1
|
Molina V, von Plessing C, Romero A, Benavides S, Troncoso JM, Pérez-Correa JR, Franco W. Determination of the Dissolution/Permeation and Apparent Solubility for Microencapsulated Emamectin Benzoate Using In Vitro and Ex Vivo Salmo salar Intestine Membranes. Pharmaceuticals (Basel) 2022; 15:ph15060652. [PMID: 35745571 PMCID: PMC9227562 DOI: 10.3390/ph15060652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
In this work, two microencapsulation techniques were used to protect and improve the absorption of emamectin benzoate (EB), which is an antiparasitic drug used to control Caligus rogercresseyi. EB has a low aqueous solubility, which affects its absorption in the intestine of Salmo salar. Microparticles were produced by spray drying and ionic gelation, using Soluplus® (EB−SOL) and sodium alginate (EB−ALG) as polymers, respectively. Studies were conducted on dissolution/permeation, apparent permeability (Papp), apparent solubility (Sapp), and absorption using synthetic and biological membranes. Based on these results, the amount of EB in the microparticles needed to achieve a therapeutic dose was estimated. The EB−ALG microparticles outperformed both EB−SOL and free EB, for all parameters analyzed. The results show values of 0.45 mg/mL (80.2%) for dissolution/permeation, a Papp of 6.2 mg/mL in RS−L, an absorption of 7.3% in RS, and a Sapp of 53.1% in EM medium. The EB−ALG microparticles decrease the therapeutic dose necessary to control the parasite, with values of 3.0−2 mg/mL and 1.1−2 mg/mL for EB in EM and RS, respectively. The Korsmeyer−Peppas kinetic model was the best model to fit the EB−ALG and EB−SOL dissolution/permeation experiments. In addition, some of our experimental results using synthetic membranes are similar to those obtained with biological membranes, which suggests that, for some parameters, it is possible to replace biological membranes with synthetic membranes. The encapsulation of EB by ionic gelation shows it is a promising formulation to increase the absorption of the poorly soluble drug. In contrast, the spray-dried microparticles produced using Soluplus® result in even less dissolution/permeation than free EB, so the technique cannot be used to improve the solubility of EB.
Collapse
Affiliation(s)
- Victoria Molina
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile; (V.M.); (J.R.P.-C.)
| | | | - Alex Romero
- Laboratory of Immunology and Stress of Aquatic Organisms, Animal Pathology Institute, Universidad Austral de Chile, Valdivia 5090000, Chile;
- Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Valdivia 5090000, Chile
| | - Sergio Benavides
- Research Center in Agri-Food and Applied Nutrition, Universidad Adventista de Chile, Chillán 3820572, Chile;
- Faculty of Sciences for Health Care, Universidad San Sebastián, Concepción 4080871, Chile
| | | | - José Ricardo Pérez-Correa
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile; (V.M.); (J.R.P.-C.)
| | - Wendy Franco
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile; (V.M.); (J.R.P.-C.)
- Department of Health Sciences, Nutrition and Dietetics Career, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile
- Correspondence: ; Tel.: +56-223-545-983
| |
Collapse
|
2
|
Sodium Diclofenac Encapsulation: Optimization of Encapsulation Efficiency and Particle Size Using Response Surface Methodology. Pharm Chem J 2022. [DOI: 10.1007/s11094-021-02522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Mooranian A, Jones M, Walker D, Ionescu C, Wagle S, Kovačević B, Chester J, Foster T, Johnston E, Mikov M, Al-Salami H. 'In vitro' assessments of microencapsulated viable cells as a result of primary bile acid-encapsulated formulation for inflammatory disorders. SCRIPTA MEDICA 2022. [DOI: 10.5937/scriptamed53-36574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background / Aim: Metformin is widely used in type 2 diabetes and exhibits many positive biological effects on pancreatic b-cells and muscle cells, such as supporting insulin release by b-cells and glucose uptake by muscle cells and reducing oxidative stress, particularly due to diabetes-associated hyperglycaemia. Interestingly, for type 1 diabetes, transplantation of healthy b-cells has been proposed as a novel way to replace insulin therapy. Recently, bile acid-formulations containing transplantable b-cells showed best stability. Hence, this study aimed to explore the effects of metformin-bile acid formulations in b-cell encapsulation and on the biological activities of b-cells and muscle-cells. Methods: Two sets of biological effects were examined, using metformin-bile acid formulations, on encapsulated b-cells and on muscle cells exposed to the formulations. Results: Various encapsulated b-cell formulations' cell viability, insulin levels, cellular oxidative stress, cellular inflammatory profile and bioenergetics at the normoand hyperglycaemic states showed differing results based upon the metformin concentration and the inclusion or absence of bile acid. Similar effects were observed with muscle cells. Low ratios of metformin and bile acids showed best biological effects, suggesting a formulation dependent result. The formulations' positive effects were more profound at the hyperglycaemic state suggesting efficient cell protective effects. Conclusion: Overall, metformin had positive impacts on the cells in a concentration-dependent manner, with the addition of chenodeoxycholic acid further improving results.
Collapse
|
4
|
Álvarez‐Cervantes P, Cancino‐Díaz JC, Fabela‐Illescas HE, Cariño‐Cortés R, López‐Villegas EO, Ariza‑Ortega JA, Belefant‐Miller H, Betanzos‐Cabrera G. Spray‐drying microencapsulation of pomegranate juice increases its antioxidant activity after
in vitro
digestion. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Pedro Álvarez‐Cervantes
- Área Académica de Nutrición Instituto de Ciencias de la Salud Universidad Autónoma del Estado de Hidalgo Pachuca Mexico
| | - Juan Carlos Cancino‐Díaz
- Departamento de Microbiología Instituto Politécnico Nacional Escuela Nacional de Ciencias Biológicas Mexico City Mexico
| | | | - Raquel Cariño‐Cortés
- Área Académica de Medicina Instituto de Ciencias de la Salud Universidad Autónoma del Estado de Hidalgo Pachuca Mexico
| | - Edgar Oliver López‐Villegas
- Departamento de Investigación Departamento de Microbiología Instituto Politécnico Nacional Escuela Nacional de Ciencias Biológicas Mexico City Mexico
| | - José Alberto Ariza‑Ortega
- Área Académica de Nutrición Instituto de Ciencias de la Salud Universidad Autónoma del Estado de Hidalgo Pachuca Mexico
| | | | - Gabriel Betanzos‐Cabrera
- Área Académica de Nutrición Instituto de Ciencias de la Salud Universidad Autónoma del Estado de Hidalgo Pachuca Mexico
- Área Académica de Medicina Instituto de Ciencias de la Salud Universidad Autónoma del Estado de Hidalgo Pachuca Mexico
| |
Collapse
|
5
|
Zongo L, Lange H, Crestini C. Sulfited Tannin Capsules: Novel Stimuli-Responsive Delivery Systems. ACS OMEGA 2021; 6:13192-13203. [PMID: 34056469 PMCID: PMC8158821 DOI: 10.1021/acsomega.1c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Microcapsules of sulfited Acacia mearnsii tannin (AmST-MCs) were generated for the first time via the sonochemical method. Their stability profile was assessed and set in the general context of tannin microcapsules (TMCs) generated under the same experimental conditions. The analytical data gathered in this work indicate an excellent stability of TMCs over time as well as under high temperature and pressure, which is a major milestone toward the meaningful applications of TMCs in industrial, pharmaceutical, and biomedical applications in which sterilization of TMCs might be a prerequisite. Active release is shown to be efficiently triggered by varying pH and/or salinity, with different profiles for TMCs from sulfited and nonsulfited species. Surfactants also affect the stability of TMCs significantly, with effects eventually amplifiable by pH and the inherent kosmotropic and chaotropic characteristics of salt components in solutions.
Collapse
Affiliation(s)
- Luc Zongo
- Department
of Chemical Science and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Heiko Lange
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Piazza della Scienza 1, Milan 20126, Italy
- CSGI
− Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Claudia Crestini
- CSGI
− Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
- Department
of Molecular Science and Nanosystems, University
of Venice “Ca’ Foscari”, Via Torino 155, Venice Mestre 30170, Italy
| |
Collapse
|
6
|
Beaumont P, Courtois A, Richard T, Krisa S, Faure C. Encapsulation of ε-Viniferin into Multi-Lamellar Liposomes: Development of a Rapid, Easy and Cost-Efficient Separation Method to Determine the Encapsulation Efficiency. Pharmaceutics 2021; 13:pharmaceutics13040566. [PMID: 33923723 PMCID: PMC8073621 DOI: 10.3390/pharmaceutics13040566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 01/05/2023] Open
Abstract
Onion-type multi-lamellar liposomes (MLLs), composed of a mixture of phosphatidylcholine and Tween 80, were analyzed for their ability to encapsulate ε-Viniferin (εVin), a resveratrol dimer. Their encapsulation efficiency (EE) was measured by UV-VIS spectroscopy using three different separation methods—ultracentrifugation, size exclusion chromatography, and a more original and advantageous one, based on adsorption filtration. The adsorption filtration method consists indeed of using syringe filters to retain the molecule of interest, and not the liposomes as usually performed. The process is rapid (less than 10 min), easy to handle, and inexpensive in terms of sample amount (around 2 mg of liposomes) and equipment (one syringe filter is required). Whatever the separation method, a similar EE value was determined, validating the proposed method. A total of 80% ± 4% of εVin was found to be encapsulated leading to a 6.1% payload, roughly twice those reported for resveratrol-loaded liposomes. Finally, the release kinetics of εVin from MLLs was followed for a 77 day period, demonstrating a slow release of the polyphenol.
Collapse
Affiliation(s)
- Pauline Beaumont
- UR Œnologie, MIB, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (P.B.); (A.C.); (T.R.); (S.K.)
- Bordeaux INP, UR Œnologie, MIB, EA 4577, USC 1366 INRAE, 33882 Villenave d’Ornon, France
| | - Arnaud Courtois
- UR Œnologie, MIB, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (P.B.); (A.C.); (T.R.); (S.K.)
- Bordeaux INP, UR Œnologie, MIB, EA 4577, USC 1366 INRAE, 33882 Villenave d’Ornon, France
- Centre Antipoison et de Toxicovigilance de Nouvelle Aquitaine, Bâtiment UNDR, CHU de Bordeaux, 33076 Bordeaux, France
| | - Tristan Richard
- UR Œnologie, MIB, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (P.B.); (A.C.); (T.R.); (S.K.)
- Bordeaux INP, UR Œnologie, MIB, EA 4577, USC 1366 INRAE, 33882 Villenave d’Ornon, France
| | - Stéphanie Krisa
- UR Œnologie, MIB, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (P.B.); (A.C.); (T.R.); (S.K.)
- Bordeaux INP, UR Œnologie, MIB, EA 4577, USC 1366 INRAE, 33882 Villenave d’Ornon, France
| | - Chrystel Faure
- Department of Chemistry, Université de Bordeaux, CBMN, UMR 5248, 33600 Pessac, France
- Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France
- Correspondence: ; Tel.: +33-540-006-833; Fax: +33-540-008-496
| |
Collapse
|
7
|
Mobarak Qamsari E, Kermanshahi RK, Erfan M, Ghadam P. Microencapsulation of Omeprazole by Lactobacillus acidophilus ATCC 4356 Surface Layer Protein and Evaluation of its Stability in Acidic Condition. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 19:240-254. [PMID: 33841539 PMCID: PMC8019888 DOI: 10.22037/ijpr.2019.111681.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present study introduces a novel method for encapsulation of the acid-labile drug called Omeprazole using Lactobacillus acidophilus (L. acidophilus) ATCC 4356 S-layer protein. Before preparing the Omeprazole suspension, a series of preliminary studies were performed on the Omeprazole powder. For this purpose, some parameters such as melting point, IR spectrum, UV spectrum, and the particle size of Omeprazole powder were investigated. The size reduction process was done in order to achieve an ideal formulation. Ultimately, the resulting powder had an average particle size of 35.516 μm and it was almost uniform. After calculating the amount of S-layer protein required for complete covering of drug particles, the effect of different factors on the drug coating process was investigated with one factor at a time method. Then stability of coated Omeprazole was evaluated in acetate buffer (pH 5). Finally, the maximum coat of drug particles was determined using S- layer protein of Lactobacillus acidophilus ATCC 4356 at 25 °C for 2 h, shaking rate of 100 rpm and ratio of 2:1 for S-layer protein amount/Omeprazole Surface in Tris hydrochloride buffer medium (50 mM, pH 8). The coating of Omeprazole by the S-layer protein decreased the drug decomposition rate up to 2.223.
Collapse
Affiliation(s)
- Elahe Mobarak Qamsari
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Rouha Kasra Kermanshahi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mohammad Erfan
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parinaz Ghadam
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
8
|
Halevas E, Kokotidou C, Zaimai E, Moschona A, Lialiaris E, Mitraki A, Lialiaris T, Pantazaki A. Evaluation of the Hemocompatibility and Anticancer Potential of Poly( ε-Caprolactone) and Poly(3-Hydroxybutyrate) Microcarriers with Encapsulated Chrysin. Pharmaceutics 2021; 13:109. [PMID: 33467090 PMCID: PMC7831015 DOI: 10.3390/pharmaceutics13010109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/18/2023] Open
Abstract
In this work, novel chrysin-loaded poly(ε-caprolactone) and poly(3-hydroxybutyrate) microcarriers were synthesized according to a modified oil-in-water single emulsion/solvent evaporation method, utilizing poly(vinyl alcohol) surfactant as stabilizer and dispersing agent for the emulsification, and were evaluated for their physico-chemical and morphological properties, loading capacity and entrapment efficiency and in vitro release of their load. The findings suggest that the novel micro-formulations possess a spherical and relatively wrinkled structure with sizes ranging between 2.4 and 24.7 µm and a highly negative surface charge with z-potential values between (-18.1)-(-14.1) mV. The entrapment efficiency of chrysin in the poly(ε-caprolactone) and poly(3-hydroxybutyrate) microcarriers was estimated to be 58.10% and 43.63%, whereas the loading capacity was found to be 3.79% and 15.85%, respectively. The average release percentage of chrysin was estimated to be 23.10% and 18.01%, respectively. The novel micromaterials were further biologically evaluated for their hemolytic activity through hemocompatibility studies over a range of hematological parameters and cytoxicity against the epithelial human breast cancer cell line MDA-MB 231. The poly(ε-caprolactone) and poly(3-hydroxybutyrate) microcarriers reached an IC50 value with an encapsulated chrysin content of 149.19 µM and 312.18 µM, respectively, and showed sufficient blood compatibility displaying significantly low (up to 2%) hemolytic percentages at concentrations between 5 and 500 µg·mL-1.
Collapse
Affiliation(s)
- Eleftherios Halevas
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Chrysoula Kokotidou
- Department of Materials Science and Technology, University of Crete, Voutes Campus, 70013 Heraklion, Greece; (C.K.); (A.M.)
- Institute for Electronic Structure and Laser FORTH, N. Plastira 100, 70013 Heraklion, Greece
| | - Elda Zaimai
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Alexandra Moschona
- Laboratory of Organic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Laboratory of Natural Resources and Renewable Energies, Chemical Process and Energy Resources Institute, Centre for Research and Technology-Hellas (CERTH), 6th km Harilaou-Thermis, 57001 Thermi, Greece
| | - Efstratios Lialiaris
- Laboratory of Genetics, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (T.L.)
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Voutes Campus, 70013 Heraklion, Greece; (C.K.); (A.M.)
- Institute for Electronic Structure and Laser FORTH, N. Plastira 100, 70013 Heraklion, Greece
| | - Theodore Lialiaris
- Laboratory of Genetics, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (T.L.)
| | - Anastasia Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
9
|
Gosálvez J, López-Fernández C, Fernández JL, Johnston S. Microencapsulation of human spermatozoa increases membrane stability and DNA longevity. Andrologia 2020; 53:e13924. [PMID: 33355946 DOI: 10.1111/and.13924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/18/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022] Open
Abstract
The microencapsulation of spermatozoa offers potential benefits for maintaining sperm survival in vitro. The technique has also resulted in the production of offspring in several domestic animal species, but as yet, it has not been successfully applied in human reproductive medicine. This study examined the effect of alginic acid microencapsulation on human sperm membrane integrity (viability) and sperm DNA fragmentation (SDF) following storage for 24 hr at 37°C. The cumulative sperm viability (Log-rank, Mantel-Cox; Chi-square = 114.95, p = .000) and cumulative sperm DNA fragmentation (Log-rank, Mantel-Cox; Chi-square = 187.86, p = .000) of encapsulated spermatozoa were substantially improved when compared to control spermatozoa. Significant differences in the dynamic behaviour of different individuals were only apparent for sperm viability in microencapsulated samples (p = .021) while no significant differences were observed in control spermatozoa (p = .245); the equivalent comparison for SDF showed no differences (control p = .320; microencapsulated p = .432). We present potential scenarios for the use of microencapsulated human spermatozoa in reproductive medicine.
Collapse
Affiliation(s)
- Jaime Gosálvez
- Department of Biology, Universidad Autonoma de Madrid, Madrid, Spain
| | | | - José Luís Fernández
- Genetics Unit, INIBIC-Complexo Hospitalario Universitario A Coruña (CHUAC), Coruña, Spain.,Oncology Center of Galicia, Genetics and Radiobiology Laboratory, Coruña, Spain
| | - Stephen Johnston
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Qld, Australia
| |
Collapse
|
10
|
Design and Characterization of Spray-Dried Chitosan-Naltrexone Microspheres for Microneedle-Assisted Transdermal Delivery. Pharmaceutics 2020; 12:pharmaceutics12060496. [PMID: 32485999 PMCID: PMC7355536 DOI: 10.3390/pharmaceutics12060496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 11/16/2022] Open
Abstract
Naltrexone (NTX) hydrochloride is a potent opioid antagonist with significant first-pass metabolism and notable untoward effects when administered orally or intramuscularly. Microneedle (MN)-assisted transdermal delivery is an attractive alternative that can improve therapeutic delivery to deeper skin layers. In this study, chitosan-NTX microspheres were developed via spray-drying, and their potential for transdermal NTX delivery in association with MN skin treatment was assessed. A quality-by-design approach was used to evaluate the impact of key input variables (chitosan molecular weight, concentration, chitosan-NTX ratio, and feed flow rate) on microsphere physical characteristics, encapsulation efficiency, and drug-loading capacity. Formulated microspheres had high encapsulation efficiencies (70%-87%), with drug-loading capacities ranging from 10%-43%. NTX flux through MN-treated skin was 11.6 ± 2.2 µg/cm2·h from chitosan-NTX microspheres, which was significantly higher than flux across intact skin. Combining MN-assisted delivery with the chitosan microsphere formulation enabled NTX delivery across the skin barrier, while controlling the dose released to the skin.
Collapse
|
11
|
Barrera MG, Tejada G, Leonardi D, Lamas MC, Salomón CJ. A Novel Prototype Device for Microencapsulation of Benznidazole: In Vitro/In Vivo Studies. AAPS PharmSciTech 2020; 21:112. [PMID: 32236813 DOI: 10.1208/s12249-020-01659-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/13/2020] [Indexed: 12/30/2022] Open
Abstract
This study was aimed to design a simple and novel prototype device for the production of polymeric microparticles. To prove the effectiveness of this device, benznidazole microparticles using chitosan as carrier and NaOH, KOH, or SLS as counter ions were used. For comparison, benznidazole microparticles were prepared by the conventional dripping technique (syringe and gauge) using the same excipients. Microparticles were characterized in terms of encapsulation efficiency, particle shape, size and surface topography, crystallinity characteristics, thermal behavior, and dissolution rate. Then, the pharmacokinetic parameters were evaluated after the oral administration of the microparticles to healthy Wistar rats. The prepared formulations, by means of this device, showed good drug encapsulation efficiency (> 70%). Release studies revealed an increased dissolution of benznidazole from chitosan microparticles prepared using the novel device. It achieved more than 90% in 60 min, while those of the conventional microparticles and raw drug achieved 65% and 68%, respectively, during the same period. Almost spherical benznidazole microparticles with a smooth surface and size around 10-30 μm were observed using scanning electron microscopy. Thermal analysis and X-ray diffraction studies suggested a partial reduction of drug crystallinity. Moreover, the relative oral bioavailability of the novel benznidazole microparticles showed that the area under the curve for the microencapsulated drug was 10.3 times higher than the raw drug. Thus, these findings indicate that the designed glass prototype device is a useful alternative to formulate benznidazole polymeric microparticles with improved biopharmaceutical properties and could be useful for other therapeutic microparticulate systems.
Collapse
|
12
|
Piombino C, Lange H, Sabuzi F, Galloni P, Conte V, Crestini C. Lignosulfonate Microcapsules for Delivery and Controlled Release of Thymol and Derivatives. Molecules 2020; 25:E866. [PMID: 32079068 PMCID: PMC7070466 DOI: 10.3390/molecules25040866] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/10/2023] Open
Abstract
Thymol and the corresponding brominated derivatives constitute important biological active molecules as antibacterial, antioxidant, antifungal, and antiparasitic agents. However, their application is often limited, because their pronounced fragrance, their poor solubility in water, and their high volatility. The encapsulation of different thymol derivatives into biocompatible lignin-microcapsules is presented as a synergy-delivering remedy. The adoption of lignosulfonate as an encapsulating material possessing relevant antioxidant activity, as well as general biocompatibility allows for the development of new materials that are suitable for the application in various fields, especially cosmesis. To this purpose, lignin microcapsules containing thymol, 4-bromothymol, 2,4-dibromothymol, and the corresponding O-methylated derivatives have been efficiently prepared through a sustainable ultrasonication procedure. Actives could be efficiently encapsulated with efficiencies of up to 50%. To evaluate the applicability of such systems for topical purposes, controlled release experiments have been performed in acetate buffer at pH 5.4, to simulate skin pH: all of the capsules show a slow release of actives, which is strongly determined by their inherent lipophilicity.
Collapse
Affiliation(s)
- Claudio Piombino
- Department of Chemical Science and Technologies, University of Rome ‘Tor Vergata’, Via della Ricerca Scientifica, 00133 Rome, Italy; (C.P.); (P.G.); (V.C.)
| | - Heiko Lange
- Department of Pharmacy, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome ‘Tor Vergata’, Via della Ricerca Scientifica, 00133 Rome, Italy; (C.P.); (P.G.); (V.C.)
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome ‘Tor Vergata’, Via della Ricerca Scientifica, 00133 Rome, Italy; (C.P.); (P.G.); (V.C.)
| | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome ‘Tor Vergata’, Via della Ricerca Scientifica, 00133 Rome, Italy; (C.P.); (P.G.); (V.C.)
| | - Claudia Crestini
- Department of Molecular Science and Nanosystems, University of Venice Ca’ Foscari, Via Torino 155, 30170 Venice Mestre, Italy
| |
Collapse
|
13
|
Hajifathaliha F, Mahboubi A, Nematollahi L, Mohit E, Bolourchian N. Comparison of different cationic polymers efficacy in fabrication of alginate multilayer microcapsules. Asian J Pharm Sci 2020; 15:95-103. [PMID: 32175021 PMCID: PMC7066046 DOI: 10.1016/j.ajps.2018.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/06/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022] Open
Abstract
In past decades, alginate-based multilayer microcapsules have been given important attention in various pharmaceutical investigations. Alginate-poly l lysine-alginate (APA) is studied the most. Due to the similarity between the structure of polyethyleneimine (PEI) and poly-L-lysine (PLL) and also lower price of PEI than PLL, this study was conducted to compare the efficacy of linear (LPEI) and branch (BPEI) forms of PEI with PLL as covering layers in fabrication of microcapsules. The microcapsules were fabricated using electrostatic bead generator and their shape/size, surface roughness, mechanical strength, and interlayer interactions were also investigated using optical microscopy, AFM, explosion test and FTIR, respectively. Furthermore, cytotoxicity was evaluated by comparing the two anionic final covering layers alginate (Alg) and sodium cellulose sulphate (NCS) using MTT test. BPEI was excluded from the rest of the study due to its less capacity to strengthen the microcapsules and also the aggregation of the resultant alginate-BPEI-alginate microcapsules, while LPEI showed properties similar to PLL. MTT test also showed that NCS has no superiority over Alg as final covering layer. Therefore, it is concluded that, LPEI could be considered as a more cost effective alternative to PLL and a promising subject for future studies.
Collapse
Affiliation(s)
- Fariba Hajifathaliha
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| | - Arash Mahboubi
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| | - Leila Nematollahi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| | - Noushin Bolourchian
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| |
Collapse
|
14
|
Ashimova A, Yegorov S, Negmetzhanov B, Hortelano G. Cell Encapsulation Within Alginate Microcapsules: Immunological Challenges and Outlook. Front Bioeng Biotechnol 2019; 7:380. [PMID: 31850335 PMCID: PMC6901392 DOI: 10.3389/fbioe.2019.00380] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/15/2019] [Indexed: 12/29/2022] Open
Abstract
Cell encapsulation is a bioengineering technology that provides live allogeneic or xenogeneic cells packaged in a semipermeable immune-isolating membrane for therapeutic applications. The concept of cell encapsulation was first proposed almost nine decades ago, however, and despite its potential, the technology has yet to deliver its promise. The few clinical trials based on cell encapsulation have not led to any licensed therapies. Progress in the field has been slow, in part due to the complexity of the technology, but also because of the difficulties encountered when trying to prevent the immune responses generated by the various microcapsule components, namely the polymer, the encapsulated cells, the therapeutic transgenes and the DNA vectors used to genetically engineer encapsulated cells. While the immune responses induced by polymers such as alginate can be minimized using highly purified materials, the need to cope with the immunogenicity of encapsulated cells is increasingly seen as key in preventing the immune rejection of microcapsules. The encapsulated cells are recognized by the host immune cells through a bidirectional exchange of immune mediators, which induce both the adaptive and innate immune responses against the engrafted capsules. The potential strategies to cope with the immunogenicity of encapsulated cells include the selective diffusion restriction of immune mediators through capsule pores and more recently inclusion in microcapsules of immune modulators such as CXCL12. Combining these strategies with the use of well-characterized cell lines harboring the immunomodulatory properties of stem cells should encourage the incorporation of cell encapsulation technology in state-of-the-art drug development.
Collapse
Affiliation(s)
- Assem Ashimova
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Sergey Yegorov
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Pedagogical Mathematics and Natural Science, Faculty of Education and Humanities, Suleyman Demirel University, Almaty, Kazakhstan
| | - Baurzhan Negmetzhanov
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Gonzalo Hortelano
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
15
|
Zongo L, Lange H, Crestini C. A Study of the Effect of Kosmotropic and Chaotropic Ions on the Release Characteristics of Lignin Microcapsules under Stimuli-Responsive Conditions. ACS OMEGA 2019; 4:6979-6993. [PMID: 31459811 PMCID: PMC6648606 DOI: 10.1021/acsomega.8b03510] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/01/2019] [Indexed: 05/21/2023]
Abstract
Stimuli-responsive behavior of lignin microcapsules (LMCs) has been investigated along with the detailed characterization of their stability profiles. The disassembly of LMCs was found to be salt species-dependent, indicating the specific relevance of inherent kosmotropic and chaotropic characteristics. For the first time, a connection between the Hofmeister series and the stability profile of lignin microscale materials is established. LMCs showed excellent stability in water and under high temperature and pressure (autoclaving conditions). Active release is efficiently triggered by pH changes and balancing chaotropic and kosmotropic effects via salinity tuning.
Collapse
Affiliation(s)
- Luc Zongo
- Department
of Chemical Sciences and Technologies, University
of Rome ‘Tor Vergata’, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Heiko Lange
- Department
of Chemical Sciences and Technologies, University
of Rome ‘Tor Vergata’, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Claudia Crestini
- Department
of Molecular Sciences and Nanosystems, University
of Venice Ca’ Foscari, Via Torino 155, 30170 Mestre, Venice, Italy
- E-mail: . Tel.: +39
0412348546
| |
Collapse
|
16
|
Stark K, Hitchcock JP, Fiaz A, White AL, Baxter EA, Biggs S, McLaughlan JR, Freear S, Cayre OJ. Encapsulation of Emulsion Droplets with Metal Shells for Subsequent Remote, Triggered Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12272-12282. [PMID: 30860810 DOI: 10.1021/acsami.9b00087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A two-step method to encapsulate an oil core with an impermeable shell has been developed. A thin metallic shell is deposited on the surface of emulsion droplets stabilized by metal nanoparticles. This thin shell is shown to prevent diffusion of the oil from within the core of the metal-shell microcapsules when placed in a continuous phase that fully dissolves the oil. The stabilizing nanoparticles are sterically stabilized by poly(vinyl pyrrolidone) chains and are here used as a catalyst/nucleation site at the oil-water interface to grow a secondary metal shell on the emulsion droplets via an electroless deposition process. This method provides the simplest scalable route yet to synthesize impermeable microcapsules with the added benefit that the final structure allows for drastically improving the overall volume of the encapsulated core to, in this case, >99% of the total volume. This method also allows for very good control over the microcapsule properties, and here we demonstrate our ability to tailor the final microcapsule density, capsule diameter, and secondary metal film thickness. Importantly, we also demonstrate that such impermeable microcapsule metal shells can be remotely fractured using ultrasound-based devices that are commensurate with technologies currently used in medical applications, which demonstrate the possibility to adapt these microcapsules for the delivery of cytotoxic drugs.
Collapse
Affiliation(s)
| | | | | | - Alison L White
- Australian Institute for Bioengineering and Nanotechnology , University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Elaine A Baxter
- Greater London Innovation Centre , Procter & Gamble , Egham , Surrey TW20 9NW , U.K
| | - Simon Biggs
- The University of Western Australia , Perth , WA 6009 , Australia
| | - James R McLaughlan
- Leeds Institute of Medical Research , University of Leeds, St. James's University Hospital , Leeds LS9 7TF , U.K
| | | | | |
Collapse
|
17
|
Soon CF, Tee KS, Wong SC, Nayan N, Sargunan Sundra, Ahmad MK, Sefat F, Sultana N, Youseffi M. Comparison of biophysical properties characterized for microtissues cultured using microencapsulation and liquid crystal based 3D cell culture techniques. Cytotechnology 2018; 70:13-29. [PMID: 29189979 PMCID: PMC5809678 DOI: 10.1007/s10616-017-0168-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 11/09/2017] [Indexed: 12/31/2022] Open
Abstract
Growing three dimensional (3D) cells is an emerging research in tissue engineering. Biophysical properties of the 3D cells regulate the cells growth, drug diffusion dynamics and gene expressions. Scaffold based or scaffoldless techniques for 3D cell cultures are rarely being compared in terms of the physical features of the microtissues produced. The biophysical properties of the microtissues cultured using scaffold based microencapsulation by flicking and scaffoldless liquid crystal (LC) based techniques were characterized. Flicking technique produced high yield and highly reproducible microtissues of keratinocyte cell lines in alginate microcapsules at approximately 350 ± 12 pieces per culture. However, microtissues grown on the LC substrates yielded at lower quantity of 58 ± 21 pieces per culture. The sizes of the microtissues produced using alginate microcapsules and LC substrates were 250 ± 25 μm and 141 ± 70 μm, respectively. In both techniques, cells remodeled into microtissues via different growth phases and showed good integrity of cells in field-emission scanning microscopy (FE-SEM). Microencapsulation packed the cells in alginate scaffolds of polysaccharides with limited spaces for motility. Whereas, LC substrates allowed the cells to migrate and self-stacking into multilayered structures as revealed by the nuclei stainings. The cells cultured using both techniques were found viable based on the live and dead cell stainings. Stained histological sections showed that both techniques produced cell models that closely replicate the intrinsic physiological conditions. Alginate microcapsulation and LC based techniques produced microtissues containing similar bio-macromolecules but they did not alter the main absorption bands of microtissues as revealed by the Fourier transform infrared spectroscopy. Cell growth, structural organization, morphology and surface structures for 3D microtissues cultured using both techniques appeared to be different and might be suitable for different applications.
Collapse
Affiliation(s)
- Chin Fhong Soon
- Biosensor and Bioengineering Lab, MiNT-SRC, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Kian Sek Tee
- Biosensor and Bioengineering Lab, MiNT-SRC, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Soon Chuan Wong
- Biosensor and Bioengineering Lab, MiNT-SRC, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Nafarizal Nayan
- Biosensor and Bioengineering Lab, MiNT-SRC, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Sargunan Sundra
- Biosensor and Bioengineering Lab, MiNT-SRC, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Mohd Khairul Ahmad
- Biosensor and Bioengineering Lab, MiNT-SRC, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Farshid Sefat
- Faculty of Engineering and Informatics, Medical and Healthcare Technology Department, University of Bradford, Bradford, BD7 1DP, UK
| | - Naznin Sultana
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mansour Youseffi
- Faculty of Engineering and Informatics, Medical and Healthcare Technology Department, University of Bradford, Bradford, BD7 1DP, UK
| |
Collapse
|
18
|
Kiprono SJ, Ullah MW, Yang G. Surface engineering of microbial cells: Strategies and applications. ACTA ACUST UNITED AC 2018. [DOI: 10.30919/es.180330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Microencapsulation of Baker’s Yeast in Gellan Gum Beads Used in Repeated Cycles of Glucose Fermentation. INT J POLYM SCI 2017. [DOI: 10.1155/2017/7610420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The purpose of this work is to prepare ionically cross-linked (with CaCl2) gellan particles with immobilized yeast cells for their use in repeated fermentation cycles of glucose. The study investigates the influence of ionic cross-linker concentration on the stability and physical properties of the particles obtained before extrusion and during time in the coagulation bath (the cross-linker solution with different CaCl2 concentrations). It was found that by increasing the amount of the cross-linker the degree of cross-linking in the spherical gellan matrix increases, having a direct influence on the particle morphology and swelling degree in water. These characteristics were found to be very important for diffusion of substrate, that is, the glucose, into the yeast immobilized cells and for the biocatalytic activity of the yeast immobilized cells in gellan particles. These results highlight the potential of these bioreactors to be used in repeated fermentation cycles (minimum 10) without reducing their biocatalytic activity and maintaining their productivity at similar parameters to those obtained in the free yeast fermentation. Encapsulation of Saccharomyces cerevisiae into the gellan gum beads plays a role in the effective application of immobilized yeast for the fermentation process.
Collapse
|
20
|
Varzakas T, Zakynthinos G, Verpoort F. Plant Food Residues as a Source of Nutraceuticals and Functional Foods. Foods 2016; 5:E88. [PMID: 28231183 PMCID: PMC5302437 DOI: 10.3390/foods5040088] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 11/17/2022] Open
Abstract
This chapter describes the use of different plant and vegetable food residues as nutraceuticals and functional foods. Different nutraceuticals are mentioned and explained. Their uses are well addressed along with their disease management and their action as nutraceutical delivery vehicles.
Collapse
Affiliation(s)
- Theodoros Varzakas
- TEI Peloponnese, Department of Food Technology, Kalamata 24100, Greece.
- Department of Bioscience Bioengineering, Global Campus Songdo, Ghent University, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 406-840, Korea.
| | | | - Francis Verpoort
- Department of Bioscience Bioengineering, Global Campus Songdo, Ghent University, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 406-840, Korea.
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
- National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia.
| |
Collapse
|
21
|
Mahou R, Passemard S, Carvello M, Petrelli A, Noverraz F, Gerber-Lemaire S, Wandrey C. Contribution of polymeric materials to progress in xenotransplantation of microencapsulated cells: a review. Xenotransplantation 2016; 23:179-201. [PMID: 27250036 DOI: 10.1111/xen.12240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022]
Abstract
Cell microencapsulation and subsequent transplantation of the microencapsulated cells require multidisciplinary approaches. Physical, chemical, biological, engineering, and medical expertise has to be combined. Several natural and synthetic polymeric materials and different technologies have been reported for the preparation of hydrogels, which are suitable to protect cells by microencapsulation. However, owing to the frequent lack of adequate characterization of the hydrogels and their components as well as incomplete description of the technology, many results of in vitro and in vivo studies appear contradictory or cannot reliably be reproduced. This review addresses the state of the art in cell microencapsulation with special focus on microencapsulated cells intended for xenotransplantation cell therapies. The choice of materials, the design and fabrication of the microspheres, as well as the conditions to be met during the cell microencapsulation process, are summarized and discussed prior to presenting research results of in vitro and in vivo studies. Overall, this review will serve to sensitize medically educated specialists for materials and technological aspects of cell microencapsulation.
Collapse
Affiliation(s)
- Redouan Mahou
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Solène Passemard
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michele Carvello
- Department of Surgery, San Raffaele Scientific Institute, Milan, Italy
| | | | - François Noverraz
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sandrine Gerber-Lemaire
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christine Wandrey
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Effect of orally administered L. fermentum NCIMB 5221 on markers of metabolic syndrome: an in vivo analysis using ZDF rats. Appl Microbiol Biotechnol 2014; 98:115-26. [PMID: 24121931 DOI: 10.1007/s00253-013-5252-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/05/2013] [Accepted: 09/07/2013] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome, encompassing type 2 diabetes mellitus and cardiovascular disease, is a growing health concern of industrialized countries. Ferulic acid (FA) is a phenolic acid found in foods normally consumed by humans that has demonstrated antioxidant activity, cholesterol-lowering capabilities, and anti-tumorigenic properties. Select probiotic bacteria, including Lactobacillus fermentum NCIMB 5221, produce FA due to intrinsic ferulic acid esterase activity. The aim of the present research was to investigate a FA-producing probiotic, L. fermentum NCIMB 5221, as a biotherapeutic for metabolic syndrome. The probiotic formulation was administered daily for 8 weeks to Zucker diabetic fatty (ZDF) rats, a model of hyperlipidemia and hyperglycemia. Results show that the probiotic formulation reduced fasting insulin levels and insulin resistance, significantly reduced serum triglycerides (p = 0.016), lowered serum low-density lipoprotein cholesterol levels (p = 0.008), and significantly reduced the atherogenic (p = 0.016) and atherosclerosis (p = 0.012) index as compared to the control animals. In addition, the probiotic formulation significantly increased high-density lipoprotein cholesterol levels (p = 0.041) as compared to the control animals. This research indicates that administration of the FA-producing L. fermentum NCIMB 5221 has the potential to reduce insulin resistance, hyperinsulinemia, hypercholesterolemia, and other markers involved in the pathogenesis of metabolic syndrome. Further studies are required to investigate the human clinical potential of the probiotic formulation in affecting the markers and pathogenesis of metabolic syndrome.
Collapse
|
23
|
Microencapsulated Bifidobacterium longum subsp. infantis ATCC 15697 favorably modulates gut microbiota and reduces circulating endotoxins in F344 rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:602832. [PMID: 24967382 PMCID: PMC4055066 DOI: 10.1155/2014/602832] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/05/2014] [Indexed: 11/18/2022]
Abstract
The gut microbiota is a bacterial bioreactor whose composition is an asset for human health. However, circulating gut microbiota derived endotoxins cause metabolic endotoxemia, promoting metabolic and liver diseases. This study investigates the potential of orally delivered microencapsulated Bifidobacterium infantis ATCC 15697 to modulate the gut microbiota and reduce endotoxemia in F344 rats. The rats were gavaged daily with saline or microencapsulated B. infantis ATCC 15697. Following 38 days of supplementation, the treated rats showed a significant (P < 0.05) increase in fecal Bifidobacteria (4.34 ± 0.46 versus 2.45 ± 0.25% of total) and B. infantis (0.28 ± 0.21 versus 0.52 ± 0.12 % of total) and a significant (P < 0.05) decrease in fecal Enterobacteriaceae (0.80 ± 0.45 versus 2.83 ± 0.63% of total) compared to the saline control. In addition, supplementation with the probiotic formulation reduced fecal (10.52 ± 0.18 versus 11.29 ± 0.16 EU/mg; P = 0.01) and serum (0.33 ± 0.015 versus 0.30 ± 0.015 EU/mL; P = 0.25) endotoxins. Thus, microencapsulated B. infantis ATCC 15697 modulates the gut microbiota and reduces colonic and serum endotoxins. Future preclinical studies should investigate the potential of the novel probiotic formulation in metabolic and liver diseases.
Collapse
|
24
|
Bhathena J, Martoni C, Kulamarva A, Tomaro-Duchesneau C, Malhotra M, Paul A, Urbanska AM, Prakash S. Oral probiotic microcapsule formulation ameliorates non-alcoholic fatty liver disease in Bio F1B Golden Syrian hamsters. PLoS One 2013; 8:e58394. [PMID: 23554890 PMCID: PMC3595252 DOI: 10.1371/journal.pone.0058394] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/04/2013] [Indexed: 02/07/2023] Open
Abstract
The beneficial effect of a microencapsulated feruloyl esterase producing Lactobacillus fermentum ATCC 11976 formulation for use in non-alcoholic fatty liver disease (NAFLD) was investigated. For which Bio F1B Golden Syrian hamsters were fed a methionine deficient/choline devoid diet to induce non-alcoholic fatty liver disease. Results, for the first time, show significant clinical benefits in experimental animals. Examination of lipids show that concentrations of hepatic free cholesterol, esterified cholesterol, triglycerides and phospholipids were significantly lowered in treated animals. In addition, serum total cholesterol, triglycerides, uric acid and insulin resistance were found to decrease in treated animals. Liver histology evaluations showed reduced fat deposits. Western blot analysis shows significant differences in expression levels of key liver enzymes in treated animals. In conclusion, these findings suggest the excellent potential of using an oral probiotic formulation to ameliorate NAFLD.
Collapse
Affiliation(s)
- Jasmine Bhathena
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Québec, Canada
| | - Christopher Martoni
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Québec, Canada
| | - Arun Kulamarva
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Québec, Canada
| | - Catherine Tomaro-Duchesneau
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Québec, Canada
| | - Meenakshi Malhotra
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Québec, Canada
| | - Arghya Paul
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Québec, Canada
| | - Aleksandra Malgorzata Urbanska
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Québec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Québec, Canada
| |
Collapse
|