an effective topical treatment for facial SD, as it showed considerable desirable control of the symptoms in patients with facial SD clinically, in addition to a lower recurrence or relapsing rates; however, it had more side effects compared to other topical treatments, but the side effects were mild and tolerable.
Collapse
|
5
|
Kricker JA, Page CP, Gardarsson FR, Baldursson O, Gudjonsson T, Parnham MJ. Nonantimicrobial Actions of Macrolides: Overview and Perspectives for Future Development. Pharmacol Rev 2021; 73:233-262. [PMID: 34716226 DOI: 10.1124/pharmrev.121.000300] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Macrolides are among the most widely prescribed broad spectrum antibacterials, particularly for respiratory infections. It is now recognized that these drugs, in particular azithromycin, also exert time-dependent immunomodulatory actions that contribute to their therapeutic benefit in both infectious and other chronic inflammatory diseases. Their increased chronic use in airway inflammation and, more recently, of azithromycin in COVID-19, however, has led to a rise in bacterial resistance. An additional crucial aspect of chronic airway inflammation, such as chronic obstructive pulmonary disease, as well as other inflammatory disorders, is the loss of epithelial barrier protection against pathogens and pollutants. In recent years, azithromycin has been shown with time to enhance the barrier properties of airway epithelial cells, an action that makes an important contribution to its therapeutic efficacy. In this article, we review the background and evidence for various immunomodulatory and time-dependent actions of macrolides on inflammatory processes and on the epithelium and highlight novel nonantibacterial macrolides that are being studied for immunomodulatory and barrier-strengthening properties to circumvent the risk of bacterial resistance that occurs with macrolide antibacterials. We also briefly review the clinical effects of macrolides in respiratory and other inflammatory diseases associated with epithelial injury and propose that the beneficial epithelial effects of nonantibacterial azithromycin derivatives in chronic inflammation, even given prophylactically, are likely to gain increasing attention in the future. SIGNIFICANCE STATEMENT: Based on its immunomodulatory properties and ability to enhance the protective role of the lung epithelium against pathogens, azithromycin has proven superior to other macrolides in treating chronic respiratory inflammation. A nonantibiotic azithromycin derivative is likely to offer prophylactic benefits against inflammation and epithelial damage of differing causes while preserving the use of macrolides as antibiotics.
Collapse
Affiliation(s)
- Jennifer A Kricker
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Clive P Page
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Fridrik Runar Gardarsson
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Olafur Baldursson
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Thorarinn Gudjonsson
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Michael J Parnham
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| |
Collapse
|
6
|
Luger T, Dirschka T, Eyerich K, Gollnick H, Gupta G, Lambert J, Micali G, Ochsendorf F, Ständer S, Traidl-Hoffmann C. Developments and challenges in dermatology: an update from the Interactive Derma Academy (IDeA) 2019. J Eur Acad Dermatol Venereol 2021; 34 Suppl 7:3-18. [PMID: 33315305 DOI: 10.1111/jdv.17009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 01/09/2023]
Abstract
The 2019 Interactive Derma Academy (IDeA) meeting was held in Lisbon, Portugal, 10-12 May, bringing together leading dermatology experts from across Europe, the Middle East and Asia. Over three days, the latest developments and challenges in relation to the pathophysiology, diagnosis, evaluation and management of dermatological conditions were presented, with a particular focus on acne, atopic dermatitis (AD) and actinic keratosis (AK). Interesting clinical case studies relating to these key topics were discussed with attendees to establish current evidence-based best practices. Presentations reviewed current treatments, potential therapeutic approaches and key considerations in the management of acne, AK and AD, and discussed the importance of the microbiome in these conditions, as well as the provision of patient education/support. It was highlighted that active treatment is not always required for AK, depending on patient preferences and clinical circumstances. In addition to presentations, two interactive workshops on the diagnosis and treatment of sexually transmitted infections/diseases (STIs/STDs) presenting to the dermatology clinic, and current and future dermocosmetics were conducted. The potential for misdiagnosis of STIs/STDs was discussed, with dermoscopy and/or reflectance confocal microscopy suggested as useful diagnostic techniques. In addition, botulinum toxin was introduced as a potential dermocosmetic, and the possibility of microbiome alteration in the treatment of dermatological conditions emphasized. Furthermore, several challenges in dermatology, including the use of lasers, the complexity of atopic dermatitis, wound care, use of biosimilars and application of non-invasive techniques in skin cancer diagnosis were reviewed. In this supplement, we provide an overview of the presentations and discussions from the fourth successful IDeA meeting, summarizing the key insights shared by dermatologists from across the globe.
Collapse
Affiliation(s)
- T Luger
- Department of Dermatology, University of Münster, Münster, Germany
| | - T Dirschka
- Centroderm Clinic, Wuppertal, Germany.,Faculty of Health, University Witten-Herdecke, Witten, Germany
| | - K Eyerich
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany.,Unit of Dermatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - H Gollnick
- Department of Dermatology and Venereology, Otto-von-Guericke University, Magdeburg, Germany
| | - G Gupta
- University Department of Dermatology, Edinburgh, UK
| | - J Lambert
- Department of Dermatology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - G Micali
- Dermatology Clinic, University of Catania, Catania, Italy
| | - F Ochsendorf
- Department of Dermatology, Frankfurt University Hospital, Frankfurt/Main, Germany
| | - S Ständer
- Center for Chronic Pruritus, Department of Dermatology, University Hospital Münster, Münster, Germany
| | - C Traidl-Hoffmann
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Augsburg, Germany
| |
Collapse
|
7
|
Yadav N, Thakur AK, Shekhar N, Ayushi. Potential of Antibiotics for the Treatment and Management of Parkinson Disease: An Overview. Curr Drug Res Rev 2021; 13:166-171. [PMID: 33719951 DOI: 10.2174/2589977513666210315095133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/04/2020] [Accepted: 01/22/2021] [Indexed: 11/22/2022]
Abstract
Evidences have emerged over the last 2 decades to ascertain the proof of concepts viz. mitochondrial dysfunction, inflammation-derived oxidative damage and cytokine-induced toxicity that play a significant role in Parkinson's disease (PD). The available pharmacotherapies for PD are mainly symptomatic and typically indications of L-DOPA to restrain dopamine deficiency and their consequences. In the 21st century, the role of the antibiotics has emerged at the forefront of medicine in health and human illness. There are several experimental and pre-clinical evidences that supported the potential use of antibiotic as neuroprotective agent. The astonishing effects of antibiotics and their neuroprotective properties against neurodegeneration and neuro-inflammation would be phenomenal for the development of effective therapy against PD. Antibiotics are also testified as useful not only to prevent the formation of alpha-synuclein but also act on mitochondrial dysfunction and neuro-inflammation. Thus, the possible therapy with antibiotics in PD would impact both the pathways leading to neuronal cell death in substantia nigra and pars compacta in midbrain. Moreover, the antibiotic based pharmacotherapy will open a scientific research passageway to add more to the evidence based and rational use of antibiotics for the treatment and management of PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Narayan Yadav
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi-110 017. India
| | - Ajit Kumar Thakur
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi-110 017. India
| | - Nikhila Shekhar
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi-110 017. India
| | - Ayushi
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi-110 017. India
| |
Collapse
|
8
|
Hinks TSC, Levine SJ, Brusselle GG. Treatment options in type-2 low asthma. Eur Respir J 2021; 57:13993003.00528-2020. [PMID: 32586877 DOI: 10.1183/13993003.00528-2020] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Monoclonal antibodies targeting IgE or the type-2 cytokines interleukin (IL)-4, IL-5 and IL-13 are proving highly effective in reducing exacerbations and symptoms in people with severe allergic and eosinophilic asthma, respectively. However, these therapies are not appropriate for 30-50% of patients in severe asthma clinics who present with non-allergic, non-eosinophilic, "type-2 low" asthma. These patients constitute an important and common clinical asthma phenotype, driven by distinct, yet poorly understood pathobiological mechanisms. In this review we describe the heterogeneity and clinical characteristics of type-2 low asthma and summarise current knowledge on the underlying pathobiological mechanisms, which includes neutrophilic airway inflammation often associated with smoking, obesity and occupational exposures and may be driven by persistent bacterial infections and by activation of a recently described IL-6 pathway. We review the evidence base underlying existing treatment options for specific treatable traits that can be identified and addressed. We focus particularly on severe asthma as opposed to difficult-to-treat asthma, on emerging data on the identification of airway bacterial infection, on the increasing evidence base for the use of long-term low-dose macrolides, a critical appraisal of bronchial thermoplasty, and evidence for the use of biologics in type-2 low disease. Finally, we review ongoing research into other pathways including tumour necrosis factor, IL-17, resolvins, apolipoproteins, type I interferons, IL-6 and mast cells. We suggest that type-2 low disease frequently presents opportunities for identification and treatment of tractable clinical problems; it is currently a rapidly evolving field with potential for the development of novel targeted therapeutics.
Collapse
Affiliation(s)
- Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Nuffield Dept of Medicine, Experimental Medicine, University of Oxford, Oxford, UK
| | - Stewart J Levine
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guy G Brusselle
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.,Depts of Epidemiology and Respiratory Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Amantea D, Petrelli F, Greco R, Tassorelli C, Corasaniti MT, Tonin P, Bagetta G. Azithromycin Affords Neuroprotection in Rat Undergone Transient Focal Cerebral Ischemia. Front Neurosci 2019; 13:1256. [PMID: 31849581 PMCID: PMC6902046 DOI: 10.3389/fnins.2019.01256] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/05/2019] [Indexed: 01/04/2023] Open
Abstract
Repurposing existing drugs represents a promising approach for successful development of acute stroke therapies. In this context, the macrolide antibiotic azithromycin has been shown to exert neuroprotection in mice due to its immunomodulatory properties. Here, we have demonstrated that acute administration of a single dose of azithromycin upon reperfusion produces a dose-dependent (ED50 = 1.40 mg/kg; 95% CI = 0.48-4.03) reduction of ischemic brain damage measured 22 h after transient (2 h) middle cerebral artery occlusion (MCAo) in adult male rats. Neuroprotection by azithromycin (150 mg/kg, i.p., upon reperfusion) was associated with a significant elevation of signal transducer and activator of transcription 3 (STAT3) phosphorylation in astrocytes and neurons of the peri-ischemic motor cortex as detected after 2 and 22 h of reperfusion. By contrast, in the core region of the striatum, drug administration resulted in a dramatic elevation of STAT3 phosphorylation only after 22 h of reperfusion, being the signal mainly ascribed to infiltrating leukocytes displaying an M2 phenotype. These early molecular events were associated with a long-lasting neuroprotection, since a single dose of azithromycin reduced brain infarct damage and neurological deficit measured up to 7 days of reperfusion. These data, together with the evidence that azithromycin was effective in a clinically relevant time-window (i.e., when administered after 4.5 h of MCAo), provide robust preclinical evidence to support the importance of developing azithromycin as an effective acute therapy for ischemic stroke.
Collapse
Affiliation(s)
- Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesco Petrelli
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rosaria Greco
- Headache Science Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Tassorelli
- Headache Science Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
10
|
Zhang B, Kopper TJ, Liu X, Cui Z, Van Lanen SG, Gensel JC. Macrolide derivatives reduce proinflammatory macrophage activation and macrophage-mediated neurotoxicity. CNS Neurosci Ther 2019; 25:591-600. [PMID: 30677254 PMCID: PMC6488883 DOI: 10.1111/cns.13092] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022] Open
Abstract
Introduction Azithromycin (AZM) and other macrolide antibiotics are applied as immunomodulatory treatments for CNS disorders. The immunomodulatory and antibiotic properties of AZM are purportedly independent. Aims To improve the efficacy and reduce antibiotic resistance risk of AZM‐based therapies, we evaluated the immunomodulatory and neuroprotective properties of novel AZM derivatives. We semisynthetically prepared derivatives by altering sugar moieties established as important for inhibiting bacterial protein synthesis. Bone marrow‐derived macrophages (BMDMs) were stimulated in vitro with proinflammatory, M1, stimuli (LPS + INF‐gamma) with and without derivative costimulation. Pro‐ and anti‐inflammatory cytokine production, IL‐12 and IL‐10, respectively, was quantified using ELISA. Neuron culture treatment with BMDM supernatant was used to assess derivative neuroprotective potential. Results Azithromycin and some derivatives increased IL‐10 and reduced IL‐12 production of M1 macrophages. IL‐10/IL‐12 cytokine shifts closely correlated with the ability of AZM and derivatives to mitigate macrophage neurotoxicity. Conclusions Sugar moieties that bind bacterial ribosomal complexes can be modified in a manner that retains AZM immunomodulation and neuroprotection. Since the effects of BMDMs in vitro are predictive of CNS macrophage responses, our results open new therapeutic avenues for managing maladaptive CNS inflammation and support utilization of IL‐10/12 cytokine profiles as indicators of macrophage polarization and neurotoxicity.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Physiology, College of Medicine, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Timothy J Kopper
- Department of Physiology, College of Medicine, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Xiaodong Liu
- Division of Bioorganic, Medicinal, & Computational Chemistry, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - Zheng Cui
- Division of Bioorganic, Medicinal, & Computational Chemistry, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - Steven G Van Lanen
- Division of Bioorganic, Medicinal, & Computational Chemistry, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - John C Gensel
- Department of Physiology, College of Medicine, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
11
|
Li W, Qin Z, Gao J, Jiang Z, Chai Y, Guan L, Chen Y. Azithromycin or erythromycin? Macrolides for non-cystic fibrosis bronchiectasis in adults: A systematic review and adjusted indirect treatment comparison. Chron Respir Dis 2019; 16:1479972318790269. [PMID: 30101613 PMCID: PMC6302979 DOI: 10.1177/1479972318790269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022] Open
Abstract
Non-cystic fibrosis (non-CF) bronchiectasis is a condition characterized by an airway inflammatory response to bacterial pathogens. Frequent exacerbations have a major influence on the quality of life. Macrolide antibiotics have not only antibacterial but also immune-regulation effects. It is proved that macrolides have a benefit in preventing exacerbations. However, it is still uncertain whether azithromycin or erythromycin is more effective and safe. The purpose of this study was to answer the following question: Which kind of macrolide antibiotic is more effective and safe in preventing non-CF bronchiectasis exacerbation? We conducted a systematic review to identify randomized clinical trials published up to May 2017 that reported on macrolides for non-CF bronchiectasis and an adjusted indirect treatment comparison (AITC) between macrolides to evaluate their efficacy and safety. The direct comparison meta-analysis found that macrolides decreased the rate of exacerbation of non-CF bronchiectasis (risk ratio (RR) = 0.45; 95% confidence interval (CI) 0.36-0.55) with heterogeneity ( I2 = 63.7%, p = 0.064). The AITC showed that azithromycin had a significantly lower bronchiectasis exacerbation rate than erythromycin (RR = 0.35; 95% CI: 0.403-0.947). Azithromycin increased the risk of diarrhea and abnormal pain. This meta-analysis suggested that long-term treatment with macrolides significantly reduced the incidence of non-CF bronchiectasis exacerbation. Moreover, azithromycin is more efficient than roxithromycin and erythromycin in preventing exacerbation.
Collapse
Affiliation(s)
- Wen Li
- Department of Preclinical Medicine, Guiyang University of Chinese
Medicine, Guiyang, Guizhou, China
| | - Zhong Qin
- Department of Preclinical Medicine, Guiyang University of Chinese
Medicine, Guiyang, Guizhou, China
| | - Jie Gao
- Department of Preclinical Medicine, Guiyang University of Chinese
Medicine, Guiyang, Guizhou, China
| | - Zhibin Jiang
- Department of Pharmacy, Guiyang University of Chinese Medicine,
Guiyang, Guizhou, China
| | - Yihui Chai
- Department of Preclinical Medicine, Guiyang University of Chinese
Medicine, Guiyang, Guizhou, China
| | - Liancheng Guan
- Department of Preclinical Medicine, Guiyang University of Chinese
Medicine, Guiyang, Guizhou, China
| | - Yunzhi Chen
- Department of Preclinical Medicine, Guiyang University of Chinese
Medicine, Guiyang, Guizhou, China
| |
Collapse
|
12
|
Grammer AC, Lipsky PE. Drug Repositioning Strategies for the Identification of Novel Therapies for Rheumatic Autoimmune Inflammatory Diseases. Rheum Dis Clin North Am 2017; 43:467-480. [DOI: 10.1016/j.rdc.2017.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Possible alternative therapies for oral lichen planus cases refractory to steroid therapies. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 121:496-509. [PMID: 27068310 DOI: 10.1016/j.oooo.2016.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 01/15/2016] [Accepted: 02/02/2016] [Indexed: 02/05/2023]
Abstract
Oral lichen planus (OLP) is a chronic inflammatory disorder with a multifactorial etiopathogenesis. Immune dysregulation plays a critical role in the development and progression of this disease. Patients' lives may be affected by pain caused by atrophic-erosive lesions. Given the obscure etiology, treatment is usually symptomatic. Topical steroids remain the mainstay of management. However, their therapeutic benefits are not always evident. There are substantial data on the possible therapeutic strategies that are effective in OLP cases refractory to steroids. This review provides an overview of the current approaches for the management of steroid-refractory OLP. The miscellaneous treatment regimens include tacrolimus, pimecrolimus, thalidomide, low-level laser therapy, photodynamic therapy, and surgical excision. Some results obtained from these studies were promising. However, further studies, especially randomized controlled trials with strict inclusion and exclusion criteria and larger sample sizes, are required for the evaluation of the long-term safety and efficacy of these therapies.
Collapse
|
14
|
Azithromycin drives alternative macrophage activation and improves recovery and tissue sparing in contusion spinal cord injury. J Neuroinflammation 2015; 12:218. [PMID: 26597676 PMCID: PMC4657208 DOI: 10.1186/s12974-015-0440-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/18/2015] [Indexed: 01/26/2023] Open
Abstract
Background Macrophages persist indefinitely at sites of spinal cord injury (SCI) and contribute to both pathological and reparative processes. While the alternative, anti-inflammatory (M2) phenotype is believed to promote cell protection, regeneration, and plasticity, pro-inflammatory (M1) macrophages persist after SCI and contribute to protracted cell and tissue loss. Thus, identifying non-invasive, clinically viable, pharmacological therapies for altering macrophage phenotype is a challenging, yet promising, approach for treating SCI. Azithromycin (AZM), a commonly used macrolide antibiotic, drives anti-inflammatory macrophage activation in rodent models of inflammation and in humans with cystic fibrosis. Methods We hypothesized that AZM treatment can alter the macrophage response to SCI and reduce progressive tissue pathology. To test this hypothesis, mice (C57BL/6J, 3-month-old) received daily doses of AZM (160 mg/kg) or vehicle treatment via oral gavage for 3 days prior and up to 7 days after a moderate-severe thoracic contusion SCI (75-kdyn force injury). Fluorescent-activated cell sorting was used in combination with real-time PCR (rtPCR) to evaluate the disposition and activation status of microglia, monocytes, and neutrophils, as well as macrophage phenotype in response to AZM treatment. An open-field locomotor rating scale (Basso Mouse Scale) and gridwalk task were used to determine the effects of AZM treatment on SCI recovery. Bone marrow-derived macrophages (BMDMs) were used to determine the effect of AZM treatment on macrophage phenotype in vitro. Results In accordance with our hypothesis, SCI mice exhibited significantly increased anti-inflammatory and decreased pro-inflammatory macrophage activation in response to AZM treatment. In addition, AZM treatment led to improved tissue sparing and recovery of gross and coordinated locomotor function. Furthermore, AZM treatment altered macrophage phenotype in vitro and lowered the neurotoxic potential of pro-inflammatory, M1 macrophages. Conclusions Taken together, these data suggest that pharmacologically intervening with AZM can alter SCI macrophage polarization toward a beneficial phenotype that, in turn, may potentially limit secondary injury processes. Given that pro-inflammatory macrophage activation is a hallmark of many neurological pathologies and that AZM is non-invasive and clinically viable, these data highlight a novel approach for treating SCI and other maladaptive neuroinflammatory conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0440-3) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Vohra S, Singal A, Sharma SB. Clinical and serological efficacy of topical calcineurin inhibitors in oral lichen planus: a prospective randomized controlled trial. Int J Dermatol 2015; 55:101-5. [DOI: 10.1111/ijd.12887] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/16/2014] [Accepted: 10/25/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Suruchi Vohra
- Department of Dermatology & STD; University College of Medical Sciences & GTB Hospital (University of Delhi); Dilshad Garden India
| | - Archana Singal
- Department of Dermatology & STD; University College of Medical Sciences & GTB Hospital (University of Delhi); Dilshad Garden India
| | - Suman Bala Sharma
- Department of Biochemistry; University College of Medical Sciences & GTB Hospital (University of Delhi); Dilshad Garden India
| |
Collapse
|
16
|
Evaluation of the Efficacy of Topical Tetracycline in Enhancing the Effect of Narrow Band UVB against Vitiligo: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial. ISRN DERMATOLOGY 2014; 2014:472546. [PMID: 24665368 PMCID: PMC3934486 DOI: 10.1155/2014/472546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/24/2013] [Indexed: 01/03/2023]
Abstract
Background. Vitiligo is a pigmentary disorder characterized by depigmented macules due to absence of melanocytes. Increased levels of tumor necrosis factor alpha and interleukin-1 in the epidermis of lesions may play a role in keratinocyte apoptosis and less production of melanogenic cytokines. Tetracyclines reduce production of tumor necrosis factor alpha and interleukin-1. Objective. To evaluate the effect of topical tetracycline on vitiligo patients on phototherapy. Methods. Thirty cases of generalized stable vitiligo were chosen randomly and pigmentation of two assigned lesions on right and left sides (same size and location) was determined by vitiligo area severity index, and medication and placebo were randomly assigned to be applied twice daily on either right or left side, respectively. Images were taken of the lesions at the end of the 4th, 8th, and 12th weeks and pigmentations were compared to baseline using aforementioned index. The patients also took narrow band ultraviolet B two to three times a week. Results. Mean pigmentation, based on vitiligo area severity index, changed significantly from 90.1667 to 86.6667 (P = 0.026) and on placebo side from 89.6667 to 86.8333 (P = 0.026). There was no significant difference between medication and placebo sides in terms of pigmentation (P = 0.566). Conclusions. No significant difference in improving repigmentation between medication and placebo sides was seen.
Collapse
|
17
|
Reimann E, Kingo K, Karelson M, Reemann P, Vasar E, Silm H, Kõks S. Whole Transcriptome Analysis (RNA Sequencing) of Peripheral Blood Mononuclear Cells of Vitiligo Patients. Dermatopathology (Basel) 2014; 1:11-23. [PMID: 27047918 PMCID: PMC4772995 DOI: 10.1159/000357402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vitiligo is an idiopathic disorder characterized by depigmented patches on the skin due to a loss of melanocytes. The cause of melanocyte destruction is not fully understood. The aim of this study was to detect the potential pathways involved in the vitiligo pathogenesis to further understand the causes and entity of vitiligo. For that the transcriptome of peripheral blood mononuclear cells of 4 vitiligo patients and 4 control subjects was analyzed using the SOLiD System platform and whole transcriptome RNA sequencing application. Altogether 2,470 genes were expressed differently and GRID2IP showed the highest deviation in patients compared to controls. Using functional analysis, altogether 993 associations between the gene groups and diseases were found. The analysis revealed associations between vitiligo and diseases such as lichen planus, limb-girdle muscular dystrophy type 2B, and facioscapulohumeral muscular dystrophy. Additionally, the gene groups with an altered expression pattern are participating in processes such as cell death, survival and signaling, inflammation, and oxidative stress. In conclusion, vitiligo is rather a systemic than a local skin disease; the findings from an enormous amount of RNA sequencing data support the previous findings about vitiligo and should be further analyzed.
Collapse
Affiliation(s)
- E Reimann
- Department of Physiology, Tartu, Estonia; Department of Dermatology and Venereology, Tartu, Estonia; Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - K Kingo
- Department of Dermatology and Venereology, Tartu, Estonia; Department of Dermatology Clinic of Tartu University Hospital, Tartu, Estonia
| | - M Karelson
- Department of Dermatology and Venereology, Tartu, Estonia
| | - P Reemann
- Department of Physiology, Tartu, Estonia; Department of Dermatology and Venereology, Tartu, Estonia
| | - E Vasar
- Department of Physiology, Tartu, Estonia; Department of Centre of Translational Medicine, University of Tartu, Tartu, Estonia
| | - H Silm
- Department of Dermatology and Venereology, Tartu, Estonia
| | - S Kõks
- Department of Pathological Physiology, Tartu, Estonia; Department of Centre of Translational Medicine, University of Tartu, Tartu, Estonia; Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|