1
|
Alexa VT, Fratila AD, Oancea R, Galuscan A, Balean O, Bolchis V, Buzatu BLR, Obistioiu D, Suleiman MA, Jumanca D. Molecular Docking and Experimental Analysis of Essential Oil-Based Preparations on Biofilm Formation on Orthodontic Archwires. Int J Mol Sci 2024; 25:13378. [PMID: 39769141 PMCID: PMC11678866 DOI: 10.3390/ijms252413378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Good oral hygiene is crucial during treatment with fixed appliances, emphasising the need for additional or alternative oral health methods during orthodontic treatment. This study investigates the effect of essential oil (EO)-based preparations on biofilm adhesion to orthodontic archwires. Five identical-sized orthodontic archwires of different materials were tested using therapeutic and preventive applications of essential oils. This study also used molecular docking to explore how essential oil compounds interact with key proteins of common oral pathogens like Staphylococcus aureus and Streptococcus mutans. We found that the constituent materials heavily influence the antimicrobial effects of essential oils on different orthodontic archwires. Stainless steel-based orthodontic archwires demonstrated the highest efficacy in antimicrobial protection against S. mutans strains (maximum BIP = 28.82% on the epoxy-coated SS). Conversely, inhibition effects in preventive applications against S. aureus were observed exclusively with titanium-molybdenum alloy orthodontic archwires across all tested emulsions (maximum BIP = 29.44%). CuNiTi alloys showed ineffectiveness in preventive treatments, as none of the EO mixtures inhibited biofilm development on this material. After biofilm contamination with S. mutans and S. aureuss strains, the ternary emulsion was most effective for four out of five orthodontic archwires. Computational analysis revealed strong binding interactions between essential oil compounds and key proteins of S. aureus and S. mutans, highlighting specific amino acid residues that are critical for these interactions. Based on the results, stainless steel with epoxy coating or TMA archwires, combined with BEO/CEO/OEO ternary mixture, are recommended for optimal antibacterial protection against biofilm formation on orthodontic archwires.
Collapse
Affiliation(s)
- Vlad Tiberiu Alexa
- Clinic of Preventive, Community Dentistry and Oral Health, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Sq. no 2, 300041 Timisoara, Romania; (V.T.A.); (A.G.); (O.B.); (V.B.); (B.L.R.B.); (D.J.)
- Translational and Experimental Clinical Research Center in Oral Health (TEXC-OH), Department of Preventive, Community Dentistry and Oral Health, Victor Babes University of Medicine and Pharmacy 14A Tu-dorVladimirescu Ave., 300173 Timisoara, Romania
| | - Aurora Doris Fratila
- Faculty of Dental Medicine, Ludwig-Maximilian-University Munich, Goethestraße 70, 80336 München, Germany;
| | - Roxana Oancea
- Clinic of Preventive, Community Dentistry and Oral Health, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Sq. no 2, 300041 Timisoara, Romania; (V.T.A.); (A.G.); (O.B.); (V.B.); (B.L.R.B.); (D.J.)
- Translational and Experimental Clinical Research Center in Oral Health (TEXC-OH), Department of Preventive, Community Dentistry and Oral Health, Victor Babes University of Medicine and Pharmacy 14A Tu-dorVladimirescu Ave., 300173 Timisoara, Romania
| | - Atena Galuscan
- Clinic of Preventive, Community Dentistry and Oral Health, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Sq. no 2, 300041 Timisoara, Romania; (V.T.A.); (A.G.); (O.B.); (V.B.); (B.L.R.B.); (D.J.)
- Translational and Experimental Clinical Research Center in Oral Health (TEXC-OH), Department of Preventive, Community Dentistry and Oral Health, Victor Babes University of Medicine and Pharmacy 14A Tu-dorVladimirescu Ave., 300173 Timisoara, Romania
| | - Octavia Balean
- Clinic of Preventive, Community Dentistry and Oral Health, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Sq. no 2, 300041 Timisoara, Romania; (V.T.A.); (A.G.); (O.B.); (V.B.); (B.L.R.B.); (D.J.)
- Translational and Experimental Clinical Research Center in Oral Health (TEXC-OH), Department of Preventive, Community Dentistry and Oral Health, Victor Babes University of Medicine and Pharmacy 14A Tu-dorVladimirescu Ave., 300173 Timisoara, Romania
| | - Vanessa Bolchis
- Clinic of Preventive, Community Dentistry and Oral Health, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Sq. no 2, 300041 Timisoara, Romania; (V.T.A.); (A.G.); (O.B.); (V.B.); (B.L.R.B.); (D.J.)
- Translational and Experimental Clinical Research Center in Oral Health (TEXC-OH), Department of Preventive, Community Dentistry and Oral Health, Victor Babes University of Medicine and Pharmacy 14A Tu-dorVladimirescu Ave., 300173 Timisoara, Romania
| | - Berivan Laura Rebeca Buzatu
- Clinic of Preventive, Community Dentistry and Oral Health, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Sq. no 2, 300041 Timisoara, Romania; (V.T.A.); (A.G.); (O.B.); (V.B.); (B.L.R.B.); (D.J.)
- Translational and Experimental Clinical Research Center in Oral Health (TEXC-OH), Department of Preventive, Community Dentistry and Oral Health, Victor Babes University of Medicine and Pharmacy 14A Tu-dorVladimirescu Ave., 300173 Timisoara, Romania
| | - Diana Obistioiu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Mukhtar Adeiza Suleiman
- Faculty of Life Science, Department of Biochemistry, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria;
| | - Daniela Jumanca
- Clinic of Preventive, Community Dentistry and Oral Health, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Sq. no 2, 300041 Timisoara, Romania; (V.T.A.); (A.G.); (O.B.); (V.B.); (B.L.R.B.); (D.J.)
- Translational and Experimental Clinical Research Center in Oral Health (TEXC-OH), Department of Preventive, Community Dentistry and Oral Health, Victor Babes University of Medicine and Pharmacy 14A Tu-dorVladimirescu Ave., 300173 Timisoara, Romania
| |
Collapse
|
2
|
Barbosa DHX, Alves DDN, Andrade PN, Sobral MV, Castro IO, Araujo GR, Alencar SMD, Spada FP, Santos AAD, Rosalen PL, Castro RD. Exploring the toxicity profile of coriander ( C. sativum L.) essential oil: implications for translational toxicological research. Drug Chem Toxicol 2024:1-9. [PMID: 39257197 DOI: 10.1080/01480545.2024.2397708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/26/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
The plant species C. sativum L. is a staple in cuisine and holds significant ethnopharmacological value. Its essential oil (EO) is of particular interest, yet its toxicity profile remains a subject of inquiry. This study aimed to elucidate the chemical constituents of C. sativum L. EO and evaluate its toxicity through various parameters, including cytotoxicity assays on HaCaT keratinocytes, in vivo toxicity tests on Galleria mellonella larvae, in vivo genotoxicity assessments on mice and cytotoxicity assays on human erythrocytes. Notably, major constituents such as 2-decen-1-ol, dec-(2E)-enal, and 1,6-octadien-3-ol were found to remain predominant. The IC50 value for the essential oil on the keratinocyte cell line was determined to be 60.13 ± 2.02 µg/mL. However, in vivo toxicity tests with G. mellonella larvae demonstrated safety at doses below 4.5 g/kg. Additionally, genotoxicity assessment revealed that a single dose of 20 mg/mL (5 mg/kg) did not induce a significant increase in micronuclei formation. EO concentrations above 250 µg/mL led to significant changes in human erythrocytes cell viability (p < 0.0001), resulting in over 60% hemolysis. These findings collectively suggest that the essential oil of C. sativum L. exhibits a suitable toxicity profile for conducting preclinical studies in vertebrate animal models.
Collapse
Affiliation(s)
- David H X Barbosa
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Danielle da N Alves
- Dentists of Empresa Brasileira de Serviços Hospitalares, Hospital Universitário Lauro Wanderley, João Pessoa, Brazil
| | - Patrícia N Andrade
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Marianna V Sobral
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Isione Oliveira Castro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil
| | | | | | - Fernanda P Spada
- Department of Food Science and Technology, University of São Paulo, Brazil
| | - André A Dos Santos
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Pedro L Rosalen
- Postgraduate Program in Dentistry, Faculty of Dentistry of Piracicaba, Brazil
| | - Ricardo D Castro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
3
|
Hamalaw SJ, Kareem FA, Noori AJ. Antibacterial, Antibiofilm, and Tooth Color Preservation Capacity of Magnesium Oxide Nanoparticles Varnish (in vitro Study). Nanotechnol Sci Appl 2024; 17:127-146. [PMID: 38952853 PMCID: PMC11216553 DOI: 10.2147/nsa.s462771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
Purpose Antibacterial and antibiofilm properties of magnesium oxide nanoparticles (MgONPs) mixture assessed against Streptococcus mutans (S. mutans), in addition to examining MgONPs varnish impact on the preservation of the tooth color and inhibition of methylene blue diffusion to the enamel. Methods MgONPs mixture was prepared in deionized water (DW), absolute ethanol (E), and rosin with ethanol (RE), named varnish. The antibacterial and antibiofilm capacities of MgONPs mixtures were tested by agar well diffusion, colony-forming unit (CFU), and biofilm inhibition microtiter methods in triplicate and compared to sodium fluoride varnish (NaF) and chlorhexidine mouthwash (ChX). A spectrophotometer was used to record basic tooth color. The artificial demineralization was initiated for 96 h. Then, experimental materials were applied to the corresponding group, and 10-day pH cycles proceeded. Then, the color was recorded in the same ambient environment. The methylene blue diffusion was evaluated by staining the samples for 24 h. After that, the diffusion test was calculated by a digital camera attached to the stereomicroscope. Results The agar well diffusion test expressed a significant inhibition zone with all MgONPs mixtures (p = 0.000), and maximum inhibition zone diameter associated with MgONPs-RE. The same finding was observed in the CFU test. Additionally, 2.5%, 5%, and 10% MgONPs-RE varnish showed strong biofilm inhibition capacity (p = 0.039) compared to NaF and ChX groups that inhibit biofilm formation moderately (p = 0.003). The study shows that the 5% MgONPs-RE varnish maintains basic tooth color with minimal methylene blue diffusion compared to NaF varnish (p = 0.00). Conclusion Evaluating MgONPs as a mixture revealed antibacterial and antibiofilm capacity against S. mutans with a higher effect of MgONPs-RE varnish. Also, examining the topical effect of MgONPs-RE varnish on the preservation of the tooth color after pH cycle challenges and methylene blue diffusion to enamel confirmed the high performance of MgONPs-RE varnish at 5%.
Collapse
Affiliation(s)
- Sonya Jamal Hamalaw
- Department of Pedodontics and Community Oral Health, College of Dentistry, University of Sulaimani, Sulaymaniyah, Iraq
| | - Fadil Abdulla Kareem
- Department of Pedodontics and Community Oral Health, College of Dentistry, University of Sulaimani, Sulaymaniyah, Iraq
| | - Arass Jalal Noori
- Department of Pedodontics and Community Oral Health, College of Dentistry, University of Sulaimani, Sulaymaniyah, Iraq
| |
Collapse
|
4
|
Wongsariya K, Lapirattanakul J, Chewchinda S, Kanchanadumkerng P. Anti-oral streptococci and anti-biofilm properties of Etlingera pavieana essential oil and its bioactive compounds proposed for an alternative herbal mouthwash. Heliyon 2024; 10:e31136. [PMID: 38779027 PMCID: PMC11108991 DOI: 10.1016/j.heliyon.2024.e31136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Oral streptococci are the major group of bacteria in the oral cavity. Some of their species cause oral diseases that may lead to tooth loss and quality-of-life reduction, such as dental caries. One of prevention techniques to promote oral health is rinsing mouthwash after toothbrushing. This study aimed to determine the potential uses of local food, also remedy, plant in Thailand called Reaw-Horm or Etlingera pavieana for alternative herbal mouthwash. The essential oil from E. pavieana rhizome (Eo) is used for anti-streptococci including Streptococcus mutans and Streptococcus sobrinus and anti-biofilm activities. The main components of Eo are methyl chavicol (MC) and trans-anethole (TA). The disk diffusion method showed the inhibition zone of Eo in a dose-dependent manner. The minimum inhibitory concentration (MIC) of Eo and TA was >1.6 % v/v, and 0.4 % v/v of MC. Regarding anti-biofilm activities, MC showed nearly equal anti-biofilm formation of S. mutans and S. sobrinus, whereas Eo and TA acted toward S. sobrinus more than S. mutans biofilm. Sub-MIC killing effects on cells under biofilm were observed in Eo and MC. Therefore, MC was recommended as an active compound for anti-streptococci activities. Biocompatibility of Eo and MC were shown to be safe for epidermal cell lines. Herbal mouthwashes containing Eo were developed and had antioxidant and antimicrobial actions with established for 3 months. This study provides in vitro support on the use of herbal mouthwash with antioxidant and antimicrobial activities for dental caries prevention and well-being of individuals.
Collapse
Affiliation(s)
- Karn Wongsariya
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Jinthana Lapirattanakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand
| | - Savita Chewchinda
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | | |
Collapse
|
5
|
Kamiya H, Haraguchi A, Mitarai H, Yuda A, Wada H, Shuxin W, Ziqing R, Weihao S, Wada N. In vitro evaluation of the antimicrobial properties of terpinen-4-ol on apical periodontitis-associated bacteria. J Infect Chemother 2024; 30:306-314. [PMID: 37922985 DOI: 10.1016/j.jiac.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Manuka oil and tea tree oil are essential oils with known antibacterial properties that are believed to be caused by one main component: terpinen-4-ol. Terpinen-4-ol has potent antibacterial activity against caries-related microorganisms. However, few studies have investigated the antimicrobial effects of terpinen-4-ol on bacteria in apical periodontitis. Thus, the objective of the present study was to evaluate the antibacterial and antibiofilm potential of terpinen-4-ol against Enterococcus faecalis, Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum, which have all been detected in apical periodontitis. The minimum inhibitory and minimum bactericidal concentrations of terpinen-4-ol were determined to assess its activity against biofilms. The minimum inhibitory concentration of terpinen-4-ol was 0.25% against E. faecalis and F. nucleatum, 0.05% against P. gingivalis, and 0.1% against P. intermedia. The minimum bactericidal concentration of terpinen-4-ol was 1.0% against E. faecalis, 0.2% against P. gingivalis and P. intermedia, and 0.5% against F. nucleatum. In the biofilm evaluations, all terpinen-4-ol-treated bacteria had significant reductions in biofilm viability compared with controls in experiments assessing attachment inhibitory activity. Furthermore, structural alterations and decreased bacterial cell clumping were observed under scanning electron microscopy, and significantly decreased cell survival was noted using fluorescence microscopy. Together, these results suggest that terpinen-4-ol is a potential antibacterial agent with bactericidal properties, and can also act on established biofilms.
Collapse
Affiliation(s)
- Harunobu Kamiya
- Department of General Dentistry, Division of Interdisciplinary Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akira Haraguchi
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Hiromi Mitarai
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Asuka Yuda
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroko Wada
- Laboratory of Oral Pathology, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Wang Shuxin
- Department of General Dentistry, Division of Interdisciplinary Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ran Ziqing
- Department of General Dentistry, Division of Interdisciplinary Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Sun Weihao
- Department of General Dentistry, Division of Interdisciplinary Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Naohisa Wada
- Department of General Dentistry, Division of Interdisciplinary Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
6
|
Shekwa W, Maliehe TS, Masoko P. Antimicrobial, antioxidant and cytotoxic activities of the leaf and stem extracts of Carissa bispinosa used for dental health care. BMC Complement Med Ther 2023; 23:462. [PMID: 38102607 PMCID: PMC10722736 DOI: 10.1186/s12906-023-04308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Carissa bispinosa (L.) Desf. ex Brenan is one of the plants used traditionally to treat oral infections. However, there is limited data validating its therapeutic properties and photochemistry. The aim of this study was to investigate the protective efficacy of the leaf and stem extracts of C. bispinosa against oral infections. METHODS The phenolic and tannin contents were measured using Folin-Ciocalteau method after extracting with different solvents. The minimum inhibitory concentrations (MIC) of the extracts were assessed using the microdilution method against fungal (Candida albicans and Candida glabrata) and bacterial (Streptococcus pyogenes, Staphylococcus aureus and Enterococcus faecalis) strains. The 2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing power (FRP) models were utilised to assess the antioxidant potential of the extracts. Cytotoxicity of the leaf acetone extract was evaluated using the methylthiazol tetrazolium assay. RESULTS The methanol leaf extract had the highest phenolic content (113.20 mg TAE/g), whereas hexane extract displayed the highest tannin composition of 22.98 mg GAE/g. The acetone stem extract had the highest phenolic content (338 mg TAE/g) and the stem extract yielded the highest total tannin content (49.87 mg GAE/g). The methanol leaf extract demonstrated the lowest MIC value (0.31 mg/mL), whereas the stem ethanol extract had the least MIC value of 0.31 mg/mL. The stem methanol extract had the best DPPH free radical scavenging activity (IC50, 72 µg/mL) whereas the stem ethanol extract displayed maximum FRP with absorbance of 1.916. The leaf acetone extract had minimum cytotoxicity with the lethal concentration (LC50) of 0.63 mg/mL. CONCLUSIONS The results obtained in this study validated the protective effect of C. bispinosa against oral infections.
Collapse
Affiliation(s)
- Wanda Shekwa
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private bag X1106, Sovenga, 0727, South Africa
| | - Tsolanku Sidney Maliehe
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private bag X1106, Sovenga, 0727, South Africa
| | - Peter Masoko
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private bag X1106, Sovenga, 0727, South Africa.
| |
Collapse
|
7
|
Loukili EH, Ouahabi S, Elbouzidi A, Taibi M, Yahyaoui MI, Asehraou A, Azougay A, Saleh A, Al Kamaly O, Parvez MK, El Guerrouj B, Touzani R, Ramdani M. Phytochemical Composition and Pharmacological Activities of Three Essential Oils Collected from Eastern Morocco (Origanum compactum, Salvia officinalis, and Syzygium aromaticum): A Comparative Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:3376. [PMID: 37836118 PMCID: PMC10574104 DOI: 10.3390/plants12193376] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023]
Abstract
Throughout history, essential oils have been employed for their pleasing scents and potential therapeutic benefits. These oils have shown promise in various areas, including aromatherapy, personal care products, natural remedies, and even as alternatives to traditional cleaning agents or pest control solutions. The study aimed to explore the chemical makeup, antioxidant, and antibacterial properties of Origanum compactum Benth., Salvia officinalis L., and Syzygium aromaticum (L.) Merr. et Perry. Initially, the composition of the three essential oils, O. compactum (HO), S. officinalis (HS), and S. aromaticum (HC) was analyzed using GC-MS technology, revealing significant differences in the identified compounds. α-thujone emerged as the predominant volatile component in the oils, making up 78.04% of the composition, followed by eugenol, which constituted 72.66% and 11.22% of the HC and HO oils, respectively. To gauge antioxidant capabilities, tests involving DPPH scavenging capacity and total antioxidant capacity were conducted. Antioxidant activity was determined through the phosphomolybdate test and the DPPH• radical scavenging activity, with the HO essential oil displaying significant scavenging capacity (IC50 of 0.12 ± 0.02 mg/mL), similar to ascorbic acid (IC50 of 0.26 ± 0.24 mg/mL). Similarly, the TAC assay for HO oil revealed an IC50 of 1086.81 ± 0.32 µM AAE/mg. Additionally, the oils' effectiveness against four bacterial strains, namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Listeria monocytogenes, and five fungi, Geotrichum candidum, Aspergillus niger, Saccharomyces cerevisiae, Candida glabrata, and Candida albicans, was tested in vitro. The examined essential oils generally exhibited limited antimicrobial effects, with the exception of HC oil, which demonstrated an exceptionally impressive level of antifungal activity. In order to clarify the antioxidant, antibacterial, and antifungal effects of the identified plant compounds, we employed computational methods, specifically molecular docking. This technique involved studying the interactions between these compounds and established protein targets associated with antioxidant, antibacterial, and antifungal activities.
Collapse
Affiliation(s)
- El Hassania Loukili
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (S.O.); (R.T.); (M.R.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Mohammed First University, Oujda 60000, Morocco;
| | - Safae Ouahabi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (S.O.); (R.T.); (M.R.)
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco;
| | - Mohamed Taibi
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Mohammed First University, Oujda 60000, Morocco;
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco;
| | - Meryem Idrissi Yahyaoui
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.I.Y.); (A.A.)
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.I.Y.); (A.A.)
| | - Abdellah Azougay
- Laboratory of Applied Geosciences (LGA), Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco;
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.S.); (O.A.K.)
| | - Omkulthom Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.S.); (O.A.K.)
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy King Saud University, P.O. Box 3660, Riyadh 11481, Saudi Arabia;
| | - Bouchra El Guerrouj
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Mohammed First University, Oujda 60000, Morocco;
| | - Rachid Touzani
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (S.O.); (R.T.); (M.R.)
| | - Mohammed Ramdani
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (S.O.); (R.T.); (M.R.)
| |
Collapse
|
8
|
Zhang S, Wang J, Ahn J. Advances in the Discovery of Efflux Pump Inhibitors as Novel Potentiators to Control Antimicrobial-Resistant Pathogens. Antibiotics (Basel) 2023; 12:1417. [PMID: 37760714 PMCID: PMC10525980 DOI: 10.3390/antibiotics12091417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The excessive use of antibiotics has led to the emergence of multidrug-resistant (MDR) pathogens in clinical settings and food-producing animals, posing significant challenges to clinical management and food control. Over the past few decades, the discovery of antimicrobials has slowed down, leading to a lack of treatment options for clinical infectious diseases and foodborne illnesses. Given the increasing prevalence of antibiotic resistance and the limited availability of effective antibiotics, the discovery of novel antibiotic potentiators may prove useful for the treatment of bacterial infections. The application of antibiotics combined with antibiotic potentiators has demonstrated successful outcomes in bench-scale experiments and clinical settings. For instance, the use of efflux pump inhibitors (EPIs) in combination with antibiotics showed effective inhibition of MDR pathogens. Thus, this review aims to enable the possibility of using novel EPIs as potential adjuvants to effectively control MDR pathogens. Specifically, it provides a comprehensive summary of the advances in novel EPI discovery and the underlying mechanisms that restore antimicrobial activity. In addition, we also characterize plant-derived EPIs as novel potentiators. This review provides insights into current challenges and potential strategies for future advancements in fighting antibiotic resistance.
Collapse
Affiliation(s)
- Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
9
|
Park SY, Raka RN, Hui XL, Song Y, Sun JL, Xiang J, Wang J, Jin JM, Li XK, Xiao JS, Wu H. Six Spain Thymus essential oils composition analysis and their in vitro and in silico study against Streptococcus mutans. BMC Complement Med Ther 2023; 23:106. [PMID: 37020229 PMCID: PMC10074788 DOI: 10.1186/s12906-023-03928-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Streptococcus mutans is a well-known oral pathogen that plays a critical role in the development of dental caries. Many studies have been directed to discover the chemical compounds present in natural products to inhibit the growth and biofilm formation activity of S. mutans. Thymus essential oils exhibit good inhibition on the growth and pathogenesis of S. mutans. However, details about the active compounds in Thymus essential oil and the inhibition mechanism still remain unclear. The aim of this study was to investigate the antimicrobial activity of 6 Thymus species (Three samples of Thymus vulgaris, two samples of Thymus zygis, and one sample of Thymus satureioides essential oils) on S. mutans, to identify the potential active components, and to reveal the underlying mechanism. METHODS The composition of Thymus essential oils was analyzed by gas chromatography-mass spectrometry. And its antibacterial effect was evaluated based on the bacterial growth, acid production, biofilm formation and genetic expression of virulence factors by S. mutans. Potential active components of the Thymus essential oil were identified using molecular docking and correlation analysis. RESULTS GC-MS analysis showed that the major components in the 6 Spain Thymus essential oils were linalool, α-terpineol, p-cymene, thymol and carvacrol. MIC and MBC analysis showed that 3 Thymus essential oils showed very sensitive antimicrobial activity, and were chosen for further analysis. The 3 Thymus essential oil exhibited a significant inhibitory effect on acid production, adherence and biofilm formation of S. mutans and the expression of virulence genes, such as brpA, gbpB, gtfB, gtfC, gtfD, vicR, spaP and relA. Correlation analysis showed that phenolic components, such as carvacrol and thymol, were positively related to DIZ value, which suggests that they are the potential antimicrobial components. Molecular docking between the Thymus essential oil components and virulence proteins also found that carvacrol and thymol exhibited strong binding affinity with functional domains of virulence genes. CONCLUSIONS Thymus essential oil showed significant inhibition against the growth and pathogenesis of S. mutans depending on their composition and concentration. And phenolic compounds, such as carvacrol and thymol, are the major active components. Thymus essential oil could be used in oral healthcare products as a potential anti-caries ingredient.
Collapse
Affiliation(s)
- Su-Yeon Park
- College of Chemical and Materials Engineering, Beijing Technology and Business University, Building No.1, Fucheng Road 11#, Haidian District, Beijing, 100048, China
| | - Rifat Nowshin Raka
- College of Chemical and Materials Engineering, Beijing Technology and Business University, Building No.1, Fucheng Road 11#, Haidian District, Beijing, 100048, China
| | - Xiu-Li Hui
- Department of Stomatology, General Hospital, Beijing, China
| | - Yang Song
- College of Chemical and Materials Engineering, Beijing Technology and Business University, Building No.1, Fucheng Road 11#, Haidian District, Beijing, 100048, China
| | - Jin-Long Sun
- Department of Stomatology, General Hospital, Beijing, China
| | - Jie Xiang
- College of Chemical and Materials Engineering, Beijing Technology and Business University, Building No.1, Fucheng Road 11#, Haidian District, Beijing, 100048, China
| | - Juan Wang
- College of Chemical and Materials Engineering, Beijing Technology and Business University, Building No.1, Fucheng Road 11#, Haidian District, Beijing, 100048, China
| | - Jian-Ming Jin
- College of Chemical and Materials Engineering, Beijing Technology and Business University, Building No.1, Fucheng Road 11#, Haidian District, Beijing, 100048, China
| | - Xu-Kai Li
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Jun-Song Xiao
- College of Chemical and Materials Engineering, Beijing Technology and Business University, Building No.1, Fucheng Road 11#, Haidian District, Beijing, 100048, China
| | - Hua Wu
- College of Chemical and Materials Engineering, Beijing Technology and Business University, Building No.1, Fucheng Road 11#, Haidian District, Beijing, 100048, China.
| |
Collapse
|
10
|
Antibacterial Activity of Trachyspermum ammi Essential Oil Against Streptococcus mutans Isolated from Human Dental Plaques. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2022. [DOI: 10.52547/jommid.10.4.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
11
|
Development and Physicochemical Characterization of Eugenia brejoensis Essential Oil-Doped Dental Adhesives with Antimicrobial Action towards Streptococcus mutans. J Funct Biomater 2022; 13:jfb13030149. [PMID: 36135584 PMCID: PMC9502856 DOI: 10.3390/jfb13030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Dental caries is a multifactorial, biofilm-dependent infectious disease that develops when detrimental changes occur in the oral cavity microenvironment. The antimicrobial and antivirulence properties of the essential oil obtained from the leaves of Eugenia brejoensis Mazine (EBEO) have been reported against Gram-positive and Gram-negative bacteria. Herein, the antimicrobial action of EBEO towards Streptococcus mutans is reported, along with the development and characterization of dental adhesives doped with. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of EBEO were determined against S. mutans, while its toxicity was analyze using Tenebrio molitor larvae. EBEO (MIC and 10×MIC) was incorporated into the Ambar Advanced Polymerization System® (Ambar APS), a two-step total-etch adhesive system (FGM Dental Group), and the antibiofilm action was evaluated. The reflective strength, modulus of elasticity, degree of conversion, and maximum rate of polymerization of each adhesive were also determined. The MIC and MBC values of EBEO against S. mutans were 62.5 µg/mL. The tested concentrations of EBEO were non-toxic to T. molitor larvae. The formation of S. mutans biofilms was significantly inhibited by EBEO and EBEO-coated resin discs (p < 0.05). Importantly, EBEO incorporation did not affect the mechanical and physicochemical properties in relation to oil-free adhesive version. EBEO showed strong antibacterial and antibiofilm activity against S. mutans, no toxicity effect against T. molitor larvae, and did not jeopardize the physical-chemical properties tested.
Collapse
|
12
|
Essential oils and its antibacterial, antifungal and anti-oxidant activity applications: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Milutinovici RA, Chioran D, Buzatu R, Macasoi I, Razvan S, Chioibas R, Corlan IV, Tanase A, Horia C, Popovici RA, Dinu S, Dehelean C, Scurtu A, Pinzaru I, Soica C. Vegetal Compounds as Sources of Prophylactic and Therapeutic Agents in Dentistry. PLANTS (BASEL, SWITZERLAND) 2021; 10:2148. [PMID: 34685957 PMCID: PMC8537575 DOI: 10.3390/plants10102148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022]
Abstract
Dental pathology remains a global health problem affecting both children and adults. The most important dental diseases are dental caries and periodontal pathologies. The main cause of oral health problems is overpopulation with pathogenic bacteria and for this reason, conventional therapy can often be ineffective due to bacterial resistance or may have unpleasant side effects. For that reason, studies in the field have focused on finding new therapeutic alternatives. Special attention is paid to the plant kingdom, which offers a wide range of plants and active compounds in various pathologies. This review focused on the most used plants in the dental field, especially on active phytocompounds, both in terms of chemical structure and in terms of mechanism of action. It also approached the in vitro study of active compounds and the main types of cell lines used to elucidate the effect and mechanism of action. Thus, medicinal plants and their compounds represent a promising and interesting alternative to conventional therapy.
Collapse
Affiliation(s)
- Raluca-Adriana Milutinovici
- Departament of Orthodontics, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania;
- Orthodontic Research Center (ORTHO-CENTER), Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, Revolutiei Ave. 1989 No. 9, 300041 Timisoara, Romania
| | - Doina Chioran
- Department of Dento-Alveolar Surgery, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania;
| | - Roxana Buzatu
- Department of Facial Tooth Aesthetics, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania;
| | - Ioana Macasoi
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania; (C.D.); (A.S.); (I.P.); (C.S.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Susan Razvan
- Department of Family Medicine, Faculty of Medicine, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania
| | - Raul Chioibas
- Department of Surgery I, Faculty of Medicine, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania;
| | - Ion Virgil Corlan
- Department of Management, Legislation and Communication in Dentistry, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.V.C.); (A.T.); (R.A.P.)
| | - Alina Tanase
- Department of Management, Legislation and Communication in Dentistry, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.V.C.); (A.T.); (R.A.P.)
| | - Calniceanu Horia
- Department of Periodontics, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania;
| | - Ramona Amina Popovici
- Department of Management, Legislation and Communication in Dentistry, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.V.C.); (A.T.); (R.A.P.)
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania;
| | - Cristina Dehelean
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania; (C.D.); (A.S.); (I.P.); (C.S.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Alexandra Scurtu
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania; (C.D.); (A.S.); (I.P.); (C.S.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Iulia Pinzaru
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania; (C.D.); (A.S.); (I.P.); (C.S.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Codruta Soica
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania; (C.D.); (A.S.); (I.P.); (C.S.)
- Departament of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania
| |
Collapse
|
14
|
Antimicrobials from Medicinal Plants: An Emergent Strategy to Control Oral Biofilms. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oral microbial biofilms, directly related to oral diseases, particularly caries and periodontitis, exhibit virulence factors that include acidification of the oral microenvironment and the formation of biofilm enriched with exopolysaccharides, characteristics and common mechanisms that, ultimately, justify the increase in antibiotics resistance. In this line, the search for natural products, mainly obtained through plants, and derived compounds with bioactive potential, endorse unique biological properties in the prevention of colonization, adhesion, and growth of oral bacteria. The present review aims to provide a critical and comprehensive view of the in vitro antibiofilm activity of various medicinal plants, revealing numerous species with antimicrobial properties, among which, twenty-four with biofilm inhibition/reduction percentages greater than 95%. In particular, the essential oils of Cymbopogon citratus (DC.) Stapf and Lippia alba (Mill.) seem to be the most promising in fighting microbial biofilm in Streptococcus mutans, given their high capacity to reduce biofilm at low concentrations.
Collapse
|
15
|
Contribution of Essential Oils to the Fight against Microbial Biofilms—A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9030537] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The increasing clinical use of artificial medical devices raises the issue of microbial contamination, which is a risk factor for the occurrence of biofilm-associated infections. A huge amount of scientific data highlights the promising potential of essential oils (EOs) to be used for the development of novel antibiofilm strategies. We aimed to review the relevant literature indexed in PubMed and Embase and to identify the recent directions in the field of EOs, as a new modality to eradicate microbial biofilms. We paid special attention to studies that explain the mechanisms of the microbicidal and antibiofilm activity of EOs, as well as their synergism with other antimicrobials. The EOs are difficult to test for their antimicrobial activity due to lipophilicity and volatility, so we have presented recent methods that facilitate these tests. There are presented the applications of EOs in chronic wounds and biofilm-mediated infection treatment, in the food industry and as air disinfectants. This analysis concludes that EOs are a source of antimicrobial agents that should not be neglected and that will probably provide new anti-infective therapeutic agents.
Collapse
|
16
|
Sartini S, Permana AD, Mitra S, Tareq AM, Salim E, Ahmad I, Harapan H, Emran TB, Nainu F. Current State and Promising Opportunities on Pharmaceutical Approaches in the Treatment of Polymicrobial Diseases. Pathogens 2021; 10:245. [PMID: 33672615 PMCID: PMC7924209 DOI: 10.3390/pathogens10020245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, the emergence of newly identified acute and chronic infectious disorders caused by diverse combinations of pathogens, termed polymicrobial diseases, has had catastrophic consequences for humans. Antimicrobial agents have been clinically proven to be effective in the pharmacological treatment of polymicrobial diseases. Unfortunately, an increasing trend in the emergence of multi-drug-resistant pathogens and limited options for delivery of antimicrobial drugs might seriously impact humans' efforts to combat polymicrobial diseases in the coming decades. New antimicrobial agents with novel mechanism(s) of action and new pharmaceutical formulations or delivery systems to target infected sites are urgently required. In this review, we discuss the prospective use of novel antimicrobial compounds isolated from natural products to treat polymicrobial infections, mainly via mechanisms related to inhibition of biofilm formation. Drug-delivery systems developed to deliver antimicrobial compounds to both intracellular and extracellular pathogens are discussed. We further discuss the effectiveness of several biofilm-targeted delivery strategies to eliminate polymicrobial biofilms. At the end, we review the applications and promising opportunities for various drug-delivery systems, when compared to conventional antimicrobial therapy, as a pharmacological means to treat polymicrobial diseases.
Collapse
Affiliation(s)
- Sartini Sartini
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (S.S.); (A.D.P.)
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (S.S.); (A.D.P.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; or
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; or
| | - Emil Salim
- Faculty of Pharmacy, Universitas Sumatera Utara, North Sumatera 20155, Indonesia;
| | - Islamudin Ahmad
- Faculty of Pharmacy, Universitas Mulawarman, East Kalimantan 75119, Indonesia;
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (S.S.); (A.D.P.)
| |
Collapse
|
17
|
Component Composition and Antimicrobial Activity of CO 2 Extract of Portulaca oleracea, Growing in the Territory of Kazakhstan. ScientificWorldJournal 2021; 2021:5434525. [PMID: 33551685 PMCID: PMC7846396 DOI: 10.1155/2021/5434525] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/02/2021] [Accepted: 01/09/2021] [Indexed: 01/29/2023] Open
Abstract
In the medicine of many countries, the use of herbal healing agents included a significant contribution to improving human health and well-being. Many antibiotics have been widely used to treat infectious diseases caused by various pathogenic bacteria. However, increased multidrug resistance has led to increased severity of diseases caused by bacterial pathogens. Bacteria remain the main causative agents of diseases that cause human death, even in the present day. This cause prompted scientists to investigate alternative new molecules against bacterial strains. The significant interest for the study is Portulaca oleracea L. (family Portulacaceae), a widespread annual plant used in folk medicine. Thus, the production and study of CO2 extract of Portulaca oleracea is an actual problem. Methods. Raw materials were collected from Almaty and Zhambyl regions (Southeast and South Kazakhstan) in phase flowering. Portulaca oleracea herb's CO2 extract was obtained by subcritical carbon dioxide extraction (installation of carbon dioxide flow-through extraction- 5L). The Wiley 7th edition and NIST'02 library were used to identify the mass spectra obtained. The antimicrobial activity study was conducted by the micromethod of serial dilution and disco-diffuse method. Standard test strains of microorganisms were used: Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 6538-P, Candida albicans ATCC 10231, and Escherichia coli ATCC 8739. Results. The use of carbon dioxide extraction (further CO2 extract) is a promising direction of obtaining total medicinal substances containing biologically active substances, from fractions of volatile esters of various composition and functional purpose until a fraction of fatty acids and fat-soluble vitamins. In the current study, we obtained CO2 extract at subcritical conditions from aboveground organs of Portulaca oleracea and investigated the component composition for the first time. From 41 to 66 components were identified in the composition of Portulaca oleracea‘s CO2 extract. Studies of antimicrobial activity showed that CO2 extract of Portulaca oleracea had the expressed effect against clinically significant microorganisms such as Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Candida albicans. Conclusions. This study showed that CO2 extract of Portulaca oleracea's raw material contained biological active compounds exhibiting a significant antimicrobial effect.
Collapse
|
18
|
The Use of Essential Oils and Their Isolated Compounds for the Treatment of Oral Candidiasis: A Literature Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1059274. [PMID: 33505486 PMCID: PMC7810551 DOI: 10.1155/2021/1059274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/28/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
In this literature review, we present the main scientific findings on the antifungal activity of essential oils (EOs) applicable for a new drug formulation to treat oral candidiasis. Seven literature databases were systematically searched for eligible in vitro and clinical trials. Selected articles were screened for biological activity, botanical species, phytochemical composition, study design, and methodological quality. A total of 26 articles were included in the review, of which 21 were in vitro studies and 5 clinical trials. The most promising EOs were obtained from Allium tubeorosum, Cinnamomum cassia, Cinnamomum zeylanicum, and Coriandrum sativum L. Among the phytochemicals, citral and thymol were the most active. Clinical trials indicated that the EOs from Pelargonium graveolens and Zataria multiflora are potentially effective to treat oral candidiasis. Further nonclinical and clinical studies with these EO are warranted to determine their potential use and safety for the treatment of oral candidiasis.
Collapse
|
19
|
Dobler D, Runkel F, Schmidts T. Effect of essential oils on oral halitosis treatment: a review. Eur J Oral Sci 2020; 128:476-486. [PMID: 33200432 DOI: 10.1111/eos.12745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/09/2020] [Accepted: 10/14/2020] [Indexed: 01/15/2023]
Abstract
Halitosis is a very common condition which may affect up to 30% of the population. In about 90% of the cases, halitosis originates in the mouth due to inadequate plaque control, periodontal disease, dry mouth, faulty restorations, and in particular due to excessive bacterial growth. Oral malodor is mainly caused by a microbial degradation of amino acids into volatile, bad-smelling gases (volatile sulfur compounds - VSCs). Management of oral malodor is directed primarily at managing and reducing the VSC-producing bacteria count as well as masking the odor. Essential oils have been used for this purpose in traditional medicine for centuries. In the present review, data on the antimicrobial activity of essential oils against relevant oral VSC-producing bacteria are compiled and compared. Additionally, other positive aspects of essential oils with regard to oral odor are considered.
Collapse
Affiliation(s)
- Dorota Dobler
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen - University of Applied Sciences, Giessen, Germany
| | - Frank Runkel
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen - University of Applied Sciences, Giessen, Germany
| | - Thomas Schmidts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen - University of Applied Sciences, Giessen, Germany
| |
Collapse
|
20
|
Lapinska B, Szram A, Zarzycka B, Grzegorczyk J, Hardan L, Sokolowski J, Lukomska-Szymanska M. An In Vitro Study on the Antimicrobial Properties of Essential Oil Modified Resin Composite against Oral Pathogens. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4383. [PMID: 33019681 PMCID: PMC7579242 DOI: 10.3390/ma13194383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S. mutans and L. acidophilus, as well as antifungal effect on C. albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S. mutans and L. acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S. mutans. All tested EOs exhibited antifungal activity against C. albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S. mutans and C. albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L. acidophilus.
Collapse
Affiliation(s)
- Barbara Lapinska
- Department of General Dentistry, Medical University of Lodz, 92-213 Lodz, Poland; (B.L.); (A.S.); (J.S.)
| | - Aleksandra Szram
- Department of General Dentistry, Medical University of Lodz, 92-213 Lodz, Poland; (B.L.); (A.S.); (J.S.)
| | - Beata Zarzycka
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland; (B.Z.); (J.G.)
| | - Janina Grzegorczyk
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland; (B.Z.); (J.G.)
| | - Louis Hardan
- Department of Restorative Dentistry, Dental School, Saint Joseph University, 11072180 Beirut, Lebanon;
| | - Jerzy Sokolowski
- Department of General Dentistry, Medical University of Lodz, 92-213 Lodz, Poland; (B.L.); (A.S.); (J.S.)
| | - Monika Lukomska-Szymanska
- Department of General Dentistry, Medical University of Lodz, 92-213 Lodz, Poland; (B.L.); (A.S.); (J.S.)
| |
Collapse
|
21
|
Yanakiev S. Effects of Cinnamon ( Cinnamomum spp.) in Dentistry: A Review. Molecules 2020; 25:E4184. [PMID: 32932678 PMCID: PMC7571082 DOI: 10.3390/molecules25184184] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Dental medicine is one of the fields of medicine where the most common pathologies are of bacterial and fungal origins. This review is mainly focused on the antimicrobial effects of cinnamon essential oil (EO), cinnamon extracts, and pure compounds against different oral pathogens and the oral biofilm and the possible effects on soft mouth tissue. Basic information is provided about cinnamon, as is a review of its antimicrobial properties against the most common microorganisms causing dental caries, endodontic and periodontal lesions, and candidiasis. Cinnamon EO, cinnamon extracts, and pure compounds show significant antimicrobial activities against oral pathogens and could be beneficial in caries and periodontal disease prevention, endodontics, and candidiasis treatment.
Collapse
Affiliation(s)
- Spartak Yanakiev
- Medical College Y. Filaretova, Medical University-Sofia, Yordanka Filaretova Street 3, 1000 Sofia, Bulgaria
| |
Collapse
|
22
|
Antimicrobial Effect of Thymus capitatus and Citrus limon var. pompia as Raw Extracts and Nanovesicles. Pharmaceutics 2019; 11:pharmaceutics11050234. [PMID: 31091818 PMCID: PMC6572595 DOI: 10.3390/pharmaceutics11050234] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 12/20/2022] Open
Abstract
In view of the increasing interest in natural antimicrobial molecules, this study screened the ability of Thymus capitatus (TC) essential oil and Citrus limon var. pompia (CLP) extract as raw extracts or incorporated in vesicular nanocarriers against Streptococcus mutans and Candida albicans. After fingerprint, TC or CLP were mixed with lecithin and water to produce liposomes, or different ratios of water/glycerol or water/propylene glycol (PG) to produce glycerosomes and penetration enhancer vesicles (PEVs), respectively. Neither the raw extracts nor the nanovesicles showed cytotoxicity against human gingival fibroblasts at all the concentrations tested (1, 10, 100 μg/mL). The disc diffusion method, MIC-MBC/MFC, time-kill assay, and transmission electron microscopy (TEM) demonstrated the highest antimicrobial potential of TC against S. mutans and C. albicans. The very high presence of the phenol, carvacrol, in TC (90.1%) could explain the lethal effect against the yeast, killing up to 70% of Candida and not just arresting its growth. CLP, rich in polyphenols, acted in a similar way to TC in reducing S. mutans, while the data showed a fungistatic rather than a fungicidal activity. The phospholipid vesicles behaved similarly, suggesting that the transported extract was not the only factor to be considered in the outcomes, but also their components had an important role. Even if other investigations are necessary, TC and CLP incorporated in nanocarriers could be a promising and safe antimicrobial in caries prevention.
Collapse
|
23
|
Ascari J, de Oliveira MS, Nunes DS, Granato D, Scharf DR, Simionatto E, Otuki M, Soley B, Heiden G. Chemical composition, antioxidant and anti-inflammatory activities of the essential oils from male and female specimens of Baccharis punctulata (Asteraceae). JOURNAL OF ETHNOPHARMACOLOGY 2019; 234:1-7. [PMID: 30660710 DOI: 10.1016/j.jep.2019.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/30/2018] [Accepted: 01/07/2019] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baccharis punctulata (Asteraceae), popularly known as "Chíllka saru saru" in Bolivia, has been used by rural communities in Bustillo Province of the Potosi Department for treatment of asthma, luxations and contusions. AIM OF THE STUDY To analyze the chemical composition of the essential oils obtained from leaves of female (BPF) and male (BPM) specimens and evaluate their anti-inflammatory and antioxidant properties. MATERIAL AND METHODS Chemical composition analyses of Baccharis punctulata essential oils isolated by hidrodistillation from leaves of male and female specimens were performed by GC-FID-MS. The in vivo anti-inflammatory activity was evaluated using the model of TPA (12-O-tetradecanoylphorbol-13-acetate) induced ear edema, and the polymorphonuclear cell migration was evaluated by mieloperoxidase (MPO) and analyzed histologically. To measure the reactive oxygen species (ROS) in the inflamed tissue, the DCFH-DA fluorescent probe was used. The chemical in vitro antioxidant activity of essential oils was determined using the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical assay. RESULTS The chemical analysis showed high proportion of sesquiterpenes in the volatiles samples obtained from BPM, such as δ-elemene (14.29%), germacrene D (11.29%) and bicyclogermacrene (10.90%), and in the sample from BPF, bicyclogermacrene (42.44%), germacrene D (21.18%) and β-caryophyllene (14.06%). A statistical difference (p < 0.05) on chemical composition between both essential oils was observed. Topical administration of both BPM and BPF essential oils was able to inhibit the formation of TPA-induced edema in the treated groups. Isolated administration of TPA promoted an increase in MPO enzyme activity, and inhibition of the increase of MPO activity was observed when animals were treated with BFP at concentrations of 0.1 mg/ear (13.69 ± 0.20%), 0.3 mg/ear (22.35 ± 0.11%), and 1.0 mg/ear (44.98 ± 0.27%). Topical treatment with BPM was able to inhibit MPO activity at 22.40 ± 0.29% (0.1 mg/ear), 36.49 ± 0.07% (0.3 mg/ear) and 52.19 ± 0.28% (1.0 mg/ear). The positive control of dexamethasone (DEXA, 0.1 mg/ear) was able to revert the increase in the enzymatic activity of MPO caused by TPA (65.16%). Histological analysis showed that topical application of TPA promoted intense cellular infiltration. This inflammatory parameter was reduced with the topical application of the BPF and BPM oil samples as well as with DEXA. The results observed in the ROS and DPPH tests suggest that both samples were able to reduce the inflammatory cells influx and have in vitro antioxidant properties, respectively. CONCLUSIONS This study presents, for the first time, the chemical composition of the essential oils obtained from leaves of male and female specimens of Baccharis punctulata, and their anti-inflammatory and antioxidant activities. The results presented by the volatile samples in our biotests support traditional uses of this plant species.
Collapse
Affiliation(s)
- Jociani Ascari
- Universidade Tecnológica Federal do Paraná, Prolongamento da Rua Cerejeira, s/n, CEP 85892-000 Bairro São Luiz - Santa Helena, PR, Brazil.
| | - Murilo Silva de Oliveira
- Universidade Tecnológica Federal do Paraná, Prolongamento da Rua Cerejeira, s/n, CEP 85892-000 Bairro São Luiz - Santa Helena, PR, Brazil.
| | - Domingos Sávio Nunes
- Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti 4748, CEP: 84030-900 Ponta Grossa, PR, Brazil.
| | - Daniel Granato
- Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti 4748, CEP: 84030-900 Ponta Grossa, PR, Brazil.
| | - Dilamara Riva Scharf
- Universidade Regional de Blumenau, Campus II/Bloco I - Sala 007. Rua São Paulo, 3250, CEP: 89030-000 Blumenau, SC, Brazil.
| | - Edésio Simionatto
- Universidade Regional de Blumenau, Campus II/Bloco I - Sala 007. Rua São Paulo, 3250, CEP: 89030-000 Blumenau, SC, Brazil.
| | - Michel Otuki
- Universidade Federal do Paraná, Politécnico - Anexo da Farmacologia Sala 102, Avenida Coronel Francisco H. dos Santos, s/n, Bairro: Jardim das Américas, CEP: 81530-900 Curitiba, PR, Brazil.
| | - Bruna Soley
- Universidade Federal do Paraná, Politécnico - Anexo da Farmacologia Sala 102, Avenida Coronel Francisco H. dos Santos, s/n, Bairro: Jardim das Américas, CEP: 81530-900 Curitiba, PR, Brazil.
| | - Gustavo Heiden
- Embrapa Clima Temperado, Rodovia BR 392, km 78. Caixa Postal 403, CEP: 96010-971 Pelotas, RS, Brazil.
| |
Collapse
|
24
|
Hagh LG, Arefian A, Farajzade A, Dibazar S, Samiea N. The antibacterial activity of " Satureja hortensis" extract and essential oil against oral bacteria. Dent Res J (Isfahan) 2019; 16:153-159. [PMID: 31040870 PMCID: PMC6474179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Recently, there has been an increasing growth in research on medical plant's effect on dental plaque bacteria. The aim of this study was to determine the antibacterial effects of Satureja hortensis extract and its essential oil (EO) on Streptococcus salivarius, Streptococcus sanguis, and Streptococcus mutans as important bacteria in early supragingival dental plaque formation. MATERIALS AND METHODS In this in vitro study, different concentrations of S. hortensis extract and its EO were prepared using double dilution method. The disc diffusion method was used to determine antibacterial activity. Based on these measurements, the minimal inhibitory concentration value was reported for each bacterium. Antibiotics used as positive controls in this study were erythromycin (15 μg) and tetracycline (30 μg). t-test and ANOVA were used for statistical analysis (P < 0.05). RESULTS Aqueous and methanolic extract did not show significant antibacterial activity, but the EO significantly inhibited the growth of the test bacteria compared to positive control (P < 0.05). High concentrations of EO processed greater antimicrobial effects against three oral bacteria than other low concentrations (P < 0.0001). For S. mutans, the inhibition effect of tetracycline 30 μg was similar with 50% (P = 0.789) and 25% (P = 0.158) dosages of the EO. For S. salivarius, the effect of tetracycline 30 μg was similar to 50% dosages of the EO (P = 0.122). For S. sanguis, the effect of erythromycin 15 μg was lower than 50% (P = 0.0006) and 25% (P = 0.003) dosages of the EO. The inhibition effects of all concentrations of EO were higher for S. sanguis. S. salivarius and S. sanguis are more sensitive than S. mutans to S. hortensis EO. CONCLUSION Due to the strong antibacterial effect of S. hortensis EO on the oral bacteria growth, it can be served as herbal mouth rinse, while to confirm this antibacterial effect, further clinical studies are necessary.
Collapse
Affiliation(s)
- Leila Golpasand Hagh
- Department of Periodontology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Atefe Arefian
- Department of Periodontology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Farajzade
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sana Dibazar
- Department of Operative and Esthetic Dentistry Dental Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Address for correspondence: Dr. Sana Dibazar, Dental Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. E-mail:
| | - Neda Samiea
- Department of Periodontology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
25
|
Machado-Gonçalves L, Tavares-Santos A, Santos-Costa F, Soares-Diniz R, Câmara-de Carvalho-Galvão L, Martins-de Sousa E, Beninni-Paschoal MA. Effects of Terminalia catappa Linn. Extract on Candida albicans biofilms developed on denture acrylic resin discs. J Clin Exp Dent 2018; 10:e642-e647. [PMID: 30057704 PMCID: PMC6057082 DOI: 10.4317/jced.54776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/26/2018] [Indexed: 11/29/2022] Open
Abstract
Background Considering the prevalence of denture stomatitis and the challenge of controlling this pathology using conventional therapies, natural products have been suggested as important therapeutic alternatives due to their antifungal and anti-biofilm properties. Thus, this study investigated if immersion in Terminalia Catappa Linn. extract (TCE) affects Candida albicans biofilms developed on denture acrylic resin discs. Material and Methods The minimal inhibitory and minimal fungicidal concentrations (MIC and MFC, respectively) tests were performed for TCE against suspensions of C. albicans. For the biofilm assay, discs (10 x 2 mm) were fabricated using a denture acrylic resin with surface roughness standardized. The biofilms were allowed to develop for 24 hours. Then, they were immersed in the following treatments overnight (8 hours): phosphate-buffered saline (PBS, control), TCE at MIC, 5XMIC or 10XMIC. The biofilms were analyzed for cell counts and microscopy. Data were analyzed by ANOVA followed by a Tukey test at a 5% significance level. Results The minimal concentration of TCE required to inhibit C. albicans was 6.25 mg/mL, while MFC was 12.5 mg/mL. Immersion in TCE at MIC was sufficient to reduce 80% of the biofilm viable cells compared to the control group (p< 0.001). Microscopic images confirm that immersion at 5XMIC and 10XMIC had a fungicidal activity with no significant differences between the concentrations regarding viable cells counts (p> 0.05). Conclusions Within the limitations of this study, it was possible to conclude that immersion in TCE reduced the C. albicans biofilms cells developed on the denture acrylic surface. Key words:Terminalia catappa Linn, Biofilm, Candida albicans.
Collapse
Affiliation(s)
| | | | - Fábio Santos-Costa
- Post-Graduate Program in Dentistry, CEUMA University, São Luis, Maranhao, Brazil
| | - Rafael Soares-Diniz
- Post-Graduate Program in Dentistry, CEUMA University, São Luis, Maranhao, Brazil
| | | | | | | |
Collapse
|
26
|
de Aguiar FC, Solarte AL, Tarradas C, Luque I, Maldonado A, Galán-Relaño Á, Huerta B. Antimicrobial activity of selected essential oils against Streptococcus suis isolated from pigs. Microbiologyopen 2018; 7:e00613. [PMID: 29575822 PMCID: PMC6291787 DOI: 10.1002/mbo3.613] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/01/2018] [Indexed: 12/03/2022] Open
Abstract
The inhibitory potential by contact and vapor of basil, cinnamon, clove, peppermint, oregano, rosemary, common thyme, and red thyme essential oils (EOs) against 20 strains of Streptococcus suis was determined by the disk diffusion test. The broth microdilution method was used to determine the minimal inhibitory and minimal bactericidal concentration (MIC and MBC) of the four selected oils. Furthermore, the bactericidal power (ratio MBC/MIC) was calculated. The EOs with the major potential in the disk diffusion method were red thyme, common thyme, oregano, and cinnamon (∅ mean 16.5–34.2 mm), whereas cinnamon did not show vapor activity. In the microdilution test, all the EOs showed notable antimicrobial activity (MIC90 and MBC90 312.5–625 μg·ml−1) and a strong bactericidal power (ratio = 1). This is the first study that selects essential oils against S. suis. New studies about the possible synergic effect of EOs with antibiotics and about toxicity and efficacy in in vivo conditions are recommended.
Collapse
Affiliation(s)
- Fabiana C de Aguiar
- Departamento de Sanidad Animal, Universidad de Córdoba, International Excellence Agrifood Campus 'CeiA3', Córdoba, Spain
| | - Ana Lucía Solarte
- Departamento de Sanidad Animal, Universidad de Córdoba, International Excellence Agrifood Campus 'CeiA3', Córdoba, Spain
| | - Carmen Tarradas
- Departamento de Sanidad Animal, Universidad de Córdoba, International Excellence Agrifood Campus 'CeiA3', Córdoba, Spain
| | - Inmaculada Luque
- Departamento de Sanidad Animal, Universidad de Córdoba, International Excellence Agrifood Campus 'CeiA3', Córdoba, Spain
| | - Alfonso Maldonado
- Departamento de Sanidad Animal, Universidad de Córdoba, International Excellence Agrifood Campus 'CeiA3', Córdoba, Spain
| | - Ángela Galán-Relaño
- Departamento de Sanidad Animal, Universidad de Córdoba, International Excellence Agrifood Campus 'CeiA3', Córdoba, Spain
| | - Belén Huerta
- Departamento de Sanidad Animal, Universidad de Córdoba, International Excellence Agrifood Campus 'CeiA3', Córdoba, Spain
| |
Collapse
|
27
|
Whole body vibration exercise combined with an extract of Coriandrum sativum modify some biochemical/physiological parameters in rats. Biosci Rep 2017; 37:BSR20170070. [PMID: 28507199 PMCID: PMC5463262 DOI: 10.1042/bsr20170070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 01/19/2023] Open
Abstract
The aim of the present study was to evaluate the effect of the association of whole body vibration (WBV) exercise with an aqueous extract of coriander on the biodistribution of the radiopharmaceutical sodium pertechnetate, on the concentration of some plasma biomarker, on the feed intake, on the body mass, and on the stool consistency in rats. Rats were divided in four groups and submitted to different treatments for 40 days. The control group (CON) received deionized water. The group treated with coriander (COR) received the extract of coriander. The rats that were exposed to WBV exercises (WBV-E) also received deionized water. A group of animals received coriander and was exposed to WBV (COR + WBV-E). We found in testis a decrease (0.13 ± 0.01 to 0.06 ± 0.03) of the percentages of injected radioactivity per gram (%ATI/g) in the WBV-E in comparison with the COR. There is no significant alteration on the concentrations of the plasma biomarkers. The feed intake showed a statistically significant increase in WBV-E. No significant difference on the body mass was found. The stool analysis showed a statistical difference on the consistency between COR (hard and dry, darker) and all the other groups (normal). In conclusion, it was verified that possible modifications in some biochemical/physiological parameters of the rats submitted to WBV exercise would be capable to increase the feed intake without changing the body mass, and normalizing the stool consistency altered by the coriander supplementation. Further studies are needed to try to understand better the biological effects involving the association of WBV exercise and coriander.
Collapse
|
28
|
Borges A, Lopez-Romero JC, Oliveira D, Giaouris E, Simões M. Prevention, removal and inactivation of Escherichia coli and Staphylococcus aureus biofilms using selected monoterpenes of essential oils. J Appl Microbiol 2017; 123:104-115. [PMID: 28497526 DOI: 10.1111/jam.13490] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/27/2017] [Accepted: 05/06/2017] [Indexed: 02/04/2023]
Abstract
AIMS The aim of this study was to investigate the antibiofilm potential of five essential oil (EO) components with cyclic (sabinene-SAB, carveol-C1, carvone-C2) and acyclic (citronellol-C3 and citronellal-C4) structures against Escherichia coli and Staphylococcus aureus. METHODS AND RESULTS The selected EO components prevented biofilm set-up, with C3 and C4 causing remarkable effects. When applied against pre-established biofilms, they promoted high biomass removal and inactivation of biofilm cells. Moreover, no viable E. coli biofilm cells were detected after exposure to SAB at 5 × MIC and 10 × MIC, and a significant viability decrease was observed for both bacteria with the other EO components. SAB, C3 and C4 caused the most prominent effects apparently due to their octanol-water partition coefficient (Po/w), the number of rotatable bonds (n-ROTB) and the free hydroxyl groups. CONCLUSIONS The overall results demonstrated that the selected EO components, particularly SAB, C3 and C4 are of interest as new lead molecules to both prevent biofilm set-up and to control pre-established biofilms of E. coli and S. aureus. SIGNIFICANCE AND IMPACT OF THE STUDY The tested EO components exhibited prominent antibiofilm properties against E. coli and S. aureus providing a novel and effective alternative/complementary approach to counteract chronic infections and the transmission of diseases in clinical settings.
Collapse
Affiliation(s)
- A Borges
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - J C Lopez-Romero
- CIAD, Research Center for Food and Development, Hermosillo, Sonora, Mexico
| | - D Oliveira
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - E Giaouris
- Department of Food Science and Nutrition, Faculty of the Environment, University of the Aegean, Myrina, Lemnos Island, Greece
| | - M Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
29
|
Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia 2017; 118:56-62. [PMID: 28223069 DOI: 10.1016/j.fitote.2017.02.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 01/17/2023]
Abstract
With aim to develop effective proof-of-concept approach which can be used in a development of new preparations for the inhalation therapy, we designed a new screening method for simple and rapid simultaneous determination of antibacterial potential of plant volatiles in the liquid and the vapour phase at different concentrations. In addition, EVA (ethylene vinyl acetate) capmat™ as vapour barrier cover was used as reliable modification of thiazolyl blue tetrazolium bromide (MTT) assay for cytotoxicity testing of volatiles on microtiter plates. Antibacterial activity of carvacrol, cinnamaldehyde, eugenol, 8-hydroxyquinoline, thymol and thymoquinone was determined against Haemophilus influenzae, Staphylococcus aureus, and Streptococcus pneumoniae using new broth microdilution volatilization method. The cytotoxicity of these compounds was evaluated using MTT test in lung fibroblast cells MRC-5. The most effective antibacterial agents were 8-hydroxyquinoline and thymoquinone with the lowest minimum inhibitory concentrations (MICs) ranging from 2 to 128μg/mL, but they also possessed the highest toxicity in lung cell lines with half maximal inhibitory concentration (IC50) values 0.86-2.95μg/mL. The lowest cytotoxicity effect was identified for eugenol with IC50 295.71μg/mL, however this compound produced only weak antibacterial potency with MICs 512-1024μg/mL. The results demonstrate validity of our novel broth microdilution volatilization method, which allows cost and labour effective high-throughput antimicrobial screening of volatile agents without need of special apparatus. In our opinion, this assay can also potentially be used for development of various medicinal, agricultural, and food applications that are based on volatile antimicrobials.
Collapse
|
30
|
Salman HA, Senthilkumar R, Imran K, Selvam KP. Isolation and Typing of Streptococcus mutans and Streptococcus sobrinus from Caries-active Subjects. Contemp Clin Dent 2017; 8:587-593. [PMID: 29326510 PMCID: PMC5754980 DOI: 10.4103/ccd.ccd_610_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Streptococcus mutans and Streptococcus sobrinus are main etiological agents of dental caries. Aim The aim of the study was to isolate, identify, characterize, and determine the minimum inhibitory concentration (MIC) of S. mutans and S. sobrinus from caries-active subjects. Materials and Methods Sixty-five plaque samples were collected from caries-active subjects aged between 35 and 44 years, processed and cultured on mitis salivarius bacitracin agar. All the bacterial isolates were subjected to morphotyping and the suspected colonies were identified by 16S rDNA sequencing. The S. mutans and S. sobrinus strains were characterized by biotyping and phylogenetic analysis. The MIC of ampicillin and erythromycin was determined by microtiter plate method. Results Of the study population, 41 isolates displayed typical colony morphologies of S. mutans and S. sobrinus. The 16S rDNA sequencing results revealed that 36 isolates were S. mutans and 5 isolates were S. sobrinus. The biotyping of these isolates demonstrated three biotypes, namely, biotype I (n = 35), biotype III (n = 1), and biotype IV (n = 2). However, 3 isolates exhibited variant biotypes. The phylogenetic analysis revealed that the clinical strains of S. mutans and S. sobrinus clustered independently along with respective reference strains. The average MIC of ampicillin and erythromycin against S. mutans and S. sobrinus was 0.047 μg/ml and 0.39 μg/ml, respectively. Conclusion The 16S rDNA sequencing was an impeccable method for S. mutans and S. sobrinus identification when compared with morphotyping and biotyping methods. The study also suggested that nonspecific bacteria might be involved in caries formation.
Collapse
Affiliation(s)
- Hamzah Abdulrahman Salman
- Department of Microbiology, J.J. College of Arts and Science, Affiliated to Bharathidasan University, Pudukkottai, Tamil Nadu, India
| | - R Senthilkumar
- Department of Microbiology, J.J. College of Arts and Science, Affiliated to Bharathidasan University, Pudukkottai, Tamil Nadu, India
| | - Khalid Imran
- Department of Biotechnology, Krupanidhi Degree College, Affiliated to Bangalore University, Bangalore, Karnataka, India.,Research Associate, Nucleobase Life Sciences Research Laboratory, Bangalore, Karnataka, India
| | - K Panneer Selvam
- Department of Microbiology, M.R. Government Arts College, Mannargudi, Tamil Nadu, India
| |
Collapse
|
31
|
Skariyachan S. Exploring the Potential of Herbal Ligands Toward Multidrug-Resistant Bacterial Pathogens by Computational Drug Discovery. TRANSLATIONAL BIOINFORMATICS AND ITS APPLICATION 2017. [DOI: 10.1007/978-94-024-1045-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Shafiee F, Moghadamnia AA, Shahandeh Z, Sadighian F, Khodadadi E. Evaluation of the antibacterial effects of aqueous and ethanolic leaf extracts of Aloysia Citriodora ( Lemon verbena) on Streptococcus mutans and Streptococcus sobrinus. Electron Physician 2016; 8:3363-3368. [PMID: 28163849 PMCID: PMC5279967 DOI: 10.19082/3363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/13/2016] [Indexed: 11/28/2022] Open
Abstract
Introduction The Aloysia citriodora plant from the family of Verbenaceae has many uses in traditional medicine. The aim of the current study was to determine the effects of the aqueous and ethanolic extracts of A. citriodora on Streptococcus mutans and Streptococcus sobrinus, which cause tooth decay. Methods This 2016 study was performed on standardized strains of S. mutans PTCC1683 and S. sobrinus PTCC1601 and clinical isolates. Twenty clinical samples were obtained from the dental caries of children admitted to the pediatric ward at the Faculty of Dentistry of Babol University of Medical Sciences (Babol, Iran). The aqueous and ethanolic extracts of A. citriodora leaves were prepared in several concentrations ranging from 625–20,000 μg/ml. These concentrations of the extracts were applied to the bacteria by disk diffusion, agar well diffusion, and macrotube dilution. The antibacterial effects of amoxicillin and chlorhexidine digluconate 0.2% (CHX) were also carried out. Data were analyzed by SPSS version 18 software using independent-samples t-test. Results Streptococcus spp. was successfully isolated from nine out of 20 (45%) specimens. Of the 9 positive samples cultured, 8 (88.8%) were S. mutans and 1 was S. sobrinus (11.2%). No inhibitory zone was observed around the disks and wells containing all concentrations of A. citriodora extracts. The minimum concentrations for inhibition of growth (MIC) resulted in turbidity in all tubes and were negative except for the control tubes. Inhibition zones were observed for amoxicillin and CHX disks (p < 0.001). Conclusion This study found that all studied bacteria were resistant to both types of the extracts; therefore, they are not a suggested replacement for chemical agents in mouthwash. It also shown that CHX is less effective than amoxicillin.
Collapse
Affiliation(s)
- Faranak Shafiee
- Postgraduate Student, Faculty of Dentistry, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Department of Pharmacology and Toxicology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Shahandeh
- Department of Laboratory Sciences, Paramedical Faculty, Babol University of Medical Sciences, Babol, Iran
| | - Farhnaz Sadighian
- Department of Laboratory Sciences, Paramedical Faculty, Babol University of Medical Sciences, Babol, Iran
| | - Effat Khodadadi
- Dental Materials Research Center, Department of Pediatrics, Faculty of Dentistry, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
33
|
Swamy MK, Akhtar MS, Sinniah UR. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:3012462. [PMID: 28090211 PMCID: PMC5206475 DOI: 10.1155/2016/3012462] [Citation(s) in RCA: 368] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/10/2016] [Accepted: 10/09/2016] [Indexed: 12/28/2022]
Abstract
A wide range of medicinal and aromatic plants (MAPs) have been explored for their essential oils in the past few decades. Essential oils are complex volatile compounds, synthesized naturally in different plant parts during the process of secondary metabolism. Essential oils have great potential in the field of biomedicine as they effectively destroy several bacterial, fungal, and viral pathogens. The presence of different types of aldehydes, phenolics, terpenes, and other antimicrobial compounds means that the essential oils are effective against a diverse range of pathogens. The reactivity of essential oil depends upon the nature, composition, and orientation of its functional groups. The aim of this article is to review the antimicrobial potential of essential oils secreted from MAPs and their possible mechanisms of action against human pathogens. This comprehensive review will benefit researchers who wish to explore the potential of essential oils in the development of novel broad-spectrum key molecules against a broad range of drug-resistant pathogenic microbes.
Collapse
Affiliation(s)
- Mallappa Kumara Swamy
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Padmashree Institute of Management and Sciences, Kommagatta, Kengeri, Bangalore 560060, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-E-Aam College, Shahjahanpur, Uttar Pradesh 242001, India
| | - Uma Rani Sinniah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
34
|
Tiveron AP, Rosalen PL, Franchin M, Lacerda RCC, Bueno-Silva B, Benso B, Denny C, Ikegaki M, de Alencar SM. Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis. PLoS One 2016; 11:e0165588. [PMID: 27802316 PMCID: PMC5089781 DOI: 10.1371/journal.pone.0165588] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/16/2016] [Indexed: 11/28/2022] Open
Abstract
South Brazilian organic propolis (OP), which has never been studied before, was assessed and its chemical composition, scavenging potential of reactive oxygen species, antimicrobial and anti-inflammatory activities are herein presented. Based on the chemical profile obtained using HPLC, OP was grouped into seven variants (OP1–OP7) and all of them exhibited high scavenging activity, mainly against superoxide and hypochlorous acid species. OP1, OP2, and OP3 had the smallest minimal inhibitory concentration (MIC) against Gram-positive bacteria Streptococcus mutans, Streptococcus oralis, and Streptococcus aureus (12.5–100 μg/mL). OP1, OP2, OP3, and OP4 were more effective against Pseudomonas aeruginosa (Gram-negative), with MIC values ranging from 100 to 200 μg/mL. OP6 showed anti-inflammatory activity by decreasing NF-kB activation and TNF-α release in RAW 264.7 macrophages, and expressing the NF-κB-luciferase reporter stable gene. Therefore, south Brazilian OP can be considered an excellent source of bioactive compounds with great potential of application in the pharmaceutical and food industry.
Collapse
Affiliation(s)
- Ana Paula Tiveron
- Department of Agri-Food Industry, Food and Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo (USP), Avenida Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil
| | - Pedro Luiz Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, CP 52, 13414-903, Piracicaba, SP, Brazil
| | - Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, CP 52, 13414-903, Piracicaba, SP, Brazil
| | - Risia Cristina Coelho Lacerda
- Department of Agri-Food Industry, Food and Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo (USP), Avenida Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil
| | - Bruno Bueno-Silva
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, CP 52, 13414-903, Piracicaba, SP, Brazil
| | - Bruna Benso
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, CP 52, 13414-903, Piracicaba, SP, Brazil
| | - Carina Denny
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, CP 52, 13414-903, Piracicaba, SP, Brazil
| | - Masaharu Ikegaki
- School of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, Centro, 37130-000, Alfenas, MG, Brazil
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food and Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo (USP), Avenida Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil
- * E-mail:
| |
Collapse
|
35
|
da Cunha MG, Franchin M, de Paula-Eduardo LF, Freires IA, Beutler JA, de Alencar SM, Ikegaki M, Tabchoury CPM, Cunha TM, Rosalen PL. Anti-inflammatory and anti-biofilm properties of ent -nemorosone from Brazilian geopropolis. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
36
|
Antibacterial Effect of Hydroalcoholic Extract of Punica granatum Linn. Petal on Common Oral Microorganisms. Int J Biomater 2016; 2016:8098943. [PMID: 26884763 PMCID: PMC4738741 DOI: 10.1155/2016/8098943] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/13/2015] [Indexed: 11/26/2022] Open
Abstract
Objectives. This study aimed to assess the effect of hydroalcoholic extract of Punica granatum Linn. (P. granatum) petal on Streptococcus sanguinis, Streptococcus mutans, Streptococcus salivarius, Streptococcus sobrinus, and Enterococcus faecalis. Materials and Methods. In this in vitro study, P. granatum extract was prepared using powdered petals and water-ethanol solvent. Antibacterial effect of the extract, chlorhexidine (CHX), and ampicillin was evaluated on brain heart infusion agar (BHIA) using the cup-plate method. By assessing the diameter of the growth inhibition zone, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the extract were determined for the above-mentioned bacteria. Results. Hydroalcoholic extract of P. granatum petal had inhibitory effects on the proliferation of all five bacterial strains with maximum effect on S. mutans with MIC and MBC of 3.9 mg/mL. The largest growth inhibition zone diameter belonged to S. sanguinis and the smallest to E. faecalis. Ampicillin and CHX had the greatest inhibitory effect on S. sanguinis. Conclusions. Hydroalcoholic extract of P. granatum had a significant antibacterial effect on common oral bacterial pathogens with maximum effect on S. mutans, which is the main microorganism responsible for dental plaque and caries.
Collapse
|
37
|
Ramos Campos F, Bressan J, Godoy Jasinski VC, Zuccolotto T, da Silva LE, Bonancio Cerqueira L. Baccharis(Asteraceae): Chemical Constituents and Biological Activities. Chem Biodivers 2016; 13:1-17. [DOI: 10.1002/cbdv.201400363] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 07/21/2015] [Indexed: 02/06/2023]
|
38
|
Rodriguez-Garcia A, Peixoto ITA, Verde-Star MJ, De la Torre-Zavala S, Aviles-Arnaut H, Ruiz ALTG. In Vitro Antimicrobial and Antiproliferative Activity of Amphipterygium adstringens. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:175497. [PMID: 26451151 PMCID: PMC4584240 DOI: 10.1155/2015/175497] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/20/2015] [Indexed: 01/05/2023]
Abstract
Amphipterygium adstringens is a plant widely used in Mexican traditional medicine for its known anti-inflammatory and antiulcer properties. In this work, we evaluated the in vitro antimicrobial and antiproliferative activities of the methanolic extract of A. adstringens against oral pathogens such as Streptococcus mutans, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Candida albicans, and Candida dubliniensis, using microdilution (MIC) and agar diffusion methods (MBC), and the antiproliferative activity evaluating total growth inhibition (TGI) by staining the protein content with sulforhodamine B (SRB), using nine human cancer cell lines. Crude extract (CE) of A. adstringens showed some degree of activity against one or more of the strains with a MIC from 0.125 mg/mL to 63 mg/mL and MBC from 1.6 to 6.3 mg/mL and cytotoxic activity, particularly against NCI-ADR/RES, an ovarian cell line expressing multiple resistance drugs phenotype. The CE is a complex mixture of possible multitarget metabolites that could be responsible for both antimicrobial and antiproliferative activities, and further investigation is required to elucidate the identity of active compounds. Nevertheless the CE itself is useful in the development of new antimicrobial treatment based on natural products to prevent oral diseases and as alternative natural source for cancer treatment and prevention.
Collapse
Affiliation(s)
- A. Rodriguez-Garcia
- Institute of Biotechnology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, Avenida Universidad S/N, Ciudad Universitaria, CP 66455, San Nicolas de los Garza, NL, Mexico
| | - I. T. A. Peixoto
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Avenida Silveira Martins 3386, 41150 100 Salvador, BA, Brazil
| | - M. J. Verde-Star
- Institute of Biotechnology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, Avenida Universidad S/N, Ciudad Universitaria, CP 66455, San Nicolas de los Garza, NL, Mexico
| | - S. De la Torre-Zavala
- Institute of Biotechnology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, Avenida Universidad S/N, Ciudad Universitaria, CP 66455, San Nicolas de los Garza, NL, Mexico
| | - H. Aviles-Arnaut
- Institute of Biotechnology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, Avenida Universidad S/N, Ciudad Universitaria, CP 66455, San Nicolas de los Garza, NL, Mexico
| | - A. L. T. G. Ruiz
- Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas (UNICAMP), CP 6171, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
39
|
Ayoub IM, Youssef FS, El-Shazly M, Ashour ML, Singab ANB, Wink M. Volatile constituents of Dietes bicolor (Iridaceae) and their antimicrobial activity. ACTA ACUST UNITED AC 2015; 70:217-25. [PMID: 26368045 DOI: 10.1515/znc-2015-0164] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/03/2015] [Indexed: 11/15/2022]
Abstract
Volatile oils from the leaves, flowers and rhizomes of Dietes bicolor (Steud.) Sweet ex Klatt (Iridaceae) were analyzed using GLC/FID and GLC/MS. A total of 84 compounds were identified accounting for 94.65, 95.63 and 87.09% in the hydrodistilled oils from flowers, leaves and rhizomes, respectively. Spathulenol (48.44%) represented the major component in the leaf oil, followed by dihydro-edulan I (6.25%), cubenol (6.00%) and τ-cadinol (5.90%). For the flower and rhizome oils, fatty acids, their esters, aliphatic hydrocarbons and their derivatives predominate. The antimicrobial activity of both leaf and flower oils was investigated against four bacteria in addition to four fungi using the micro-broth dilution method. The leaf oil showed a more potent antimicrobial activity as compared to the flower oil against most of the assessed bacteria and fungi, with higher activities against Gram- positive organisms showing MIC values of 115 and 460 μg/ml for Bacillus subtilis and Streptococcus pneumonia, respectively. Gram-negative bacteria were generally less susceptible (MIC > 2 mg/ml for both oils against Escherichia coli) and being completely ineffective against Pseudomonas aeruginosa. A relevant antifungal potency of the leaf oil against Geotrichum candidum and Syncephalastrum racemosum was also observed with MIC values of 115 and 920 μg/ml, respectively.
Collapse
|
40
|
Essential Oils from Ugandan Aromatic Medicinal Plants: Chemical Composition and Growth Inhibitory Effects on Oral Pathogens. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:230832. [PMID: 26170872 PMCID: PMC4478384 DOI: 10.1155/2015/230832] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/15/2015] [Accepted: 05/27/2015] [Indexed: 11/23/2022]
Abstract
The study assessed the growth inhibitory effects of essential oils extracted from ten Ugandan medicinal plants (Bidens pilosa, Helichrysum odoratissimum, Vernonia amygdalina, Hoslundia opposita, Ocimum gratissimum, Cymbopogon citratus, Cymbopogon nardus, Teclea nobilis, Zanthoxylum chalybeum, and Lantana trifolia) used traditionally in the management of oral diseases against oral pathogens. Chemical compositions of the oils were explored by GC-MS. Inhibitory effects of the oils were assessed on periodontopathic Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans and cariogenic Streptococcus mutans and Lactobacillus acidophilus using broth dilution methods at concentrations of 1%, 0.1%, and 0.01%. The most sensitive organism was A. actinomycetemcomitans. Its growth was markedly inhibited by six of the oils at all the concentrations tested. Essential oil from C. nardus exhibited the highest activity with complete growth inhibition of A. actinomycetemcomitans and P. gingivalis at all the three concentrations tested, the major constituents in the oil being mainly oxygenated sesquiterpenes. Most of the oils exhibited limited effects on L. acidophilus. We conclude that essential oils from the studied plants show marked growth inhibitory effects on periodontopathic A. actinomycetemcomitans and P. gingivalis, moderate effects on cariogenic S. mutans, and the least effect on L. acidophilus. The present study constitutes a basis for further investigations and development of certain oils into alternative antiplaque agents.
Collapse
|
41
|
Freires IA, Denny C, Benso B, de Alencar SM, Rosalen PL. Antibacterial Activity of Essential Oils and Their Isolated Constituents against Cariogenic Bacteria: A Systematic Review. Molecules 2015; 20:7329-58. [PMID: 25911964 PMCID: PMC6272492 DOI: 10.3390/molecules20047329] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/04/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022] Open
Abstract
Dental caries remains the most prevalent and costly oral infectious disease worldwide. Several methods have been employed to prevent this biofilm-dependent disease, including the use of essential oils (EOs). In this systematic review, we discuss the antibacterial activity of EOs and their isolated constituents in view of a potential applicability in novel dental formulations. Seven databases were systematically searched for clinical trials, in situ, in vivo and in vitro studies addressing the topic published up to date. Most of the knowledge in the literature is based on in vitro studies assessing the effects of EOs on caries-related streptococci (mainly Streptococcus mutans) and lactobacilli, and on a limited number of clinical trials. The most promising species with antibacterial potential against cariogenic bacteria are: Achillea ligustica, Baccharis dracunculifolia, Croton cajucara, Cryptomeria japonica, Coriandrum sativum, Eugenia caryophyllata, Lippia sidoides, Ocimum americanum, and Rosmarinus officinalis. In some cases, the major phytochemical compounds determine the biological properties of EOs. Menthol and eugenol were considered outstanding compounds demonstrating an antibacterial potential. Only L. sidoides mouthwash (1%) has shown clinical antimicrobial effects against oral pathogens thus far. This review suggests avenues for further non-clinical and clinical studies with the most promising EOs and their isolated constituents bioprospected worldwide.
Collapse
Affiliation(s)
- Irlan Almeida Freires
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP 13414-903, Brazil.
| | - Carina Denny
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP 13414-903, Brazil.
| | - Bruna Benso
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP 13414-903, Brazil.
| | - Severino Matias de Alencar
- Department of Agri-food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP 13418-260, Brazil.
| | - Pedro Luiz Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP 13414-903, Brazil.
| |
Collapse
|
42
|
The Effect of Essential Oils and Bioactive Fractions on Streptococcus mutans and Candida albicans Biofilms: A Confocal Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:871316. [PMID: 25821503 PMCID: PMC4363662 DOI: 10.1155/2015/871316] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 01/01/2023]
Abstract
The essential oils (EO) and bioactive fractions (BF) from Aloysia gratissima, Baccharis dracunculifolia, Coriandrum sativum, Cyperus articulatus, and Lippia sidoides were proven to have strong antimicrobial activity on planktonic microorganisms; however, little is known about their effects on the morphology or viability of oral biofilms. Previously, we determined the EO/fractions with the best antimicrobial activity against Streptococcus mutans and Candida spp. In this report, we used a confocal analysis to investigate the effect of these EO and BF on the morphology of S. mutans biofilms (thickness, biovolume, and architecture) and on the metabolic viability of C. albicans biofilms. The analysis of intact treated S. mutans biofilms showed no statistical difference for thickness in all groups compared to the control. However, a significant reduction in the biovolume of extracellular polysaccharides and bacteria was observed for A. gratissima and L. sidoides groups, indicating that these BF disrupt biofilm integrity and may have created porosity in the biofilm. This phenomenon could potentially result in a weakened structure and affect biofilm dynamics. Finally, C. sativum EO drastically affected C. albicans viability when compared to the control. These results highlight the promising antimicrobial activity of these plant species and support future translational research on the treatment of dental caries and oral candidiasis.
Collapse
|
43
|
Skariyachan S, Pachiappan A, Joy J, Bhaduri R, Aier I, S. Vasist K. Investigating the therapeutic potential of herbal leads against drug resistantListeria monocytogenesby computational virtual screening andin vitroassays. J Biomol Struct Dyn 2015; 33:2682-94. [DOI: 10.1080/07391102.2015.1004110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
44
|
Wijaya CH, Rachmatillah AF, M. Bachtiar B. PENGHAMBATAN CAJUPUTS CANDY TERHADAP VIABILITAS KHAMIR Candida albicans SECARA IN VITRO [Inhibition of Cajuputs Candy Toward the Viability of Candida albicans by using In Vitro Assay]. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2014. [DOI: 10.6066/jtip.2014.25.2.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
45
|
Bersan SMF, Galvão LCC, Goes VFF, Sartoratto A, Figueira GM, Rehder VLG, Alencar SM, Duarte RMT, Rosalen PL, Duarte MCT. Action of essential oils from Brazilian native and exotic medicinal species on oral biofilms. Altern Ther Health Med 2014; 14:451. [PMID: 25407737 PMCID: PMC4289052 DOI: 10.1186/1472-6882-14-451] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 09/29/2014] [Indexed: 11/15/2022]
Abstract
Background Essential oils (EO) obtained from twenty medicinal and aromatic plants were evaluated for their antimicrobial activity against the oral pathogens Candida albicans, Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus sanguis and Streptococcus mitis. Methods The antimicrobial activity of the EO was evaluates by microdilution method determining Minimal Inhibitory Concentration. Chemical analysis of the oils compounds was performed by Gas chromatography–mass spectrometry (CG-MS). The most active EO were also investigated as to their actions on the biolfilm formation. Results The most of the essential oils (EO) presented moderate to strong antimicrobial activity against the oral pathogens (MIC - Minimal Inhibitory Concentrations values between 0.007 and 1.00 mg/mL). The essential oil from Coriandrum sativum inhibited all oral species with MIC values from 0.007 to 0.250 mg/mL, and MBC/MFC (Minimal Bactericidal/Fungicidal Concentrations) from 0.015 to 0.500 mg/mL. On the other hand the essential oil of C. articulatus inhibited 63.96% of S. sanguis biofilm formation. Through Scanning Eletronic Microscopy (SEM) images no changes were observed in cell morphology, despite a decrease in biofilm formation and changes on biofilm structure. Chemical analysis by Gas Chromatography – Mass Spectrometry (GC-MS) of the C. sativum essential oil revealed major compounds derivatives from alcohols and aldehydes, while Cyperus articulatus and Aloysia gratissima (EOs) presented mono and sesquiterpenes. Conclusions In conclusion, the crude oil from C. articulatus exhibited the best results of antimicrobial activity e ability to control biofilm formation. The chemical analysis showed the presence of terpenes and monoterpenes such as a-pinene, a-bulnesene and copaene. The reduction of biofilms formation was confirmed from SEM images. The results of this research shows a great potential from the plants studied as new antimicrobial sources.
Collapse
|
46
|
Halistanol sulfate A and rodriguesines A and B are antimicrobial and antibiofilm agents against the cariogenic bacterium Streptococcus mutans. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2014. [DOI: 10.1016/j.bjp.2014.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Freires IDA, Murata RM, Furletti VF, Sartoratto A, de Alencar SM, Figueira GM, de Oliveira Rodrigues JA, Duarte MCT, Rosalen PL. Coriandrum sativum L. (Coriander) essential oil: antifungal activity and mode of action on Candida spp., and molecular targets affected in human whole-genome expression. PLoS One 2014; 9:e99086. [PMID: 24901768 PMCID: PMC4047076 DOI: 10.1371/journal.pone.0099086] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 05/11/2014] [Indexed: 01/06/2023] Open
Abstract
Oral candidiasis is an opportunistic fungal infection of the oral cavity with increasingly worldwide prevalence and incidence rates. Novel specifically-targeted strategies to manage this ailment have been proposed using essential oils (EO) known to have antifungal properties. In this study, we aim to investigate the antifungal activity and mode of action of the EO from Coriandrum sativum L. (coriander) leaves on Candida spp. In addition, we detected the molecular targets affected in whole-genome expression in human cells. The EO phytochemical profile indicates monoterpenes and sesquiterpenes as major components, which are likely to negatively impact the viability of yeast cells. There seems to be a synergistic activity of the EO chemical compounds as their isolation into fractions led to a decreased antimicrobial effect. C. sativum EO may bind to membrane ergosterol, increasing ionic permeability and causing membrane damage leading to cell death, but it does not act on cell wall biosynthesis-related pathways. This mode of action is illustrated by photomicrographs showing disruption in biofilm integrity caused by the EO at varied concentrations. The EO also inhibited Candida biofilm adherence to a polystyrene substrate at low concentrations, and decreased the proteolytic activity of Candida albicans at minimum inhibitory concentration. Finally, the EO and its selected active fraction had low cytotoxicity on human cells, with putative mechanisms affecting gene expression in pathways involving chemokines and MAP-kinase (proliferation/apoptosis), as well as adhesion proteins. These findings highlight the potential antifungal activity of the EO from C. sativum leaves and suggest avenues for future translational toxicological research.
Collapse
Affiliation(s)
- Irlan de Almeida Freires
- Pharmacology, Anesthesiology and Therapeutics, Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Ramiro Mendonça Murata
- Division of Periodontology, Diagnostic Sciences, and Dental Hygiene and the Division of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (RMM) (RM); (PLR) (PR)
| | - Vivian Fernandes Furletti
- Research Center for Chemistry, Biology and Agriculture, State University of Campinas, Campinas, SP, Brazil
| | - Adilson Sartoratto
- Research Center for Chemistry, Biology and Agriculture, State University of Campinas, Campinas, SP, Brazil
| | - Severino Matias de Alencar
- Department of Agri-food Industry, Food and Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Glyn Mara Figueira
- Research Center for Chemistry, Biology and Agriculture, State University of Campinas, Campinas, SP, Brazil
| | | | | | - Pedro Luiz Rosalen
- Pharmacology, Anesthesiology and Therapeutics, Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
- * E-mail: (RMM) (RM); (PLR) (PR)
| |
Collapse
|
48
|
De Luca MP, Franca JR, Macedo FAFF, Grenho L, Cortes ME, Faraco AAG, Moreira AN, Santos VR. Propolis varnish: antimicrobial properties against cariogenic bacteria, cytotoxicity, and sustained-release profile. BIOMED RESEARCH INTERNATIONAL 2014; 2014:348647. [PMID: 24949436 PMCID: PMC4052844 DOI: 10.1155/2014/348647] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/06/2014] [Accepted: 04/22/2014] [Indexed: 11/22/2022]
Abstract
Varnishes are preparations that differ in the polymeric matrix and therapeutical agents. In dentistry they are used to prevent caries. In this study we developed a propolis varnish, considering propolis properties against cariogenic bacteria. To a chitosan polymeric base (CHV) was added ethanolic propolis extract in different concentrations: PV1 (5%), PV2 (10%), and PV3 (15%). Antimicrobial activity was carried out against Streptococcus mutans (SM), Streptococcus sanguinis (SG), Streptococcus salivarius (SS), and Lactobacillus casei (LC) through agar diffusion method. The three propolis concentrations incorporated were effective in inhibiting the growth of all microorganisms, but without significant difference between the zones of inhibition observed. Cytotoxicity assay was done by MTT method. Data were analyzed by one-way ANOVA and Bonferroni test. None of the varnishes were cytotoxic, keeping 80% of viable cells, while CHV allowed cellular proliferation (120%). Sustained-release test was carried out by applying 40 μ L of each varnish in the buccal surface of bovine teeth and kept in an ethanol/water solution removed in regular times. According to the "independent model approach," the release profiles were distinct from each varnish and the most prolonged was PV3 (8 weeks). Varnish formulations had satisfactory antimicrobial activity against cariogenic bacteria and have a low cytotoxicity (<50%).
Collapse
Affiliation(s)
- Mariana P. De Luca
- Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, Federal University of Minas Gerais, Campus Pampulha, Avenida Presidente Antônio Carlos 6627, 31.270-901 Belo Horizonte, MG, Brazil
| | - Juçara R. Franca
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Campus Pampulha, Avenida Presidente Antônio Carlos 6627, 31.270-901 Belo Horizonte, MG, Brazil
| | - Filipe Augusto F. F. Macedo
- Department of Restorative Dentistry, Faculty of Dentistry, Federal University of Minas Gerais, Campus Pampulha, Avenida Presidente Antônio Carlos 6627, 31.270-901 Belo Horizonte, MG, Brazil
| | - Liliana Grenho
- Biomedical Engineering Institute (INEB), Porto University and Faculty of Engineering, DEMM, Porto University, Porto, Portugal
| | - Maria Esperanza Cortes
- Department of Restorative Dentistry, Faculty of Dentistry, Federal University of Minas Gerais, Campus Pampulha, Avenida Presidente Antônio Carlos 6627, 31.270-901 Belo Horizonte, MG, Brazil
| | - André Augusto G. Faraco
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Campus Pampulha, Avenida Presidente Antônio Carlos 6627, 31.270-901 Belo Horizonte, MG, Brazil
| | - Allyson N. Moreira
- Department of Restorative Dentistry, Faculty of Dentistry, Federal University of Minas Gerais, Campus Pampulha, Avenida Presidente Antônio Carlos 6627, 31.270-901 Belo Horizonte, MG, Brazil
| | - Vagner R. Santos
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Federal University of Minas Gerais, Campus Pampulha, Avenida Presidente Antônio Carlos 6627, 31.270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
49
|
Furtado FB, de Aquino FJT, Nascimento EA, de M Martins C, de Morais SAL, Chang R, Cunha LCS, Leandro LF, Martins CHG, Martins MM, da Silva CV, Machado FC, de Oliveira A. Seasonal variation of the chemical composition and antimicrobial and cytotoxic activities of the essential oils from Inga laurina (Sw.) Willd. Molecules 2014; 19:4560-77. [PMID: 24731985 PMCID: PMC6270854 DOI: 10.3390/molecules19044560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/26/2014] [Accepted: 04/02/2014] [Indexed: 01/08/2023] Open
Abstract
The seasonal chemical composition of essential oils from Inga laurina was determined by GC/MS. In the stem bark’s essential oil extracted during the dry season, the presence of terpenoids (30.05%) stood out, and phytol (9.76%) was the major compound identified. For the stem bark oil obtained during the rainy season, in addition to terpenoids (26.63%), a large amount of fatty acids (46.84%) were identified, in particular palmitic acid (25.40%). Regarding the leaves’ essential oil obtained in the dry season, esters (42.35%) were the main components. The main ester present was (Z)-hex-3-enyl benzoate (10.15%) and the major compound of this oil was (Z)-hex-3-en-1-ol (14.23%). Terpenoids (33.84%), long-chain alkanes (27.04%) and fatty acids (21.72%) were the main components of the essential oil from leaves in the rainy season. Phytol (33.21%), nonacosane (21.95%) and palmitic acid (15.20%) were the major compounds identified. The antimicrobial activity against aerobic and anaerobic oral bacteria was evaluated by the microdilution broth method and cytotoxic activity was carried out with Vero cells. The essential oils from the rainy season showed a better inhibition of the bacterial growth with Minimal Inhibitory Concentrations (MIC) values of 25 or 50 µg·mL−1 for aerobic bacteria, and high selectivity against bacteria was observed. The large amount of fatty acids in rainy season oils may be related to the better inhibitory effects observed.
Collapse
Affiliation(s)
- Fabiana B Furtado
- Laboratory of Natural Products and Chromatography, Chemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais 38408-144, Brazil.
| | - Francisco J T de Aquino
- Laboratory of Natural Products and Chromatography, Chemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais 38408-144, Brazil.
| | - Evandro A Nascimento
- Laboratory of Natural Products and Chromatography, Chemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais 38408-144, Brazil.
| | | | - Sérgio A L de Morais
- Laboratory of Natural Products and Chromatography, Chemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais 38408-144, Brazil.
| | - Roberto Chang
- Laboratory of Natural Products and Chromatography, Chemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais 38408-144, Brazil.
| | - Luís C S Cunha
- Laboratory of Natural Products and Chromatography, Chemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais 38408-144, Brazil.
| | - Luís F Leandro
- Nucleus of Research in Sciences and Technology, Laboratory of Research in Applied Microbiology (LaPeMA), University of Franca, Franca, São Paulo 14404-600, Brazil.
| | - Carlos H G Martins
- Nucleus of Research in Sciences and Technology, Laboratory of Research in Applied Microbiology (LaPeMA), University of Franca, Franca, São Paulo 14404-600, Brazil.
| | - Mário M Martins
- Laboratory of Natural Products and Chromatography, Chemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais 38408-144, Brazil.
| | - Claudio V da Silva
- Institute of Biomedical Sciences, Laboratory of Trypanosomatids, Federal University of Uberlândia, Uberlândia, Minas Gerais 38400-902, Brazil.
| | - Fabrício C Machado
- Institute of Biomedical Sciences, Laboratory of Trypanosomatids, Federal University of Uberlândia, Uberlândia, Minas Gerais 38400-902, Brazil.
| | - Alberto de Oliveira
- Laboratory of Natural Products and Chromatography, Chemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais 38408-144, Brazil.
| |
Collapse
|
50
|
Araújo SG, Alves LF, Pinto MEA, Oliveira GT, Siqueira EP, Ribeiro RIMA, Ferreira JMS, Lima LARS. Volatile compounds of Lamiaceae exhibit a synergistic antibacterial activity with streptomycin. Braz J Microbiol 2014; 45:1341-7. [PMID: 25763039 PMCID: PMC4323308 DOI: 10.1590/s1517-83822014000400026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 04/17/2014] [Indexed: 11/25/2022] Open
Abstract
Bacterial infections cause thousands of deaths in the world every year. In most cases, infections are more serious because the patient is already weakened, and often, the bacteria are already resistant to the antibiotics used. Counterparting this negative scenario, the interest in medicinal plants as an alternative to the synthetic antimicrobial drugs is blossoming worldwide. In the present work, we identified the volatile compounds of ethanol extracts of Melissa officinalis, Mentha sp., Ocimum basilicum, Plectranthus barbatus, and Rosmarinus officinalis by gas chromatography/mass spectrometry (GC/MS). Also was evaluated antimicrobial activity of ethanol extracts against 6 bacteria of clinical interest, and was tested the interaction of these extracts with a commercial antibiotic streptomycin. Phytol was a compound identified in all extracts by GC/MS, being majoritary component in Plectranthus barbatus and Rosmarinus officinalis. The Gram-positive bacteria were more sensitive to ethanol extracts, and Plectranthus barbatus and Rosmarinus officinalis were the most active extracts. Ethanol extracts exhibited a synergetic effect with streptomycin. These results encourage additional studies, in order to evaluate the possibilities of using ethanol extracts of Lamiaceae family as natural source for antibacterial activity.
Collapse
Affiliation(s)
- Sthéfane G Araújo
- Universidade Federal de São João del-Rei Campus Centro-Oeste Dona Lindu, DivinópolisMG Brazil Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Lucas F Alves
- Universidade Federal de São João del-Rei Campus Centro-Oeste Dona Lindu, DivinópolisMG Brazil Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Maria Eduarda A Pinto
- Universidade Federal de São João del-Rei Campus Centro-Oeste Dona Lindu, DivinópolisMG Brazil Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Graziela T Oliveira
- Universidade Federal de São João del-Rei Campus Centro-Oeste Dona Lindu, DivinópolisMG Brazil Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Ezequias P Siqueira
- Laboratório de Química de Produtos Naturais Centro de Pesquisas René Rachou Fiocruz, Belo HorizonteMG Brazil Laboratório de Química de Produtos Naturais, Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, MG, Brazil
| | - Rosy I M A Ribeiro
- Universidade Federal de São João del-Rei Campus Centro-Oeste Dona Lindu, DivinópolisMG Brazil Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Jaqueline M S Ferreira
- Universidade Federal de São João del-Rei Campus Centro-Oeste Dona Lindu, DivinópolisMG Brazil Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Luciana A R S Lima
- Universidade Federal de São João del-Rei Campus Centro-Oeste Dona Lindu, DivinópolisMG Brazil Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| |
Collapse
|