1
|
Stam F, Bjurling S, Nylander E, Håkansson EO, Barlow N, Gising J, Larhed M, Odell LR, Grönbladh A, Hallberg M. Inhibition of IRAP Enhances the Expression of Pro-Cognitive Markers Drebrin and MAP2 in Rat Primary Neuronal Cells. Int J Mol Sci 2024; 25:12016. [PMID: 39596085 PMCID: PMC11594062 DOI: 10.3390/ijms252212016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
The insulin-regulated aminopeptidase (IRAP; oxytocinase) is part of the M1 aminopeptidase family and is highly expressed in many tissues, including the neocortex and hippocampus of the brain. IRAP is involved in various physiological functions and has been identified as a receptor for the endogenous hexapeptide Angiotensin IV (Ang IV). The binding of Ang IV inhibits the enzymatic activity of IRAP and has been proven to enhance learning and memory in animal models. The macrocyclic compound 9 (C9) is a potent synthetic IRAP inhibitor developed from the previously reported inhibitor HA08. In this study, we have examined compound C9 and its effects on cognitive markers drebrin, microtubule-associated protein 2 (MAP2), and glial fibrillary acidic protein (GFAP) in primary hippocampal and cortical cultures. Cells from Sprague Dawley rats were cultured for 14 days before treatment with C9 for 4 consecutive days. The cells were analysed for protein expression of drebrin, MAP2, GFAP, glucose transporter type 4 (GLUT4), vesicular glutamate transporter 1 (vGluT1), and synapsin I using immunocytochemistry. The gene expression of related proteins was determined using qPCR, and viability assays were performed to evaluate toxicity. The results showed that protein expression of drebrin and MAP2 was increased, and the corresponding mRNA levels were decreased after treatment with C9 in the hippocampal cultures. The ratio of MAP2-positive neurons and GFAP-positive astrocytes was altered and there were no toxic effects observed. In conclusion, the IRAP inhibitor compound C9 enhances the expression of the pro-cognitive markers drebrin and MAP2, which further confirms IRAP as a relevant pharmaceutical target and C9 as a promising candidate for further investigation.
Collapse
Affiliation(s)
- Frida Stam
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, Biomedical Centre, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden; (F.S.); (S.B.); (E.N.); (A.G.)
| | - Sara Bjurling
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, Biomedical Centre, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden; (F.S.); (S.B.); (E.N.); (A.G.)
| | - Erik Nylander
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, Biomedical Centre, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden; (F.S.); (S.B.); (E.N.); (A.G.)
| | - Esther Olaniran Håkansson
- Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden; (E.O.H.); (L.R.O.)
| | - Nicholas Barlow
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden; (N.B.); (M.L.)
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Johan Gising
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden; (N.B.); (M.L.)
| | - Mats Larhed
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden; (N.B.); (M.L.)
| | - Luke R. Odell
- Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden; (E.O.H.); (L.R.O.)
| | - Alfhild Grönbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, Biomedical Centre, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden; (F.S.); (S.B.); (E.N.); (A.G.)
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, Biomedical Centre, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden; (F.S.); (S.B.); (E.N.); (A.G.)
| |
Collapse
|
2
|
Mpakali A, Barla I, Lu L, Ramesh KM, Thomaidis N, Stern LJ, Giastas P, Stratikos E. Mechanisms of Allosteric Inhibition of Insulin-Regulated Aminopeptidase. J Mol Biol 2024; 436:168449. [PMID: 38244767 DOI: 10.1016/j.jmb.2024.168449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Inhibition of Insulin-Regulated Aminopeptidase is being actively explored for the treatment of several human diseases and several classes of inhibitors have been developed although no clinical applications have been reported yet. Here, we combine enzymological analysis with x-ray crystallography to investigate the mechanism employed by two of the most studied inhibitors of IRAP, an aryl sulfonamide and a 2-amino-4H-benzopyran named HFI-419. Although both compounds have been hypothesized to target the enzyme's active site by competitive mechanisms, we discovered that they instead target previously unidentified proximal allosteric sites and utilize non-competitive inhibition mechanisms. X-ray crystallographic analysis demonstrated that the aryl sulfonamide stabilizes the closed, more active, conformation of the enzyme whereas HFI-419 locks the enzyme in a semi-open, and likely less active, conformation. HFI-419 potency is substrate-dependent and fails to effectively block the degradation of the physiological substrate cyclic peptide oxytocin. Our findings demonstrate alternative mechanisms for inhibiting IRAP through allosteric sites and conformational restricting and suggest that the pharmacology of HFI-419 may be more complicated than initially considered. Such conformation-specific interactions between IRAP and small molecules can be exploited for the design of more effective second-generation allosteric inhibitors.
Collapse
Affiliation(s)
- Anastasia Mpakali
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece; National Centre for Scientific Research Demokritos, Athens 15341, Greece
| | - Ioanna Barla
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Liying Lu
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01650, USA
| | - Karthik M Ramesh
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01650, USA
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Lawrence J Stern
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01650, USA
| | - Petros Giastas
- Department of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| | - Efstratios Stratikos
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece; National Centre for Scientific Research Demokritos, Athens 15341, Greece.
| |
Collapse
|
3
|
Hydrogen Peroxide Induced Toxicity Is Reversed by the Macrocyclic IRAP-Inhibitor HA08 in Primary Hippocampal Cell Cultures. Curr Issues Mol Biol 2022; 44:5000-5012. [PMID: 36286055 PMCID: PMC9601255 DOI: 10.3390/cimb44100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Angiotensin IV (Ang IV), a metabolite of Angiotensin II, is a bioactive hexapeptide that inhibits the insulin-regulated aminopeptidase (IRAP). This transmembrane zinc metallopeptidase with many biological functions has in recent years emerged as a new pharmacological target. IRAP is expressed in a variety of tissues and can be found in high density in the hippocampus and neocortex, brain regions associated with cognition. Ang IV is known to improve memory tasks in experimental animals. One of the most potent IRAP inhibitors known today is the macrocyclic compound HA08 that is significantly more stable than the endogenous Ang IV. HA08 combines structural elements from Ang IV and the physiological substrates oxytocin and vasopressin, and binds to the catalytic site of IRAP. In the present study we evaluate whether HA08 can restore cell viability in rat primary cells submitted to hydrogen peroxide damage. After damaging the cells with hydrogen peroxide and subsequently treating them with HA08, the conceivable restoring effects of the IRAP inhibitor were assessed. The cellular viability was determined by measuring mitochondrial activity and lactate dehydrogenase (LDH) release. The mitochondrial activity was significantly higher in primary hippocampal cells, whereas the amount of LDH was unaffected. We conclude that the cell viability can be restored in this cell type by blocking IRAP with the potent macrocyclic inhibitor HA08, although the mechanism by which HA08 exerts its effects remains unclear.
Collapse
|
4
|
Mattorre B, Tedeschi V, Paldino G, Fiorillo MT, Paladini F, Sorrentino R. The emerging multifunctional roles of ERAP1, ERAP2 and IRAP between antigen processing and renin-angiotensin system modulation. Front Immunol 2022; 13:1002375. [PMID: 36203608 PMCID: PMC9531115 DOI: 10.3389/fimmu.2022.1002375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The Endoplasmic Reticulum Aminopeptidase 1 and 2 (ERAP1 and ERAP2) and Insulin Regulated Aminopeptidase (IRAP) are three M1 zinc metalloproteases whose role in antigen processing is the refining of peptidome either in the Endoplasmic reticulum (ERAP1 and ERAP2), or in the endosomes (IRAP). However, other novel and distinct functions are emerging. Here, we focus specifically on ERAP2. This gene has a peculiar evolutionary history, being absent in rodents and undergoing in humans to a balanced selection of two haplotypes, one of which not expressing the full length ERAP2. These observations suggest that its role in antigen presentation is not essential. An additional, less investigated role is in the regulation of the Renin Angiotensin System (RAS). ERAP1 and ERAP2 cleave Angiotensin II (Ang II) into Ang III and IV, which counteract the action of Ang II whereas IRAP is itself the receptor for Ang IV. We have recently reported that macrophages, independently from the haplotype, express and release a N-terminus ERAP2 “short” form which directly binds IRAP and the two molecules are co-expressed in the endosomes and on the cell membrane. This new evidence suggests that the maintenance of the ERAP2 gene in humans could be due to its activity in the regulation of the RAS system, possibly as an Ang IV agonist. Its role in the immune-mediated diseases as well as in disorders more specifically related to an imbalance of the RAS system, including hypertension, pre-eclampsia but also viral infections such as COVID-19, is discussed here.
Collapse
|
5
|
Vourloumis D, Mavridis I, Athanasoulis A, Temponeras I, Koumantou D, Giastas P, Mpakali A, Magrioti V, Leib J, van Endert P, Stratikos E, Papakyriakou A. Discovery of Selective Nanomolar Inhibitors for Insulin-Regulated Aminopeptidase Based on α-Hydroxy-β-amino Acid Derivatives of Bestatin. J Med Chem 2022; 65:10098-10117. [PMID: 35833347 DOI: 10.1021/acs.jmedchem.2c00904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxytocinase subfamily of M1 zinc aminopeptidases comprises emerging drug targets, including the ER-resident aminopeptidases 1 and 2 (ERAP1 and ERAP2) and insulin-regulated aminopeptidase (IRAP); however, reports on clinically relevant inhibitors are limited. Here we report a new synthetic approach of high diastereo- and regioselectivity for functionalization of the α-hydroxy-β-amino acid scaffold of bestatin. Stereochemistry and mechanism of inhibition were investigated by a high-resolution X-ray crystal structure of ERAP1 in complex with a micromolar inhibitor. By exploring the P1 side-chain functionalities, we achieve significant potency and selectivity, and we report a cell-active, low-nanomolar inhibitor of IRAP with >120-fold selectivity over homologous enzymes. X-ray crystallographic analysis of IRAP in complex with this inhibitor suggest that interactions with the GAMEN loop is an unappreciated key determinant for potency and selectivity. Overall, our results suggest that α-hydroxy-β-amino acid derivatives may constitute useful chemical tools and drug leads for this group of aminopeptidases.
Collapse
Affiliation(s)
- Dionisios Vourloumis
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Ioannis Mavridis
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Alexandros Athanasoulis
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Ioannis Temponeras
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece.,Department of Pharmacy, University of Patras, 26504 Patra, Greece
| | - Despoina Koumantou
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Petros Giastas
- Department of Biotechnology, Agricultural University of Athens, GR-11855 Athens, Greece
| | - Anastasia Mpakali
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece.,Department of Chemistry, National and Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Victoria Magrioti
- Department of Chemistry, National and Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Jacqueline Leib
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France.,Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France
| | - Efstratios Stratikos
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece.,Department of Chemistry, National and Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Athanasios Papakyriakou
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| |
Collapse
|
6
|
Komleva YK, Potapenko IV, Lopatina OL, Gorina YV, Chernykh A, Khilazheva ED, Salmina AB, Shuvaev AN. NLRP3 Inflammasome Blocking as a Potential Treatment of Central Insulin Resistance in Early-Stage Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222111588. [PMID: 34769018 PMCID: PMC8583950 DOI: 10.3390/ijms222111588] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a devastating neurodegenerative disorder. In recent years, attention of researchers has increasingly been focused on studying the role of brain insulin resistance (BIR) in the AD pathogenesis. Neuroinflammation makes a significant contribution to the BIR due to the activation of NLRP3 inflammasome. This study was devoted to the understanding of the potential therapeutic roles of the NLRP3 inflammasome in neurodegeneration occurring concomitant with BIR and its contribution to the progression of emotional disorders. METHODS To test the impact of innate immune signaling on the changes induced by Aβ1-42 injection, we analyzed animals carrying a genetic deletion of the Nlrp3 gene. Thus, we studied the role of NLRP3 inflammasomes in health and neurodegeneration in maintaining brain insulin signaling using behavioral, electrophysiological approaches, immunohistochemistry, ELISA and real-time PCR. RESULTS We revealed that NLRP3 inflammasomes are required for insulin-dependent glucose transport in the brain and memory consolidation. Conclusions NLRP3 knockout protects mice against the development of BIR: Taken together, our data reveal the protective role of Nlrp3 deletion in the regulation of fear memory and the development of Aβ-induced insulin resistance, providing a novel target for the clinical treatment of this disorder.
Collapse
Affiliation(s)
- Yulia K. Komleva
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, 660022 Krasnoyarsk, Russia; (O.L.L.); (Y.V.G.); (E.D.K.)
- Research Institute of Molecular Medicine and Pathobiochemistry, 660022 Krasnoyarsk, Russia; (I.V.P.); (A.C.); (A.B.S.); (A.N.S.)
- Correspondence:
| | - Ilia V. Potapenko
- Research Institute of Molecular Medicine and Pathobiochemistry, 660022 Krasnoyarsk, Russia; (I.V.P.); (A.C.); (A.B.S.); (A.N.S.)
| | - Olga L. Lopatina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, 660022 Krasnoyarsk, Russia; (O.L.L.); (Y.V.G.); (E.D.K.)
- Shared Research Center for Molecular and Cellular Technologies, 660022 Krasnoyarsk, Russia
| | - Yana V. Gorina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, 660022 Krasnoyarsk, Russia; (O.L.L.); (Y.V.G.); (E.D.K.)
- Research Institute of Molecular Medicine and Pathobiochemistry, 660022 Krasnoyarsk, Russia; (I.V.P.); (A.C.); (A.B.S.); (A.N.S.)
| | - Anatoly Chernykh
- Research Institute of Molecular Medicine and Pathobiochemistry, 660022 Krasnoyarsk, Russia; (I.V.P.); (A.C.); (A.B.S.); (A.N.S.)
| | - Elena D. Khilazheva
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, 660022 Krasnoyarsk, Russia; (O.L.L.); (Y.V.G.); (E.D.K.)
- Research Institute of Molecular Medicine and Pathobiochemistry, 660022 Krasnoyarsk, Russia; (I.V.P.); (A.C.); (A.B.S.); (A.N.S.)
| | - Alla B. Salmina
- Research Institute of Molecular Medicine and Pathobiochemistry, 660022 Krasnoyarsk, Russia; (I.V.P.); (A.C.); (A.B.S.); (A.N.S.)
- Laboratory of Experimental Brain Cytology, Division of Brain Sciences, Research Center of Neurology, 125367 Moscow, Russia
| | - Anton N. Shuvaev
- Research Institute of Molecular Medicine and Pathobiochemistry, 660022 Krasnoyarsk, Russia; (I.V.P.); (A.C.); (A.B.S.); (A.N.S.)
| |
Collapse
|
7
|
Chai SY, Gutiérrez-de-Terán H, Stratikos E. Editorial: Physiological, Pathological Roles and Pharmacology of Insulin Regulated Aminopeptidase. Front Mol Biosci 2021; 8:685101. [PMID: 33968999 PMCID: PMC8102722 DOI: 10.3389/fmolb.2021.685101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Siew Yeen Chai
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | - Efstratios Stratikos
- Biochemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Todorov P, Peneva P, Tchekalarova J, Georgieva S, Rangelov M, Todorova N. Structure-activity relationship study on new hemorphin-4 analogues containing steric restricted amino acids moiety for evaluation of their anticonvulsant activity. Amino Acids 2020; 52:1375-1390. [PMID: 33011823 DOI: 10.1007/s00726-020-02898-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/28/2020] [Indexed: 12/31/2022]
Abstract
In the present study, several new analogues of hemorphin-4, modified with unnatural conformationally restricted amino acids followed the structure Aaa-Tyr-Xxx-Trp-Thr-NH2, where Aaa is the low-molecular-weight lipophilic adamantyl building block, and Xxx is Ac5c (1-aminocyclopentanecarboxylic acid) or Ac6c (1-aminocyclohexane carboxylic acid) was synthesized, characterized and investigated for anticonvulsant activity in three seizure tests, the maximal electroshock test (MES), 6-Hz psychomotor seizure test and timed intravenous pentylenetetrazole infusion (ivPTZ) test. The acute neurological toxicity was determined using the rota-rod test. The new synthetic neuropeptide analogues were prepared by solid-phase peptide synthesis-Fmoc chemistry and were evaluated in three doses of 1, 3 and 5 µg, respectively, administered intracerebroventricularly in male ICR mice. The physicochemical properties of these peptide analogues were evaluated as pKa and pI values were calculated using potentiometry. The IR spectrum of the compounds was recorded and the characteristic lines of both adamantane moiety and the peptide backbone were registered in the wavelength range from 4000 to 400 cm-1. The hexapeptide Ang IV was used as a positive control. From the six synthesized peptide analogues, the P4-5 was the most active at doses of 1 and 3 µg in the three seizure tests. The order of potency of other peptides was as follows: P4 > P4-3 = P4-4 > P4-2 > Ang IV in MES, P4-4 ≥ P4-1 > P4-3 > P4-2 > P4 > Ang IV in 6-Hz test and P4-4 = P4-3 > P4-2 = P4 > Ang IV in ivPTZ test. None of the peptides displayed neurotoxicity in the rota-rod test. Docking study results suggest that direct H-bonding and ionic interactions between our synthetic ligands and residues, responsible for coordination of Zn2+ along with hydrophobic interactions between our ligands and IRAP active site are the most important for the ligand binding. The results propose that incorporation of adamantane and cycloalkane building blocks in the peptide chain of the hemorphin-4 scaffold is important for the potential high biological activity.
Collapse
Affiliation(s)
- Petar Todorov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756, Sofia, Bulgaria.
| | - Petia Peneva
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756, Sofia, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Stela Georgieva
- Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 1756, Sofia, Bulgaria
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| |
Collapse
|
9
|
Georgiadis D, Ziotopoulou A, Kaloumenou E, Lelis A, Papasava A. The Discovery of Insulin-Regulated Aminopeptidase (IRAP) Inhibitors: A Literature Review. Front Pharmacol 2020; 11:585838. [PMID: 33071797 PMCID: PMC7538644 DOI: 10.3389/fphar.2020.585838] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Insulin-Regulated Aminopeptidase (IRAP, EC 3.4.11.3) is a multi-tasking member of the M1 family of zinc aminopeptidases. Among its diverse biological functions, IRAP is a regulator of oxytocin levels during late stages of pregnancy, it affects cellular glucose uptake by trafficking of the glucose transporter type 4 and it mediates antigen cross-presentation by dendritic cells. Accumulating evidence show that pharmacological inhibition of IRAP may hold promise as a valid approach for the treatment of several pathological states such as memory disorders, neurodegenerative diseases, etc. Aiming to the investigation of physiological roles of IRAP and therapeutic potential of its regulation, intense research efforts have been dedicated to the discovery of small-molecule inhibitors. Moreover, reliable structure-activity relationships have been largely facilitated by recent crystal structures of IRAP and detailed computational studies. This review aims to summarize efforts of medicinal chemists toward the design and development of IRAP inhibitors, with special emphasis to factors affecting inhibitor selectivity.
Collapse
Affiliation(s)
- Dimitris Georgiadis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Angeliki Ziotopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Kaloumenou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelos Lelis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonia Papasava
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Paladini F, Fiorillo MT, Tedeschi V, Mattorre B, Sorrentino R. The Multifaceted Nature of Aminopeptidases ERAP1, ERAP2, and LNPEP: From Evolution to Disease. Front Immunol 2020; 11:1576. [PMID: 32793222 PMCID: PMC7390905 DOI: 10.3389/fimmu.2020.01576] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
In the human genome, the aminopeptidases ERAP1, ERAP2 and LNPEP lie contiguously on chromosome 5. They share sequence homology, functions and associations with immune-mediated diseases. By analyzing their multifaceted activities as well as their expression in the zoological scale, we suggest here that the progenitor of the three aminopeptidases might be LNPEP from which the other two aminopeptidases could have derived by gene duplications. We also propose that their functions are partially redundant. More precisely, the evolutionary story of the three aminopeptidases might have been dictated by their role in regulating the renin–angiotensin system, which requires their controlled and coordinated expression. This hypothesis is supported by the many species that lack one or the other gene as well as by the lack of ERAP2 in rodents and a null expression in 25% of humans. Finally, we speculate that their role in antigen presentation has been acquired later on during evolution. They have therefore been diversified between those residing in the ER, ERAP1 and ERAP2, whose role is to refine the MHC-I peptidomes, and LNPEP, mostly present in the endosomal vesicles where it can contribute to antigen cross-presentation or move to the cell membrane as receptor for angiotensin IV. Their association with autoinflammatory/autoimmune diseases can therefore be two-fold: as “contributors” to the shaping of the immune-peptidomes as well as to the regulation of the vascular response.
Collapse
Affiliation(s)
- Fabiana Paladini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Benedetta Mattorre
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Rosa Sorrentino
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Mpakali A, Saridakis E, Giastas P, Maben Z, Stern LJ, Larhed M, Hallberg M, Stratikos E. Structural Basis of Inhibition of Insulin-Regulated Aminopeptidase by a Macrocyclic Peptidic Inhibitor. ACS Med Chem Lett 2020; 11:1429-1434. [PMID: 32676150 PMCID: PMC7357224 DOI: 10.1021/acsmedchemlett.0c00172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Insulin-regulated aminopeptidase (IRAP) is a transmembrane zinc metallopeptidase with many important biological functions and an emerging pharmacological target. Although previous structural studies have given insight on how IRAP recognizes linear peptides, how it recognizes its physiological cyclic ligands remains elusive. Here, we report the first crystal structure of IRAP with the macrocyclic peptide inhibitor HA08 that combines structural elements from angiotensin IV and the physiological substrates oxytocin and vasopressin. The compound is found in the catalytic site in a near canonical substrate-like configuration and inhibits by a competitive mechanism. Comparison with previously solved structures of IRAP along with small-angle X-ray scattering experiments suggests that IRAP is in an open conformation in solution but undergoes a closing conformational change upon inhibitor binding. Stabilization of the closed conformation in combination with catalytic water exclusion by the tightly juxtaposed GAMEN loop is proposed as a mechanism of inhibition.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National
Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15341, Greece
| | - Emmanuel Saridakis
- National
Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15341, Greece
| | - Petros Giastas
- National
Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15341, Greece
| | - Zachary Maben
- Department
of Pathology, University of Massachusetts
Medical School, Worcester, Massachusetts 01655, United States
| | - Lawrence J. Stern
- Department
of Pathology, University of Massachusetts
Medical School, Worcester, Massachusetts 01655, United States
| | - Mats Larhed
- Department
of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | - Mathias Hallberg
- The
Beijer Laboratory, Division of Biological Research on Drug Dependence,
Department of Pharmaceutical Biosciences, BMC, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden
| | - Efstratios Stratikos
- National
Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15341, Greece
| |
Collapse
|
12
|
Vasile S, Hallberg A, Sallander J, Hallberg M, Åqvist J, Gutiérrez-de-Terán H. Evolution of Angiotensin Peptides and Peptidomimetics as Angiotensin II Receptor Type 2 (AT2) Receptor Agonists. Biomolecules 2020; 10:E649. [PMID: 32340100 PMCID: PMC7226584 DOI: 10.3390/biom10040649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/01/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
Angiotensin II receptor type 1 and 2 (AT1R and AT2R) are two G-protein coupled receptors that mediate most biological functions of the octapeptide Angiotensin II (Ang II). AT2R is upregulated upon tissue damage and its activation by selective AT2R agonists has become a promising approach in the search for new classes of pharmaceutical agents. We herein analyzed the chemical evolution of AT2R agonists starting from octapeptides, through shorter peptides and peptidomimetics to the first drug-like AT2R-selective agonist, C21, which is in Phase II clinical trials and aimed for idiopathic pulmonary fibrosis. Based on the recent crystal structures of AT1R and AT2R in complex with sarile, we identified a common binding model for a series of 11 selected AT2R agonists, consisting of peptides and peptidomimetics of different length, affinity towards AT2R and selectivity versus AT1R. Subsequent molecular dynamics simulations and free energy perturbation (FEP) calculations of binding affinities allowed the identification of the bioactive conformation and common pharmacophoric points, responsible for the key interactions with the receptor, which are maintained by the drug-like agonists. The results of this study should be helpful and facilitate the search for improved and even more potent AT2R-selective drug-like agonists.
Collapse
Affiliation(s)
- Silvana Vasile
- Sweden and Science for Life Laboratory, Department of Cell and Molecular Biology, BMC (H.G.T.), Biomedical Centre (BMC), Uppsala University, P.O. BOX 596, SE-751 24 Uppsala, Sweden; (S.V.); (J.S.); (J.Å.)
| | - Anders Hallberg
- Department of Medicinal Chemistry, Division of Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden;
| | - Jessica Sallander
- Sweden and Science for Life Laboratory, Department of Cell and Molecular Biology, BMC (H.G.T.), Biomedical Centre (BMC), Uppsala University, P.O. BOX 596, SE-751 24 Uppsala, Sweden; (S.V.); (J.S.); (J.Å.)
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, BMC, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden;
| | - Johan Åqvist
- Sweden and Science for Life Laboratory, Department of Cell and Molecular Biology, BMC (H.G.T.), Biomedical Centre (BMC), Uppsala University, P.O. BOX 596, SE-751 24 Uppsala, Sweden; (S.V.); (J.S.); (J.Å.)
| | - Hugo Gutiérrez-de-Terán
- Sweden and Science for Life Laboratory, Department of Cell and Molecular Biology, BMC (H.G.T.), Biomedical Centre (BMC), Uppsala University, P.O. BOX 596, SE-751 24 Uppsala, Sweden; (S.V.); (J.S.); (J.Å.)
| |
Collapse
|
13
|
Wright JW, Harding JW. Contributions by the Brain Renin-Angiotensin System to Memory, Cognition, and Alzheimer's Disease. J Alzheimers Dis 2020; 67:469-480. [PMID: 30664507 DOI: 10.3233/jad-181035] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive neuron losses in memory-associated brain structures that rob patients of their dignity and quality of life. Five drugs have been approved by the FDA to treat AD but none modify or significantly slow disease progression. New therapies are needed to delay the course of this disease with the ultimate goal of preventing neuron losses and preserving memory functioning. In this review we describe the renin-angiotensin II (AngII) system (RAS) with specific regard to its deleterious contributions to hypertension, facilitation of neuroinflammation and oxidative stress, reduced cerebral blood flow, tissue remodeling, and disruption of memory consolidation and retrieval. There is evidence that components of the RAS, AngIV and Ang(1-7), are positioned to counter such damaging influences and these systems are detailed with the goal of drawing attention to their importance as drug development targets. Ang(1-7) binds at the Mas receptor, while AngIV binds at the AT4 receptor subtype, and these receptor numbers are significantly decreased in AD patients, accompanied by declines in brain aminopeptidases A and N, enzymes essential for the synthesis of AngIV. Potent analogs may be useful to counter these changes and facilitate neuronal functioning and reduce apoptosis in memory associated brain structures of AD patients.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Washington State University, Pullman, WA, USA.,Department of Integrative Physiology and Neuroscience, and Program in Biotechnology, Washington State University, Pullman, WA, USA.,M3 Biotechnology, Inc., Seattle, WA, USA
| | - Joseph W Harding
- Department of Psychology, Washington State University, Pullman, WA, USA.,Department of Integrative Physiology and Neuroscience, and Program in Biotechnology, Washington State University, Pullman, WA, USA.,M3 Biotechnology, Inc., Seattle, WA, USA
| |
Collapse
|
14
|
Barlow N, Vanga SR, Sävmarker J, Sandström A, Burns P, Hallberg A, Åqvist J, Gutiérrez-de-Terán H, Hallberg M, Larhed M, Chai SY, Thompson PE. Macrocyclic peptidomimetics as inhibitors of insulin-regulated aminopeptidase (IRAP). RSC Med Chem 2020; 11:234-244. [PMID: 33479630 DOI: 10.1039/c9md00485h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/21/2019] [Indexed: 12/25/2022] Open
Abstract
Macrocyclic analogues of the linear hexapeptide, angiotensin IV (AngIV) have proved to be potent inhibitors of insulin-regulated aminopeptidase (IRAP, oxytocinase, EC 3.4.11.3). Along with higher affinity, macrocycles may also offer better metabolic stability, membrane permeability and selectivity, however predicting the outcome of particular cycle modifications is challenging. Here we describe the development of a series of macrocyclic IRAP inhibitors with either disulphide, olefin metathesis or lactam bridges and variations of ring size and other functionality. The binding mode of these compounds is proposed based on molecular dynamics analysis. Estimation of binding affinities (ΔG) and relative binding free energies (ΔΔG) with the linear interaction energy (LIE) method and free energy perturbation (FEP) method showed good general agreement with the observed inhibitory potency. Experimental and calculated data highlight the cumulative importance of an intact N-terminal peptide, the specific nature of the macrocycle, the phenolic oxygen and the C-terminal functionality.
Collapse
Affiliation(s)
- Nicholas Barlow
- Department of Medicinal Chemistry , BMC , Uppsala University , P.O. Box 574 , SE-751 23 Uppsala , Sweden.,Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences , Parkville , Victoria 3052 , Australia .
| | - Sudarsana Reddy Vanga
- Department of Cell and Molecular Biology , BMC , Uppsala University , Box 596 , SE-751 24 Uppsala , Sweden
| | - Jonas Sävmarker
- The Beijer Laboratory , Department of Medicinal Chemistry , BMC , Uppsala University , P.O. Box 574 , SE-751 23 Uppsala , Sweden
| | - Anja Sandström
- The Beijer Laboratory , Department of Medicinal Chemistry , BMC , Uppsala University , P.O. Box 574 , SE-751 23 Uppsala , Sweden
| | - Peta Burns
- Biomedicine Discovery Institute , Department of Physiology , Monash University , Clayton , Victoria 3800 , Australia
| | - Anders Hallberg
- Department of Medicinal Chemistry , BMC , Uppsala University , P.O. Box 574 , SE-751 23 Uppsala , Sweden
| | - Johan Åqvist
- Department of Cell and Molecular Biology , BMC , Uppsala University , Box 596 , SE-751 24 Uppsala , Sweden
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology , BMC , Uppsala University , Box 596 , SE-751 24 Uppsala , Sweden
| | - Mathias Hallberg
- The Beijer Laboratory , Department of Pharmaceutical Biosciences , Division of Biological Research on Drug Dependence , BMC , Uppsala University , P.O. Box 591 , SE-751 24 Uppsala , Sweden
| | - Mats Larhed
- Department of Medicinal Chemistry , BMC , Uppsala University , P.O. Box 574 , SE-751 23 Uppsala , Sweden.,Science for Life Laboratory , Department of Medicinal Chemistry , BMC , Uppsala University , SE-751 24 Uppsala , Sweden
| | - Siew Yeen Chai
- Biomedicine Discovery Institute , Department of Physiology , Monash University , Clayton , Victoria 3800 , Australia
| | - Philip E Thompson
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences , Parkville , Victoria 3052 , Australia .
| |
Collapse
|
15
|
Differential Gene Expression Profile of Renin-Angiotensin System in the Left Atrium in Mitral Regurgitation Patients. DISEASE MARKERS 2018; 2018:6924608. [PMID: 30581499 PMCID: PMC6276386 DOI: 10.1155/2018/6924608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/01/2018] [Indexed: 11/17/2022]
Abstract
Background Left atrial enlargement is a mortality and heart failure risk factor in primary mitral regurgitation (MR) patients. Pig models of MR have shown differential expression of genes linked to the renin-angiotensin system. Therefore, the aim of this study was to investigate the key genes of the renin-angiotensin that are expressed differentially in the left atrial myocardium in MR patients. Methods Quantitative RT-PCR was used to compare gene expression in the renin-angiotensin system in the left atrium in MR patients, aortic valve disease patients, and normal subjects. Results Plasma angiotensin II concentrations did not significantly differ between MR patients and aortic valve disease patients (P = 0.582). Compared to normal controls, however, MR patients had significantly downregulated expressions of angiotensin-converting enzyme, angiotensin I converting enzyme 2, type 1 angiotensin II receptor, glutamyl aminopeptidase, angiotensinogen, cathepsin A (CTSA), thimet oligopeptidase 1, neurolysin, alanyl aminopeptidase, cathepsin G, leucyl/cystinyl aminopeptidase (LNPEP), neprilysin, and carboxypeptidase A3 in the left atrium. The MR patients also had significantly upregulated expressions of MAS1 oncogene (MAS1) and mineralocorticoid receptor compared to normal controls. Additionally, in comparison with aortic valve disease patients, MR patients had significantly downregulated CTSA and LNPEP expression and significantly upregulated MAS1 expression in the left atrium. Conclusions Expressions of genes in the renin-angiotensin system, especially CTSA, LNPEP, and MAS1, in the left atrium in MR patients significantly differed from expressions of these genes in aortic valve disease patients and normal controls. Notably, differences in expression were independent of circulating angiotensin II levels. The results of this study provide a rationale for pharmacological therapies or posttranslational regulation therapies targeting genes expressed differentially in the renin-angiotensin system to remedy structural remodeling associated with atrial enlargement and heart failure progression in patients with MR.
Collapse
|
16
|
Vanga SR, Sävmarker J, Ng L, Larhed M, Hallberg M, Åqvist J, Hallberg A, Chai SY, Gutiérrez-de-Terán H. Structural Basis of Inhibition of Human Insulin-Regulated Aminopeptidase (IRAP) by Aryl Sulfonamides. ACS OMEGA 2018; 3:4509-4521. [PMID: 30023895 PMCID: PMC6045421 DOI: 10.1021/acsomega.8b00595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/16/2018] [Indexed: 05/07/2023]
Abstract
The insulin-regulated aminopeptidase (IRAP) is a membrane-bound zinc metallopeptidase with many important regulatory functions. It has been demonstrated that inhibition of IRAP by angiotensin IV (Ang IV) and other peptides, as well as more druglike inhibitors, improves cognition in several rodent models. We recently reported a series of aryl sulfonamides as small-molecule IRAP inhibitors and a promising scaffold for pharmacological intervention. We have now expanded with a number of derivatives, report their stability in liver microsomes, and characterize the activity of the whole series in a new assay performed on recombinant human IRAP. Several compounds, such as the new fluorinated derivative 29, present submicromolar affinity and high metabolic stability. Starting from the two binding modes previously proposed for the sulfonamide scaffold, we systematically performed molecular dynamics simulations and binding affinity estimation with the linear interaction energy method for the full compound series. The significant agreement with experimental affinities suggests one of the binding modes, which was further confirmed by the excellent correlation for binding affinity differences between the selected pair of compounds obtained by rigorous free energy perturbation calculations. The new experimental data and the computationally derived structure-activity relationship of the sulfonamide series provide valuable information for further lead optimization of novel IRAP inhibitors.
Collapse
Affiliation(s)
- Sudarsana Reddy Vanga
- Department
of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751
24 Uppsala, Sweden
| | - Jonas Sävmarker
- Department of Medicinal Chemistry and Science for Life Laboratory, Department
of Medicinal Chemistry, Uppsala University,
BMC, SE-751 24 Uppsala, Sweden
| | - Leelee Ng
- Biomedicine
Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Mats Larhed
- Department of Medicinal Chemistry and Science for Life Laboratory, Department
of Medicinal Chemistry, Uppsala University,
BMC, SE-751 24 Uppsala, Sweden
| | - Mathias Hallberg
- The
Beijer Laboratory, Department of Pharmaceutical Biosciences, Division
of Biological Research on Drug Dependence, Uppsala University, BMC, SE-751 23 Uppsala, Sweden
| | - Johan Åqvist
- Department
of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751
24 Uppsala, Sweden
| | - Anders Hallberg
- Department of Medicinal Chemistry and Science for Life Laboratory, Department
of Medicinal Chemistry, Uppsala University,
BMC, SE-751 24 Uppsala, Sweden
| | - Siew Yeen Chai
- Biomedicine
Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
- E-mail: . Phone: +61 3 990 52515. Fax: +61 3 990 52547 (S.Y.C.)
| | - Hugo Gutiérrez-de-Terán
- Department
of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751
24 Uppsala, Sweden
- E-mail: . Phone: +46 18 471 5056. Fax: +46 18 53 69 71 (H.G.-d.-T.)
| |
Collapse
|
17
|
Elkins EA, Walti KA, Newberry KE, Lema SC. Identification of an oxytocinase/vasopressinase-like leucyl-cystinyl aminopeptidase (LNPEP) in teleost fish and evidence for hypothalamic mRNA expression linked to behavioral social status. Gen Comp Endocrinol 2017; 250:58-69. [PMID: 28596078 DOI: 10.1016/j.ygcen.2017.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/03/2017] [Accepted: 06/04/2017] [Indexed: 02/06/2023]
Abstract
The vasotocin/vasopressin and isotocin/mesotocin/oxytocin family of nonapeptides regulate social behaviors and physiological functions associated with reproductive physiology and osmotic balance. While experimental and correlative studies provide evidence for these nonapeptides as modulators of behavior across all classes of vertebrates, mechanisms for nonapeptide inactivation in regulating these functions have been largely overlooked. Leucyl-cystinyl aminopeptidase (LNPEP) - also known as vasopressinase, oxytocinase, placental leucine aminopeptidase (P-LAP), and insulin-regulated aminopeptidase (IRAP) - is a membrane-bound zinc-dependent metalloexopeptidase enzyme that inactivates vasopressin, oxytocin, and select other cyclic polypeptides. In humans, LNPEP plays a key role in the clearance of oxytocin during pregnancy. However, the evolutionary diversity, expression distribution, and functional roles of LNPEP remain unresolved for other vertebrates. Here, we isolated and sequenced a full-length cDNA encoding a LNPEP-like polypeptide of 1033 amino acids from the ovarian tissue of Amargosa pupfish, Cyprinodon nevadensis. This deduced polypeptide exhibited high amino acid identity to human LNPEP both in the protein's active domain that includes the peptide binding site and zinc cofactor binding motif (53.1% identity), and in an intracellular region that distinguishes LNPEP from other aminopeptidases (70.3% identity). Transcripts encoding this LNPEP enzyme (lnpep) were detected at highest relative abundance in the gonads, hypothalamus, forebrain, optic tectum, gill and skeletal muscle of adult pupfish. Further evaluation of lnpep transcript abundance in the brain of sexually-mature pupfish revealed that lnpep mRNAs were elevated in the hypothalamus of socially subordinate females and males, and at lower abundance in the telencephalon of socially dominant males compared to dominant females. These findings provide evidence of an association between behavioral social status and hypothalamic lnpep transcript abundance and suggest that variation in the rate of VT/IT peptide inactivation by LNPEP may be a contributing component in the mechanism whereby nonapeptides regulate social behavior.
Collapse
Affiliation(s)
- Emma A Elkins
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kayla A Walti
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kathryn E Newberry
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
18
|
Bernstein HG, Müller S, Dobrowolny H, Wolke C, Lendeckel U, Bukowska A, Keilhoff G, Becker A, Trübner K, Steiner J, Bogerts B. Insulin-regulated aminopeptidase immunoreactivity is abundantly present in human hypothalamus and posterior pituitary gland, with reduced expression in paraventricular and suprachiasmatic neurons in chronic schizophrenia. Eur Arch Psychiatry Clin Neurosci 2017; 267:427-443. [PMID: 28035472 DOI: 10.1007/s00406-016-0757-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
Abstract
The vasopressin- and oxytocin-degrading enzyme insulin-regulated aminopeptidase (IRAP) is expressed in various organs including the brain. However, knowledge about its presence in human hypothalamus is fragmentary. Functionally, for a number of reasons (genetic linkage, hydrolysis of oxytocin and vasopressin, its role as angiotensin IV receptor in learning and memory and others) IRAP might play a role in schizophrenia. We studied the regional and cellular localization of IRAP in normal human brain with special emphasis on the hypothalamus and determined numerical densities of IRAP-expressing cells in the paraventricular, supraoptic and suprachiasmatic nuclei in schizophrenia patients and controls. By using immunohistochemistry and Western blot analysis, IRAP was immunolocalized in postmortem human brains. Cell countings were performed to estimate numbers and numerical densities of IRAP immunoreactive hypothalamic neurons in schizophrenia patients and control cases. Shape, size and regional distribution of IRAP-expressing cells, as well the lack of co-localization with the glia marker glutamine synthetase, show that IRAP is expressed in neurons. IRAP immunoreactive cells were observed in the hippocampal formation, cerebral cortex, thalamus, amygdala and, abundantly, hypothalamus. Double labeling experiments (IRAP and oxytocin/neurophysin 1, IRAP with vasopressin/neurophysin 2) revealed that IRAP is present in oxytocinergic and in vasopressinergic neurons. In schizophrenia patients, the numerical density of IRAP-expressing neurons in the paraventricular and the suprachiasmatic nuclei is significantly reduced, which might be associated with the reduction in neurophysin-containing neurons in these nuclei in schizophrenia. The pathophysiological role of lowered hypothalamic IRAP expression in schizophrenia remains to be established.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Susan Müller
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Hendrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Carmen Wolke
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz-Arndt-University, 17475, Greifswald, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz-Arndt-University, 17475, Greifswald, Germany
| | - Alicja Bukowska
- EUTRAF Working Group, Molecular Electrophysiology, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Medical Faculty, University of Magdeburg, 39120, Magdeburg, Germany
| | - Axel Becker
- Institute of Pharmacology and Toxicology, Medical Faculty, University of Magdeburg, 39120, Magdeburg, Germany
| | - Kurt Trübner
- Department for Legal Medicine, University of Duisburg-Essen, 45141, Essen, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| |
Collapse
|
19
|
Supplementation with zinc in rats enhances memory and reverses an age-dependent increase in plasma copper. Behav Brain Res 2017; 333:179-183. [PMID: 28693861 DOI: 10.1016/j.bbr.2017.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/26/2022]
Abstract
Zinc and copper are essential trace elements. Dyshomeostasis in these two metals has been observed in Alzheimer's disease, which causes profound cognitive impairment. Insulin therapy has been shown to enhance cognitive performance; however, recent data suggest that this effect may be at least in part due to the inclusion of zinc in the insulin formulation used. Zinc plays a key role in regulation of neuronal glutamate signaling, suggesting a possible link between zinc and memory processes. Consistent with this, zinc deficiency causes cognitive impairments in children. The effect of zinc supplementation on short- and long-term recognition memory, and on spatial working memory, was explored in young and adult male Sprague Dawley rats. After behavioral testing, hippocampal and plasma zinc and copper were measured. Age increased hippocampal zinc and copper, as well as plasma copper, and decreased plasma zinc. An interaction between age and treatment affecting plasma copper was also found, with zinc supplementation reversing elevated plasma copper concentration in adult rats. Zinc supplementation enhanced cognitive performance across tasks. These data support zinc as a plausible therapeutic intervention to ameliorate cognitive impairment in disorders characterized by alterations in zinc and copper, such as Alzheimer's disease.
Collapse
|
20
|
Hallberg M, Sumners C, Steckelings UM, Hallberg A. Small-molecule AT2 receptor agonists. Med Res Rev 2017; 38:602-624. [DOI: 10.1002/med.21449] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/03/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, BMC; Uppsala University; P.O. Box 591 SE751 24 Uppsala Sweden
| | - Colin Sumners
- Department of Physiology and Functional Genomics, University of Florida; College of Medicine and McKnight Brain Institute; Gainesville FL 32611
| | - U. Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research; University of Southern Denmark; P.O. Box 5230 Odense Denmark
| | - Anders Hallberg
- Department of Medicinal Chemistry, BMC; Uppsala University; P.O. Box 574 SE-751 23 Uppsala Sweden
| |
Collapse
|
21
|
Rossi F, Mascolo A, Mollace V. The pathophysiological role of natriuretic peptide-RAAS cross talk in heart failure. Int J Cardiol 2016; 226:121-125. [PMID: 27062428 DOI: 10.1016/j.ijcard.2016.03.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/19/2016] [Indexed: 12/22/2022]
Abstract
Chronic Heart Failure (HF) is still a disease state characterized by elevated morbidity and mortality and represents an unresolved problem for its socio-economic impact. Besides many of the pathophysiological events leading to advanced HF have been widely disclosed in the past decades, the role of neuro-hormonal dysregulation accompanying HF has to be clearly assessed with the objective of better therapeutic approaches in treating such a disease. In the present review article, alongside with a brief re-evaluation of general aspects of HF physiopathology, we summarize recent advances in the cross talk between renin-angiotensin-aldosterone system (RAAS) with natriuretic peptides (NPs) which have been shown to play a relevant role in the development of severe HF. The role of RAAS-NPs interplay has been shown to be crucial in both hemodynamic and tissue remodeling associated to cardiomyocyte dysfunction, leading to advanced impairment of left ventricular performance. On the basis of these results, the development of drugs resetting both RAAS and NPs system seems to be promising for a successful long term treatment of chronic HF.
Collapse
Affiliation(s)
- Francesco Rossi
- Second University of Naples, Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Napoli, Italy
| | - Annamaria Mascolo
- Second University of Naples, Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Napoli, Italy.
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Italy
| |
Collapse
|
22
|
Diwakarla S, Nylander E, Grönbladh A, Vanga SR, Khan YS, Gutiérrez-de-Terán H, Ng L, Pham V, Sävmarker J, Lundbäck T, Jenmalm-Jensen A, Andersson H, Engen K, Rosenström U, Larhed M, Åqvist J, Chai SY, Hallberg M. Binding to and Inhibition of Insulin-Regulated Aminopeptidase by Macrocyclic Disulfides Enhances Spine Density. Mol Pharmacol 2016; 89:413-24. [PMID: 26769413 DOI: 10.1124/mol.115.102533] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/13/2016] [Indexed: 01/28/2023] Open
Abstract
Angiotensin IV (Ang IV) and related peptide analogs, as well as nonpeptide inhibitors of insulin-regulated aminopeptidase (IRAP), have previously been shown to enhance memory and cognition in animal models. Furthermore, the endogenous IRAP substrates oxytocin and vasopressin are known to facilitate learning and memory. In this study, the two recently synthesized 13-membered macrocyclic competitive IRAP inhibitors HA08 and HA09, which were designed to mimic the N terminus of oxytocin and vasopressin, were assessed and compared based on their ability to bind to the IRAP active site, and alter dendritic spine density in rat hippocampal primary cultures. The binding modes of the IRAP inhibitors HA08, HA09, and of Ang IV in either the extended or γ-turn conformation at the C terminus to human IRAP were predicted by docking and molecular dynamics simulations. The binding free energies calculated with the linear interaction energy method, which are in excellent agreement with experimental data and simulations, have been used to explain the differences in activities of the IRAP inhibitors, both of which are structurally very similar, but differ only with regard to one stereogenic center. In addition, we show that HA08, which is 100-fold more potent than the epimer HA09, can enhance dendritic spine number and alter morphology, a process associated with memory facilitation. Therefore, HA08, one of the most potent IRAP inhibitors known today, may serve as a suitable starting point for medicinal chemistry programs aided by MD simulations aimed at discovering more drug-like cognitive enhancers acting via augmenting synaptic plasticity.
Collapse
Affiliation(s)
- Shanti Diwakarla
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Erik Nylander
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Alfhild Grönbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Sudarsana Reddy Vanga
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Yasmin Shamsudin Khan
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Hugo Gutiérrez-de-Terán
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Leelee Ng
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Vi Pham
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Jonas Sävmarker
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Thomas Lundbäck
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Annika Jenmalm-Jensen
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Hanna Andersson
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Karin Engen
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Ulrika Rosenström
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Mats Larhed
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Johan Åqvist
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Siew Yeen Chai
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence (S.D., E.N., A.G., M.H.), Department of Cell and Molecular Biology (S.R.V., Y.S.K., H.G.T., J.A.), The Beijer Laboratory, Department of Medicinal Chemistry (J.S.), Department of Medicinal Chemistry (H.A., K.E., U.R.), Science for Life Laboratory, Department of Medicinal Chemistry (M.L.), BMC, Uppsala University, Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medicinal Biochemistry and Biophysics (T.L., A.J.), Karolinska Institute, Sweden; and Biomedicine Discovery Institute, Department of Physiology (L.N., V.P., S.Y.C.), Monash University, Melbourne, Australia
| |
Collapse
|
23
|
Svensson F, Engen K, Lundbäck T, Larhed M, Sköld C. Virtual Screening for Transition State Analogue Inhibitors of IRAP Based on Quantum Mechanically Derived Reaction Coordinates. J Chem Inf Model 2015; 55:1984-93. [DOI: 10.1021/acs.jcim.5b00359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Fredrik Svensson
- Organic
Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University, P.O.
Box 574, SE-751 23 Uppsala, Sweden
| | - Karin Engen
- Organic
Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University, P.O.
Box 574, SE-751 23 Uppsala, Sweden
| | - Thomas Lundbäck
- Chemical
Biology Consortium Sweden, Science for Life Laboratory, Division of
Translational Medicine and Chemical Biology, Department of Medical
Biochemistry and Biophysics, Karolinska Institutet, Tomtebodavägen
23A, SE-171 65 Solna, Sweden
| | - Mats Larhed
- Science
for Life Laboratory, Department of Medicinal Chemistry, BMC, Uppsala University, P.O.
Box 574, SE-751 23 Uppsala, Sweden
| | - Christian Sköld
- Organic
Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University, P.O.
Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
24
|
Hallberg M. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors. Med Res Rev 2015; 35:464-519. [PMID: 24894913 DOI: 10.1002/med.21323] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals. However, as discussed herein relatively few examples have so far been disclosed of successful attempts to create bioavailable, drug-like agonists or antagonists, starting from the structure of endogenous peptide fragments and applying procedures relying on stepwise manipulations and simplifications of the peptide structures.
Collapse
Affiliation(s)
- Mathias Hallberg
- Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
25
|
Abstract
The renin-angiotensin-aldosterone system (RAAS) regulates blood pressure homeostasis and vascular injury and repair responses. The RAAS was originally thought to be an endocrine system critically important in regulating blood pressure homeostasis. Yet, important local forms of the RAAS have been described in many tissues, which are mostly independent of the systemic RAAS. These systems have been associated with diverse physiological functions, but also with inflammation, fibrosis and target-organ damage. Pharmacological modulation of the RAAS has brought about important advances in preventing morbidity and mortality associated with cardiovascular disease. Yet, traditional RAAS blockers such as angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) only reduce the risk of disease progression in patients with established cardiovascular or renal disease by ∼20% compared with other therapies. As more components of the RAAS are described, other potential therapeutic targets emerge, which could provide improved cardiovascular and renal protection beyond that provided by an ACE inhibitor or ARB. This Review summarizes the present and future pharmacological manipulation of this important system.
Collapse
Affiliation(s)
- Cesar A. Romero
- grid.413103.40000 0001 2160 8953Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, E&R 7th Floor, Room 7112, Detroit, 48202 MI USA
| | - Marcelo Orias
- Section of Nephrology, Sanatorio Allende, Hipólito Irigoyen 301, Córdoba, 5000 Argentina
| | - Matthew R. Weir
- grid.411024.20000 0001 2175 4264Division of Nephrology, University of Maryland Medical School, 22 South Greene Street, Baltimore, 21201 MD USA
| |
Collapse
|
26
|
McCarthy CA, Facey LJ, Widdop RE. The protective arms of the renin-angiontensin system in stroke. Curr Hypertens Rep 2015; 16:440. [PMID: 24816974 DOI: 10.1007/s11906-014-0440-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It is quite well established that activation of the so-called protective arms of the renin-angiotensin system (RAS), involving both AT2 and Mas receptors, provides a counter-regulatory role to AT1 receptor overactivity that may drive pathological changes in the cardiovascular system. In this brief review, we will focus on recent evidence that identifies at least three different pathways that may be effective in the setting of stroke and may be complementary with AT1 receptor blockade. Such mechanisms include AT2 receptor stimulation, Mas receptor stimulation and insulin-regulated aminopeptidase blockade. This report highlights recent data demonstrating striking neuroprotective effects in preclinical models of stroke targeting each of these pathways, which may pave the way for translational opportunities in this field.
Collapse
Affiliation(s)
- Claudia A McCarthy
- Department of Pharmacology, Monash University, Clayton, Victoria, 3800, Australia
| | | | | |
Collapse
|
27
|
Hermans SJ, Ascher DB, Hancock NC, Holien JK, Michell BJ, Chai SY, Morton CJ, Parker MW. Crystal structure of human insulin-regulated aminopeptidase with specificity for cyclic peptides. Protein Sci 2014; 24:190-9. [PMID: 25408552 DOI: 10.1002/pro.2604] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/10/2014] [Indexed: 11/12/2022]
Abstract
Insulin-regulated aminopeptidase (IRAP or oxytocinase) is a membrane-bound zinc-metallopeptidase that cleaves neuroactive peptides in the brain and produces memory enhancing effects when inhibited. We have determined the crystal structure of human IRAP revealing a closed, four domain arrangement with a large, mostly buried cavity abutting the active site. The structure reveals that the GAMEN exopeptidase loop adopts a very different conformation from other aminopeptidases, thus explaining IRAP's unique specificity for cyclic peptides such as oxytocin and vasopressin. Computational docking of a series of IRAP-specific cognitive enhancers into the crystal structure provides a molecular basis for their structure-activity relationships and demonstrates that the structure will be a powerful tool in the development of new classes of cognitive enhancers for treating a variety of memory disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Stefan J Hermans
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Victoria, 3065, Australia
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Borhade SR, Rosenström U, Sävmarker J, Lundbäck T, Jenmalm-Jensen A, Sigmundsson K, Axelsson H, Svensson F, Konda V, Sköld C, Larhed M, Hallberg M. Inhibition of Insulin-Regulated Aminopeptidase (IRAP) by Arylsulfonamides. ChemistryOpen 2014; 3:256-63. [PMID: 25558444 PMCID: PMC4280825 DOI: 10.1002/open.201402027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Indexed: 01/07/2023] Open
Abstract
The inhibition of insulin-regulated aminopeptidase (IRAP, EC 3.4.11.3) by angiotenesin IV is known to improve memory and learning in rats. Screening 10 500 low-molecular-weight compounds in an enzyme inhibition assay with IRAP from Chinese Hamster Ovary (CHO) cells provided an arylsulfonamide (N-(3-(1H-tetrazol-5-yl)phenyl)-4-bromo-5-chlorothiophene-2-sulfonamide), comprising a tetrazole in the meta position of the aromatic ring, as a hit. Analogues of this hit were synthesized, and their inhibitory capacities were determined. A small structure-activity relationship study revealed that the sulfonamide function and the tetrazole ring are crucial for IRAP inhibition. The inhibitors exhibited a moderate inhibitory potency with an IC50=1.1±0.5 μm for the best inhibitor in the series. Further optimization of this new class of IRAP inhibitors is required to make them attractive as research tools and as potential cognitive enhancers.
Collapse
Affiliation(s)
- Sanjay R Borhade
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574, 751 23 Uppsala (Sweden)
| | - Ulrika Rosenström
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574, 751 23 Uppsala (Sweden)
| | - Jonas Sävmarker
- Beijer Laboratory, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574, 751 23 Uppsala (Sweden)
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet Stockholm 171 77 (Sweden)
| | - Annika Jenmalm-Jensen
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet Stockholm 171 77 (Sweden)
| | - Kristmundur Sigmundsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet Stockholm 171 77 (Sweden)
| | - Hanna Axelsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet Stockholm 171 77 (Sweden)
| | - Fredrik Svensson
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574, 751 23 Uppsala (Sweden)
| | - Vivek Konda
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574, 751 23 Uppsala (Sweden)
| | - Christian Sköld
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574, 751 23 Uppsala (Sweden)
| | - Mats Larhed
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University P.O. Box 574, 751 23 Uppsala (Sweden)
| | - Mathias Hallberg
- Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, BMC, Uppsala University P.O. Box 591, 751 24 Uppsala (Sweden) E-mail:
| |
Collapse
|
29
|
Engen K, Sävmarker J, Rosenström U, Wannberg J, Lundbäck T, Jenmalm-Jensen A, Larhed M. Microwave Heated Flow Synthesis of Spiro-oxindole Dihydroquinazolinone Based IRAP Inhibitors. Org Process Res Dev 2014. [DOI: 10.1021/op500237k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | | | - Thomas Lundbäck
- Chemical
Biology Consortium Sweden, Science for Life Laboratory, Division of
Translational Medicine and Chemical Biology, Department of Medical
Biochemistry and Biophysics, Karolinska Institutet, Tomtebodavägen
23A, SE-171 65 Solna, Sweden
| | - Annika Jenmalm-Jensen
- Chemical
Biology Consortium Sweden, Science for Life Laboratory, Division of
Translational Medicine and Chemical Biology, Department of Medical
Biochemistry and Biophysics, Karolinska Institutet, Tomtebodavägen
23A, SE-171 65 Solna, Sweden
| | | |
Collapse
|
30
|
Johansson J, Grönbladh A, Hallberg M. Gamma-hydroxybutyrate (GHB) induces cognitive deficits and affects GABAB receptors and IGF-1 receptors in male rats. Behav Brain Res 2014; 269:164-74. [DOI: 10.1016/j.bbr.2014.04.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/16/2014] [Accepted: 04/19/2014] [Indexed: 12/30/2022]
|
31
|
Nikolaou A, Stijlemans B, Laoui D, Schouppe E, Tran HTT, Tourwé D, Chai SY, Vanderheyden PML, Van Ginderachter JA. Presence and regulation of insulin-regulated aminopeptidase in mouse macrophages. J Renin Angiotensin Aldosterone Syst 2014; 15:466-79. [DOI: 10.1177/1470320313507621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Alexandros Nikolaou
- Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Benoit Stijlemans
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Elio Schouppe
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Huyen TT Tran
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Dirk Tourwé
- Laboratory of Organic Chemistry, Vrije Universiteit Brussel, Belgium
| | - Siew Y Chai
- Department of Physiology, Monash University, Australia
| | | | - Jo A Van Ginderachter
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| |
Collapse
|