1
|
Yaghobi R, Afshari A, Roozbeh J. Host and viral
RNA
dysregulation during
BK
polyomavirus
infection in kidney transplant recipients. WIRES RNA 2022:e1769. [DOI: 10.1002/wrna.1769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Ramin Yaghobi
- Shiraz Transplant Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Afsoon Afshari
- Shiraz Nephro‐Urology Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Jamshid Roozbeh
- Shiraz Nephro‐Urology Research Center Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
2
|
Ghazali NI, Mohd Rais RZ, Makpol S, Chin KY, Yap WN, Goon JA. Effects of tocotrienol on aging skin: A systematic review. Front Pharmacol 2022; 13:1006198. [PMID: 36299879 PMCID: PMC9588953 DOI: 10.3389/fphar.2022.1006198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
The skin is the largest organ of the body that protects from mechanical, thermal, and physical injury. However, the function and appearance of skin visibly degenerates with age due to its frequent exposure to harmful effects of the environment, including ultraviolet irradiation and hazardous substances, in addition to the progression of oxidative stress in aging. These factors result in phenotypic changes in the skin, including wrinkling, pigmentation, reduced elasticity, and hydration during aging. Many natural antioxidant compounds have been studied extensively to reverse the signs of aging skin. Tocotrienols are a subfamily of vitamin E with potent antioxidant activity. Therefore, supplementation with vitamin E in the form of tocotrienol may efficiently protect skin from aging. In this review, the effects of tocotrienol on skin health, including pigmentation, moisture, and wrinkles during aging and UV exposure, were systematically evaluated based on a literature search of the PubMed and Scopus databases. The present data showed that tocotrienols protect the skin from inflammation, UV radiation and melanin accumulation. As the therapeutic value of tocotrienols grows, the potential of these vitamin E analogs to the skin requires further investigation.
Collapse
Affiliation(s)
- Nur Izyani Ghazali
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan, Kuala Lumpur, Malaysia
| | | | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan, Kuala Lumpur, Malaysia
| | - Kok Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan, Kuala Lumpur, Malaysia
| | - Wei Ney Yap
- Research and Development Department, Davos Life Science, Singapore, Singapore
| | - Jo Aan Goon
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan, Kuala Lumpur, Malaysia
- *Correspondence: Jo Aan Goon,
| |
Collapse
|
3
|
Hassan H, Zakaria F, Makpol S, Karim NA. A Link between Mitochondrial Dysregulation and Idiopathic Autism Spectrum Disorder (ASD): Alterations in Mitochondrial Respiratory Capacity and Membrane Potential. Curr Issues Mol Biol 2021; 43:2238-2252. [PMID: 34940131 PMCID: PMC8928939 DOI: 10.3390/cimb43030157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurological disorder triggered by various factors through complex mechanisms. Research has been done to elucidate the potential etiologic mechanisms in ASD, but no single cause has been confirmed. The involvement of oxidative stress is correlated with ASD and possibly affects mitochondrial function. This study aimed to elucidate the link between mitochondrial dysregulation and idiopathic ASD by focusing on mitochondrial respiratory capacity and membrane potential. Our findings showed that mitochondrial function in the energy metabolism pathway was significantly dysregulated in a lymphoblastoid cell line (LCL) derived from an autistic child (ALCL). Respiratory capacities of oxidative phosphorylation (OXPHOS), electron transfer of the Complex I and Complex II linked pathways, membrane potential, and Complex IV activity of the ALCL were analyzed and compared with control cell lines derived from a developmentally normal non-autistic sibling (NALCL). All experiments were performed using high-resolution respirometry. Respiratory capacities of OXPHOS, electron transfer of the Complex I- and Complex II-linked pathways, and Complex IV activity of the ALCL were significantly higher compared to healthy controls. Mitochondrial membrane potential was also significantly higher, measured in the Complex II-linked pathway during LEAK respiration and OXPHOS. These results indicate the abnormalities in mitochondrial respiratory control linking mitochondrial function with autism. Correlating mitochondrial dysfunction and autism is important for a better understanding of ASD pathogenesis in order to produce effective interventions.
Collapse
|
4
|
γ-Tocotrienol Protects against Mitochondrial Dysfunction, Energy Deficits, Morphological Damage, and Decreases in Renal Functions after Renal Ischemia. Int J Mol Sci 2021; 22:ijms222312674. [PMID: 34884479 PMCID: PMC8657889 DOI: 10.3390/ijms222312674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Ischemia-induced mitochondrial dysfunction and ATP depletion in the kidney result in disruption of primary functions and acute injury of the kidney. This study tested whether γ-tocotrienol (GTT), a member of the vitamin E family, protects mitochondrial function, reduces ATP deficits, and improves renal functions and survival after ischemia/reperfusion injury. Vehicle or GTT (200 mg/kg) were administered to mice 12 h before bilateral kidney ischemia, and endpoints were assessed at different timepoints of reperfusion. GTT treatment reduced decreases in state 3 respiration and accelerated recovery of this function after ischemia. GTT prevented decreases in activities of complexes I and III of the respiratory chain, and blocked ischemia-induced decreases in F0F1-ATPase activity and ATP content in renal cortical tissue. GTT improved renal morphology at 72 h after ischemia, reduced numbers of necrotic proximal tubular and inflammatory cells, and enhanced tubular regeneration. GTT treatment ameliorated increases in plasma creatinine levels and accelerated recovery of creatinine levels after ischemia. Lastly, 89% of mice receiving GTT and 70% of those receiving vehicle survived ischemia. Conclusions: Our data show novel observations that GTT administration improves mitochondrial respiration, prevents ATP deficits, promotes tubular regeneration, ameliorates decreases in renal functions, and increases survival after acute kidney injury in mice.
Collapse
|
5
|
Nemec-Bakk AS, Sridharan V, Landes RD, Singh P, Cao M, Seawright JW, Liu X, Zheng G, Dominic P, Pathak R, Boerma M. Mitigation of late cardiovascular effects of oxygen ion radiation by γ-tocotrienol in a mouse model. LIFE SCIENCES IN SPACE RESEARCH 2021; 31:43-50. [PMID: 34689949 PMCID: PMC8548672 DOI: 10.1016/j.lssr.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Accepted: 07/29/2021] [Indexed: 05/14/2023]
Abstract
PURPOSE While there is concern about degenerative tissue effects of exposure to space radiation during deep-space missions, there are no pharmacological countermeasures against these adverse effects. γ-Tocotrienol (GT3) is a natural form of vitamin E that has anti-oxidant properties, modifies cholesterol metabolism, and has anti-inflammatory and endothelial cell protective properties. The purpose of this study was to test whether GT3 could mitigate cardiovascular effects of oxygen ion (16O) irradiation in a mouse model. MATERIALS AND METHODS Male C57BL/6 J mice were exposed to whole-body 16O (600 MeV/n) irradiation (0.26-0.33 Gy/min) at doses of 0 or 0.25 Gy at 6 months of age and were followed up to 9 months after irradiation. Animals were administered GT3 (50 mg/kg/day s.c.) or vehicle, on Monday - Friday starting on day 3 after irradiation for a total of 16 administrations. Ultrasonography was used to measure in vivo cardiac function and blood flow parameters. Cardiac tissue remodeling and inflammatory infiltration were assessed with histology and immunoblot analysis at 2 weeks, 3 and 9 months after radiation. RESULTS GT3 mitigated the effects of 16O radiation on cardiac function, the expression of a collagen type III peptide, and markers of mast cells, T-cells and monocytes/macrophages in the left ventricle. CONCLUSIONS GT3 may be a potential countermeasure against late degenerative tissue effects of high-linear energy transfer radiation in the heart.
Collapse
Affiliation(s)
- Ashley S Nemec-Bakk
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Preeti Singh
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maohua Cao
- College of Dentistry, Texas A&M University, Dallas TX, USA
| | | | - Xingui Liu
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
| | - Paari Dominic
- Department of Medicine and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
6
|
Acetylshikonin Induces Apoptosis in Human Colorectal Cancer HCT-15 and LoVo Cells via Nuclear Translocation of FOXO3 and ROS Level Elevation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6647107. [PMID: 33953834 PMCID: PMC8057882 DOI: 10.1155/2021/6647107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022]
Abstract
Acetylshikonin, a naphthoquinone, is a pigment compound derived from Arnebia sp., which is known for its anti-inflammatory potential. However, its anticarcinogenic effect has not been well investigated. Thus, in this study, we focused on investigating its apoptotic effects against HCT-15 and LoVo cells, which are human colorectal cancer cells. MTT assay, cell counting assay, and colony formation assay have shown acetylshikonin treatment induced cytotoxic and antiproliferative effects against colorectal cancer cells in a dose- and time-dependent manner. DNA fragmentation was observed via terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Also, the increase of subG1 phase in cell cycle arrest assay and early/late apoptotic rates in annexin V/propidium iodide (PI) double staining assay was observed, which indicates an apoptotic potential of acetylshikonin against colorectal cancer cells. 2′,7′-Dichlorofluorescin diacetate (DCF-DA) staining was used to evaluate reactive oxygen species (ROS) generation in acetylshikonin-treated colorectal cancer cells. Fluorescence-activated cell sorting (FACS) analysis showed that acetylshikonin induced an increase in reactive oxygen species (ROS) levels and apoptotic rate in a dose- and time-dependent manner in HCT-15 and LoVo cells. In contrast, cotreatment with N-acetyl cysteine (NAC) has reduced ROS generation and antiproliferative effects in colorectal cancer cells. Western blotting analysis showed that acetylshikonin treatment induced increase of cleaved PARP, γH2AX, FOXO3, Bax, Bim, Bad, p21, p27, and active forms of caspase-3, caspase-7, caspase-9, caspase-6, and caspase-8 protein levels, while those of inactive forms were decreased. Also, the expressions of pAkt, Bcl-2, Bcl-xL, peroxiredoxin, and thioredoxin 1 were decreased. Furthermore, western blotting analysis of cytoplasmic and nuclear fractionated proteins showed that acetylshikonin treatment induced the nuclear translocation of FOXO3, which might result from DNA damage by the increased intracellular ROS level. This study represents apoptotic potential of acetylshikonin against colorectal cancer cells via translocation of FOXO3 to the nucleus and upregulation of ROS generation.
Collapse
|
7
|
Patil AA, Bhor SA, Rhee WJ. Cell death in culture: Molecular mechanisms, detections, and inhibition strategies. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Ricciarelli R, Azzi A, Zingg JM. Reduction of senescence-associated beta-galactosidase activity by vitamin E in human fibroblasts depends on subjects' age and cell passage number. Biofactors 2020; 46:665-674. [PMID: 32479666 DOI: 10.1002/biof.1636] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Cell senescence is due to the permanent cell cycle arrest that occurs as a result of the inherent limited replicative capacity toward the Hayflick limit (replicative senescence), or in response to various stressors (stress-induced premature senescence, SIPS). With the acquisition of the senescence-associated secretory phenotype (SASP), cells release several molecules (cytokines, proteases, lipids), and express the senescence-associated beta-galactosidase (SA-β-Gal). Here we tested whether vitamin E affects SA-β-Gal in an in vitro model of cell ageing. Skin fibroblasts from human subjects of different age (1, 13, 29, 59, and 88 years old) were cultured until they reached replicative senescence. At different passages (Passages 2, 9, 13, and 16), these cells were treated with vitamin E for 24 hr. Vitamin E reduced SA-β-Gal in all cells at passage 16, but at earlier passage numbers it reduced SA-β-Gal only in cells isolated from the oldest subjects. Therefore, short time treatment with vitamin E decreases SA-β-Gal in cells both from young and old subjects when reaching replicative senescence; but in cells isolated from older subjects, a decrease in SA-β-Gal by vitamin E occurs also at earlier passage numbers. The possible role of downregulation of CD36 by vitamin E, a scavenger receptor essential for initiation of senescence and SASP, is discussed.
Collapse
Affiliation(s)
- Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Angelo Azzi
- Sackler School of Graduate Biomedical Pharmacology and Drug Development Program, Tufts University, Boston, Massachusetts, USA
| | - Jean-Marc Zingg
- Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
9
|
Neuroprotection of GLP-1/GIP receptor agonist via inhibition of mitochondrial stress by AKT/JNK pathway in a Parkinson's disease model. Life Sci 2020; 256:117824. [PMID: 32445758 DOI: 10.1016/j.lfs.2020.117824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To investigate the effect of glucagon-like peptide-1 (GLP-1) receptor and glucose dependent insulinotrophic polypeptide (GIP) receptor dual agonist DA-JC4 on alleviating Parkinson's disease (PD) and unveil related cellular mechanisms. METHODS Rotenone was injected to generate a rat PD model, on which the effect of DA-JC4 on motor functions was evaluated by rotational behavioral assay and open field test. The survival of dopaminergic neurons was analyzed, in addition to assays for mitochondrial stress and quantification of neurotransmitter levels using high performance liquid chromatography (HPLC). In cultured hippocampal neurons, the effect of DA-JC4 on mitochondrial stress and related cellular mechanism was analyzed by Flow cytometry, western blotting and reactive oxygen species (ROS). RESULTS DA-JC4 significantly improved motor functions in PD rats, and elevated levels of major neurotransmitters. By histological analysis, DA-JC4 protected dopaminergic neurons from rotenone-induced cell death, which was associated with reduced mitochondrial stress. Experiments in cultured rat hippocampal neurons validated the neuroprotective role of DA-JC4 against cell apoptosis and mitochondrial stress induced by rotenone. The protective effect of DA-JC4 was later found to be dependent on AKT/JNK signal pathway, as treatment using AKT inhibitor or JNK activator abolished such effects. CONCLUSION Our results showed that the dual agonist of GLP-1/GIP receptor could ameliorate motor dysfunctions of PD by protecting dopaminergic neurons which was mediated by relieved mitochondrial stress and apoptosis via AKT/JNK signal pathway.
Collapse
|
10
|
Wang W, Wang Y, Chen F, Zhang M, Jia R, Liu X, Zhang C, Shao J, Cheng N, Ma G, Zhu Z, Miao Q, Liang Z. Intravenous leiomyomatosis is inclined to a solid entity different from uterine leiomyoma based on RNA-seq analysis with RT-qPCR validation. Cancer Med 2020; 9:4581-4592. [PMID: 32372565 PMCID: PMC7333852 DOI: 10.1002/cam4.3098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction Intravenous leiomyomatosis (IVL) is currently regarded as a special variant of the common uterine leiomyoma (LM). Though IVL shows a similar histological morphology to LM, IVL is characterized by unique intravenous growth patterns and low‐grade malignant potential, which are quite different from LM. There are currently few studies underlying the molecular alterations of IVL, though this information is important for understanding the pathogenesis of the disease, and for identifying potential biomarkers. Method We carried out a high‐throughput whole transcriptome sequencing of tumor and normal tissue samples from five IVL patients and five LM patients and compared the differentially expressed genes (DEGs) between IVL and leiomyoma. We performed multiple different enrichment and target analyses, and the expression of selected DEGs was validated using RT‐qPCR in formalin‐fixed samples. Results Our study identified substantial different genes and pathways between IVL and LM, and functional enrichment analyses found several important pathways, such as angiogenesis and antiapoptosis pathways, as well as important related genes, including SH2D2A, VASH2, ADAM8, GATA2, TNF, and the lncRNA GATA6‐AS1, as being significantly different between IVL and LM (P = .0024, P = .0195, P = .0212, P = .0435, P = .0401, and P = .0246, respectively). CXCL8, LIF, CDKN2A, BCL2A1, COL2A1, IGF1, and HMGA2 were also differently expressed between IVL and LM groups, but showed no statistical difference (P = .2409, P = .1773, P = .0596, P = .2737, P = .1553, P = .1045, and P = .1847, respectively) due to the large differences among individuals. Furthermore, RT‐qPCR results for five selected DEGs in IVL tissues and adjacent nontumor tissues were mainly consistent with our sequencing results. Conclusion Our results indicated that IVL may be a solid entity that is unique and different from LM, proving consistent with previous studies. Furthermore, we identified DEGs, particularly within angiogenesis and antiapoptosis pathway‐related genes that may play crucial roles in the development and pathogenesis of IVL and may be potential specific biomarkers.
Collapse
Affiliation(s)
- Wenze Wang
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Yanfeng Wang
- Department of Pathology, Heilongjiang Province Land Reclamation Headquarter General Hospital, Harbin, China
| | - Fei Chen
- Department of Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Ming Zhang
- Department of Pathology, Haidian Maternal & Children Health Hospital, Beijing, China
| | - Rujing Jia
- Accreditation Dept Five (Proficiency Testing Dept.), China National Accreditation Service for Conformity Assessment (CNAS), Beijing, China
| | - Xingrong Liu
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Chaoji Zhang
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Jiang Shao
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Ninghai Cheng
- Department of Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Guotao Ma
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Qi Miao
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Zhiyong Liang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Pieńkowska N, Bartosz G, Pichla M, Grzesik-Pietrasiewicz M, Gruchala M, Sadowska-Bartosz I. Effect of antioxidants on the H 2O 2-induced premature senescence of human fibroblasts. Aging (Albany NY) 2020; 12:1910-1927. [PMID: 31962290 PMCID: PMC7053616 DOI: 10.18632/aging.102730] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/02/2020] [Indexed: 01/30/2023]
Abstract
The study was aimed at evaluation of the role of secondary oxidative stress in the stress-induced premature senescence (SIPS) of human fibroblasts induced by H2O2. Two fibroblast lines were used: lung MRC-5 and ear H8F2p25LM fibroblasts. The lines differed considerably in sensitivity to H2O2 (IC50 of 528 and 33.5 μM, respectively). The cells were exposed to H2O2 concentrations corresponding to IC50 and after 24 h supplemented with a range of antioxidants. Most of antioxidants studied slightly augmented the survival of fibroblasts at single concentrations or in a narrow concentration range, but the results were not consistent among the cell lines. Chosen antioxidants (4-amino-TEMPO, curcumin, caffeic acid and p-coumaric acid) did not restore the level of glutathione decreased by H2O2. Hydrogen peroxide treatment did not induce secondary production of H2O2 and even decreased it, decreased mitochondrial potential in both cell lines and induced changes in the mitochondrial mass inconsistent between the lines. Antioxidant protected mitochondrial potential only in H8F2p25LM cells, but attenuated changes in mitochondrial mass. These results speak against the intermediacy of secondary oxidative stress in the SIPS induced by H2O2 and suggest that the small protective action of antioxidants is due to their effects on mitochondria.
Collapse
Affiliation(s)
- Natalia Pieńkowska
- Department of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Monika Pichla
- Department of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, Rzeszow, Poland
| | - Michalina Grzesik-Pietrasiewicz
- Department of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, Rzeszow, Poland
| | - Martyna Gruchala
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection University of Lodz, Lodz, Poland
| | - Izabela Sadowska-Bartosz
- Department of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, Rzeszow, Poland
| |
Collapse
|
12
|
Orozco-Hernández JM, Gómez Oliván LM, Heredia-García G, Luja-Mondragón M, Islas-Flores H, SanJuan-Reyes N, Galar-Martínez M, García-Medina S, Dublán-García O. Genotoxic and cytotoxic alterations induced by environmentally-relevant concentrations of amoxicillin in blood cells of Cyprinus carpio. CHEMOSPHERE 2019; 236:124323. [PMID: 31319313 DOI: 10.1016/j.chemosphere.2019.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/27/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Amoxicillin (AMX) is a pharmaceutical widely employed in human and veterinary medicine worldwide. Its wide production and use has led to this pharmaceutical being released into the environment in concentrations that range from ng L-1 to μg L-1. Previous studies have demonstrated that this antibiotic generates toxic effects, amongst which alterations to embryonic development and oxidative stress in aquatic organisms, is noteworthy. Nonetheless, it is necessary to characterize the risks that this pharmaceutical represents for species of economic interest such as Cyprinus carpio, in a more precise manner. The aim of this work was to demonstrate if AMX, at environmentally-relevant concentrations, is capable of inducing genotoxic/cytotoxic alterations in C. carpio. In order to evaluate genotoxicity, the comet assay and micronucleus test were used; in order to determine cytotoxic effects, caspase-3 activity and the TUNEL assay were carried out. The results showed that the effects of the biomarkers had their maximum at 72 h; considering the DNA damage in the comet assay, 0.039 μg L-1 resulted in a 29% increase compared to control, and 1.67 μg L-1 caused a 40% increase; micronucleus frequency increased by 205% in C1 and by 311% in C2 when compared to control; compared to control, caspase-3 activity increased 262% in C1 and 787% in C2; for the TUNEL assay, DNA fragmentation increased by 86% in C1 and 120% in C2 compared to control. The results showed that environmentally-relevant concentrations, AMX was capable of generating DNA damage and cytotoxic effects in blood cells of the common carp.
Collapse
Affiliation(s)
- José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental de la Facultad de Química de la Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Colonia Universidad, CP, 50120, Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez Oliván
- Laboratorio de Toxicología Ambiental de la Facultad de Química de la Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Colonia Universidad, CP, 50120, Toluca, Estado de México, Mexico.
| | - Gerardo Heredia-García
- Laboratorio de Toxicología Ambiental de la Facultad de Química de la Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Colonia Universidad, CP, 50120, Toluca, Estado de México, Mexico
| | - Marlenee Luja-Mondragón
- Laboratorio de Toxicología Ambiental de la Facultad de Química de la Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Colonia Universidad, CP, 50120, Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental de la Facultad de Química de la Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Colonia Universidad, CP, 50120, Toluca, Estado de México, Mexico
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Acuática del Departamento de Farmacia de la Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Avenida Wilfrido Massieu y Manuel Stampa, Colonia Industrial Vallejo, CDMX, CP, 07700, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática del Departamento de Farmacia de la Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Avenida Wilfrido Massieu y Manuel Stampa, Colonia Industrial Vallejo, CDMX, CP, 07700, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática del Departamento de Farmacia de la Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Avenida Wilfrido Massieu y Manuel Stampa, Colonia Industrial Vallejo, CDMX, CP, 07700, Mexico
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental de la Facultad de Química de la Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Colonia Universidad, CP, 50120, Toluca, Estado de México, Mexico
| |
Collapse
|
13
|
Zeng G, Wang Z, Huang Y, Abedin Z, Liu Y, Randhawa P. Cellular and viral miRNA expression in polyomavirus BK infection. Transpl Infect Dis 2019; 21:e13159. [PMID: 31410940 DOI: 10.1111/tid.13159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/12/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022]
Abstract
Polyomavirus BK (BKV) is an important pathogen in kidney transplant patients. Regulation of BKV encoded microRNAs (miRNAs) is not well understood. Therefore, tubular epithelial cells infected with BKV were examined for changes in small RNA expression. The observed changes were further evaluated by real-time PCR and RNA-seq analysis of renal allograft biopsies. BKV-miR-B1-5p and BKV-miR-B1-3p showed a 1000-fold increase over 12 days but did not prevent cell lysis. Downregulation of host miR-10b and miR-30a could be confirmed on all three platforms evaluated. Whereas, the BKV genome expressed more 3p than 5p miRNA species, the reverse was true for the human genome. Decreased expression of TP53INP2, and increased expression of BCL2A1, IL-6, IL8 and other proinflammatory cytokines were shown in biopsies with BKV nephropathy. No change in expression was seen in miR-10a dependent expression of NKG2D ligands ULBP3, MICA, or MICB. In conclusion, BKV infection results in regulation of cellular genes regulated by and possibly amenable to therapies targeting miR-10 and miR-30.
Collapse
Affiliation(s)
- Gang Zeng
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuchen Huang
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Yang Liu
- PrimBio Research Institute LLC, Exton, PA, USA
| | - Parmjeet Randhawa
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Zingg JM. Vitamin E: Regulatory Role on Signal Transduction. IUBMB Life 2018; 71:456-478. [PMID: 30556637 DOI: 10.1002/iub.1986] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/02/2023]
Abstract
Vitamin E modulates signal transduction pathways by several molecular mechanisms. As a hydrophobic molecule located mainly in membranes it contributes together with other lipids to the physical and structural characteristics such as membrane stability, curvature, fluidity, and the organization into microdomains (lipid rafts). By acting as the main lipid-soluble antioxidant, it protects other lipids such as mono- and poly-unsaturated fatty acids (MUFA and PUFA, respectively) against chemical reactions with reactive oxygen and nitrogen species (ROS and RNS, respectively) and prevents membrane destabilization and cellular dysfunction. In cells, vitamin E affects signaling in redox-dependent and redox-independent molecular mechanisms by influencing the activity of enzymes and receptors involved in modulating specific signal transduction and gene expression pathways. By protecting and preventing depletion of MUFA and PUFA it indirectly enables regulatory effects that are mediated by the numerous lipid mediators derived from these lipids. In recent years, some vitamin E metabolites have been observed to affect signal transduction and gene expression and their relevance for the regulatory function of vitamin E is beginning to be elucidated. In particular, the modulation of the CD36/FAT scavenger receptor/fatty acids transporter by vitamin E may influence many cellular signaling pathways relevant for lipid homeostasis, inflammation, survival/apoptosis, angiogenesis, tumorigenesis, neurodegeneration, and senescence. Thus, vitamin E has an important role in modulating signal transduction and gene expression pathways relevant for its uptake, distribution, metabolism, and molecular action that when impaired affect physiological and patho-physiological cellular functions relevant for the prevention of a number of diseases. © 2018 IUBMB Life, 71(4):456-478, 2019.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
15
|
Wang HW, Zhao WP, Liu J, Tan PP, Zhang C, Zhou BH. Fluoride-induced oxidative stress and apoptosis are involved in the reducing of oocytes development potential in mice. CHEMOSPHERE 2017; 186:911-918. [PMID: 28826138 DOI: 10.1016/j.chemosphere.2017.08.068] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
The present study was conducted to investigate the mechanisms of excessive-fluoride-induced reduction of oocyte development potential in mice. The development morphology of oocyte and the changes of pathomorphology in ovary were observed. The protein expression levels of apoptosis factors, including Bax, Bcl-2, casepase-3, casepase-9 and cytochrome c, and the mRNA expression levels of antioxidant enzymes, including SOD1, GSH-Px1, CAT and inducible nitric oxide synthase were measured by Western blot and real-time PCR, respectively. DNA damage in the ovary was analysed by single cell gel electrophoresis and TUNEL staining. Results indicated that the structure and function of ovarian cells were seriously damaged, followed, the development potential of oocyte was reduced by excessive fluoride. The expression levels of apoptosis factors were up-regulated and antioxidant enzymes were significantly down-regulated. Meanwhile, the contents of ROS, MDA, NO and iNOS were significantly increased. Whereas, the activities of SOD1, GSH-Px1 and CAT was significantly decreased compared with the control group. Simultaneously, the results of DNA analysis indicated that the tail length and tailing ratio of ovarian cells were significantly increased in the fluoride group. In summary, the results provided compelling evidence that excessive fluoride intake can reduce the development potential of oocyte by inducing oxidative stress and apoptosis in the ovary of female mice.
Collapse
Affiliation(s)
- Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, Henan, 471000, China.
| | - Wen-Peng Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, Henan, 471000, China
| | - Jing Liu
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, Henan, 471000, China
| | - Pan-Pan Tan
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, Henan, 471000, China
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, Henan, 471000, China
| | - Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, Henan, 471000, China.
| |
Collapse
|
16
|
Abdul Nasir NA, Agarwal R, Sheikh Abdul Kadir SH, Vasudevan S, Tripathy M, Iezhitsa I, Mohammad Daher A, Ibrahim MI, Mohd Ismail N. Reduction of oxidative-nitrosative stress underlies anticataract effect of topically applied tocotrienol in streptozotocin-induced diabetic rats. PLoS One 2017; 12:e0174542. [PMID: 28350848 PMCID: PMC5370128 DOI: 10.1371/journal.pone.0174542] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 03/10/2017] [Indexed: 02/07/2023] Open
Abstract
Cataract, a leading cause of blindness, is of special concern in diabetics as it occurs at earlier onset. Polyol accumulation and increased oxidative-nitrosative stress in cataractogenesis are associated with NFκB activation, iNOS expression, ATP depletion, loss of ATPase functions, calpain activation and proteolysis of soluble to insoluble proteins. Tocotrienol was previously shown to reduce lens oxidative stress and inhibit cataractogenesis in galactose-fed rats. In current study, we investigated anticataract effects of topical tocotrienol and possible mechanisms involved in streptozotocin-induced diabetic rats. Diabetes was induced in Sprague Dawley rats by intraperitoneal injection of streptozotocin. Diabetic rats were treated with vehicle (DV) or tocotrienol (DT). A third group consists of normal, non-diabetic rats were treated with vehicle (NV). All treatments were given topically, bilaterally, twice daily for 8 weeks with weekly slit lamp monitoring. Subsequently, rats were euthanized and lenses were subjected to estimation of polyol accumulation, oxidative-nitrosative stress, NFκB activation, iNOS expression, ATP levels, ATPase activities, calpain activity and total protein levels. Cataract progression was delayed from the fifth week onwards in DT with lower mean of cataract stages compared to DV group (p<0.01) despite persistent hyperglycemia. Reduced cataractogenesis in DT group was accompanied with lower aldose reductase activity and sorbitol level compared to DV group (p<0.01). DT group also showed reduced NFκB activation, lower iNOS expression and reduced oxidative-nitrosative stress compared to DV group. Lenticular ATP and ATPase and calpain 2 activities in DT group were restored to normal. Consequently, soluble to insoluble protein ratio in DT group was higher compared to DV (p<0.05). In conclusion, preventive effect of topical tocotrienol on development of cataract in STZ-induced diabetic rats could be attributed to reduced lens aldose reductase activity, polyol levels and oxidative-nitrosative stress. These effects of tocotrienol invlove reduced NFκB activation, lower iNOS expression, restoration of ATP level, ATPase activities, calpain activity and lens protein levels.
Collapse
Affiliation(s)
- Nurul Alimah Abdul Nasir
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
- * E-mail:
| | - Renu Agarwal
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Sushil Vasudevan
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Minaketan Tripathy
- Faculty of Pharmacy, Universiti Teknologi MARA Puncak Alam Campus, Puncak Alam, Selangor, Malaysia
| | - Igor Iezhitsa
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
- Research Institute of Pharmacology, Volgograd State Medical University, Volgograd, Russia
| | - Aqil Mohammad Daher
- Department of Community Medicine, Faculty of Medicine and Defence Health, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur, Malaysia
| | - Mohd Ikraam Ibrahim
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Nafeeza Mohd Ismail
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
17
|
Fernandez-Guerra P, Lund M, Corydon TJ, Cornelius N, Gregersen N, Palmfeldt J, Bross P. Application of an Image Cytometry Protocol for Cellular and Mitochondrial Phenotyping on Fibroblasts from Patients with Inherited Disorders. JIMD Rep 2015; 27:17-26. [PMID: 26404456 DOI: 10.1007/8904_2015_494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/13/2015] [Accepted: 08/24/2015] [Indexed: 12/14/2022] Open
Abstract
Cellular phenotyping of human dermal fibroblasts (HDFs) from patients with inherited diseases provides invaluable information for diagnosis, disease aetiology, prognosis and assessing of treatment options. Here we present a cell phenotyping protocol using image cytometry that combines measurements of crucial cellular and mitochondrial parameters: (1) cell number and viability, (2) thiol redox status (TRS), (3) mitochondrial membrane potential (MMP) and (4) mitochondrial superoxide levels (MSLs). With our protocol, cell viability, TRS and MMP can be measured in one small cell sample and MSL on a parallel one. We analysed HDFs from healthy individuals after treatment with various concentrations of hydrogen peroxide (H2O2) for different intervals, to mimic the physiological effects of oxidative stress. Our results show that cell number, viability, TRS and MMP decreased, while MSL increased both in a time- and concentration-dependent manner. To assess the use of our protocol for analysis of HDFs from patients with inherited diseases, we analysed HDFs from two patients with very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD), one with a severe clinical phenotype and one with a mild one. HDFs from both patients displayed increased MSL without H2O2 treatment. Treatment with H2O2 revealed significant differences in MMP and MSL between HDFs from the mild and the severe patient. Our results establish the capacity of our protocol for fast analysis of cellular and mitochondrial parameters by image cytometry in HDFs from patients with inherited metabolic diseases.
Collapse
Affiliation(s)
- Paula Fernandez-Guerra
- Department of Clinical Medicine, Research Unit for Molecular Medicine (MMF), Aarhus University Hospital, Brendstrupgaardsvej 100, 8200, Aarhus, Denmark.
| | - M Lund
- Department of Clinical Medicine, Research Unit for Molecular Medicine (MMF), Aarhus University Hospital, Brendstrupgaardsvej 100, 8200, Aarhus, Denmark
| | - T J Corydon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - N Cornelius
- Department of Clinical Medicine, Research Unit for Molecular Medicine (MMF), Aarhus University Hospital, Brendstrupgaardsvej 100, 8200, Aarhus, Denmark.,Department of clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - N Gregersen
- Department of Clinical Medicine, Research Unit for Molecular Medicine (MMF), Aarhus University Hospital, Brendstrupgaardsvej 100, 8200, Aarhus, Denmark
| | - J Palmfeldt
- Department of Clinical Medicine, Research Unit for Molecular Medicine (MMF), Aarhus University Hospital, Brendstrupgaardsvej 100, 8200, Aarhus, Denmark
| | - Peter Bross
- Department of Clinical Medicine, Research Unit for Molecular Medicine (MMF), Aarhus University Hospital, Brendstrupgaardsvej 100, 8200, Aarhus, Denmark.
| |
Collapse
|
18
|
Ni W, Fang Y, Xie L, Liu X, Shan W, Zeng R, Liu J, Liu X. Adipose-Derived Mesenchymal Stem Cells Transplantation Alleviates Renal Injury in Streptozotocin-Induced Diabetic Nephropathy. J Histochem Cytochem 2015. [PMID: 26215800 DOI: 10.1369/0022155415599039] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Previous studies have illustrated that bone marrow-derived mesenchymal stem cell (BMMSC) transplantation has therapeutic effects on diabetes and can prevent mice from renal damage and diabetic nephropathy (DN). Moreover, adipose-derived MSCs possess similar characteristics to BMMSCs. We investigated the effect of ADMSC transplantation on streptozotocin (STZ)-induced renal injury. Diabetes was induced in rats by STZ injection. After ADMSC treatment, renal histological changes and cell apoptosis were evaluated as were the expression of apoptosis-related proteins, Wnt/β-catenin pathway members, and klotho levels. We found that ADMSCs improved renal histological changes. Next, NRK-52E cells were exposed to normal glucose (NG; 5.5 mM glucose plus 24.5 mM mannitol)/high glucose (HG) or ADMSCs, and then measured for changes in the aforementioned proteins. Similarly, changes in these proteins were also determined following transient transfection of klotho siRNA. We found that both ADMSC transplantation and co-incubation reduced the rate of cellular apoptosis, decreased Bax and Wnt/β-catenin levels, and elevated Bcl-2 and klotho levels. Interestingly, klotho knockdown reversed the effects of ADMSCs on the expression of apoptosis-related proteins and Wnt/β-catenin pathway members. Taken together, ADMSCs transplantation might attenuate renal injury in DN via activating klotho and inhibiting the Wnt/β-catenin pathway. This study may provide evidence for the treatment of DN using ADMSCs.
Collapse
Affiliation(s)
- Weimin Ni
- Department of Anatomy, College of Basic Medical Sciences, Liaoning Medical University, Jinzhou, Liaoning, People's Republic of China (WN, YF, LX, XL, WS, RZ, JL, XL),Department of Neurosurgery, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, People's Republic of China (WN)
| | - Yan Fang
- Department of Anatomy, College of Basic Medical Sciences, Liaoning Medical University, Jinzhou, Liaoning, People's Republic of China (WN, YF, LX, XL, WS, RZ, JL, XL)
| | - Ling Xie
- Department of Anatomy, College of Basic Medical Sciences, Liaoning Medical University, Jinzhou, Liaoning, People's Republic of China (WN, YF, LX, XL, WS, RZ, JL, XL)
| | - Xue Liu
- Department of Anatomy, College of Basic Medical Sciences, Liaoning Medical University, Jinzhou, Liaoning, People's Republic of China (WN, YF, LX, XL, WS, RZ, JL, XL)
| | - Wei Shan
- Department of Anatomy, College of Basic Medical Sciences, Liaoning Medical University, Jinzhou, Liaoning, People's Republic of China (WN, YF, LX, XL, WS, RZ, JL, XL)
| | - Ruixia Zeng
- Department of Anatomy, College of Basic Medical Sciences, Liaoning Medical University, Jinzhou, Liaoning, People's Republic of China (WN, YF, LX, XL, WS, RZ, JL, XL)
| | - Jiansheng Liu
- Department of Anatomy, College of Basic Medical Sciences, Liaoning Medical University, Jinzhou, Liaoning, People's Republic of China (WN, YF, LX, XL, WS, RZ, JL, XL)
| | - Xueyuan Liu
- Department of Anatomy, College of Basic Medical Sciences, Liaoning Medical University, Jinzhou, Liaoning, People's Republic of China (WN, YF, LX, XL, WS, RZ, JL, XL)
| |
Collapse
|
19
|
Sridharan V, Tripathi P, Aykin-Burns N, Krager KJ, Sharma SK, Moros EG, Melnyk SB, Pavliv O, Hauer-Jensen M, Boerma M. A tocotrienol-enriched formulation protects against radiation-induced changes in cardiac mitochondria without modifying late cardiac function or structure. Radiat Res 2015; 183:357-66. [PMID: 25710576 PMCID: PMC4688041 DOI: 10.1667/rr13915.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Radiation-induced heart disease (RIHD) is a common and sometimes severe late side effect of radiation therapy for intrathoracic and chest wall tumors. We have previously shown that local heart irradiation in a rat model caused prolonged changes in mitochondrial respiration and increased susceptibility to mitochondrial permeability transition pore (mPTP) opening. Because tocotrienols are known to protect against oxidative stress-induced mitochondrial dysfunction, in this study, we examined the effects of tocotrienols on radiation-induced alterations in mitochondria, and structural and functional manifestations of RIHD. Male Sprague-Dawley rats received image-guided localized X irradiation to the heart to a total dose of 21 Gy. Twenty-four hours before irradiation, rats received a tocotrienol-enriched formulation or vehicle by oral gavage. Mitochondrial function and mitochondrial membrane parameters were studied at 2 weeks and 28 weeks after irradiation. In addition, cardiac function and histology were examined at 28 weeks. A single oral dose of the tocotrienol-enriched formulation preserved Bax/Bcl2 ratios and prevented mPTP opening and radiation-induced alterations in succinate-driven mitochondrial respiration. Nevertheless, the late effects of local heart irradiation pertaining to myocardial function and structure were not modified. Our studies suggest that a single dose of tocotrienols protects against radiation-induced mitochondrial changes, but these effects are not sufficient against long-term alterations in cardiac function or remodeling.
Collapse
Affiliation(s)
- Vijayalakshmi Sridharan
- University of Arkansas for Medical Sciences, Department of Pharmaceutical Sciences, Division of Radiation Health, Little Rock, Arkansas
| | - Preeti Tripathi
- University of Arkansas for Medical Sciences, Department of Pharmaceutical Sciences, Division of Radiation Health, Little Rock, Arkansas
| | - Nukhet Aykin-Burns
- University of Arkansas for Medical Sciences, Department of Pharmaceutical Sciences, Division of Radiation Health, Little Rock, Arkansas
| | - Kimberly J Krager
- University of Arkansas for Medical Sciences, Department of Pharmaceutical Sciences, Division of Radiation Health, Little Rock, Arkansas
| | - Sunil K. Sharma
- University of Arkansas for Medical Sciences, Department of Radiation Oncology, Little Rock, Arkansas
| | - Eduardo G. Moros
- Moffitt Cancer Center and Research Institute, Department of Radiation Oncology, Tampa, Florida
| | - Stepan B. Melnyk
- University of Arkansas for Medical Sciences, Department of Pediatrics, Little Rock Arkansas
| | - Oleksandra Pavliv
- University of Arkansas for Medical Sciences, Department of Pediatrics, Little Rock Arkansas
| | - Martin Hauer-Jensen
- University of Arkansas for Medical Sciences, Department of Pharmaceutical Sciences, Division of Radiation Health, Little Rock, Arkansas
- Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Marjan Boerma
- University of Arkansas for Medical Sciences, Department of Pharmaceutical Sciences, Division of Radiation Health, Little Rock, Arkansas
| |
Collapse
|
20
|
Reversal of myoblast aging by tocotrienol rich fraction posttreatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:978101. [PMID: 24349615 PMCID: PMC3856141 DOI: 10.1155/2013/978101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 02/06/2023]
Abstract
Skeletal muscle satellite cells are heavily involved in the regeneration of skeletal muscle in response to the aging-related deterioration of the skeletal muscle mass, strength, and regenerative capacity, termed as sarcopenia. This study focused on the effect of tocotrienol rich fraction (TRF) on regenerative capacity of myoblasts in stress-induced premature senescence (SIPS). The myoblasts was grouped as young control, SIPS-induced, TRF control, TRF pretreatment, and TRF posttreatment. Optimum dose of TRF, morphological observation, activity of senescence-associated β-galactosidase (SA-β-galactosidase), and cell proliferation were determined. 50 μg/mL TRF treatment exhibited the highest cell proliferation capacity. SIPS-induced myoblasts exhibit large flattened cells and prominent intermediate filaments (senescent-like morphology). The activity of SA-β-galactosidase was significantly increased, but the proliferation capacity was significantly reduced as compared to young control. The activity of SA-β-galactosidase was significantly reduced and cell proliferation was significantly increased in the posttreatment group whereas there was no significant difference in SA-β-galactosidase activity and proliferation capacity of pretreatment group as compared to SIPS-induced myoblasts. Based on the data, we hypothesized that TRF may reverse the myoblasts aging through replenishing the regenerative capacity of the cells. However, further investigation on the mechanism of TRF in reversing the myoblast aging is needed.
Collapse
|
21
|
Skin connective tissue and ageing. Best Pract Res Clin Obstet Gynaecol 2013; 27:727-40. [DOI: 10.1016/j.bpobgyn.2013.06.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/27/2013] [Accepted: 06/10/2013] [Indexed: 11/23/2022]
|