1
|
Hu J, Zhang G, Rodemer W, Jin LQ, Selzer ME. Combined RhoA morpholino and ChABC treatment protects identified lamprey neurons from retrograde apoptosis after spinal cord injury. Front Cell Neurosci 2023; 17:1292012. [PMID: 38179205 PMCID: PMC10764559 DOI: 10.3389/fncel.2023.1292012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
Previously, we reported that RhoA knockdown by morpholino antisense oligonucleotides (MOs), and enzymatic digestion of chondroitin sulfate proteoglycans (CSPGs) at the site of injury with chondroitinase ABC (ChABC), each can reduce retrograde neuronal apoptosis after spinal cord transection in the lamprey. To elucidate the mechanisms in neuronal survival and axon regeneration, we have investigated whether these two effects are additive in vivo. We used lampreys as a spinal cord injury model. MOs were used to knockdown RhoA and Chondroitinase ABC (ChABC) was used to digest CSPGs in vivo. Retrograde labeling, fluorochrome-labeled inhibitor of caspase activity (FLICA), immunohistochemistry, and western blots were performed to assess axonal regeneration, neuronal apoptotic signaling and Akt activation. Four treatment combinations were evaluated at 2-, 4-, and 10-weeks post-transection: (1) Control MO plus enzyme buffer (Ctrl); (2) control MO plus ChABC; (3) RhoA MO plus enzyme buffer (RhoA MO); and (4) RhoA MO plus ChABC (RhoA MO + ChABC). Consistent with our previous findings, at 4-weeks post-transection, there was less caspase activation in the ChABC and RhoA MO groups than in the Ctrl group. Moreover, the RhoA MO plus ChABC group had the best protective effect on identified reticulospinal (RS) neurons among the four treatment combinations. At 2 weeks post-transection, when axons have retracted maximally in the rostral stump and are beginning to regenerate back toward the lesion, the axon tips in the three treatment groups each were closer to the transection than those in the Ctr MO plus enzyme buffer group. Long-term axon regeneration also was evaluated for the large, individually identified RS neurons at 10 weeks post-transection by retrograde labeling. The percent regenerated axons in the RhoA MO plus ChABC group was greater than that in any of the other groups. Akt phosphorylation levels at threonine 308 was quantified in the identified RS neurons by western blots and immunofluorescence. The RhoA MO plus ChABC treatment enhanced pAkt-308 phosphorylation more than any of the other treatment groups. Although some of the effects of CSPGs are mediated through RhoA activation, some growth-inhibiting mechanisms of RhoA and CSPGs are independent of each other, so combinatorial therapies may be warranted.
Collapse
Affiliation(s)
- Jianli Hu
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine (LKSOM) at Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, LKSOM, Philadelphia, PA, United States
| | - Guixin Zhang
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine (LKSOM) at Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, LKSOM, Philadelphia, PA, United States
| | - William Rodemer
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Li-Qing Jin
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine (LKSOM) at Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, LKSOM, Philadelphia, PA, United States
| | - Michael E. Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine (LKSOM) at Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, LKSOM, Philadelphia, PA, United States
- Department of Neurology, LKSOM, Philadelphia, PA, United States
| |
Collapse
|
2
|
Hu J, Rodemer W, Zhang G, Jin LQ, Li S, Selzer ME. Chondroitinase ABC Promotes Axon Regeneration and Reduces Retrograde Apoptosis Signaling in Lamprey. Front Cell Dev Biol 2021; 9:653638. [PMID: 33842481 PMCID: PMC8027354 DOI: 10.3389/fcell.2021.653638] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
Paralysis following spinal cord injury (SCI) is due to failure of axonal regeneration. It is believed that axon growth is inhibited by the presence of several types of inhibitory molecules in central nervous system (CNS), including the chondroitin sulfate proteoglycans (CSPGs). Many studies have shown that digestion of CSPGs with chondroitinase ABC (ChABC) can enhance axon growth and functional recovery after SCI. However, due to the complexity of the mammalian CNS, it is still unclear whether this involves true regeneration or only collateral sprouting by uninjured axons, whether it affects the expression of CSPG receptors such as protein tyrosine phosphatase sigma (PTPσ), and whether it influences retrograde neuronal apoptosis after SCI. In the present study, we assessed the roles of CSPGs in the regeneration of spinal-projecting axons from brainstem neurons, and in the process of retrograde neuronal apoptosis. Using the fluorochrome-labeled inhibitor of caspase activity (FLICA) method, apoptotic signaling was seen primarily in those large, individually identified reticulospinal (RS) neurons that are known to be “bad-regenerators.” Compared to uninjured controls, the number of all RS neurons showing polycaspase activity increased significantly at 2, 4, 8, and 11 weeks post-transection (post-TX). ChABC application to a fresh TX site reduced the number of polycaspase-positive RS neurons at 2 and 11 weeks post-TX, and also reduced the number of active caspase 3-positive RS neurons at 4 weeks post-TX, which confirmed the beneficial role of ChABC treatment in retrograde apoptotic signaling. ChABC treatment also greatly promoted axonal regeneration at 10 weeks post-TX. Correspondingly, PTPσ mRNA expression was reduced in the perikaryon. Previously, PTPσ mRNA expression was shown to correlate with neuronal apoptotic signaling at 2 and 10 weeks post-TX. In the present study, this correlation persisted after ChABC treatment, which suggests that PTPσ may be involved more generally in signaling axotomy-induced retrograde neuronal apoptosis. Moreover, ChABC treatment caused Akt activation (pAkt-308) to be greatly enhanced in brain post-TX, which was further confirmed in individually identified RS neurons. Thus, CSPG digestion not only enhances axon regeneration after SCI, but also inhibits retrograde RS neuronal apoptosis signaling, possibly by reducing PTPσ expression and enhancing Akt activation.
Collapse
Affiliation(s)
- Jianli Hu
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - William Rodemer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Guixin Zhang
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Li-Qing Jin
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Liu Y, Xu X, Wang X, Zhu T, Li J, Pang Y, Li Q. Analysis of the lamprey genotype provides insights into caspase evolution and functional divergence. Mol Immunol 2021; 132:8-20. [PMID: 33524772 DOI: 10.1016/j.molimm.2021.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/28/2022]
Abstract
The cysteine-containing aspartate specific proteinase (caspase) family plays important roles in apoptosis and the maintenance of homeostasis in lampreys. We conducted genomic and functional comparisons of six distinct lamprey caspase groups with human counterparts to determine how these expanded molecules evolved to adapt to the changing caspase-mediated signaling pathways. Our results showed that lineage-specific duplication and rearrangement were responsible for expanding lamprey caspases 3 and 7, whereas caspases 1, 6, 8, and 9 maintained a relatively stable genome and protein structure. Lamprey caspase family molecules displayed various expression patterns and were involved in the innate immune response. Caspase 1 and 7 functioned as a pattern recognition receptor with a broad-spectrum of microbial recognition and bactericidal effect. Additionally, caspases 1 and 7 may induce cell apoptosis in a time- and dose-dependent manner; however, apoptosis was inhibited by caspase inhibitors. Thus, these molecules may reflect the original state of the vertebrates caspase family. Our phylogenetic and functional data provide insights into the evolutionary history of caspases and illustrate their functional characteristics in primitive vertebrates.
Collapse
Affiliation(s)
- Ying Liu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Xiaoluan Xu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Xiaotong Wang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Ting Zhu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Jun Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
4
|
Zhang G, Rodemer W, Sinitsa I, Hu J, Selzer ME. Source of Early Regenerating Axons in Lamprey Spinal Cord Revealed by Wholemount Optical Clearing with BABB. Cells 2020; 9:cells9112427. [PMID: 33172031 PMCID: PMC7694618 DOI: 10.3390/cells9112427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022] Open
Abstract
Many studies of axon regeneration in the lamprey focus on 18 pairs of large identified reticulospinal (RS) neurons, whose regenerative abilities have been individually quantified. Their axons retract during the first 2 weeks after transection (TX), and many grow back to the site of injury by 4 weeks. However, locomotor movements begin before 4 weeks and the lesion is invaded by axons as early as 2 weeks post-TX. The origins of these early regenerating axons are unknown. Their identification could be facilitated by studies in central nervous system (CNS) wholemounts, particularly if spatial resolution and examination by confocal microscopy were not limited by light scattering. We have used benzyl alcohol/benzyl benzoate (BABB) clearing to enhance the resolution of neuronal perikarya and regenerated axons by confocal microscopy in lamprey CNS wholemounts, and to assess axon regeneration by retrograde and anterograde labeling with fluorescent dye applied to a second TX caudal or rostral to the original lesion, respectively. We found that over 50% of the early regenerating axons belonged to small neurons in the brainstem. Some propriospinal neurons located close to the TX also contributed to early regeneration. The number of early regenerating propriospinal neurons decreased with distance from the original lesion. Descending axons from the brainstem were labeled anterogradely by application of tracer to a second TX close to the spinal-medullary junction. This limited contamination of the data by regenerating spinal axons whose cell bodies are located rostral or caudal to the TX and confirmed the regeneration of many small RS axons as early as 2 weeks post-TX. Compared with the behavior of axotomized giant axons, the early regenerating axons were of small caliber and showed little retraction, probably because they resealed rapidly after injury.
Collapse
Affiliation(s)
- Guixin Zhang
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA; (G.Z.); (W.R.); (J.H.)
| | - William Rodemer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA; (G.Z.); (W.R.); (J.H.)
| | - Isabelle Sinitsa
- College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Jianli Hu
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA; (G.Z.); (W.R.); (J.H.)
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA; (G.Z.); (W.R.); (J.H.)
- Department of Neurology, the Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
- Correspondence:
| |
Collapse
|
5
|
Sobrido-Cameán D, Robledo D, Romaus-Sanjurjo D, Pérez-Cedrón V, Sánchez L, Rodicio MC, Barreiro-Iglesias A. Inhibition of Gamma-Secretase Promotes Axon Regeneration After a Complete Spinal Cord Injury. Front Cell Dev Biol 2020; 8:173. [PMID: 32266257 PMCID: PMC7100381 DOI: 10.3389/fcell.2020.00173] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
In a recent study, we showed that GABA and baclofen (a GABAB receptor agonist) inhibit caspase activation and promote axon regeneration in descending neurons of the sea lamprey brainstem after a complete spinal cord injury (Romaus-Sanjurjo et al., 2018a). Now, we repeated these treatments and performed 2 independent Illumina RNA-Sequencing studies in the brainstems of control and GABA or baclofen treated animals. GABA treated larval sea lampreys with their controls were analyzed 29 days after a complete spinal cord injury and baclofen treated larvae with their controls 9 days after the injury. One of the most significantly downregulated genes after both treatments was a HES gene (HESB). HES proteins are transcription factors that are key mediators of the Notch signaling pathway and gamma-secretase activity is crucial for the activation of this pathway. So, based on the RNA-Seq results we subsequently treated spinal cord injured larval sea lampreys with a novel gamma-secretase inhibitor (PF-3804014). This treatment also reduced the expression of HESB in the brainstem and significantly enhanced the regeneration of individually identifiable descending neurons after a complete spinal cord injury. Our results show that gamma-secretase could be a novel target to promote axon regeneration after nervous system injuries.
Collapse
Affiliation(s)
- Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Romaus-Sanjurjo
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Vanessa Pérez-Cedrón
- Department of Genetics, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura Sánchez
- Department of Genetics, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
6
|
Rodemer W, Zhang G, Sinitsa I, Hu J, Jin LQ, Li S, Selzer ME. PTPσ Knockdown in Lampreys Impairs Reticulospinal Axon Regeneration and Neuronal Survival After Spinal Cord Injury. Front Cell Neurosci 2020; 14:61. [PMID: 32265663 PMCID: PMC7096546 DOI: 10.3389/fncel.2020.00061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/02/2020] [Indexed: 01/10/2023] Open
Abstract
Traumatic spinal cord injury (SCI) results in persistent functional deficits due to the lack of axon regeneration within the mammalian CNS. After SCI, chondroitin sulfate proteoglycans (CSPGs) inhibit axon regrowth via putative interactions with the LAR-family protein tyrosine phosphatases, PTPσ and LAR, localized on the injured axon tips. Unlike mammals, the sea lamprey, Petromyzon marinus, robustly recovers locomotion after complete spinal cord transection (TX). Behavioral recovery is accompanied by heterogeneous yet predictable anatomical regeneration of the lamprey's reticulospinal (RS) system. The identified RS neurons can be categorized as "good" or "bad" regenerators based on the likelihood that their axons will regenerate. Those neurons that fail to regenerate their axons undergo a delayed form of caspase-mediated cell death. Previously, this lab reported that lamprey PTPσ mRNA is selectively expressed in "bad regenerator" RS neurons, preceding SCI-induced caspase activation. Consequently, we hypothesized that PTPσ deletion would reduce retrograde cell death and promote axon regeneration. Using antisense morpholino oligomers (MOs), we knocked down PTPσ expression after TX and assessed the effects on axon regeneration, caspase activation, intracellular signaling, and behavioral recovery. Unexpectedly, PTPσ knockdown significantly impaired RS axon regeneration at 10 weeks post-TX, primarily due to reduced long-term neuron survival. Interestingly, cell loss was not preceded by an increase in caspase or p53 activation. Behavioral recovery was largely unaffected, although PTPσ knockdowns showed mild deficits in the recovery of swimming distance and latency to immobility during open field swim assays. Although the mechanism underlying the cell death following TX and PTPσ knockdown remains unknown, this study suggests that PTPσ is not a net negative regulator of long tract axon regeneration in lampreys.
Collapse
Affiliation(s)
- William Rodemer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Guixin Zhang
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Isabelle Sinitsa
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Jianli Hu
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Li-qing Jin
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
7
|
Sobrido-Cameán D, Fernández-López B, Pereiro N, Lafuente A, Rodicio MC, Barreiro-Iglesias A. Taurine Promotes Axonal Regeneration after a Complete Spinal Cord Injury in Lampreys. J Neurotrauma 2020; 37:899-903. [DOI: 10.1089/neu.2019.6604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Daniel Sobrido-Cameán
- Department of Functional Biology, Universidade de Santiago de Compostela, Compostela, Spain
| | - Blanca Fernández-López
- Department of Functional Biology, Universidade de Santiago de Compostela, Compostela, Spain
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Natividad Pereiro
- Laboratory of Toxicology, University of Vigo, Ourense, Spain
- Tragsatec, Madrid, Spain
| | | | - María Celina Rodicio
- Department of Functional Biology, Universidade de Santiago de Compostela, Compostela, Spain
| | | |
Collapse
|
8
|
Chen J, Shifman MI. Inhibition of neogenin promotes neuronal survival and improved behavior recovery after spinal cord injury. Neuroscience 2019; 408:430-447. [PMID: 30943435 DOI: 10.1016/j.neuroscience.2019.03.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Following spinal cord trauma, axonal regeneration in the mammalian spinal cord does not occur and functional recovery may be further impeded by retrograde neuronal death. By contrast, lampreys recover after spinal cord injury (SCI) and axons re-connected to their targets in spinal cord. However, the identified reticulospinal (RS) neurons located in the lamprey brain differ in their regenerative capacities - some are good regenerators, and others are bad regenerators - despite the fact that they have analogous projection pathways. Previously, we reported that axonal guidance receptor Neogenin involved in regulation of axonal regeneration after SCI and downregulation of Neogenin synthesis by morpholino oligonucleotides (MO) enhanced the regeneration of RS neurons. Incidentally, the bad regenerating RS neurons often undergo a late retrograde apoptosis after SCI. Here we report that, after SCI, expression of RGMa mRNA was upregulated around the transection site, while its receptor Neogenin continued to be synthesized almost inclusively in the "bad-regenerating" RS neurons. Inhibition of Neogenin by MO prohibited activation of caspases and improved the survival of RS neurons at 10 weeks after SCI. These data provide new evidence in vivo that Neogenin is involved in retrograde neuronal death and failure of axonal regeneration after SCI.
Collapse
Affiliation(s)
- Jie Chen
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA
| | - Michael I Shifman
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA; Department of Neuroscience, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
9
|
Hanslik KL, Allen SR, Harkenrider TL, Fogerson SM, Guadarrama E, Morgan JR. Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection. PLoS One 2019; 14:e0204193. [PMID: 30699109 PMCID: PMC6353069 DOI: 10.1371/journal.pone.0204193] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/21/2018] [Indexed: 01/19/2023] Open
Abstract
The resilience of regeneration in vertebrates is not very well understood. Yet understanding if tissues can regenerate after repeated insults, and identifying limitations, is important for elucidating the underlying mechanisms of tissue plasticity. This is particularly challenging in tissues, such as the nervous system, which possess a large number of terminally differentiated cells and often exhibit limited regeneration in the first place. However, unlike mammals, which exhibit very limited regeneration of spinal cord tissues, many non-mammalian vertebrates, including lampreys, bony fishes, amphibians, and reptiles, regenerate their spinal cords and functionally recover even after a complete spinal cord transection. It is well established that lampreys undergo full functional recovery of swimming behaviors after a single spinal cord transection, which is accompanied by tissue repair at the lesion site, as well as axon and synapse regeneration. Here we begin to explore the resilience of spinal cord regeneration in lampreys after a second spinal transection (re-transection). We report that by all functional and anatomical measures tested, lampreys regenerate after spinal re-transection just as robustly as after single transections. Recovery of swimming, synapse and cytoskeletal distributions, axon regeneration, and neuronal survival were nearly identical after spinal transection or re-transection. Only minor differences in tissue repair at the lesion site were observed in re-transected spinal cords. Thus, regenerative potential in the lamprey spinal cord is largely unaffected by spinal re-transection, indicating a greater persistent regenerative potential than exists in some other highly regenerative models. These findings establish a new path for uncovering pro-regenerative targets that could be deployed in non-regenerative conditions.
Collapse
Affiliation(s)
- Kendra L Hanslik
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Scott R Allen
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Tessa L Harkenrider
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Stephanie M Fogerson
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Eduardo Guadarrama
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Jennifer R Morgan
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
10
|
Rodemer W, Selzer ME. Role of axon resealing in retrograde neuronal death and regeneration after spinal cord injury. Neural Regen Res 2019; 14:399-404. [PMID: 30539805 PMCID: PMC6334596 DOI: 10.4103/1673-5374.245330] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Spinal cord injury leads to persistent behavioral deficits because mammalian central nervous system axons fail to regenerate. A neuron's response to axon injury results from a complex interplay of neuron-intrinsic and environmental factors. The contribution of axotomy to the death of neurons in spinal cord injury is controversial because very remote axotomy is unlikely to result in neuronal death, whereas death of neurons near an injury may reflect environmental factors such as ischemia and inflammation. In lampreys, axotomy due to spinal cord injury results in delayed apoptosis of spinal-projecting neurons in the brain, beyond the extent of these environmental factors. This retrograde apoptosis correlates with delayed resealing of the axon, and can be reversed by inducing rapid membrane resealing with polyethylene glycol. Studies in mammals also suggest that polyethylene glycol may be neuroprotective, although the mechanism(s) remain unclear. This review examines the early, mechanical, responses to axon injury in both mammals and lampreys, and the potential of polyethylene glycol to reduce injury-induced pathology. Identifying the mechanisms underlying a neuron's response to axotomy will potentially reveal new therapeutic targets to enhance regeneration and functional recovery in humans with spinal cord injury.
Collapse
Affiliation(s)
- William Rodemer
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA, USA
| | - Michael E Selzer
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation); Department of Neurology, the Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Sobrido-Cameán D, Rodicio MC, Barreiro-Iglesias A. Data on the effect of a muscimol treatment in caspase activation in descending neurons of lampreys after a complete spinal cord injury. Data Brief 2018; 21:2037-2041. [PMID: 30510990 PMCID: PMC6258874 DOI: 10.1016/j.dib.2018.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/26/2022] Open
Abstract
In this article, caspase activation in identifiable reticulospinal neurons of lampreys was inhibited after a complete spinal cord injury using a specific agonist of the GABAA receptor (muscimol). The data presented in this article are quantifications of fluorescent labelling of identifiable descending neurons of larval lampreys after a complete spinal cord injury using fluorochrome-labelled inhibitors of caspases (FLICA) and the corresponding statistical analysis. A single dose of muscimol decreased the intensity of FLICA labelling in giant identifiable reticulospinal neurons following spinal cord injury in lampreys.
Collapse
Affiliation(s)
- Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
12
|
GABA promotes survival and axonal regeneration in identifiable descending neurons after spinal cord injury in larval lampreys. Cell Death Dis 2018; 9:663. [PMID: 29950557 PMCID: PMC6021415 DOI: 10.1038/s41419-018-0704-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022]
Abstract
The poor regenerative capacity of descending neurons is one of the main causes of the lack of recovery after spinal cord injury (SCI). Thus, it is of crucial importance to find ways to promote axonal regeneration. In addition, the prevention of retrograde degeneration leading to the atrophy/death of descending neurons is an obvious prerequisite to activate axonal regeneration. Lampreys show an amazing regenerative capacity after SCI. Recent histological work in lampreys suggested that GABA, which is massively released after a SCI, could promote the survival of descending neurons. Here, we aimed to study if GABA, acting through GABAB receptors, promotes the survival and axonal regeneration of descending neurons of larval sea lampreys after a complete SCI. First, we used in situ hybridization to confirm that identifiable descending neurons of late-stage larvae express the gabab1 subunit of the GABAB receptor. We also observed an acute increase in the expression of this subunit in descending neurons after SCI, which further supported the possible role of GABA and GABAB receptors in promoting the survival and regeneration of these neurons. So, we performed gain and loss of function experiments to confirm this hypothesis. Treatments with GABA and baclofen (GABAB agonist) significantly reduced caspase activation in descending neurons 2 weeks after a complete SCI. Long-term treatments with GABOB (a GABA analogue) and baclofen significantly promoted axonal regeneration of descending neurons after SCI. These data indicate that GABAergic signalling through GABAB receptors promotes the survival and regeneration of descending neurons after SCI. Finally, we used morpholinos against the gabab1 subunit to knockdown the expression of the GABAB receptor in descending neurons. Long-term morpholino treatments caused a significant inhibition of axonal regeneration. This shows that endogenous GABA promotes axonal regeneration after a complete SCI in lampreys by activating GABAB receptors.
Collapse
|
13
|
Zhang G, Hu J, Rodemer W, Li S, Selzer ME. RhoA activation in axotomy-induced neuronal death. Exp Neurol 2018; 306:76-91. [PMID: 29715475 DOI: 10.1016/j.expneurol.2018.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 01/11/2023]
Abstract
After spinal cord injury (SCI) in mammals, severed axons fail to regenerate, due to both extrinsic inhibitory factors, e.g., the chondroitin sulfate proteoglycans (CSPGs) and myelin-associated growth inhibitors (MAIs), and a developmental loss of intrinsic growth capacity. The latter is suggested by findings in lamprey that the 18 pairs of individually identified reticulospinal neurons vary greatly in their ability to regenerate their axons through the same spinal cord environment. Moreover, those neurons that are poor regenerators undergo very delayed apoptosis, and express common molecular markers after SCI. Thus the signaling pathways for retrograde cell death might converge with those inhibiting axon regeneration. Many extrinsic growth-inhibitory molecules activate RhoA, whereas inhibiting RhoA enhances axon growth. Whether RhoA also is involved in retrograde neuronal death after axotomy is less clear. Therefore, we cloned lamprey RhoA and correlated its mRNA expression and activation state with apoptosis signaling in identified reticulospinal neurons. RhoA mRNA was expressed widely in normal lamprey brain, and only slightly more in poorly-regenerating neurons than in good regenerators. However, within a day after spinal cord transection, RhoA mRNA was found in severed axon tips. Beginning at 5 days post-SCI RhoA mRNA was upregulated selectively in pre-apoptotic neuronal perikarya, as indicated by labelling with fluorescently labeled inhibitors of caspase activation (FLICA). After 2 weeks post-transection, RhoA expression decreased in the perikarya, and was translocated anterogradely into the axons. More striking than changes in RhoA mRNA levels, RhoA was continuously active selectively in FLICA-positive neurons through 9 weeks post-SCI. At that time, almost no neurons whose axons had regenerated were FLICA-positive. These findings are consistent with a role for RhoA activation in triggering retrograde neuronal death after SCI, and suggest that RhoA may be a point of convergence for inhibition of both axon regeneration and neuronal survival after axotomy.
Collapse
Affiliation(s)
- Guixin Zhang
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), USA
| | - Jianli Hu
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), USA
| | - William Rodemer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), USA; Dept. Anatomy and Cell Biology, The Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), USA; Dept. of Neurology, USA.
| |
Collapse
|
14
|
Sobrido-Cameán D, Barreiro-Iglesias A. Role of Caspase-8 and Fas in Cell Death After Spinal Cord Injury. Front Mol Neurosci 2018; 11:101. [PMID: 29666570 PMCID: PMC5891576 DOI: 10.3389/fnmol.2018.00101] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/15/2018] [Indexed: 01/10/2023] Open
Abstract
Spinal cord injury (SCI) causes the death of neurons and glial cells due to the initial mechanical forces (i.e., primary injury) and through a cascade of secondary molecular events (e.g., inflammation or excitotoxicity) that exacerbate cell death. The loss of neurons and glial cells that are not replaced after the injury is one of the main causes of disability after SCI. Evidence accumulated in last decades has shown that the activation of apoptotic mechanisms is one of the factors causing the death of intrinsic spinal cord (SC) cells following SCI. Although this is not as clear for brain descending neurons, some studies have also shown that apoptosis can be activated in the brain following SCI. There are two main apoptotic pathways, the extrinsic and the intrinsic pathways. Activation of caspase-8 is an important step in the initiation of the extrinsic pathway. Studies in rodents have shown that caspase-8 is activated in SC glial cells and neurons and that the Fas receptor plays a key role in its activation following a traumatic SCI. Recent work in the lamprey model of SCI has also shown the retrograde activation of caspase-8 in brain descending neurons following SCI. Here, we review our current knowledge on the role of caspase-8 and the Fas pathway in cell death following SCI. We also provide a perspective for future work on this process, like the importance of studying the possible contribution of Fas/caspase-8 signaling in the degeneration of brain neurons after SCI in mammals.
Collapse
Affiliation(s)
- Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
15
|
Retrograde Activation of the Extrinsic Apoptotic Pathway in Spinal-Projecting Neurons after a Complete Spinal Cord Injury in Lampreys. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5953674. [PMID: 29333445 PMCID: PMC5733621 DOI: 10.1155/2017/5953674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition that leads to permanent disability because injured axons do not regenerate across the trauma zone to reconnect to their targets. A prerequisite for axonal regeneration will be the prevention of retrograde degeneration that could lead to neuronal death. However, the specific molecular mechanisms of axotomy-induced degeneration of spinal-projecting neurons have not been elucidated yet. In lampreys, SCI induces the apoptotic death of identifiable descending neurons that are “bad regenerators/poor survivors” after SCI. Here, we investigated the apoptotic process activated in identifiable descending neurons of lampreys after SCI. For this, we studied caspase activation by using fluorochrome-labeled inhibitors of caspases, the degeneration of spinal-projecting neurons using Fluro-Jade C staining, and the involvement of the intrinsic apoptotic pathway by means of cytochrome c and Vα double immunofluorescence. Our results provide evidence that, after SCI, bad-regenerating spinal cord-projecting neurons slowly degenerate and that the extrinsic pathway of apoptosis is involved in this process. Experiments using the microtubule stabilizer Taxol showed that caspase-8 signaling is retrogradely transported by microtubules from the site of axotomy to the neuronal soma. Preventing the activation of this process could be an important therapeutic approach after SCI in mammals.
Collapse
|
16
|
Darzynkiewicz Z, Zhao H, Dorota Halicka H, Pozarowski P, Lee B. Fluorochrome-Labeled Inhibitors of Caspases: Expedient In Vitro and In Vivo Markers of Apoptotic Cells for Rapid Cytometric Analysis. Methods Mol Biol 2017; 1644:61-73. [PMID: 28710753 DOI: 10.1007/978-1-4939-7187-9_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Activation of caspases is a characteristic event of apoptosis. Various cytometric methods distinguishing this event have been developed to serve as specific apoptotic markers for the assessment of apoptotic frequency within different cell populations. The method described in this chapter utilizes fluorochrome labeled inhibitors of caspases (FLICA) and is applicable to fluorescence microscopy, flow- and imaging-cytometry as well as to confocal imaging. Cell-permeant FLICA reagents tagged with carboxyfluorescein or sulforhodamine, when applied to live cells in vitro or in vivo, exclusively label the cells that are undergoing apoptosis. The FLICA labeling methodology is rapid, simple, robust, and can be combined with other markers of cell death for multiplexed analysis. Examples are presented on FLICA use in combination with a vital stain (propidium iodide), detection of the loss of mitochondrial electrochemical potential, and exposure of phosphatidylserine on the outer surface of plasma cell membrane using Annexin V fluorochrome conjugates. FLICA staining followed by cell fixation and stoichiometric staining of cellular DNA demonstrate that FLICA binding can be correlated with the concurrent analysis of DNA ploidy, cell cycle phase, DNA fragmentation, and other apoptotic events whose detection requires cell permeabilization. The "time window" for the detection of apoptosis with FLICA is wider compared to the Annexin V binding, making FLICA a preferable marker for the detection of early phase apoptosis and therefore more accurate for quantification of apoptotic cells. Unlike many other biomarkers of apoptotic cells, FLICAs can be used to detect apoptosis ex vivo and in vivo in different tissues.
Collapse
Affiliation(s)
- Zbigniew Darzynkiewicz
- Department of Pathology and Brander Cancer Research Institute, New York Medical College, Basic Sciences Building, 15 Dana Road, Valhalla, N.Y, 10595, USA.
| | - Hong Zhao
- Department of Pathology and Brander Cancer Research Institute, New York Medical College, Basic Sciences Building, 15 Dana Road, Valhalla, N.Y, 10595, USA
| | - H Dorota Halicka
- Department of Pathology and Brander Cancer Research Institute, New York Medical College, Basic Sciences Building, 15 Dana Road, Valhalla, N.Y, 10595, USA
| | | | - Brian Lee
- Immunochemistry Technologies, Bloomington, MN, 55431, USA
| |
Collapse
|
17
|
Ohnmacht J, Yang Y, Maurer GW, Barreiro-Iglesias A, Tsarouchas TM, Wehner D, Sieger D, Becker CG, Becker T. Spinal motor neurons are regenerated after mechanical lesion and genetic ablation in larval zebrafish. Development 2016; 143:1464-74. [PMID: 26965370 PMCID: PMC4986163 DOI: 10.1242/dev.129155] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 02/25/2016] [Indexed: 01/14/2023]
Abstract
In adult zebrafish, relatively quiescent progenitor cells show lesion-induced generation of motor neurons. Developmental motor neuron generation from the spinal motor neuron progenitor domain (pMN) sharply declines at 48 hours post-fertilisation (hpf). After that, mostly oligodendrocytes are generated from the same domain. We demonstrate here that within 48 h of a spinal lesion or specific genetic ablation of motor neurons at 72 hpf, the pMN domain reverts to motor neuron generation at the expense of oligodendrogenesis. By contrast, generation of dorsal Pax2-positive interneurons was not altered. Larval motor neuron regeneration can be boosted by dopaminergic drugs, similar to adult regeneration. We use larval lesions to show that pharmacological suppression of the cellular response of the innate immune system inhibits motor neuron regeneration. Hence, we have established a rapid larval regeneration paradigm. Either mechanical lesions or motor neuron ablation is sufficient to reveal a high degree of developmental flexibility of pMN progenitor cells. In addition, we show an important influence of the immune system on motor neuron regeneration from these progenitor cells.
Collapse
Affiliation(s)
- Jochen Ohnmacht
- Centre for Neuroregeneration, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Yujie Yang
- Centre for Neuroregeneration, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Gianna W Maurer
- Centre for Neuroregeneration, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Antón Barreiro-Iglesias
- Centre for Neuroregeneration, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Themistoklis M Tsarouchas
- Centre for Neuroregeneration, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Daniel Wehner
- Centre for Neuroregeneration, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Dirk Sieger
- Centre for Neuroregeneration, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Catherina G Becker
- Centre for Neuroregeneration, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Thomas Becker
- Centre for Neuroregeneration, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
18
|
Fogerson SM, van Brummen AJ, Busch DJ, Allen SR, Roychaudhuri R, Banks SML, Klärner FG, Schrader T, Bitan G, Morgan JR. Reducing synuclein accumulation improves neuronal survival after spinal cord injury. Exp Neurol 2016; 278:105-15. [PMID: 26854933 DOI: 10.1016/j.expneurol.2016.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/29/2016] [Accepted: 02/04/2016] [Indexed: 11/25/2022]
Abstract
Spinal cord injury causes neuronal death, limiting subsequent regeneration and recovery. Thus, there is a need to develop strategies for improving neuronal survival after injury. Relative to our understanding of axon regeneration, comparatively little is known about the mechanisms that promote the survival of damaged neurons. To address this, we took advantage of lamprey giant reticulospinal neurons whose large size permits detailed examination of post-injury molecular responses at the level of individual, identified cells. We report here that spinal cord injury caused a select subset of giant reticulospinal neurons to accumulate synuclein, a synaptic vesicle-associated protein best known for its atypical aggregation and causal role in neurodegeneration in Parkinson's and other diseases. Post-injury synuclein accumulation took the form of punctate aggregates throughout the somata and occurred selectively in dying neurons, but not in those that survived. In contrast, another synaptic vesicle protein, synaptotagmin, did not accumulate in response to injury. We further show that the post-injury synuclein accumulation was greatly attenuated after single dose application of either the "molecular tweezer" inhibitor, CLR01, or a translation-blocking synuclein morpholino. Consequently, reduction of synuclein accumulation not only improved neuronal survival, but also increased the number of axons in the spinal cord proximal and distal to the lesion. This study is the first to reveal that reducing synuclein accumulation is a novel strategy for improving neuronal survival after spinal cord injury.
Collapse
Affiliation(s)
- Stephanie M Fogerson
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA 02543, United States
| | - Alexandra J van Brummen
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA 02543, United States; Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - David J Busch
- Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Scott R Allen
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA 02543, United States
| | - Robin Roychaudhuri
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Susan M L Banks
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA 02543, United States
| | - Frank-Gerrit Klärner
- Institute of Organic Chemistry, University of Duisburg-Essen, Essen 45117, Germany
| | - Thomas Schrader
- Institute of Organic Chemistry, University of Duisburg-Essen, Essen 45117, Germany
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States; Brain Research Institute and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Jennifer R Morgan
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA 02543, United States.
| |
Collapse
|
19
|
Dai M, Liu Y, Nie X, Zhang J, Wang Y, Ben J, Zhang S, Yang X, Sang A. Expression of RBMX in the light-induced damage of rat retina in vivo. Cell Mol Neurobiol 2015; 35:463-71. [PMID: 25407628 DOI: 10.1007/s10571-014-0140-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 11/13/2014] [Indexed: 12/23/2022]
Abstract
RNA-binding motif protein, X-linked (RBMX) is a 43 kDa nuclear protein in the RBM family and functions on alternative splicing of RNA. The gene encoding RBMX is located on chromosome Xq26. To investigate whether RBMX is involved in retinal neuron apoptosis, we performed a light-induced retinal damage model in adult rats. Western blotting analysis showed RBMX gradually increased, reached a peak at 12 h and then declined during the following days. The association of RBMX in retinal ganglion cells (RGCs) with light exposure was found by immunofluorescence staining. The injury-induced expression of RBMX was detected in active caspase-3 and TUNEL positive cells. We also examined the expression profiles of active caspase-3, bcl-2 and Bax, whose changes were correlated with the expression profiles of RBMX. To summarize, we uncovered the dynamic changes of RBMX in the light-induced retinal damage model for the first time. RBMX might play a significant role in the degenerative process of RGCs after light-induced damage in the retina.
Collapse
Affiliation(s)
- Ming Dai
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Barreiro-Iglesias A. "Bad regenerators" die after spinal cord injury: insights from lampreys. Neural Regen Res 2015; 10:25-7. [PMID: 25788909 PMCID: PMC4357105 DOI: 10.4103/1673-5374.150642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2014] [Indexed: 01/23/2023] Open
Affiliation(s)
- Antón Barreiro-Iglesias
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Barreiro-Iglesias A, Shifman MI. Detection of activated caspase-8 in injured spinal axons by using fluorochrome-labeled inhibitors of caspases (FLICA). Methods Mol Biol 2015; 1254:329-39. [PMID: 25431075 DOI: 10.1007/978-1-4939-2152-2_23] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Here, we present a detailed protocol for the detection of activated caspase-8 in axotomized axons of the whole-mounted lamprey spinal cord. This method is based on the use of fluorochrome -labeled inhibitors of caspases (FLICA) in ex vivo tissue. We offer a very convenient vertebrate model to study the retrograde degeneration of descending pathways after spinal cord injury.
Collapse
Affiliation(s)
- Antón Barreiro-Iglesias
- Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK,
| | | |
Collapse
|
22
|
Zhang G, Vidal Pizarro I, Swain GP, Kang SH, Selzer ME. Neurogenesis in the lamprey central nervous system following spinal cord transection. J Comp Neurol 2014; 522:1316-32. [PMID: 24151158 DOI: 10.1002/cne.23485] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/23/2022]
Abstract
After spinal cord transection, lampreys recover functionally and axons regenerate. It is not known whether this is accompanied by neurogenesis. Previous studies suggested a baseline level of nonneuronal cell proliferation in the spinal cord and rhombencephalon (where most supraspinal projecting neurons are located). To determine whether cell proliferation increases after injury and whether this includes neurogenesis, larval lampreys were spinally transected and injected with 5-bromo-2&prime-deoxyuridine (BrdU) at 0-3 weeks posttransection. Labeled cells were counted in the lesion site, within 0.5 mm rostral and caudal to the lesion, and in the rhombencephalon. One group of animals was processed in the winter and a second group was processed in the summer. The number of labeled cells was greater in winter than in summer. The lesion site had the most BrdU labeling at all times, correlating with an increase in the number of cells. In the adjacent spinal cord, the percentage of BrdU labeling was higher in the ependymal than in nonependymal regions. This was also true in the rhombencephalon but only in summer. In winter, BrdU labeling was seen primarily in the subventricular and peripheral zones. Some BrdU-labeled cells were also double labeled by antibodies to glial-specific (antikeratin) as well as neuron-specific (anti-Hu) antigens, indicating that both gliogenesis and neurogenesis occurred after spinal cord transection. However, the new neurons were restricted to the ependymal zone, were never labeled by antineurofilament antibodies, and never migrated away from the ependyma even at 5 weeks after BrdU injection. They would appear to be cerebrospinal fluid-contacting neurons.
Collapse
Affiliation(s)
- Guixin Zhang
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Penhnsylvania, 19140; Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104
| | | | | | | | | |
Collapse
|
23
|
Spatiotemporal pattern of TRAF3 expression after rat spinal cord injury. J Mol Histol 2014; 45:541-53. [DOI: 10.1007/s10735-014-9575-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/28/2014] [Indexed: 01/05/2023]
|
24
|
Fernández-López B, Valle-Maroto SM, Barreiro-Iglesias A, Rodicio MC. Neuronal release and successful astrocyte uptake of aminoacidergic neurotransmitters after spinal cord injury in lampreys. Glia 2014; 62:1254-69. [PMID: 24733772 DOI: 10.1002/glia.22678] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/13/2014] [Accepted: 04/03/2014] [Indexed: 12/27/2022]
Abstract
In contrast to mammals, the spinal cord of lampreys spontaneously recovers from a complete spinal cord injury (SCI). Understanding the differences between lampreys and mammals in their response to SCI could provide valuable information to propose new therapies. Unique properties of the astrocytes of lampreys probably contribute to the success of spinal cord regeneration. The main aim of our study was to investigate, in the sea lamprey, the release of aminoacidergic neurotransmitters and the subsequent astrocyte uptake of these neurotransmitters during the first week following a complete SCI by detecting glutamate, GABA, glycine, Hu and cytokeratin immunoreactivities. This is the first time that aminoacidergic neurotransmitter release from neurons and the subsequent astrocytic response after SCI are analysed by immunocytochemistry in any vertebrate. Spinal injury caused the immediate loss of glutamate, GABA and glycine immunoreactivities in neurons close to the lesion site (except for the cerebrospinal fluid-contacting GABA cells). Only after SCI, astrocytes showed glutamate, GABA and glycine immunoreactivity. Treatment with an inhibitor of glutamate transporters (DL-TBOA) showed that neuronal glutamate was actively transported into astrocytes after SCI. Moreover, after SCI, a massive accumulation of inhibitory neurotransmitters around some reticulospinal axons was observed. Presence of GABA accumulation significantly correlated with a higher survival ability of these neurons. Our data show that, in contrast to mammals, astrocytes of lampreys have a high capacity to actively uptake glutamate after SCI. GABA may play a protective role that could explain the higher regenerative and survival ability of specific descending neurons of lampreys.
Collapse
Affiliation(s)
- Blanca Fernández-López
- Department of Cell Biology and Ecology, CIBUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
25
|
Cyclic AMP promotes axon regeneration, lesion repair and neuronal survival in lampreys after spinal cord injury. Exp Neurol 2013; 250:31-42. [PMID: 24041988 DOI: 10.1016/j.expneurol.2013.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 01/10/2023]
Abstract
Axon regeneration after spinal cord injury in mammals is inadequate to restore function, illustrating the need to design better strategies for improving outcomes. Increasing the levels of the second messenger cyclic adenosine monophosphate (cAMP) after spinal cord injury enhances axon regeneration across a wide variety of species, making it an excellent candidate molecule that has therapeutic potential. However, several important aspects of the cellular and molecular mechanisms by which cAMP enhances axon regeneration are still unclear, such as how cAMP affects axon growth patterns, the molecular components within growing axon tips, the lesion scar, and neuronal survival. To address these points, we took advantage of the large, identified reticulospinal (RS) neurons in lamprey, a vertebrate that exhibits robust axon regeneration after a complete spinal cord transection. Application of a cAMP analog, db-cAMP, at the time of spinal cord transection increased the number of axons that regenerated across the lesion site. Db-cAMP also promoted axons to regenerate in straighter paths, prevented abnormal axonal growth patterns, increased the levels of synaptotagmin within axon tips, and increased the number of axotomized neurons that survived after spinal cord injury, thereby increasing the pool of neurons available for regeneration. There was also a transient increase in the number of microglia/macrophages and improved repair of the lesion site. Taken together, these data reveal several new features of the cellular and molecular mechanisms underlying cAMP-mediated enhancement of axon regeneration, further emphasizing the positive roles for this conserved pathway.
Collapse
|
26
|
Hu J, Zhang G, Selzer ME. Activated caspase detection in living tissue combined with subsequent retrograde labeling, immunohistochemistry or in situ hybridization in whole-mounted lamprey brains. J Neurosci Methods 2013; 220:92-8. [PMID: 24025261 DOI: 10.1016/j.jneumeth.2013.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 12/22/2022]
Abstract
In the lamprey brain, there are 18 pairs of identified spinal-projecting neurons whose regenerative abilities have been characterized. The "bad-regenerating" neurons show a very delayed form of apoptosis after axotomy (Shifman et al., 2008). Theoretically, this should provide a long window of opportunity to intervene therapeutically, so it would be helpful if we could identify the early stages of this process in vivo. Until now, there has been no method to link mRNA or protein expression directly to early-stages neuronal apoptosis in vivo. Here we describe a double-labeling protocol in whole-mounted lamprey brain for simultaneous detection of early stage apoptosis, using Fluorochrome-Labeled Inhibitors of Caspases (FLICA), and either mRNA, using in situ hybridization, or protein expression, using immunohistochemistry. To improve brain preservation, the working temperature during the FLICA stage was lowered from 37°C to 4°C (Barreiro-Iglesias and Shifman, 2012). Using this method, neurofilament protein was demonstrated by immunohistochemistry in neurons previously reacted by FLICA. The method also revealed that mRNA for the receptor protein tyrosine phosphatase PTPσ is expressed selectively in FLICA-positive neurons. In addition, our study showed that a retrograde labeling technique can be used in the context of FLICA labeling. FLICA label colocalized with TUNEL staining, confirming that FLICA labeling is a reliable marker of apoptosis in lamprey brain. Our results suggested that we can combine caspase detection with other techniques in vivo to investigate the roles and mechanisms of activated caspases and other molecules in retrograde cell deaths and regenerative abilities of neurons.
Collapse
Affiliation(s)
- Jianli Hu
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), 3500 North Broad Street, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
27
|
|