1
|
Guo MH, Lee WP, Vardarajan B, Schellenberg GD, Phillips-Cremins J. Polygenic burden of short tandem repeat expansions promote risk for Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.16.23298623. [PMID: 38014121 PMCID: PMC10680900 DOI: 10.1101/2023.11.16.23298623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Studies of the genetics of Alzheimer's disease (AD) have largely focused on single nucleotide variants and short insertions/deletions. However, most of the disease heritability has yet to be uncovered, suggesting that there is substantial genetic risk conferred by other forms of genetic variation. There are over one million short tandem repeats (STRs) in the genome, and their link to AD risk has not been assessed. As pathogenic expansions of STR cause over 30 neurologic diseases, it is important to ascertain whether STRs may also be implicated in AD risk. Here, we genotyped 321,742 polymorphic STR tracts genome-wide using PCR-free whole genome sequencing data from 2,981 individuals (1,489 AD case and 1,492 control individuals). We implemented an approach to identify STR expansions as STRs with tract lengths that are outliers from the population. We then tested for differences in aggregate burden of expansions in case versus control individuals. AD patients had a 1.19-fold increase of STR expansions compared to healthy elderly controls (p=8.27×10-3, two-sided Mann Whitney test). Individuals carrying > 30 STR expansions had 3.62-fold higher odds of having AD and had more severe AD neuropathology. AD STR expansions were highly enriched within active promoters in post-mortem hippocampal brain tissues and particularly within SINE-VNTR-Alu (SVA) retrotransposons. Together, these results demonstrate that expanded STRs within active promoter regions of the genome promote risk of AD.
Collapse
Affiliation(s)
- Michael H Guo
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Badri Vardarajan
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jennifer Phillips-Cremins
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Fajardo D, Saint Jean R, Lyons PJ. Acquisition of new function through gene duplication in the metallocarboxypeptidase family. Sci Rep 2023; 13:2512. [PMID: 36781897 PMCID: PMC9925722 DOI: 10.1038/s41598-023-29800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Gene duplication is a key first step in the process of expanding the functionality of a multigene family. In order to better understand the process of gene duplication and its role in the formation of new enzymes, we investigated recent duplication events in the M14 family of proteolytic enzymes. Within vertebrates, four of 23 M14 genes were frequently found in duplicate form. While AEBP1, CPXM1, and CPZ genes were duplicated once through a large-scale, likely whole-genome duplication event, the CPO gene underwent many duplication events within fish and Xenopus lineages. Bioinformatic analyses of enzyme specificity and conservation suggested a greater amount of neofunctionalization and purifying selection in CPO paralogs compared with other CPA/B enzymes. To examine the functional consequences of evolutionary changes on CPO paralogs, the four CPO paralogs from Xenopus tropicalis were expressed in Sf9 and HEK293T cells. Immunocytochemistry showed subcellular distribution of Xenopus CPO paralogs to be similar to that of human CPO. Upon activation with trypsin, the enzymes demonstrated differential activity against three substrates, suggesting an acquisition of new function following duplication and subsequent mutagenesis. Characteristics such as gene size and enzyme activation mechanisms are possible contributors to the evolutionary capacity of the CPO gene.
Collapse
Affiliation(s)
- Daniel Fajardo
- Department of Biology, Andrews University, Berrien Springs, MI, 49104, USA
| | - Ritchie Saint Jean
- Department of Biology, Andrews University, Berrien Springs, MI, 49104, USA
| | - Peter J Lyons
- Department of Biology, Andrews University, Berrien Springs, MI, 49104, USA.
| |
Collapse
|
3
|
Zattera ML, Bruschi DP. Transposable Elements as a Source of Novel Repetitive DNA in the Eukaryote Genome. Cells 2022; 11:3373. [PMID: 36359770 PMCID: PMC9659126 DOI: 10.3390/cells11213373] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
The impact of transposable elements (TEs) on the evolution of the eukaryote genome has been observed in a number of biological processes, such as the recruitment of the host's gene expression network or the rearrangement of genome structure. However, TEs may also provide a substrate for the emergence of novel repetitive elements, which contribute to the generation of new genomic components during the course of the evolutionary process. In this review, we examine published descriptions of TEs that give rise to tandem sequences in an attempt to comprehend the relationship between TEs and the emergence of de novo satellite DNA families in eukaryotic organisms. We evaluated the intragenomic behavior of the TEs, the role of their molecular structure, and the chromosomal distribution of the paralogous copies that generate arrays of repeats as a substrate for the emergence of new repetitive elements in the genome. We highlight the involvement and importance of TEs in the eukaryote genome and its remodeling processes.
Collapse
Affiliation(s)
- Michelle Louise Zattera
- Departamento de Genética, Programa de Pós-Graduação em Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba 81530-000, PR, Brazil
| | - Daniel Pacheco Bruschi
- Departamento de Genética, Laboratorio de Citogenética Evolutiva e Conservação Animal, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba 81530-000, PR, Brazil
| |
Collapse
|
4
|
Jahangir M, Li L, Zhou JS, Lang B, Wang XP. L1 Retrotransposons: A Potential Endogenous Regulator for Schizophrenia. Front Genet 2022; 13:878508. [PMID: 35832186 PMCID: PMC9271560 DOI: 10.3389/fgene.2022.878508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
The long interspersed nuclear elements 1 (LINE-1/L1s) are the only active autonomous retrotransposons found in humans which can integrate anywhere in the human genome. They can expand the genome and thus bring good or bad effects to the host cells which really depends on their integration site and associated polymorphism. LINE-1 retrotransposition has been found participating in various neurological disorders such as autism spectrum disorder, Alzheimer’s disease, major depression disorder, post-traumatic stress disorder and schizophrenia. Despite the recent progress, the roles and pathological mechanism of LINE-1 retrotransposition in schizophrenia and its heritable risks, particularly, contribution to “missing heritability” are yet to be determined. Therefore, this review focuses on the potentially etiological roles of L1s in the development of schizophrenia, possible therapeutic choices and unaddressed questions in order to shed lights on the future research.
Collapse
Affiliation(s)
| | | | | | - Bing Lang
- *Correspondence: Bing Lang, ; Xiao-Ping Wang,
| | | |
Collapse
|
5
|
Constitutive Heterochromatin in Eukaryotic Genomes: A Mine of Transposable Elements. Cells 2022; 11:cells11050761. [PMID: 35269383 PMCID: PMC8909793 DOI: 10.3390/cells11050761] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) are abundant components of constitutive heterochromatin of the most diverse evolutionarily distant organisms. TEs enrichment in constitutive heterochromatin was originally described in the model organism Drosophila melanogaster, but it is now considered as a general feature of this peculiar portion of the genomes. The phenomenon of TE enrichment in constitutive heterochromatin has been proposed to be the consequence of a progressive accumulation of transposable elements caused by both reduced recombination and lack of functional genes in constitutive heterochromatin. However, this view does not take into account classical genetics studies and most recent evidence derived by genomic analyses of heterochromatin in Drosophila and other species. In particular, the lack of functional genes does not seem to be any more a general feature of heterochromatin. Sequencing and annotation of Drosophila melanogaster constitutive heterochromatin have shown that this peculiar genomic compartment contains hundreds of transcriptionally active genes, generally larger in size than that of euchromatic ones. Together, these genes occupy a significant fraction of the genomic territory of heterochromatin. Moreover, transposable elements have been suggested to drive the formation of heterochromatin by recruiting HP1 and repressive chromatin marks. In addition, there are several pieces of evidence that transposable elements accumulation in the heterochromatin might be important for centromere and telomere structure. Thus, there may be more complexity to the relationship between transposable elements and constitutive heterochromatin, in that different forces could drive the dynamic of this phenomenon. Among those forces, preferential transposition may be an important factor. In this article, we present an overview of experimental findings showing cases of transposon enrichment into the heterochromatin and their positive evolutionary interactions with an impact to host genomes.
Collapse
|
6
|
Ceraulo S, Perelman PL, Dumas F. Massive LINE‐1 retrotransposon enrichment in tamarins of the Cebidae family (Platyrrhini, Primates) and its significance for genome evolution. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simona Ceraulo
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)” University of Palermo Palermo Italy
| | | | - Francesca Dumas
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)” University of Palermo Palermo Italy
| |
Collapse
|
7
|
Comparative Analysis of Transposable Elements in Genus Calliptamus Grasshoppers Revealed That Satellite DNA Contributes to Genome Size Variation. INSECTS 2021; 12:insects12090837. [PMID: 34564277 PMCID: PMC8466570 DOI: 10.3390/insects12090837] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Calliptamus is a genus of grasshoppers belonging to the family Acrididae. The genus Calliptamus includes approximately 17 recognized species. Calliptamus abbreviatus, Calliptamus italicus, and Calliptamus barbarus are three species that are widely found in northern China. These species are polyphagous, feeding on a variety of wild plants as well as crops, particularly legumes. The genome sizes, phylogenetic position, and transcriptome analysis of the genus Calliptamus were already known previous to this research. The repeatome analysis of these species was missing, which is directly linked to the larger genome sizes of the grasshoppers. Here, we classified repetitive DNA sequences at the level of superfamilies and sub-families, and found that LINE, TcMar-Tc1 and Ty3-gypsy LTR retrotransposons dominated the repeatomes of all genomes, accounting for 16–34% of the total genomes of these species. Satellite DNA dynamic evolutionary changes in all three genomes played a role in genome size evolution. This study would be a valuable source for future genome assemblies. Abstract Transposable elements (TEs) play a significant role in both eukaryotes and prokaryotes genome size evolution, structural changes, duplication, and functional variabilities. However, the large number of different repetitive DNA has hindered the process of assembling reference genomes, and the genus level TEs diversification of the grasshopper massive genomes is still under investigation. The genus Calliptamus diverged from Peripolus around 17 mya and its species divergence dated back about 8.5 mya, but their genome size shows rather large differences. Here, we used low-coverage Illumina unassembled short reads to investigate the effects of evolutionary dynamics of satDNAs and TEs on genome size variations. The Repeatexplorer2 analysis with 0.5X data resulted in 52%, 56%, and 55% as repetitive elements in the genomes of Calliptamus barbarus, Calliptamus italicus, and Calliptamus abbreviatus, respectively. The LINE and Ty3-gypsy LTR retrotransposons and TcMar-Tc1 dominated the repeatomes of all genomes, accounting for 16–35% of the total genomes of these species. Comparative analysis unveiled that most of the transposable elements (TEs) except satDNAs were highly conserved across three genomes in the genus Calliptamus grasshoppers. Out of a total of 20 satDNA families, 17 satDNA families were commonly shared with minor variations in abundance and divergence between three genomes, and 3 were Calliptamus barbarus specific. Our findings suggest that there is a significant amplification or contraction of satDNAs at genus phylogeny which is the main cause that made genome size different.
Collapse
|
8
|
Chak STC, Harris SE, Hultgren KM, Jeffery NW, Rubenstein DR. Eusociality in snapping shrimps is associated with larger genomes and an accumulation of transposable elements. Proc Natl Acad Sci U S A 2021; 118:e2025051118. [PMID: 34099551 PMCID: PMC8214670 DOI: 10.1073/pnas.2025051118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite progress uncovering the genomic underpinnings of sociality, much less is known about how social living affects the genome. In different insect lineages, for example, eusocial species show both positive and negative associations between genome size and structure, highlighting the dynamic nature of the genome. Here, we explore the relationship between sociality and genome architecture in Synalpheus snapping shrimps that exhibit multiple origins of eusociality and extreme interspecific variation in genome size. Our goal is to determine whether eusociality leads to an accumulation of repetitive elements and an increase in genome size, presumably due to reduced effective population sizes resulting from a reproductive division of labor, or whether an initial accumulation of repetitive elements leads to larger genomes and independently promotes the evolution of eusociality through adaptive evolution. Using phylogenetically informed analyses, we find that eusocial species have larger genomes with more transposable elements (TEs) and microsatellite repeats than noneusocial species. Interestingly, different TE subclasses contribute to the accumulation in different species. Phylogenetic path analysis testing alternative causal relationships between sociality and genome architecture is most consistent with the hypothesis that TEs modulate the relationship between sociality and genome architecture. Although eusociality appears to influence TE accumulation, ancestral state reconstruction suggests moderate TE abundances in ancestral species could have fueled the initial transitions to eusociality. Ultimately, we highlight a complex and dynamic relationship between genome and social evolution, demonstrating that sociality can influence the evolution of the genome, likely through changes in demography related to patterns of reproductive skew.
Collapse
Affiliation(s)
- Solomon T C Chak
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027;
- Department of Biological Sciences, State University of New York College at Old Westbury, Old Westbury, NY 11568
| | - Stephen E Harris
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027
- Department of Biology, State University of New York Purchase College, Purchase, NY 10577
| | | | - Nicholas W Jeffery
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, NS B2Y 4A2, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Dustin R Rubenstein
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027
| |
Collapse
|
9
|
Jain D, Chu C, Alver BH, Lee S, Lee EA, Park PJ. HiTea: a computational pipeline to identify non-reference transposable element insertions in Hi-C data. Bioinformatics 2021; 37:1045-1051. [PMID: 33136153 DOI: 10.1093/bioinformatics/btaa923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/14/2020] [Accepted: 10/17/2020] [Indexed: 11/13/2022] Open
Abstract
Hi-C is a common technique for assessing 3D chromatin conformation. Recent studies have shown that long-range interaction information in Hi-C data can be used to generate chromosome-length genome assemblies and identify large-scale structural variations. Here, we demonstrate the use of Hi-C data in detecting mobile transposable element (TE) insertions genome-wide. Our pipeline Hi-C-based TE analyzer (HiTea) capitalizes on clipped Hi-C reads and is aided by a high proportion of discordant read pairs in Hi-C data to detect insertions of three major families of active human TEs. Despite the uneven genome coverage in Hi-C data, HiTea is competitive with the existing callers based on whole-genome sequencing (WGS) data and can supplement the WGS-based characterization of the TE-insertion landscape. We employ the pipeline to identify TE-insertions from human cell-line Hi-C samples. AVAILABILITY AND IMPLEMENTATION HiTea is available at https://github.com/parklab/HiTea and as a Docker image. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dhawal Jain
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Chong Chu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Burak Han Alver
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Soohyun Lee
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
McKinlay A, Fultz D, Wang F, Pikaard CS. Targeted Enrichment of rRNA Gene Tandem Arrays for Ultra-Long Sequencing by Selective Restriction Endonuclease Digestion. FRONTIERS IN PLANT SCIENCE 2021; 12:656049. [PMID: 33995452 PMCID: PMC8113872 DOI: 10.3389/fpls.2021.656049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 05/26/2023]
Abstract
Large regions of nearly identical repeats, such as the 45S ribosomal RNA (rRNA) genes of Nucleolus Organizer Regions (NORs), can account for major gaps in sequenced genomes. To assemble these regions, ultra-long sequencing reads that span multiple repeats have the potential to reveal sets of repeats that collectively have sufficient sequence variation to unambiguously define that interval and recognize overlapping reads. Because individual repetitive loci typically represent a small proportion of the genome, methods to enrich for the regions of interest are desirable. Here we describe a simple method that achieves greater than tenfold enrichment of Arabidopsis thaliana 45S rRNA gene sequences among ultra-long Oxford Nanopore Technology sequencing reads. This method employs agarose-embedded genomic DNA that is subjected to restriction endonucleases digestion using a cocktail of enzymes predicted to be non-cutters of rRNA genes. Most of the genome is digested into small fragments that diffuse out of the agar plugs, whereas rRNA gene arrays are retained. In principle, the approach can also be adapted for sequencing other repetitive loci for which gaps exist in a reference genome.
Collapse
Affiliation(s)
- Anastasia McKinlay
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, United States
| | - Dalen Fultz
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, United States
- Howard Hughes Medical Institute, Indiana University, Bloomington, IN, United States
| | - Feng Wang
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, United States
- Howard Hughes Medical Institute, Indiana University, Bloomington, IN, United States
| | - Craig S. Pikaard
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, United States
- Howard Hughes Medical Institute, Indiana University, Bloomington, IN, United States
| |
Collapse
|
11
|
Simna SP, Han Z. Prospects Of Non-Coding Elements In Genomic Dna Based Gene Therapy. Curr Gene Ther 2021; 22:89-103. [PMID: 33874871 DOI: 10.2174/1566523221666210419090357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022]
Abstract
Gene therapy has made significant development since the commencement of the first clinical trials a few decades ago and has remained a dynamic area of research regardless of obstacles such as immune response and insertional mutagenesis. Progression in various technologies like next-generation sequencing (NGS) and nanotechnology has established the importance of non-coding segments of a genome, thereby taking gene therapy to the next level. In this review, we have summarized the importance of non-coding elements, highlighting the advantages of using full-length genomic DNA loci (gDNA) compared to complementary DNA (cDNA) or minigene, currently used in gene therapy. The focus of this review is to provide an overview of the advances and the future of potential use of gDNA loci in gene therapy, expanding the therapeutic repertoire in molecular medicine.
Collapse
Affiliation(s)
- S P Simna
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599. United States
| | - Zongchao Han
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599. United States
| |
Collapse
|
12
|
Ali A, Han K, Liang P. Role of Transposable Elements in Gene Regulation in the Human Genome. Life (Basel) 2021; 11:118. [PMID: 33557056 PMCID: PMC7913837 DOI: 10.3390/life11020118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs), also known as mobile elements (MEs), are interspersed repeats that constitute a major fraction of the genomes of higher organisms. As one of their important functional impacts on gene function and genome evolution, TEs participate in regulating the expression of genes nearby and even far away at transcriptional and post-transcriptional levels. There are two known principal ways by which TEs regulate the expression of genes. First, TEs provide cis-regulatory sequences in the genome with their intrinsic regulatory properties for their own expression, making them potential factors for regulating the expression of the host genes. TE-derived cis-regulatory sites are found in promoter and enhancer elements, providing binding sites for a wide range of trans-acting factors. Second, TEs encode for regulatory RNAs with their sequences showed to be present in a substantial fraction of miRNAs and long non-coding RNAs (lncRNAs), indicating the TE origin of these RNAs. Furthermore, TEs sequences were found to be critical for regulatory functions of these RNAs, including binding to the target mRNA. TEs thus provide crucial regulatory roles by being part of cis-regulatory and regulatory RNA sequences. Moreover, both TE-derived cis-regulatory sequences and TE-derived regulatory RNAs have been implicated in providing evolutionary novelty to gene regulation. These TE-derived regulatory mechanisms also tend to function in a tissue-specific fashion. In this review, we aim to comprehensively cover the studies regarding these two aspects of TE-mediated gene regulation, mainly focusing on the mechanisms, contribution of different types of TEs, differential roles among tissue types, and lineage-specificity, based on data mostly in humans.
Collapse
Affiliation(s)
- Arsala Ali
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Kyudong Han
- Department of Microbiology, Dankook University, Cheonan 31116, Korea;
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Centre of Biotechnologies, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
13
|
Lexa M, Jedlicka P, Vanat I, Cervenansky M, Kejnovsky E. TE-greedy-nester: structure-based detection of LTR retrotransposons and their nesting. Bioinformatics 2020; 36:4991-4999. [PMID: 32663247 PMCID: PMC7755421 DOI: 10.1093/bioinformatics/btaa632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 06/08/2020] [Accepted: 07/07/2020] [Indexed: 11/23/2022] Open
Abstract
Motivation Transposable elements (TEs) in eukaryotes often get inserted into one another, forming sequences that become a complex mixture of full-length elements and their fragments. The reconstruction of full-length elements and the order in which they have been inserted is important for genome and transposon evolution studies. However, the accumulation of mutations and genome rearrangements over evolutionary time makes this process error-prone and decreases the efficiency of software aiming to recover all nested full-length TEs. Results We created software that uses a greedy recursive algorithm to mine increasingly fragmented copies of full-length LTR retrotransposons in assembled genomes and other sequence data. The software called TE-greedy-nester considers not only sequence similarity but also the structure of elements. This new tool was tested on a set of natural and synthetic sequences and its accuracy was compared to similar software. We found TE-greedy-nester to be superior in a number of parameters, namely computation time and full-length TE recovery in highly nested regions. Availability and implementation http://gitlab.fi.muni.cz/lexa/nested. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Matej Lexa
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, 61200 Brno, Czech Republic.,Department of Machine Learning and Data Processing, Faculty of Informatics, Masaryk University, 60200 Brno, Czech Republic
| | - Pavel Jedlicka
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, 61200 Brno, Czech Republic
| | - Ivan Vanat
- Department of Machine Learning and Data Processing, Faculty of Informatics, Masaryk University, 60200 Brno, Czech Republic
| | - Michal Cervenansky
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, 61200 Brno, Czech Republic.,Department of Machine Learning and Data Processing, Faculty of Informatics, Masaryk University, 60200 Brno, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, 61200 Brno, Czech Republic
| |
Collapse
|
14
|
Kalendar R, Raskina O, Belyayev A, Schulman AH. Long Tandem Arrays of Cassandra Retroelements and Their Role in Genome Dynamics in Plants. Int J Mol Sci 2020; 21:ijms21082931. [PMID: 32331257 PMCID: PMC7215508 DOI: 10.3390/ijms21082931] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
Retrotransposable elements are widely distributed and diverse in eukaryotes. Their copy number increases through reverse-transcription-mediated propagation, while they can be lost through recombinational processes, generating genomic rearrangements. We previously identified extensive structurally uniform retrotransposon groups in which no member contains the gag, pol, or env internal domains. Because of the lack of protein-coding capacity, these groups are non-autonomous in replication, even if transcriptionally active. The Cassandra element belongs to the non-autonomous group called terminal-repeat retrotransposons in miniature (TRIM). It carries 5S RNA sequences with conserved RNA polymerase (pol) III promoters and terminators in its long terminal repeats (LTRs). Here, we identified multiple extended tandem arrays of Cassandra retrotransposons within different plant species, including ferns. At least 12 copies of repeated LTRs (as the tandem unit) and internal domain (as a spacer), giving a pattern that resembles the cellular 5S rRNA genes, were identified. A cytogenetic analysis revealed the specific chromosomal pattern of the Cassandra retrotransposon with prominent clustering at and around 5S rDNA loci. The secondary structure of the Cassandra retroelement RNA is predicted to form super-loops, in which the two LTRs are complementary to each other and can initiate local recombination, leading to the tandem arrays of Cassandra elements. The array structures are conserved for Cassandra retroelements of different species. We speculate that recombination events similar to those of 5S rRNA genes may explain the wide variation in Cassandra copy number. Likewise, the organization of 5S rRNA gene sequences is very variable in flowering plants; part of what is taken for 5S gene copy variation may be variation in Cassandra number. The role of the Cassandra 5S sequences remains to be established.
Collapse
Affiliation(s)
- Ruslan Kalendar
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27 (Latokartanonkaari 5), FI-00014 Helsinki, Finland
- RSE “National Center for Biotechnology”, Korgalzhyn Highway 13/5, Nur-Sultan 010000, Kazakhstan
- Correspondence: (R.K.); (A.H.S.)
| | - Olga Raskina
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel;
| | - Alexander Belyayev
- Laboratory of Molecular Cytogenetics and Karyology, Institute of Botany of the ASCR, Zámek 1, CZ-252 43 Průhonice, Czech Republic;
| | - Alan H. Schulman
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
- Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
- Correspondence: (R.K.); (A.H.S.)
| |
Collapse
|
15
|
Molina WF, Costa GWWF, Cunha IMC, Bertollo LAC, Ezaz T, Liehr T, Cioffi MB. Molecular Cytogenetic Analysis in Freshwater Prawns of the Genus Macrobrachium (Crustacea: Decapoda: Palaemonidae). Int J Mol Sci 2020; 21:ijms21072599. [PMID: 32283616 PMCID: PMC7178241 DOI: 10.3390/ijms21072599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 01/18/2023] Open
Abstract
Freshwater prawns of the genus Macrobrachium are one of the important components of circumtropical marine, estuarine, and freshwater environments. They have been extensively exploited for human consumption for many years. More than 250 species reflect the evolutionary success of this highly diversified group, with a complex and challenging taxonomy due to morphological variations and vast geographical distribution. Although genetic approaches have been used to clarify phylogenetic and taxonomic aspects of Macrobrachium species, cytogenetic information is still very scarce and mostly focused on chromosome number and morphology. Here, we present chromosome data for three species from the Neotropical region, M. carcinus,M. acanthurus, and M. amazonicum, and one species from the Oriental region, M. rosenbergii. Using conventional cytogenetic approaches and chromosome mapping of repetitive DNAs by fluorescence in situ hybridization (FISH), we identified numerical diversification of the diploid set, within and between both zoogeographic regions. These included M. acanthurus and M. amazonicum sharing diploid chromosomes of 98, while M. carcinus has 94, and M. rosenbergii has 118 chromosomes. Argentophilic sites are also variable in number, but they occur in a much higher number than 18S rDNA, representing two to 10 sites within the study species. Microsatellites repeat motifs are also abundant in the chromosomes, with a co-localization and uniform distribution along the chromosome arms, but completely absent in the AT-rich centromeric regions. As a whole, our study suggests that the 2n divergence was followed by a considerable rDNA diversification. The abundance of the exceptional amount of microsatellite sequences in the chromosomes also suggests that they are essential components of the Macrobrachium genome and, therefore, maintained as a shared feature by the species, the reason for which is yet unknown.
Collapse
Affiliation(s)
- Wagner F. Molina
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN 59078970, Brazil; (W.F.M.); (G.W.W.F.C.); (I.M.C.C.)
| | - Gideão W. W. F. Costa
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN 59078970, Brazil; (W.F.M.); (G.W.W.F.C.); (I.M.C.C.)
| | - Inailson M. C. Cunha
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN 59078970, Brazil; (W.F.M.); (G.W.W.F.C.); (I.M.C.C.)
| | - Luiz A. C. Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP C.P. 676, Brazil; (L.A.C.B.); (M.B.C.)
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia;
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, 7747 Jena, Germany
- Correspondence:
| | - Marcelo B. Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP C.P. 676, Brazil; (L.A.C.B.); (M.B.C.)
| |
Collapse
|
16
|
Shortt JA, Ruggiero RP, Cox C, Wacholder AC, Pollock DD. Finding and extending ancient simple sequence repeat-derived regions in the human genome. Mob DNA 2020; 11:11. [PMID: 32095164 PMCID: PMC7027126 DOI: 10.1186/s13100-020-00206-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Background Previously, 3% of the human genome has been annotated as simple sequence repeats (SSRs), similar to the proportion annotated as protein coding. The origin of much of the genome is not well annotated, however, and some of the unidentified regions are likely to be ancient SSR-derived regions not identified by current methods. The identification of these regions is complicated because SSRs appear to evolve through complex cycles of expansion and contraction, often interrupted by mutations that alter both the repeated motif and mutation rate. We applied an empirical, kmer-based, approach to identify genome regions that are likely derived from SSRs. Results The sequences flanking annotated SSRs are enriched for similar sequences and for SSRs with similar motifs, suggesting that the evolutionary remains of SSR activity abound in regions near obvious SSRs. Using our previously described P-clouds approach, we identified ‘SSR-clouds’, groups of similar kmers (or ‘oligos’) that are enriched near a training set of unbroken SSR loci, and then used the SSR-clouds to detect likely SSR-derived regions throughout the genome. Conclusions Our analysis indicates that the amount of likely SSR-derived sequence in the human genome is 6.77%, over twice as much as previous estimates, including millions of newly identified ancient SSR-derived loci. SSR-clouds identified poly-A sequences adjacent to transposable element termini in over 74% of the oldest class of Alu (roughly, AluJ), validating the sensitivity of the approach. Poly-A’s annotated by SSR-clouds also had a length distribution that was more consistent with their poly-A origins, with mean about 35 bp even in older Alus. This work demonstrates that the high sensitivity provided by SSR-Clouds improves the detection of SSR-derived regions and will enable deeper analysis of how decaying repeats contribute to genome structure.
Collapse
Affiliation(s)
- Jonathan A Shortt
- 1Colorado Center for Personalized Medicine, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Robert P Ruggiero
- 2Department of Biology, Southeast Missouri State University, Cape Girardeau, MO 63701 USA
| | - Corey Cox
- 1Colorado Center for Personalized Medicine, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Aaron C Wacholder
- 3Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - David D Pollock
- 4Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045 USA
| |
Collapse
|
17
|
Liu D, Yang J, Tang W, Zhang X, Royster CM, Zhang M. SINE Retrotransposon variation drives Ecotypic disparity in natural populations of Coilia nasus. Mob DNA 2020; 11:4. [PMID: 31921363 PMCID: PMC6951006 DOI: 10.1186/s13100-019-0198-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 12/27/2019] [Indexed: 02/08/2023] Open
Abstract
Background SINEs are a type of nonautonomous retrotransposon that can transpose from one site to be integrated elsewhere in an organism genome. SINE insertion can give rise to genetic variants and regulate gene expression, allowing organisms to acquire new adaptive capacity. Studies on this subject have focused on the impacts of SINEs on genes. However, ecological disparities in fish have not yet been explained by SINEs. Results New SINEs were isolated from Coilia nasus, which has two ecotypes—migratory and resident—that differ in their spawning and migration behaviors. The SINEs possess two structures that resemble a tRNA gene and a LINE retrotransposon tail. Comparison of olfactory tissue transcriptomes, intact SINE transcript copies were detected in only the migratory fish at the initial retrotransposition stage. The SINE DNA copy numbers were higher in the resident type than in the migratory type, while the frequency of SINE insertion was higher in the migratory type than in the resident type. Furthermore, SINE insertions can lead to new repeats of short DNA fragments in the genome, along with target site duplications. SINEs in the resident type have undergone excision via a mechanism in which predicted cleavage sites are formed by mutations, resulting in gaps that are then filled by microsatellites via microhomology-induced replication. Conclusions Notably, SINEs in the resident type have undergone strong natural selection, causing genomic heteroplasmy and driving ecological diversity of C. nasus. Our results reveal possible evolutionary mechanisms underlying the ecological diversity at the interface between SINE mobilization and organism defense.
Collapse
Affiliation(s)
- Dong Liu
- 1Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Universities, Shanghai, 201306 China.,3Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306 China.,4National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306 China
| | - Jinquan Yang
- 1Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Universities, Shanghai, 201306 China
| | - Wenqiao Tang
- 1Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Universities, Shanghai, 201306 China.,3Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306 China.,4National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306 China
| | - Xing Zhang
- 2Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA 30602 USA
| | - Clay Matthew Royster
- 2Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA 30602 USA
| | - Ming Zhang
- 2Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
18
|
Paço A, Freitas R, Vieira-da-Silva A. Conversion of DNA Sequences: From a Transposable Element to a Tandem Repeat or to a Gene. Genes (Basel) 2019; 10:E1014. [PMID: 31817529 PMCID: PMC6947457 DOI: 10.3390/genes10121014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 01/24/2023] Open
Abstract
Eukaryotic genomes are rich in repetitive DNA sequences grouped in two classes regarding their genomic organization: tandem repeats and dispersed repeats. In tandem repeats, copies of a short DNA sequence are positioned one after another within the genome, while in dispersed repeats, these copies are randomly distributed. In this review we provide evidence that both tandem and dispersed repeats can have a similar organization, which leads us to suggest an update to their classification based on the sequence features, concretely regarding the presence or absence of retrotransposons/transposon specific domains. In addition, we analyze several studies that show that a repetitive element can be remodeled into repetitive non-coding or coding sequences, suggesting (1) an evolutionary relationship among DNA sequences, and (2) that the evolution of the genomes involved frequent repetitive sequence reshuffling, a process that we have designated as a "DNA remodeling mechanism". The alternative classification of the repetitive DNA sequences here proposed will provide a novel theoretical framework that recognizes the importance of DNA remodeling for the evolution and plasticity of eukaryotic genomes.
Collapse
Affiliation(s)
- Ana Paço
- MED-Mediterranean Institute for Agriculture, Environment and Development, University of Évora, 7002–554 Évora, Portugal;
| | - Renata Freitas
- IBMC-Institute for Molecular and Cell Biology, University of Porto, R. Campo Alegre 823, 4150–180 Porto, Portugal;
- I3S-Institute for Innovation and Health Research, University of Porto, Rua Alfredo Allen, 208, 4200–135 Porto, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Ana Vieira-da-Silva
- MED-Mediterranean Institute for Agriculture, Environment and Development, University of Évora, 7002–554 Évora, Portugal;
| |
Collapse
|
19
|
Tang W, Liang P. Comparative Genomics Analysis Reveals High Levels of Differential Retrotransposition among Primates from the Hominidae and the Cercopithecidae Families. Genome Biol Evol 2019; 11:3309-3325. [PMID: 31651947 PMCID: PMC6934888 DOI: 10.1093/gbe/evz234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
Mobile elements (MEs), making ∼50% of primate genomes, are known to be responsible for generating inter- and intra-species genomic variations and play important roles in genome evolution and gene function. Using a bioinformatics comparative genomics approach, we performed analyses of species-specific MEs (SS-MEs) in eight primate genomes from the families of Hominidae and Cercopithecidae, focusing on retrotransposons. We identified a total of 230,855 SS-MEs, with which we performed normalization based on evolutionary distances, and we also analyzed the most recent SS-MEs in these genomes. Comparative analysis of SS-MEs reveals striking differences in ME transposition among these primate genomes. Interesting highlights of our results include: 1) the baboon genome has the highest number of SS-MEs with a strong bias for SINEs, while the crab-eating macaque genome has a sustained extremely low transposition for all ME classes, suggesting the existence of a genome-wide mechanism suppressing ME transposition; 2) while SS-SINEs represent the dominant class in general, the orangutan genome stands out by having SS-LINEs as the dominant class; 3) the human genome stands out among the eight genomes by having the largest number of recent highly active ME subfamilies, suggesting a greater impact of ME transposition on its recent evolution; and 4) at least 33% of the SS-MEs locate to genic regions, including protein coding regions, presenting significant potentials for impacting gene function. Our study, as the first of its kind, demonstrates that mobile elements evolve quite differently among these primates, suggesting differential ME transposition as an important mechanism in primate evolution.
Collapse
Affiliation(s)
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
20
|
Gunski RJ, Kretschmer R, Santos de Souza M, de Oliveira Furo I, Barcellos SA, Costa AL, Cioffi MB, de Oliveira EHC, Del Valle Garnero A. Evolution of Bird Sex Chromosomes Narrated by Repetitive Sequences: Unusual W Chromosome Enlargement in Gallinula melanops (Aves: Gruiformes: Rallidae). Cytogenet Genome Res 2019; 158:152-159. [PMID: 31272100 DOI: 10.1159/000501381] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2019] [Indexed: 11/19/2022] Open
Abstract
Among birds, species with the ZZ/ZW sex determination system generally show significant differences in morphology and size between the Z and W chromosomes (with the W usually being smaller than the Z). In the present study, we report for the first time the karyotype of the spot-flanked gallinule (Gallinula melanops) by means of classical and molecular cytogenetics. The spot-flanked gallinule has 2n = 80 (11 pairs of macrochromosomes and 29 pairs of microchromosomes) with an unusual W chromosome that is larger than the Z. Besides being totally heterochromatic, it has a secondary constriction in its long arm corresponding to the nucleolar organizer region, as confirmed by both silver staining and mapping of 18S rDNA probes. This is an unprecedented fact among birds. Additionally, 18S rDNA sites were also observed in 6 microchromosomes, while 5S rDNA was found in just 1 microchromosomal pair. Seven out of the 11 used microsatellite sequences were found to be accumulated in microchromosomes, and 6 microsatellite sequences were found in the W chromosome. In addition to the involvement of heterochromatin and repetitive DNAs in the differentiation of the large W chromosome, the results also show an alternative scenario that highlights the plasticity that shapes the evolutionary history of bird sex chromosomes.
Collapse
|
21
|
De novo emergence and potential function of human-specific tandem repeats in brain-related loci. Hum Genet 2019; 138:661-672. [PMID: 31069507 DOI: 10.1007/s00439-019-02017-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/16/2019] [Indexed: 01/02/2023]
Abstract
Tandem repeats (TRs) are widespread in the genomes of all living organisms. In eukaryotes, they are found in both coding and noncoding regions and have potential roles in the regulation of cellular processes such as transcription, translation and in the modification of protein structure. Recent studies have highlighted TRs as a key regulator of gene expression and a potential contributor to human evolution. Thus, TRs are emerging as an important source of variation that can result in differential gene expression at intra- and inter-species levels. In this study, we performed a genome-wide survey to identify TRs that have emerged in the human lineage. We further examined these loci to explore their potential functional significance for human evolution. We identified 152 human-specific TR (HSTR) loci containing a repeat unit of more than ten bases, with most of them showing a repeat count of two. Gene set enrichment analysis showed that HSTR-associated genes were associated with biological functions in brain development and synapse function. In addition, we compared gene expression of human HSTR loci with orthologues from non-human primates (NHP) in seven different tissues. Strikingly, the expression level of HSTR-associated genes in brain tissues was significantly higher in human than in NHP. These results suggest the possibility that de novo emergence of TRs could have resulted in altered gene expression in humans within a short-time frame and contributed to the rapid evolution of human brain function.
Collapse
|
22
|
Centromere Repeats: Hidden Gems of the Genome. Genes (Basel) 2019; 10:genes10030223. [PMID: 30884847 PMCID: PMC6471113 DOI: 10.3390/genes10030223] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 01/08/2023] Open
Abstract
Satellite DNAs are now regarded as powerful and active contributors to genomic and chromosomal evolution. Paired with mobile transposable elements, these repetitive sequences provide a dynamic mechanism through which novel karyotypic modifications and chromosomal rearrangements may occur. In this review, we discuss the regulatory activity of satellite DNA and their neighboring transposable elements in a chromosomal context with a particular emphasis on the integral role of both in centromere function. In addition, we discuss the varied mechanisms by which centromeric repeats have endured evolutionary processes, producing a novel, species-specific centromeric landscape despite sharing a ubiquitously conserved function. Finally, we highlight the role these repetitive elements play in the establishment and functionality of de novo centromeres and chromosomal breakpoints that underpin karyotypic variation. By emphasizing these unique activities of satellite DNAs and transposable elements, we hope to disparage the conventional exemplification of repetitive DNA in the historically-associated context of ‘junk’.
Collapse
|
23
|
Le Luyer J, Auffret P, Quillien V, Leclerc N, Reisser C, Vidal-Dupiol J, Ky CL. Whole transcriptome sequencing and biomineralization gene architecture associated with cultured pearl quality traits in the pearl oyster, Pinctada margaritifera. BMC Genomics 2019; 20:111. [PMID: 30727965 PMCID: PMC6366105 DOI: 10.1186/s12864-019-5443-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/09/2019] [Indexed: 01/31/2023] Open
Abstract
Background Cultured pearls are unique gems produced by living organisms, mainly molluscs of the Pinctada genus, through the biomineralization properties of pearl sac tissue. Improvement of P. margaritifera pearl quality is one of the biggest challenges that Polynesian research has faced to date. To achieve this goal, a better understanding of the complex mechanisms related to nacre and pearl formation is essential and can now be approached through the use of massive parallel sequencing technologies. The aim of this study was to use RNA-seq to compare whole transcriptome expression of pearl sacs that had producing pearls with high and low quality. For this purpose, a comprehensive reference transcriptome of P. margaritifera was built based on multi-tissue sampling (mantle, gonad, whole animal), including different living stages (juvenile, adults) and phenotypes (colour morphotypes, sex). Results Strikingly, few genes were found to be up-regulated for high quality pearls (n = 16) compared to the up-regulated genes in low quality pearls (n = 246). Biomineralization genes up-regulated in low quality pearls were specific to prismatic and prism-nacre layers. Alternative splicing was further identified in several key biomineralization genes based on a recent P. margaritifera draft genome. Conclusion This study lifts the veil on the multi-level regulation of biomineralization genes associated with pearl quality determination. Electronic supplementary material The online version of this article (10.1186/s12864-019-5443-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Le Luyer
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - P Auffret
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - V Quillien
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - N Leclerc
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - C Reisser
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - J Vidal-Dupiol
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia.,Ifremer, UMR 5244 Interactions Hôtes-Pathogènes-Environnements, Université de Montpellier, Place Eugène Bataillon CC 80, 34095, Montpellier, France
| | - C-L Ky
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia.
| |
Collapse
|
24
|
Tang W, Mun S, Joshi A, Han K, Liang P. Mobile elements contribute to the uniqueness of human genome with 15,000 human-specific insertions and 14 Mbp sequence increase. DNA Res 2019; 25:521-533. [PMID: 30052927 PMCID: PMC6191304 DOI: 10.1093/dnares/dsy022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/20/2018] [Indexed: 02/02/2023] Open
Abstract
Mobile elements (MEs) collectively contribute to at least 50% of the human genome. Due to their past incremental accumulation and ongoing DNA transposition, MEs serve as a significant source for both inter- and intra-species genetic and phenotypic diversity during primate and human evolution. By making use of the most recent genome sequences for human and many other closely related primates and robust multi-way comparative genomic approach, we identified a total of 14,870 human-specific MEs (HS-MEs) with more than 8,000 being newly identified. Collectively, these HS-MEs contribute to a total of 14.2 Mbp net genome sequence increase. Several new observations were made based on these HS-MEs, including the finding of Y chromosome as a strikingly hot target for HS-MEs and a strong mutual preference for SINE-R/VNTR/Alu (SVAs). Furthermore, ∼8,000 of these HS-MEs were found to locate in the vicinity of ∼4,900 genes, and collectively they contribute to ∼84 kb sequences in the human reference transcriptome in association with over 300 genes, including protein-coding sequences for 40 genes. In conclusion, our results demonstrate that MEs made a significant contribution to the evolution of human genome by participating in gene function in a human-specific fashion.
Collapse
Affiliation(s)
- Wanxiangfu Tang
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Seyoung Mun
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research, Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Aditya Joshi
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Kyudong Han
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research, Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
25
|
Abstract
Transposable elements (TEs) are low-complexity elements (e.g., LINEs, SINEs, SVAs, and HERVs) that make up to two-thirds of the human genome. There is mounting evidence that TEs play an essential role in molecular functions that influence genomic plasticity and gene expression regulation. With the advent of next-generation sequencing approaches, our understanding of the relationship between TEs and psychiatric disorders will greatly improve. In this chapter, the Authors comprehensively summarize the state-of the-art of TE research in animal models and humans supporting a framework in which TEs play a functional role in mechanisms affecting a variety of behaviors, including neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Finally, the Authors discuss recent therapeutic applications raised from the increasing experimental evidence on TE functional mechanisms.
Collapse
Affiliation(s)
- G Guffanti
- McLean Hospital - Harvard Medical School, Belmont, MA, USA.
| | - A Bartlett
- Department of Psychology, University of Massachusetts, Boston, Boston, MA, USA
| | - P DeCrescenzo
- McLean Hospital - Harvard Medical School, Belmont, MA, USA
| | - F Macciardi
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - R Hunter
- Department of Psychology, University of Massachusetts, Boston, Boston, MA, USA
| |
Collapse
|
26
|
Prizon AC, Bruschi DP, Gazolla CB, Borin-Carvalho LA, Portela-Castro ALDB. Chromosome Spreading of the Retrotransposable Rex-3 Element and Microsatellite Repeats in Karyotypes of the Ancistrus Populations. Zebrafish 2018; 15:504-514. [DOI: 10.1089/zeb.2018.1620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Ana Camila Prizon
- Department of Biotechnology, Genetics and Cellular Biology, Universidade Estadual de Maringá, Maringá, Brazil
| | | | | | | | | |
Collapse
|
27
|
Biological Roles of Protein-Coding Tandem Repeats in the Yeast Candida Albicans. J Fungi (Basel) 2018; 4:jof4030078. [PMID: 29966250 PMCID: PMC6162428 DOI: 10.3390/jof4030078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/16/2018] [Accepted: 06/27/2018] [Indexed: 01/07/2023] Open
Abstract
Tandem repeat (TR) DNA mutates faster than other DNA by insertion and deletion of repeats. Large parts of eukaryotic proteomes are encoded by ORFs containing protein-coding TRs (TR-ORFs, pcTRs) with largely unknown biological consequences. We explored these in the yeast Candida albicans, an opportunistic human pathogen. We found that almost half of C. albicans’ proteins are encoded by TR-ORFs. pcTR frequency differed only moderately between different gene (GO) categories. Bioinformatic predictions of genome-wide mutation rates and clade-specific differences in pcTR allele frequencies indicated that pcTRs (i) significantly increase the genome-wide mutation rate; (ii) significantly impact on fitness and (iii) allow the evolution of selectively advantageous clade-specific protein variants. Synonymous mutations reduced the repetitiveness of many amino acid repeat-encoding pcTRs. A survey, in 58 strains, revealed that in some pcTR regions in which repetitiveness was not significantly diminished by synonymous mutations the habitat predicted which alleles were present, suggesting roles of pcTR mutation in short-term adaptation and pathogenesis. In C. albicans pcTR mutation apparently is an important mechanism for mutational advance and possibly also rapid adaptation, with synonymous mutations providing a mechanism for adjusting mutation rates of individual pcTRs. Analyses of Arabidopsis and human pcTRs showed that the latter also occurs in other eukaryotes.
Collapse
|
28
|
Klein SJ, O'Neill RJ. Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res 2018; 26:5-23. [PMID: 29332159 PMCID: PMC5857280 DOI: 10.1007/s10577-017-9569-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
Abstract
Although it was nearly 70 years ago when transposable elements (TEs) were first discovered “jumping” from one genomic location to another, TEs are now recognized as contributors to genomic innovations as well as genome instability across a wide variety of species. In this review, we illustrate the ways in which active TEs, specifically retroelements, can create novel chromosome rearrangements and impact gene expression, leading to disease in some cases and species-specific diversity in others. We explore the ways in which eukaryotic genomes have evolved defense mechanisms to temper TE activity and the ways in which TEs continue to influence genome structure despite being rendered transpositionally inactive. Finally, we focus on the role of TEs in the establishment, maintenance, and stabilization of critical, yet rapidly evolving, chromosome features: eukaryotic centromeres. Across centromeres, specific types of TEs participate in genomic conflict, a balancing act wherein they are actively inserting into centromeric domains yet are harnessed for the recruitment of centromeric histones and potentially new centromere formation.
Collapse
Affiliation(s)
- Savannah J Klein
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
29
|
Miller WB. Biological information systems: Evolution as cognition-based information management. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 134:1-26. [PMID: 29175233 DOI: 10.1016/j.pbiomolbio.2017.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 01/08/2023]
Abstract
An alternative biological synthesis is presented that conceptualizes evolutionary biology as an epiphenomenon of integrated self-referential information management. Since all biological information has inherent ambiguity, the systematic assessment of information is required by living organisms to maintain self-identity and homeostatic equipoise in confrontation with environmental challenges. Through their self-referential attachment to information space, cells are the cornerstone of biological action. That individualized assessment of information space permits self-referential, self-organizing niche construction. That deployment of information and its subsequent selection enacted the dominant stable unicellular informational architectures whose biological expressions are the prokaryotic, archaeal, and eukaryotic unicellular forms. Multicellularity represents the collective appraisal of equivocal environmental information through a shared information space. This concerted action can be viewed as systematized information management to improve information quality for the maintenance of preferred homeostatic boundaries among the varied participants. When reiterated in successive scales, this same collaborative exchange of information yields macroscopic organisms as obligatory multicellular holobionts. Cognition-Based Evolution (CBE) upholds that assessment of information precedes biological action, and the deployment of information through integrative self-referential niche construction and natural cellular engineering antecedes selection. Therefore, evolutionary biology can be framed as a complex reciprocating interactome that consists of the assessment, communication, deployment and management of information by self-referential organisms at multiple scales in continuous confrontation with environmental stresses.
Collapse
|
30
|
Meštrović N, Mravinac B, Pavlek M, Vojvoda-Zeljko T, Šatović E, Plohl M. Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Res 2016; 23:583-96. [PMID: 26293606 DOI: 10.1007/s10577-015-9483-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transposable elements (TEs) and satellite DNAs (satDNAs) are typically identified as major repetitive DNA components in eukaryotic genomes. TEs are DNA segments able to move throughout a genome while satDNAs are tandemly repeated sequences organized in long arrays. Both classes of repetitive sequences are extremely diverse, and many TEs and satDNAs exist within a genome. Although they differ in structure, genomic organization, mechanisms of spread, and evolutionary dynamics, TEs and satDNAs can share sequence similarity and organizational patterns, thus indicating that complex mutual relationships can determine their evolution, and ultimately define roles they might have on genome architecture and function. Motivated by accumulating data about sequence elements that incorporate features of both TEs and satDNAs, here we present an overview of their structural and functional liaisons.
Collapse
Affiliation(s)
| | | | - Martina Pavlek
- Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
| | | | - Eva Šatović
- Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
| | - Miroslav Plohl
- Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia.
| |
Collapse
|
31
|
Kuznetsova IS, Ostromyshenskii DI, Komissarov AS, Prusov AN, Waisertreiger IS, Gorbunova AV, Trifonov VA, Ferguson-Smith MA, Podgornaya OI. LINE-related component of mouse heterochromatin and complex chromocenters’ composition. Chromosome Res 2016; 24:309-23. [DOI: 10.1007/s10577-016-9525-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/23/2016] [Accepted: 04/17/2016] [Indexed: 10/21/2022]
|
32
|
Dhivya S, Premkumar K. Nomadic genetic elements contribute to oncogenic translocations: Implications in carcinogenesis. Crit Rev Oncol Hematol 2015; 98:81-93. [PMID: 26548742 DOI: 10.1016/j.critrevonc.2015.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 10/05/2015] [Accepted: 10/27/2015] [Indexed: 12/22/2022] Open
Abstract
Chromosomal translocations as molecular signatures have been reported in various malignancies but, the mechanism behind which is largely unknown. Swapping of chromosomal fragments occurs by induction of double strand breaks (DSBs), most of which were initially assumed de novo. However, decoding of human genome proved that transposable elements (TE) might have profound influence on genome integrity. TEs are highly conserved mobile genetic elements that generate DSBs, subsequently resulting in large chromosomal rearrangements. Previously TE insertions were thought to be harmless, but recently gains attention due to the origin of spectrum of post-insertional genomic alterations and subsequent transcriptional alterations leading to development of deleterious effects mainly carcinogenesis. Though the existing knowledge on the cancer-associated TE dynamics is very primitive, exploration of underlying mechanism promises better therapeutic strategies for cancer. Thus, this review focuses on the prevalence of TE in the genome, associated genomic instability upon transposition activation and impact on tumorigenesis.
Collapse
Affiliation(s)
- Sridaran Dhivya
- Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Kumpati Premkumar
- Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
33
|
Barghi N, Concepcion GP, Olivera BM, Lluisma AO. Structural features of conopeptide genes inferred from partial sequences of the Conus tribblei genome. Mol Genet Genomics 2015; 291:411-22. [PMID: 26423067 DOI: 10.1007/s00438-015-1119-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 09/18/2015] [Indexed: 10/23/2022]
Abstract
The evolvability of venom components (in particular, the gene-encoded peptide toxins) in venomous species serves as an adaptive strategy allowing them to target new prey types or respond to changes in the prey field. The structure, organization, and expression of the venom peptide genes may provide insights into the molecular mechanisms that drive the evolution of such genes. Conus is a particularly interesting group given the high chemical diversity of their venom peptides, and the rapid evolution of the conopeptide-encoding genes. Conus genomes, however, are large and characterized by a high proportion of repetitive sequences. As a result, the structure and organization of conopeptide genes have remained poorly known. In this study, a survey of the genome of Conus tribblei was undertaken to address this gap. A partial assembly of C. tribblei genome was generated; the assembly, though consisting of a large number of fragments, accounted for 2160.5 Mb of sequence. A large number of repetitive genomic elements consisting of 642.6 Mb of retrotransposable elements, simple repeats, and novel interspersed repeats were observed. We characterized the structural organization and distribution of conotoxin genes in the genome. A significant number of conopeptide genes (estimated to be between 148 and 193) belonging to different superfamilies with complete or nearly complete exon regions were observed, ~60 % of which were expressed. The unexpressed conopeptide genes represent hidden but significant conotoxin diversity. The conotoxin genes also differed in the frequency and length of the introns. The interruption of exons by long introns in the conopeptide genes and the presence of repeats in the introns may indicate the importance of introns in facilitating recombination, evolution and diversification of conotoxins. These findings advance our understanding of the structural framework that promotes the gene-level molecular evolution of venom peptides.
Collapse
Affiliation(s)
- Neda Barghi
- Marine Science Institute, University of the Philippines-Diliman, 1101, Quezon City, Philippines.,Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Gisela P Concepcion
- Marine Science Institute, University of the Philippines-Diliman, 1101, Quezon City, Philippines.,Philippine Genome Center, University of the Philippines, 1101, Quezon City, Philippines
| | | | - Arturo O Lluisma
- Marine Science Institute, University of the Philippines-Diliman, 1101, Quezon City, Philippines. .,Philippine Genome Center, University of the Philippines, 1101, Quezon City, Philippines.
| |
Collapse
|
34
|
Sabino FC, Ribeiro AO, Tufik S, Torres LB, Oliveira JA, Mello LEAM, Cavalcante JS, Pedrazzoli M. Evolutionary history of the PER3 variable number of tandem repeats (VNTR): idiosyncratic aspect of primate molecular circadian clock. PLoS One 2014; 9:e107198. [PMID: 25222750 PMCID: PMC4164614 DOI: 10.1371/journal.pone.0107198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/12/2014] [Indexed: 12/30/2022] Open
Abstract
The PER3 gene is one of the clock genes, which function in the core mammalian molecular circadian system. A variable number of tandem repeats (VNTR) locus in the 18th exon of this gene has been strongly associated to circadian rhythm phenotypes and sleep organization in humans, but it has not been identified in other mammals except primates. To better understand the evolution and the placement of the PER3 VNTR in a phylogenetical context, the present study enlarges the investigation about the presence and the structure of this variable region in a large sample of primate species and other mammals. The analysis of the results has revealed that the PER3 VNTR occurs exclusively in simiiforme primates and that the number of copies of the primitive unit ranges from 2 to 11 across different primate species. Two transposable elements surrounding the 18th exon of PER3 were found in primates with published genome sequences, including the tarsiiforme Tarsius syrichta, which lacks the VNTR. These results suggest that this VNTR may have evolved in a common ancestor of the simiiforme branch and that the evolutionary copy number differentiation of this VNTR may be associated with primate simiiformes sleep and circadian phenotype patterns.
Collapse
Affiliation(s)
- Flávia Cal Sabino
- Department of Psychobiology, Federal University of São Paulo, São Paulo, Brazil
| | | | - Sérgio Tufik
- Department of Psychobiology, Federal University of São Paulo, São Paulo, Brazil
| | - Laila Brito Torres
- Evandro Chagas Institute/Primate National Center (IEC-CENP) – Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - José Américo Oliveira
- Division of Anatomy, Department of Basic Sciences, Araçatuba Dental School, São Paulo State University, Araçatuba, Brazil
| | | | - Jeferson Souza Cavalcante
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, Brazil
- * E-mail:
| | - Mario Pedrazzoli
- School of Arts, Science and Humanities, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Variation and constraints in species-specific promoter sequences. J Theor Biol 2014; 363:357-66. [PMID: 25149367 DOI: 10.1016/j.jtbi.2014.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/30/2014] [Accepted: 08/04/2014] [Indexed: 11/24/2022]
Abstract
A vast literature is nowadays devoted to the search of correlations between transcription related functions and the composition of sequences upstream the Transcription Start Site. Little is known about the possible functional effects of nucleotide distributions on the conformational landscape of DNA in such regions. We have used suitable statistical indicators for identifying sequences that may play an important role in regulating transcription processes. In particular, we have analyzed base composition, periodicity and information content in sets of aligned promoters clustered according to functional information in order to obtain an insight on the main structural differences between promoters regulating genes with different functions. Our results show that when we select promoters according to some biological information, in a single species, at least in vertebrates, we observe structurally different classes of sequences. The highly variable and differentiated gene expression patterns may explain the great extent of structural differentiation observed in complex organisms. In fact, despite our analysis is focused on Homo sapiens, we provide also a comparison with other species, selected at different positions in the phylogenetic tree.
Collapse
|
36
|
Dumesic PA, Madhani HD. Recognizing the enemy within: licensing RNA-guided genome defense. Trends Biochem Sci 2013; 39:25-34. [PMID: 24280023 DOI: 10.1016/j.tibs.2013.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/26/2013] [Accepted: 10/28/2013] [Indexed: 02/06/2023]
Abstract
How do cells distinguish normal genes from transposons? Although much has been learned about RNAi-related RNA silencing pathways responsible for genome defense, this fundamental question remains. The literature points to several classes of mechanisms. In some cases, double-stranded RNA (dsRNA) structures produced by transposon inverted repeats or antisense integration trigger endogenous small interfering RNA (siRNA) biogenesis. In other instances, DNA features associated with transposons--such as their unusual copy number, chromosomal arrangement, and/or chromatin environment--license RNA silencing. Finally, recent studies have identified improper transcript processing events, such as stalled pre-mRNA splicing, as signals for siRNA production. Thus, the suboptimal gene expression properties of selfish elements can enable their identification by RNA silencing pathways.
Collapse
Affiliation(s)
- Phillip A Dumesic
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
37
|
The intertwining of transposable elements and non-coding RNAs. Int J Mol Sci 2013; 14:13307-28. [PMID: 23803660 PMCID: PMC3742188 DOI: 10.3390/ijms140713307] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 12/15/2022] Open
Abstract
Growing evidence shows a close association of transposable elements (TE) with non-coding RNAs (ncRNA), and a significant number of small ncRNAs originate from TEs. Further, ncRNAs linked with TE sequences participate in a wide-range of regulatory functions. Alu elements in particular are critical players in gene regulation and molecular pathways. Alu sequences embedded in both long non-coding RNAs (lncRNA) and mRNAs form the basis of targeted mRNA decay via short imperfect base-pairing. Imperfect pairing is prominent in most ncRNA/target RNA interactions and found throughout all biological kingdoms. The piRNA-Piwi complex is multifunctional, but plays a major role in protection against invasion by transposons. This is an RNA-based genetic immune system similar to the one found in prokaryotes, the CRISPR system. Thousands of long intergenic non-coding RNAs (lincRNAs) are associated with endogenous retrovirus LTR transposable elements in human cells. These TEs can provide regulatory signals for lincRNA genes. A surprisingly large number of long circular ncRNAs have been discovered in human fibroblasts. These serve as "sponges" for miRNAs. Alu sequences, encoded in introns that flank exons are proposed to participate in RNA circularization via Alu/Alu base-pairing. Diseases are increasingly found to have a TE/ncRNA etiology. A single point mutation in a SINE/Alu sequence in a human long non-coding RNA leads to brainstem atrophy and death. On the other hand, genomic clusters of repeat sequences as well as lncRNAs function in epigenetic regulation. Some clusters are unstable, which can lead to formation of diseases such as facioscapulohumeral muscular dystrophy. The future may hold more surprises regarding diseases associated with ncRNAs andTEs.
Collapse
|
38
|
Genome-wide survey of repetitive DNA elements in the button mushroom Agaricus bisporus. Fungal Genet Biol 2013; 55:6-21. [DOI: 10.1016/j.fgb.2013.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 04/05/2013] [Accepted: 04/07/2013] [Indexed: 02/07/2023]
|
39
|
Sharma A, Wolfgruber TK, Presting GG. Tandem repeats derived from centromeric retrotransposons. BMC Genomics 2013; 14:142. [PMID: 23452340 PMCID: PMC3648361 DOI: 10.1186/1471-2164-14-142] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/23/2013] [Indexed: 12/26/2022] Open
Abstract
Background Tandem repeats are ubiquitous and abundant in higher eukaryotic genomes and constitute, along with transposable elements, much of DNA underlying centromeres and other heterochromatic domains. In maize, centromeric satellite repeat (CentC) and centromeric retrotransposons (CR), a class of Ty3/gypsy retrotransposons, are enriched at centromeres. Some satellite repeats have homology to retrotransposons and several mechanisms have been proposed to explain the expansion, contraction as well as homogenization of tandem repeats. However, the origin and evolution of tandem repeat loci remain largely unknown. Results CRM1TR and CRM4TR are novel tandem repeats that we show to be entirely derived from CR elements belonging to two different subfamilies, CRM1 and CRM4. Although these tandem repeats clearly originated in at least two separate events, they are derived from similar regions of their respective parent element, namely the long terminal repeat (LTR) and untranslated region (UTR). The 5′ ends of the monomer repeat units of CRM1TR and CRM4TR map to different locations within their respective LTRs, while their 3′ ends map to the same relative position within a conserved region of their UTRs. Based on the insertion times of heterologous retrotransposons that have inserted into these tandem repeats, amplification of the repeats is estimated to have begun at least ~4 (CRM1TR) and ~1 (CRM4TR) million years ago. Distinct CRM1TR sequence variants occupy the two CRM1TR loci, indicating that there is little or no movement of repeats between loci, even though they are separated by only ~1.4 Mb. Conclusions The discovery of two novel retrotransposon derived tandem repeats supports the conclusions from earlier studies that retrotransposons can give rise to tandem repeats in eukaryotic genomes. Analysis of monomers from two different CRM1TR loci shows that gene conversion is the major cause of sequence variation. We propose that successive intrastrand deletions generated the initial repeat structure, and gene conversions increased the size of each tandem repeat locus.
Collapse
|
40
|
Kim YJ, Lee J, Han K. Transposable Elements: No More 'Junk DNA'. Genomics Inform 2012; 10:226-33. [PMID: 23346034 PMCID: PMC3543922 DOI: 10.5808/gi.2012.10.4.226] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/16/2012] [Accepted: 11/17/2012] [Indexed: 01/03/2023] Open
Abstract
Since the advent of whole-genome sequencing, transposable elements (TEs), just thought to be 'junk' DNA, have been noticed because of their numerous copies in various eukaryotic genomes. Many studies about TEs have been conducted to discover their functions in their host genomes. Based on the results of those studies, it has been generally accepted that they have a function to cause genomic and genetic variations. However, their infinite functions are not fully elucidated. Through various mechanisms, including de novo TE insertions, TE insertion-mediated deletions, and recombination events, they manipulate their host genomes. In this review, we focus on Alu, L1, human endogenous retrovirus, and short interspersed element/variable number of tandem repeats/Alu (SVA) elements and discuss how they have affected primate genomes, especially the human and chimpanzee genomes, since their divergence.
Collapse
Affiliation(s)
- Yun-Ji Kim
- Department of Nanobiomedical Science, WCU Research Center, Dankook University, Cheonan 330-714, Korea
| | | | | |
Collapse
|