1
|
Zhao C, Bai X, Wen A, Wang J, Ding Y. The therapeutic effects of salvianolic acids on ischemic stroke: From molecular mechanisms to clinical applications. Pharmacol Res 2024; 210:107527. [PMID: 39615615 DOI: 10.1016/j.phrs.2024.107527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Ischemic stroke (IS), primarily caused by cerebrovascular occlusion, poses a significant public health challenge with limited effective therapeutic options. Evidence suggests that salvianolic acids (SAs), mainly from Salvia miltiorrhiza Bunge, have been formulated into injections and are widely used in clinical treatments for cardiovascular and cerebrovascular diseases, including stroke. The pharmacological properties of SAs include reducing neuroinflammation, alleviating oxidative stress injury, inhibiting cellular apoptosis, preserving endothelial function, maintaining blood-brain barrier integrity, and promoting angiogenesis. Salvianolic acids for injection (SAFI) serve as a safe and effective treatment option for cardiovascular and cerebrovascular conditions by influencing various signaling pathways and molecular targets associated with these diseases. In this review, we first discuss the pathogenesis of IS, then summarize the classification of SAs, elaborate detailed molecular mechanisms of their efficacy, and the related clinical applications of SAFI. We also emphasize the recent pharmacological advancements and therapeutic possibilities of this promising drug preparation derived from herbs for cerebrovascular conditions.
Collapse
Key Words
- Caffeic acid (PubChem CID 689043)
- Clinical applications
- Danshensu (PubChem CID 11600642)
- Ischemic stroke
- Lithospermic acid (PubChem CID 6441498)
- Molecular mechanisms
- Pathogenesis
- Protocatechualdehyde (PubChem CID 8768)
- Protocatechuic acid (PubChem CID 72)
- Rosmarinic acid (PubChem CID 5281792)
- Salvia miltiorrhiza
- Salvianolic acids
- Salvianolic acids A, B, C, D, E, and Y (PubChem CIDs 5281793, 11629084, 13991590, 75412558, 86278266, 97182154)
Collapse
Affiliation(s)
- Chao Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaodan Bai
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710021, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Navaseelan L, Retinasamy T, Shaikh MF, Arulsamy A. High Mobility Group Box-1 (HMGB1), a Key Mediator of Cognitive Decline in Neurotrauma with a Potential for Targeted Therapy: A Comprehensive Review. FRONT BIOSCI-LANDMRK 2024; 29:322. [PMID: 39344324 DOI: 10.31083/j.fbl2909322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 10/01/2024]
Abstract
Neurotrauma plays a significant role in secondary injuries by intensifying the neuroinflammatory response in the brain. High Mobility Group Box-1 (HMGB1) protein is a crucial neuroinflammatory mediator involved in this process. Numerous studies have hypothesized about the underlying pathophysiology of HMGB1 and its role in cognition, but a definitive link has yet to be established. Elevated levels of HMGB1 in the hippocampus and serum have been associated with declines in cognitive performance, particularly in spatial memory and learning. This review also found that inhibiting HMGB1 can improve cognitive deficits following neurotrauma. Interestingly, HMGB1 levels are linked to the modulation of neuroplasticity and may offer neuroprotective effects in the later stages of neurotraumatic events. Consequently, administering HMGB1 during the acute phase may help reduce neuroinflammatory effects that lead to cognitive deficits in the later stages of neurotrauma. However, further research is needed to understand the time-dependent regulation of HMGB1 and the clinical implications of treatments targeting HMGB1 after neurotrauma.
Collapse
Affiliation(s)
- Locshiny Navaseelan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, NSW 2800, Australia
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
3
|
Saleki K, Alijanizadeh P, Javanmehr N, Rezaei N. The role of Toll-like receptors in neuropsychiatric disorders: Immunopathology, treatment, and management. Med Res Rev 2024; 44:1267-1325. [PMID: 38226452 DOI: 10.1002/med.22012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Neuropsychiatric disorders denote a broad range of illnesses involving neurology and psychiatry. These disorders include depressive disorders, anxiety, schizophrenia, bipolar disorder, attention deficit hyperactivity disorder, autism spectrum disorders, headaches, and epilepsy. In addition to their main neuropathology that lies in the central nervous system (CNS), lately, studies have highlighted the role of immunity and neuroinflammation in neuropsychiatric disorders. Toll-like receptors (TLRs) are innate receptors that act as a bridge between the innate and adaptive immune systems via adaptor proteins (e.g., MYD88) and downstream elements; TLRs are classified into 13 families that are involved in normal function and illnesses of the CNS. TLRs expression affects the course of neuropsychiatric disorders, and is influenced during their pharmacotherapy; For example, the expression of multiple TLRs is normalized during the major depressive disorder pharmacotherapy. Here, the role of TLRs in neuroimmunology, treatment, and management of neuropsychiatric disorders is discussed. We recommend longitudinal studies to comparatively assess the cell-type-specific expression of TLRs during treatment, illness progression, and remission. Also, further research should explore molecular insights into TLRs regulation and related pathways.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
4
|
Du Y, Wang J, Zhang J, Li N, Li G, Liu X, Lin Y, Wang D, Kang K, Bian L, Zhao X. Intracerebral hemorrhage-induced brain injury in mice: The role of peroxiredoxin 2-Toll-like receptor 4 inflammatory axis. CNS Neurosci Ther 2024; 30:e14681. [PMID: 38516845 PMCID: PMC10958402 DOI: 10.1111/cns.14681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Peroxiredoxin 2 (Prx2), an intracellular protein that regulates redox reactions, released from red blood cells is involved in inflammatory brain injury after intracerebral hemorrhage (ICH). Toll-like receptor 4 (TLR4) may be crucial in this process. This study investigated the role of the Prx2-TLR4 inflammatory axis in brain injury following experimental ICH in mice. METHODS First, C57BL/6 mice received an intracaudate injection of autologous arterial blood or saline and their brains were harvested on day 1 to measure Prx2 levels. Second, mice received an intracaudate injection of either recombinant mouse Prx2 or saline. Third, the mice were co-injected with autologous arterial blood and conoidin A, a Prx2 inhibitor, or vehicle. Fourth, the mice received a Prx2 injection and were treated with TAK-242, a TLR4 antagonist, or saline (intraperitoneally). Behavioral tests, magnetic resonance imaging, western blot, immunohistochemistry/immunofluorescence staining, and RNA sequencing (RNA-seq) were performed. RESULTS Brain Prx2 levels were elevated after autologous arterial blood injection. Intracaudate injection of Prx2 caused brain swelling, microglial activation, neutrophil infiltration, neuronal death, and neurological deficits. Co-injection of conoidin A attenuated autologous arterial blood-induced brain injury. TLR4 was expressed on the surface of microglia/macrophages and neutrophils and participated in Prx2-induced inflammation. TAK-242 treatment attenuated Prx2-induced inflammation and neurological deficits. CONCLUSIONS Prx2 can cause brain injury following ICH through the TLR4 pathway, revealing the Prx2-TLR4 inflammatory axis as a potential therapeutic target.
Collapse
Affiliation(s)
- Yang Du
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Jinjin Wang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Jia Zhang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Ning Li
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Guangshuo Li
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Xinmin Liu
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Yijun Lin
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Dandan Wang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Kaijiang Kang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Liheng Bian
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Xingquan Zhao
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical SciencesBeijingChina
- Center of Stroke, Beijing Institute for Brain DisordersBeijingChina
| |
Collapse
|
5
|
Yao M, Fang C, Wang Z, Guo T, Wu D, Ma J, Wu J, Mo J. miR-328-3p targets TLR2 to ameliorate oxygen-glucose deprivation injury and neutrophil extracellular trap formation in HUVECs via inhibition of the NF-κB signaling pathway. PLoS One 2024; 19:e0299382. [PMID: 38394259 PMCID: PMC10889604 DOI: 10.1371/journal.pone.0299382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Endothelial cell injury is one of the important pathogenic mechanisms in thrombotic diseases, and also neutrophils are involved. MicroRNAs (miRNAs) have been demonstrated to act as essential players in endothelial cell injury, but the potential molecular processes are unknown. In this study, we used cellular tests to ascertain the protective effect of miR-328-3p on human umbilical vein endothelial cells (HUVECs) treated with oxygen-glucose deprivation (OGD). METHODS In our study, an OGD-induced HUVECs model was established, and we constructed lentiviral vectors to establish stable HUVECs cell lines. miR-328-3p and Toll-like receptor 2 (TLR2) interacted, as demonstrated by the dual luciferase reporter assay. We used the CCK8, LDH release, and EdU assays to evaluate the proliferative capacity of each group of cells. To investigate the expression of TLR2, p-P65 NF-κB, P65 NF-κB, NLRP3, IL-1β, and IL-18, we employed Western blot and ELISA. Following OGD, each group's cell supernatants were gathered and co-cultured with neutrophils. An immunofluorescence assay and Transwell assay have been performed to determine whether miR-328-3p/TLR2 interferes with neutrophil migration and neutrophil extracellular traps (NETs) formation. RESULTS In OGD-treated HUVECs, the expression of miR-328-3p is downregulated. miR-328-3p directly targets TLR2, inhibits the NF-κB signaling pathway, and reverses the proliferative capacity of OGD-treated HUVECs, while inhibiting neutrophil migration and neutrophil extracellular trap formation. CONCLUSIONS miR-328-3p inhibits the NF-κB signaling pathway in OGD-treated HUVECs while inhibiting neutrophil migration and NETs formation, and ameliorating endothelial cell injury, which provides new ideas for the pathogenesis of thrombotic diseases.
Collapse
Affiliation(s)
- Mengting Yao
- Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chucun Fang
- Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zilong Wang
- Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianting Guo
- Department of Orthopedics, Guangdong Provincial People’s Hospital Ganzhou Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Dongwen Wu
- Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiacheng Ma
- Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jian Wu
- Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jianwen Mo
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
6
|
Wu R, Liu Y, Zhang F, Dai S, Xue X, Peng C, Li Y, Li Y. Protective mechanism of Paeonol on central nervous system. Phytother Res 2024; 38:470-488. [PMID: 37872838 DOI: 10.1002/ptr.8049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/25/2023]
Abstract
Cerebrovascular diseases involve neuronal damage, resulting in degenerative neuropathy and posing a serious threat to human health. The discovery of effective drug components from natural plants and the study of their mechanism are a research idea different from chemical synthetic medicines. Paeonol is the main active component of traditional Chinese medicine Paeonia lactiflora Pall. It widely exists in many medicinal plants and has pharmacological effects such as anti-atherosclerosis, antiplatelet aggregation, anti-oxidation, and anti-inflammatory, which keeps generally used in the treatment of cardiovascular and cerebrovascular diseases. Based on the therapeutic effects of Paeonol for cardiovascular and cerebrovascular diseases, this article reviewed the pharmacological effects of Paeonol in Alzheimer's disease, Parkinson's disease, stroke, epilepsy, diabetes encephalopathy, and other neurological diseases, providing a reference for the research of the mechanism of Paeonol in central nervous system diseases.
Collapse
Affiliation(s)
- Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Guo S, Lei Q, Yang Q, Chen R. Sinigrin improves cerebral ischaemia-reperfusion injury by inhibiting the TLR4 pathway-mediated oxidative stress. Chem Biol Drug Des 2024; 103:e14480. [PMID: 38369620 DOI: 10.1111/cbdd.14480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
Cerebral ischaemia-reperfusion (CIR) injury occurs in stroke patients after the restoration of cerebral perfusion. Sinigrin, a phytochemical found in cruciferous vegetables, exhibits strong antioxidant activity. This study investigated the role of sinigrin in oxidative stress using a CIR injury model. The effects of sinigrin were studied in middle cerebral artery occlusion (MCAO) rats and oxygen-glucose deprivation/reoxygenation (OGD/R)-injured SH-SY5Y cells. Sinigrin treatment improved brain injury and neurological deficits induced by MCAO surgery in rats. Sinigrin inhibited apoptosis in brain tissues and SH-SY5Y cells following OGD/R induction. Additionally, sinigrin elevated the levels of superoxide dismutase (SOD), glutathione (GSH) and glutathione peroxidase (GSH-Px) while reducing malondialdehyde (MDA) levels. Furthermore, sinigrin inhibited the toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signalling pathway. The anti-apoptotic and antioxidant activities of sinigrin in OGD/R-injured SH-SY5Y cells were reversed by TLR4 overexpression. In conclusion, sinigrin inhibits oxidative stress in CIR injury by suppressing the TLR4/MyD88 signalling pathway.
Collapse
Affiliation(s)
- Shenglong Guo
- Department II of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P.R. China
| | - Qi Lei
- Department II of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P.R. China
| | - Qian Yang
- Department II of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P.R. China
| | - Ruili Chen
- Department II of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
8
|
Ma L, Wang W, Zhao Y, Liu M, Ye W, Li X. Application of LRG mechanism in normal pressure hydrocephalus. Heliyon 2024; 10:e23940. [PMID: 38223707 PMCID: PMC10784321 DOI: 10.1016/j.heliyon.2023.e23940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/02/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024] Open
Abstract
Normal pressure hydrocephalus (NPH) is a prevalent type of hydrocephalus, including secondary normal pressure hydrocephalus (SNPH) and idiopathic normal pressure hydrocephalus (INPH). However, its clinical diagnosis and pathological mechanism are still unclear. Leucine-rich α-2 glycoprotein (LRG) is involved in various human diseases, including cancer, diabetes, cardiovascular disease, and nervous system diseases. Now the physiological mechanism of LRG is still being explored. According to the current research results on LRG, we found that the agency of LRG has much to do with the known pathological process of NPH. This review focuses on analyzing the LRG signaling pathways and the pathological mechanism of NPH. According to the collected literature evidence, we speculated that LRG probably be involved in the pathological process of NPH. Finally, based on the mechanism of LRG and NPH, we also summarized the evidence of molecular targeted therapies for future research and clinical application.
Collapse
Affiliation(s)
| | | | - Yongqiang Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Menghao Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wei Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xianfeng Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
9
|
Luan Y, Luan Y, Jiao Y, Liu H, Huang Z, Feng Q, Pei J, Yang Y, Ren K. Broadening Horizons: Exploring mtDAMPs as a Mechanism and Potential Intervention Target in Cardiovascular Diseases. Aging Dis 2023; 15:2395-2416. [PMID: 38270118 PMCID: PMC11567272 DOI: 10.14336/ad.2023.1130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024] Open
Abstract
Cardiovascular diseases (CVDs) have been recognized as the leading cause of premature mortality and morbidity worldwide despite significant advances in therapeutics. Inflammation is a key factor in CVD progression. Once stress stimulates cells, they release cellular compartments known as damage-associated molecular patterns (DAMPs). Mitochondria can release mitochondrial DAMPs (mtDAMPs) to initiate an immune response when stimulated with cellular stress. Investigating the molecular mechanisms underlying the DAMPs that regulate CVD progression is crucial for improving CVDs. Herein, we discuss the composition and mechanism of DAMPs, the significance of mtDAMPs in cellular inflammation, the presence of mtDAMPs in different types of cells, and the main signaling pathways associated with mtDAMPs. Based on this, we determined the role of DAMPs in CVDs and the effects of mtDAMP intervention on CVD progression. By offering a fresh perspective and comprehensive insights into the molecular mechanisms of DAMPs, this review seeks to provide important theoretical foundations for developing drugs targeting CVDs.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Ying Luan
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China.
| | - Yuxue Jiao
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.
| | - Zhen Huang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.
| | - Qi Feng
- Department ofIntegrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jinyan Pei
- Quality Management Department, The Third People’s Hospital of Henan Provine, Zhengzhou, China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
10
|
Xu K, Du W, Zhuang X, Liang D, Mo Y, Wang J. Glycogen synthase kinase-3β mediates toll-like receptors 4/nuclear factor kappa-B-activated cerebral ischemia-reperfusion injury through regulation of fat mass and obesity-associated protein. Brain Circ 2023; 9:162-171. [PMID: 38020949 PMCID: PMC10679630 DOI: 10.4103/bc.bc_3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Glycogen synthase kinase-3β (GSK3β), fat mass and obesity-associated protein (FTO), and toll-like receptors 4 (TLR4) take on critical significance in different biological processes, whereas their interactions remain unclear. The objective was the investigation of the interaction effect in cerebral ischemia-reperfusion (I/R) injury. METHODS The function of the cerebral cortex in the mouse middle cerebral artery occlusion (MCAO) model (each group n = 6) and P12 cells oxygen-glucose deprivation/reoxygenation (OGD/R) model was analyzed using short hairpin GSK3β lentivirus and overexpression of FTO lentivirus (in vitro), TLR4 inhibitor (TAK242), and LiCl to regulate GSK3β, FTO, TLR4 expression, and GSK3β activity, respectively. RESULTS After GSK3β knockdown in the OGD/R model of PC12 cells, the levels of TLR4 and p-p65 were lower than in the control, and the level of FTO was higher than in the control. Knockdown GSK3β reversed the OGD/R-induced nuclear factor kappa-B transfer to the intranuclear nuclei. As indicated by the result, TLR4 expression was down-regulated by overexpressed FTO, and TLR4 expression was up-regulated notably after inhibition of FTO with the use of R-2HG. After the inhibition of the activity of GSK3β in vivo, the reduction of FTO in mice suffering from MCAO was reversed. CONCLUSIONS Our research shows that GSK3β/FTO/TLR4 pathway contributes to cerebral I/R injury.
Collapse
Affiliation(s)
- Kaiwei Xu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenwen Du
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiuxiu Zhuang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dongdong Liang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunchang Mo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
11
|
Bajorat R, Danckert L, Ebert F, Bancken T, Bergt S, Klawitter F, Vollmar B, Reuter DA, Schürholz T, Ehler J. The Effect of Early Application of Synthetic Peptides 19-2.5 and 19-4LF to Improve Survival and Neurological Outcome in a Mouse Model of Cardiac Arrest and Resuscitation. Biomedicines 2023; 11:biomedicines11030855. [PMID: 36979834 PMCID: PMC10045145 DOI: 10.3390/biomedicines11030855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
The synthetic antimicrobial peptides (sAMPs) Pep19-2.5 and Pep19-4LF have been shown in vitro and in vivo to reduce the release of pro-inflammatory cytokines, leading to the suppression of inflammation and immunomodulation. We hypothesized that intervention with Pep19-2.5 and Pep19-4LF immediately after cardiac arrest and resuscitation (CA-CPR) might attenuate immediate systemic inflammation, survival, and long-term outcomes in a standardized mouse model of CA-CPR. Long-term outcomes up to 28 days were assessed between a control group (saline) and two peptide intervention groups. Primarily, survival as well as neurological and cognitive parameters were assessed. In addition, systemic inflammatory molecules and specific biomarkers were analyzed in plasma as well as in brain tissue. Treatment with sAMPs did not provide any short- or long-term benefits for either survival or neurological outcomes, and no significant benefit on inflammation in the CA-CPR animal model. While no difference was found in the plasma analysis of early cytokines between the intervention groups four hours after resuscitation, a significant increase in UCH-L1, a biomarker of neuronal damage and blood–brain barrier rupture, was measured in the Pep19-4LF-treated group. The theoretical benefit of both sAMPs tested here for the treatment of post-cardiac arrest syndrome could not be proven.
Collapse
Affiliation(s)
- Rika Bajorat
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
- Correspondence:
| | - Lena Danckert
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Florian Ebert
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Theresa Bancken
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Stefan Bergt
- Department of Anesthesiology and Intensive Care Medicine, MEDICLIN Müritz-Klinikum, 17192 Waren, Germany
| | - Felix Klawitter
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brigitte Vollmar
- Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Daniel A. Reuter
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Tobias Schürholz
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Johannes Ehler
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
12
|
Tajalli-Nezhad S, Mohammadi S, Atlasi MA, Kheiran M, Moghadam SE, Naderian H, Azami Tameh A. Calcitriol modulate post-ischemic TLR signaling pathway in ischemic stroke patients. J Neuroimmunol 2023; 375:578013. [PMID: 36657372 DOI: 10.1016/j.jneuroim.2022.578013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Neuroinflammation is a significant contributor to post-ischemic neuronal death after stroke, and Toll-Like Receptors (TLRs) are one of the essential mediators in many inflammatory pathways. TLRs activate the nuclear factor kappa β (NF-kβ), which promotes the expression of various pro-inflammatory genes such as interleukin (IL-1β) and IL-6. 1,25(OH)2D3, also known as calcitriol, is an active form of vitamin D3 that acts as a neurosteroid compound with anti-inflammatory properties. This study aimed to determine the modulatory effects of calcitriol hormone on post-ischemic immunity response. METHODS Neurological tests and conventional blood factors were evaluated in patients with stroke symptoms upon arrival (n = 38) to confirm the stroke. A blood sample was taken from each stroke patient immediately upon admission and again after 24 h. The experimental group was given 10 μg calcitriol orally. The gene expression levels of TLR4, TLR2, NF-kβ, IL-1β, and IL-6 pro-inflammatory factors were measured using real-time PCR. The protein expression of TLR4 and NF-kβ markers was assessed using the flow cytometry technique. RESULTS TLR4, NF-kβ, and pro-inflammatory factors IL-1β and IL-6 expression increased significantly after an ischemic stroke, and calcitriol could modulate the TLR4/NF-kβ signaling pathway 24 h after ischemia. CONCLUSIONS Calcitriol may be considered a protective reagent after ischemia by reducing the TLR4/NF-kB activation cascade and probably plays a beneficial role in reducing and improving ischemic stroke patients' symptoms. TRIAL REGISTRATION Iranian Registry of Clinical Trials identifier: IRCT2017012532174N1.
Collapse
Affiliation(s)
- Saeedeh Tajalli-Nezhad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Salimeh Mohammadi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Atlasi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdi Kheiran
- Department of Neurology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sepideh Etehadi Moghadam
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Homayoun Naderian
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
13
|
Thapa K, Shivam K, Khan H, Kaur A, Dua K, Singh S, Singh TG. Emerging Targets for Modulation of Immune Response and Inflammation in Stroke. Neurochem Res 2023; 48:1663-1690. [PMID: 36763312 DOI: 10.1007/s11064-023-03875-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
The inflammatory and immunological responses play a significant role after stroke. The innate immune activation stimulated by microglia during stroke results in the migration of macrophages and lymphocytes into the brain and are responsible for tissue damage. The immune response and inflammation following stroke have no defined targets, and the intricacies of the immunological and inflammatory processes are only partially understood. Innate immune cells enter the brain and meninges during the acute phase, which can cause ischemia damage. Activation of systemic immunity is caused by danger signals sent into the bloodstream by injured brain cells, which is followed by a significant immunodepression that encourages life-threatening infections. Neuropsychiatric sequelae, a major source of post-stroke morbidity, may be induced by an adaptive immune response that is initiated by antigen presentation during the chronic period and is directed against the brain. Thus, the current review discusses the role of immune response and inflammation in stroke pathogenesis, their role in the progression of injury during the stroke, and the emerging targets for the modulation of the mechanism of immune response and inflammation that may have possible therapeutic benefits against stroke.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.,School of Pharmacy, Chitkara University, Rajpura, Himachal Pradesh, 174103, India
| | - Kumar Shivam
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - Sachin Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
14
|
Liu L, Xu TC, Zhao ZA, Zhang NN, Li J, Chen HS. Toll-Like Receptor 4 Signaling in Neurons Mediates Cerebral Ischemia/Reperfusion Injury. Mol Neurobiol 2023; 60:864-874. [PMID: 36385232 DOI: 10.1007/s12035-022-03122-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022]
Abstract
In microglia, Toll-like receptor 4 (TLR4) is well known to contribute to neuroinflammatory responses following brain ischemia. TLR4 is also expressed in neurons and can mediate the conduction of calcium (Ca2+) influx, but the mechanistic link between neuronal TLR4 signaling and brain ischemic injury is still poorly understood. Here, primary neuronal cell cultures from TLR4 knockout mice and mice with conditional TLR4 knockout in glutamatergic neurons (TLR4cKO) were used to establish ischemic models in vitro and in vivo, respectively. We found that deleting TLR4 would reduce the neuronal death and intracellular Ca2+ increasement induced by oxygen and glucose deprivation (OGD) or lipopolysaccharide treatment. Infarct volume and functional deficits were also alleviated in TLR4cKO mice following cerebral ischemia/reperfusion (I/R). Furthermore, TLR4 and N-methyl-D-aspartate receptor subunit 2B (NMDAR2B) were colocalized in neurons. Deletion of TLR4 in neurons rescued the upregulation of phosphorylated NMDAR2B induced by ischemia via Src kinase in vitro and in vivo. Downstream of NMDAR2B signaling, the interaction of neuronal nitric oxide synthase (nNOS) with postsynaptic density protein-95 (PSD-95) was also disrupted in TLR4cKO mice following cerebral I/R. Taken together, our results demonstrate a novel molecular neuronal pathway in which TLR4 signaling in neurons plays a crucial role in neuronal death and provide a new target for neuroprotection after ischemic stroke.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurology, The General Hospital of Northern Theater Command, No. 83 Wenhua Street, Shenhe District, ShenyangLiaoning, 110016, China
| | - Tian-Ce Xu
- Department of Neurology, The General Hospital of Northern Theater Command, No. 83 Wenhua Street, Shenhe District, ShenyangLiaoning, 110016, China
| | - Zi-Ai Zhao
- Department of Neurology, The General Hospital of Northern Theater Command, No. 83 Wenhua Street, Shenhe District, ShenyangLiaoning, 110016, China
| | - Nan-Nan Zhang
- Department of Neurology, The General Hospital of Northern Theater Command, No. 83 Wenhua Street, Shenhe District, ShenyangLiaoning, 110016, China
| | - Jing Li
- Department of Neurology, The General Hospital of Northern Theater Command, No. 83 Wenhua Street, Shenhe District, ShenyangLiaoning, 110016, China
| | - Hui-Sheng Chen
- Department of Neurology, The General Hospital of Northern Theater Command, No. 83 Wenhua Street, Shenhe District, ShenyangLiaoning, 110016, China.
| |
Collapse
|
15
|
Chen J, Huang F, Fang X, Li S, Liang Y. Silencing TLR4 using an ultrasound-targeted microbubble destruction-based shRNA system reduces ischemia-induced seizures in hyperglycemic rats. Open Life Sci 2022; 17:1689-1697. [PMID: 36619717 PMCID: PMC9795576 DOI: 10.1515/biol-2022-0526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 12/28/2022] Open
Abstract
The toll-like receptor 4 (TLR4) pathway is involved in seizures. We investigated whether ultrasound-targeted microbubble destruction (UTMD)-mediated delivery of short hairpin RNA (shRNA) targeting the TLR4 gene (shRNA-TLR4) can reduce ischemia-induced seizures in rats with hyperglycemia. A total of 100 male Wistar rats were randomly assigned to five groups: (1) Sham; (2) normal saline (NS); (3) shRNA-TLR4, where rats were injected with shRNA-TLR4; (4) shRNA-TLR4 + US, where rats were injected with shRNA-TLR4 followed by ultrasound (US) irradiation; and (5) shRNA-TLR4 + microbubbles (MBs) + US, where rats were injected with shRNA-TLR4 mixed with MBs followed by US irradiation. Western blot and immunohistochemical staining were used to measure TLR4-positive cells. Half of the rats in the NS group developed tonic-clonic seizures, and TLR4 expression in the CA3 region of the hippocampus was increased in these rats. In addition, the NS group showed an increased number of TLR4-positive cells compared with the Sham group, while there was a decreased number of TLR4-positive cells in the shRNA, shRNA + US, and shRNA + MBs + US groups. Our findings indicate that the TLR4 pathway is involved in the pathogenesis of ischemia-induced seizures in hyperglycemic rats and that UTMD technology may be a promising strategy to treat brain diseases.
Collapse
Affiliation(s)
- Jia Chen
- Department of Neurology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510150, China
| | - Fami Huang
- Department of Intensive Care Unit, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511500, China
| | - Xiaobo Fang
- Department of Neurology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510150, China
| | - Siying Li
- Department of Neurology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510150, China
| | - Yanling Liang
- Department of Neurology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510150, China,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China
| |
Collapse
|
16
|
Jiang Y, Liu Z, Liao Y, Sun S, Dai Y, Tang Y. Ischemic stroke: From pathological mechanisms to neuroprotective strategies. Front Neurol 2022; 13:1013083. [PMID: 36438975 PMCID: PMC9681807 DOI: 10.3389/fneur.2022.1013083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
Ischemic stroke (IS) has complex pathological mechanisms, and is extremely difficult to treat. At present, the treatment of IS is mainly based on intravenous thrombolysis and mechanical thrombectomy, but they are limited by a strict time window. In addition, after intravenous thrombolysis or mechanical thrombectomy, damaged neurons often fail to make ideal improvements due to microcirculation disorders. Therefore, finding suitable pathways and targets from the pathological mechanism is crucial for the development of neuroprotective agents against IS. With the hope of making contributions to the development of IS treatments, this review will introduce (1) how related targets are found in pathological mechanisms such as inflammation, excitotoxicity, oxidative stress, and complement system activation; and (2) the current status and challenges in drug development.
Collapse
Affiliation(s)
- Yang Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Liao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyong Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yajie Dai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yibo Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Scheid S, Lejarre A, Wollborn J, Buerkle H, Goebel U, Ulbrich F. Argon preconditioning protects neuronal cells with a Toll-like receptor-mediated effect. Neural Regen Res 2022; 18:1371-1377. [PMID: 36453425 PMCID: PMC9838174 DOI: 10.4103/1673-5374.355978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The noble gas argon has the potential to protect neuronal cells from cell death. So far, this effect has been studied in treatment after acute damage. Preconditioning using argon has not yet been investigated. In this study, human neuroblastoma SH-SY5Y cells were treated with different concentrations of argon (25%, 50%, and 74%; 21% O2, 5% CO2, balance nitrogen) at different time intervals before inflicting damage with rotenone (20 µM, 4 hours). Apoptosis was determined by flow cytometry after annexin V and propidium iodide staining. Surface expressions of Toll-like receptors 2 and 4 were also examined. Cells were also processed for analysis by western blot and qPCR to determine the expression of apoptotic and inflammatory proteins, such as extracellular-signal regulated kinase (ERK1/2), nuclear transcription factor-κB (NF-κB), protein kinase B (Akt), caspase-3, Bax, Bcl-2, interleukin-8, and heat shock proteins. Immunohistochemical staining was performed for TLR2 and 4 and interleukin-8. Cells were also pretreated with OxPAPC, an antagonist of TLR2 and 4 to elucidate the molecular mechanism. Results showed that argon preconditioning before rotenone application caused a dose-dependent but not a time-dependent reduction in the number of apoptotic cells. Preconditioning with 74% argon for 2 hours was used for further experiments showing the most promising results. Argon decreased the surface expression of TLR2 and 4, whereas OxPAPC treatment partially abolished the protective effect of argon. Argon increased phosphorylation of ERK1/2 but decreased NF-κB and Akt. Preconditioning inhibited mitochondrial apoptosis and the heat shock response. Argon also suppressed the expression of the pro-inflammatory cytokine interleukin-8. Immunohistochemistry confirmed the alteration of TLRs and interleukin-8. OxPAPC reversed the argon effect on ERK1/2, Bax, Bcl-2, caspase-3, and interleukin-8 expression, but not on NF-κB and the heat shock proteins. Taken together, argon preconditioning protects against apoptosis of neuronal cells and mediates its action via Toll-like receptors. Argon may represent a promising therapeutic alternative in various clinical settings, such as the treatment of stroke.
Collapse
Affiliation(s)
- Stefanie Scheid
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Adrien Lejarre
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany,Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Hartmut Buerkle
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care Medicine, St. Franziskus-Hospital, Muenster, Germany
| | - Felix Ulbrich
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany,Correspondence to: Felix Ulbrich, .
| |
Collapse
|
18
|
Miyata S. Glial functions in the blood-brain communication at the circumventricular organs. Front Neurosci 2022; 16:991779. [PMID: 36278020 PMCID: PMC9583022 DOI: 10.3389/fnins.2022.991779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The circumventricular organs (CVOs) are located around the brain ventricles, lack a blood-brain barrier (BBB) and sense blood-derived molecules. This review discusses recent advances in the importance of CVO functions, especially glial cells transferring periphery inflammation signals to the brain. The CVOs show size-limited vascular permeability, allowing the passage of molecules with molecular weight <10,000. This indicates that the lack of an endothelial cell barrier does not mean the free movement of blood-derived molecules into the CVO parenchyma. Astrocytes and tanycytes constitute a dense barrier at the distal CVO subdivision, preventing the free diffusion of blood-derived molecules into neighboring brain regions. Tanycytes in the CVOs mediate communication between cerebrospinal fluid and brain parenchyma via transcytosis. Microglia and macrophages of the CVOs are essential for transmitting peripheral information to other brain regions via toll-like receptor 2 (TLR2). Inhibition of TLR2 signaling or depletion of microglia and macrophages in the brain eliminates TLR2-dependent inflammatory responses. In contrast to TLR2, astrocytes and tanycytes in the CVOs of the brain are crucial for initiating lipopolysaccharide (LPS)-induced inflammatory responses via TLR4. Depletion of microglia and macrophages augments LPS-induced fever and chronic sickness responses. Microglia and macrophages in the CVOs are continuously activated, even under normal physiological conditions, as they exhibit activated morphology and express the M1/M2 marker proteins. Moreover, the microglial proliferation occurs in various regions, such as the hypothalamus, medulla oblongata, and telencephalon, with a marked increase in the CVOs, due to low-dose LPS administration, and after high-dose LPS administration, proliferation is seen in most brain regions, except for the cerebral cortex and hippocampus. A transient increase in the microglial population is beneficial during LPS-induced inflammation for attenuating sickness response. Transient receptor potential receptor vanilloid 1 expressed in astrocytes and tanycytes of the CVOs is responsible for thermoregulation upon exposure to a warm environment less than 37°C. Alternatively, Nax expressed in astrocytes and tanycytes of the CVOs is crucial for maintaining body fluid homeostasis. Thus, recent findings indicate that glial cells in the brain CVOs are essential for initiating neuroinflammatory responses and maintaining body fluid and thermal homeostasis.
Collapse
|
19
|
Zhou M, Zhang T, Zhang X, Zhang M, Gao S, Zhang T, Li S, Cai X, Li J, Lin Y. Effect of Tetrahedral Framework Nucleic Acids on Neurological Recovery via Ameliorating Apoptosis and Regulating the Activation and Polarization of Astrocytes in Ischemic Stroke. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37478-37492. [PMID: 35951372 DOI: 10.1021/acsami.2c10364] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Astrocytes, as the most plentiful subtypes of glial cells, play an essential biphasic function in ischemic stroke (IS). However, although having beneficial effects on stroke via promoting nerve restoration and limiting lesion extension, astrocytes can unavoidably cause exacerbated brain damage due to their participation in the inflammatory response. Therefore, seeking an effective and safe drug/strategy for protecting and regulating astrocytes in stroke is urgent. Here, we employ tetrahedral framework nucleic acid (tFNA) nanomaterials for astrocytes in stroke, considering their excellent biological properties and outstanding biosafety. In vitro, tFNA can inhibit calcium overload and ROS regeneration triggered by oxygen-glucose deprivation/reoxygenation (OGD/R), which provides a protective effect against astrocytic apoptosis. Furthermore, morphological changes such as hyperplasia and hypertrophy of reactive astrocytes are restrained, and the astrocytic polarization from the proinflammatory A1 phenotype to the neuroprotective A2 phenotype is facilitated by tFNA, which further alleviates cerebral infarct volume and facilitates the recovery of neurological function in transient middle cerebral artery occlusion (tMCAo) rat models. Moreover, the TLRs/NF-κB signaling pathway is downregulated by tFNA, which may be the potential mechanism of tFNA for protecting astrocytes in stroke. Collectively, we demonstrate that tFNA can effectively mediate astrocytic apoptosis, activation, and polarization to alleviate brain injury, which represents a potential intervention strategy for IS.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaolin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Jun Li
- Orthopedic Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
20
|
Wang Y, Lv S, Zhou X, Niu X, Chen L, Yang Z, Peng D. Identification of TLR2 as a Key Target in Neuroinflammation in Vascular Dementia. Front Genet 2022; 13:860122. [PMID: 35873459 PMCID: PMC9296774 DOI: 10.3389/fgene.2022.860122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular dementia (VaD) is the second most common cause of dementia. At present, precise molecular processes of VaD are unclear. We attempted to discover the VaD relevant candidate genes, enrichment biological processes and pathways, key targets, and the underlying mechanism by microarray bioinformatic analysis. We selected GSE122063 related to the autopsy samples of VaD for analysis. We first took use of Weighted Gene Co-expression Network Analysis (WGCNA) to achieve modules related to VaD and hub genes. Second, we filtered out significant differentially expressed genes (DEGs). Third, significant DEGs then went through Geno Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Fourth, Gene Set Enrichment Analysis (GSEA) was performed. At last, we constructed the protein–protein interaction (PPI) network. The results showed that the yellow module had the strongest correlation with VaD, and we finally identified 21 hub genes. Toll-like receptor 2 (TLR2) was the top hub gene and was strongly correlated with other possible candidate genes. In total, 456 significant DEGs were filtered out and these genes were found to be enriched in the Toll receptor signaling pathway and several other immune-related pathways. In addition, Gene Set Enrichment Analysis results showed that similar pathways were significantly over-represented in TLR2-high samples. In the PPI network, TLR2 was still an important node with high weight and combined scores. We concluded that the TLR2 acts as a key target in neuroinflammation which may participate in the pathophysiological process of VaD.
Collapse
Affiliation(s)
- Yuye Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shuang Lv
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xiao Zhou
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoqian Niu
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Leian Chen
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ziyuan Yang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- *Correspondence: Dantao Peng,
| |
Collapse
|
21
|
Luo J, Li J, Xiong L, Fan L, Peng L, Yang Y, Lu D, Shao J. MicroRNA-27a-3p relieves inflammation and neurologic impairment after cerebral ischemia reperfusion via inhibiting LITAF and the TLR4/NF-κB pathway. Eur J Neurosci 2022; 56:4013-4030. [PMID: 35584745 DOI: 10.1111/ejn.15720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/12/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022]
Abstract
Cerebral ischemia reperfusion (CIR) affects microRNA (miR) expression and causes substantial inflammation. Here, we investigated the influence and underlying mechanism of miR-27a-3p in rats with CIR. Firstly, Biliverdin treatment relieved cerebral infarction and decreased the levels of serum interleukin (IL)-1β, IL-6 and TNF-α. Through our previous study, we found key miR-27a-3p and its targeted gene LITAF might involve in the molecular mechanism of CIR. Then, the regulation between miR-27a-3p and LITAF was verified by the temporal miR-27a-3p and LITAF expression profiles and luciferase assay. Moreover, intracerebroventricular injection of the miR-27a-3p mimic significantly decreased the LITAF, TLR4, NF-κB and IL-6 levels at 24h post-surgery, whereas miR-27a-3p inhibitor reversed these effects. Furthermore, miR-27a-3p mimic could relieve cerebral infarct and neurologic deficit after CIR. In addition, injection of miR-27a-3p mimic decreased neuronal damage induced by CIR. Taken together, our results suggest that miR-27a-3p protect against CIR by relieving inflammation, neuronal damage and neurologic deficit via regulating LITAF and the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Jing Luo
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Junjie Li
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Li Xiong
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Linna Fan
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Lijia Peng
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Yuan Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Di Lu
- Incubation center for Scientific and technological achievements, Kunming Medical University
| | - Jianlin Shao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| |
Collapse
|
22
|
Zhu L, Dong C, Yue X, Ge P, Zheng G, Ye Z, Pan B. Silencing of TRIM44 Inhibits Inflammation and Alleviates Traumatic Brain Injury in Rats by Downregulating TLR4-NF-κB Signaling. Neuroimmunomodulation 2022; 29:439-449. [PMID: 35609523 DOI: 10.1159/000524536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/05/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Neuroinflammation subsequent to traumatic brain injury (TBI) is important for the recovery of patients and is associated with neurodegenerative changes post-TBI. The tripartite motif containing 44 (TRIM44) protein is an E3 ligase involved in the regulation of immune function with no previously known link to TBI. This study explores the connection between TRIM44 and TBI. METHODS After induction of TBI in rats by control cortex injury, TRIM44 expressions were determined with quantitative real-time reverse transcription polymerase chain reaction and Western blot, and Toll-like receptor 4 (TLR4)-NF-κB signaling was examined by the expression of TLR4, p65 phosphorylation, and the specific NF-κB transcription activity. The effects of TRIM44 knockdown on inflammation, neurological function, and TLR4-NF-κB signaling in TBI rats were revealed by the detection of proinflammatory cytokines and TLR4-NF-κB signaling molecules, modified neurological severity score, brain water content, and Evans blue permeability. RESULTS We found that TRIM44 expression was significantly increased following TBI induction along with TLR4-NF-κB activation. Silencing of TRIM44 suppressed proinflammatory cytokine production, improved neurological outcomes, alleviated brain edema, and inhibited TLR4-NF-κB signaling in TBI rats. CONCLUSION Our findings suggest that suppressing TRIM44 or modulation of relevant pathways may be a therapeutic strategy for TBI.
Collapse
Affiliation(s)
- Lin Zhu
- Hebei General Hospital, Shijiazhuang, China
| | - Ce Dong
- Hebei General Hospital, Shijiazhuang, China
| | | | | | | | | | - Baogen Pan
- Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
23
|
Xing Z, Zhen T, Jie F, Jie Y, Shiqi L, Kaiyi Z, Zhicui O, Mingyan H. Early Toll-like receptor 4 inhibition improves immune dysfunction in the hippocampus after hypoxic-ischemic brain damage. Int J Med Sci 2022; 19:142-151. [PMID: 34975308 PMCID: PMC8692118 DOI: 10.7150/ijms.66494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/21/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Toll-like receptor 4 (TLR4) is implicated in neonatal hypoxic-ischemic brain damage (HIBD), but the underlying mechanism is unclear. Hypothesis: We hypothesized that TLR4 mediates brain damage after hypoxic ischemia (HI) by inducing abnormal neuroimmune responses, including activation of immune cells and expression disorder of immune factors, while early inhibition of TLR4 can alleviate the neuroimmune dysfunction. Method: Postnatal day 7 rats were randomized into control, HI, and HI+TAK-242 (TAK-242) groups. The HIBD model was developed using the Rice-Vannucci method (the left side was the ipsilateral side of HI). TAK-242 (0.5 mg/kg) was given to rat pups in the TAK-242 group at 30 min before modeling. Immunofluorescence, immunohistochemistry, and western blotting were used to determine the TLR4 expression; the number of Iba-1+, GFAP+, CD161+, MPO+, and CD3+ cells; ICAM-1 and C3a expression; and interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-10 expression in the hippocampal CA1 region. Result: Significantly increased TLR4 expression was observed in the left hippocampus, and was alleviated by TAK-242. The significant increases in Iba-1+, MPO+, and CD161+ cells at 24 h and 7 days after HI and in GFAP+ and CD3+ T cells at 7 days after HI were also counteracted by TAK-242, but no significant differences were observed among groups at 24 h after HI. ICAM-1 expression increased 24 h after HI, while C3a expression decreased; TAK-242 also alleviated these changes. TNF-α and IL-1β expression increased, while IL-10 expression decreased at 24 h and 7 days after HI; TAK-242 counteracted the increased TNF-α and IL-1β expression at 24 h and the changes in IL-1β and IL-10 at 7 days, but induced no significant differences in IL-10 expression at 24 h and TNF-α expression at 7 days. Conclusion: Early TLR4 inhibition can alleviate hippocampal immune dysfunction after neonatal HIBD.
Collapse
Affiliation(s)
- Zhu Xing
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| | - Tang Zhen
- Department of Neonatology, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi, 541001 China.,Department of Pediatrics, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013 China
| | - Fan Jie
- Department of Neonatology, East Hospital of Shaoyang Central Hospital, Shaoyang, Hunan, 422000 China
| | - Yu Jie
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| | - Liu Shiqi
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| | - Zhu Kaiyi
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| | - OuYang Zhicui
- Department of Neonatology, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi, 541001 China
| | - Hei Mingyan
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| |
Collapse
|
24
|
Bu Y, Li WS, Lin J, Wei YW, Sun QY, Zhu SJ, Tang ZS. Electroacupuncture Attenuates Immune-Inflammatory Response in Hippocampus of Rats with Vascular Dementia by Inhibiting TLR4/MyD88 Signaling Pathway. Chin J Integr Med 2021; 28:153-161. [PMID: 34913150 PMCID: PMC8672855 DOI: 10.1007/s11655-021-3350-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 11/30/2022]
Abstract
Objective To investigate whether electroacupuncture (EA) alleviates cognitive impairment by suppressing the toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling pathway, which triggers immune-inflammatory responses in the hippocampus of rats with vascular dementia (VaD). Methods The experiments were conducted in 3 parts and in total the Sprague-Dawley rats were randomly divided into 8 groups by a random number table, including sham, four-vessel occlusion (4-VO), 4-VO+EA, 4-VO+non-EA, sham+EA, 4-VO+lipopolysaccharide (LPS), 4-VO+LPS+EA, and 4-VO+TAK-242 groups. The VaD model was established by the 4-VO method. Seven days later, rats were treated with EA at 5 acupoints of Baihui (DV 20), Danzhong (RN 17), Geshu (BL 17), Qihai (RN 6) and Sanyinjiao (SP 6), once per day for 3 consecutive weeks. Lymphocyte subsets, lymphocyte transformation rates, and inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor α(TNF-α) were measured to assess immune function and inflammation in VaD rats. Transmission electron microscopy was used to observe the ultrastructure of nerve cells in the hippocampus. The levels of TLR4, MyD88, IL-6, and TNF-α were detected after EA treatment. TLR4/MyD88 signaling and cognitive function were also assessed after intracerebroventricular injection of TLR4 antagonist TAK-242 or TLR4 agonist LPS with or without EA. Results Compared with the 4-VO group, EA notably improved immune function of rats in the 4-VO+EA group, inhibited the protein and mRNA expressions of TLR4 and MyD88 in the hippocampus of rats, reduced the expressions of serum IL-6 and TNF-α (all P<0.05 or P<0.01), and led to neuronal repair in the hippocampus. There were no significant differences between the 4-VO+LPS+EA and 4-VO+EA groups, nor between the 4-VO+TAK-242 and 4-VO+EA groups (P>0.05). Conclusions EA attenuated cognitive impairment associated with immune inflammation by inhibition of the TLR4/MyD88 signaling pathway. Thus, EA may be a promising alternative therapy for the treatment of VaD. Electronic Supplementary Material Supplementary material (Appendixes 1–4) is available in the online version of this article at 10.1007/s11655-021-3350-5.
Collapse
Affiliation(s)
- Yu Bu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Wen-Shuang Li
- Department of Hematology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Ji Lin
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yu-Wei Wei
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Qiu-Ying Sun
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Shi-Jie Zhu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Zhong-Sheng Tang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
25
|
Early Post-ischemic Brain Glucose Metabolism Is Dependent on Function of TLR2: a Study Using [ 18F]F-FDG PET-CT in a Mouse Model of Cardiac Arrest and Cardiopulmonary Resuscitation. Mol Imaging Biol 2021; 24:466-478. [PMID: 34779968 PMCID: PMC8592082 DOI: 10.1007/s11307-021-01677-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/17/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022]
Abstract
Purpose The mammalian brain glucose metabolism is tightly and sensitively regulated. An ischemic brain injury caused by cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) affects cerebral function and presumably also glucose metabolism. The majority of patients who survive CA suffer from cognitive deficits and physical disabilities. Toll-like receptor 2 (TLR2) plays a crucial role in inflammatory response in ischemia and reperfusion (I/R). Since deficiency of TLR2 was associated with increased survival after CA-CPR, in this study, glucose metabolism was measured using non-invasive [18F]F-FDG PET-CT imaging before and early after CA-CPR in a mouse model comparing wild-type (WT) and TLR2-deficient (TLR2−/−) mice. The investigation will evaluate whether FDG-PET could be useful as an additional methodology in assessing prognosis. Procedures Two PET-CT scans using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]F-FDG) tracer were carried out to measure dynamic glucose metabolism before and early after CPR. To achieve this, anesthetized and ventilated adult female WT and TLR2−/− mice were scanned in PET-CT. After recovery from the baseline scan, the same animals underwent 10-min KCL-induced CA followed by CPR. Approximately 90 min after CA, measurements of [18F]F-FDG uptake for 60 min were started. The [18F]F-FDG standardized uptake values (SUVs) were calculated using PMOD-Software on fused FDG-PET-CT images with the included 3D Mirrione-Mouse-Brain-Atlas. Results The absolute SUVmean of glucose in the whole brain of WT mice was increased about 25.6% after CA-CPR. In contrast, the absolute glucose SUV in the whole brain of TLR2−/− mice was not significantly different between baseline and measurements post CA-CPR. In comparison, baseline measurements of both mouse strains show a highly significant difference with regard to the absolute glucose SUV in the whole brain. Values of TLR2−/− mice revealed a 34.6% higher glucose uptake. Conclusions The altered mouse strains presented a different pattern in glucose uptake under normal and ischemic conditions, whereby the post-ischemic differences in glucose metabolism were associated with the function of key immune factor TLR2. There is evidence for using early FDG-PET-CT as an additional diagnostic tool after resuscitation. Further studies are needed to use PET-CT in predicting neurological outcomes.
Collapse
|
26
|
Cheng CY, Chiang SY, Kao ST, Huang SC. Alpinia oxyphylla Miq extract reduces cerebral infarction by downregulating JNK-mediated TLR4/T3JAM- and ASK1-related inflammatory signaling in the acute phase of transient focal cerebral ischemia in rats. Chin Med 2021; 16:82. [PMID: 34419138 PMCID: PMC8379872 DOI: 10.1186/s13020-021-00495-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/13/2021] [Indexed: 12/03/2022] Open
Abstract
Background Post-ischemic inflammation is a crucial component in stroke pathology in the early phase of cerebral ischemia–reperfusion (I/R) injury. Inflammation caused by microglia, astrocytes, and necrotic cells, produces pro-inflammatory mediators and exacerbates cerebral I/R injury. This study evaluated the effects of the Alpinia oxyphylla Miq [Yi Zhi Ren (YZR)] extract on cerebral infarction at 1 day after 90 min of transient middle cerebral artery occlusion (MCAo) and investigated the molecular mechanisms underlying the regulation of c-Jun N-terminal kinase (JNK)-mediated inflammatory cascades in the penumbral cortex. Rats were intraperitoneally injected with the YZR extract at the doses of 0.2 g/kg (YZR-0.2 g), 0.4 g/kg (YZR-0.4 g), or 0.8 g/kg (YZR-0.8 g) at MCAo onset. Results YZR-0.4 g and YZR-0.8 g treatments markedly reduced cerebral infarction, attenuated neurological deficits, and significantly downregulated the expression of phospho-apoptosis signal-regulating kinase 1 (p-ASK1)/ASK1, tumor necrosis factor receptor-associated factor 3 (TRAF3), TRAF3-interacting JNK-activating modulator (T3JAM), ionized calcium-binding adapter molecule 1 (Iba1), p-JNK/JNK, inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α, toll-like receptor 4 (TLR4), glial fibrillary acidic protein (GFAP), nuclear factor-kappa B (NF-κB), and interleukin-6 in the penumbral cortex at 1 day after reperfusion. SP600125 (SP), a selective JNK inhibitor, had the same effects. Furthermore, Iba1- and GFAP-positive cells were colocalized with TLR4, and colocalization of GFAP-positive cells was found with NF-κB in the nuclei. Conclusion YZR-0.4 g and YZR-0.8 g treatments exerted beneficial effects on cerebral ischemic injury by downregulating JNK-mediated signaling in the peri-infarct cortex. Moreover, the anti-infarction effects of YZR extract treatments were partially attributed to the downregulation of JNK-mediated TLR4/T3JAM- and ASK1-related inflammatory signaling pathways in the penumbral cortex at 1 day after reperfusion.
Collapse
Affiliation(s)
- Chin-Yi Cheng
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.,Department of Chinese Medicine, Hui-Sheng Hospital, Taichung, 42056, Taiwan
| | - Su-Yin Chiang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Shang-Chih Huang
- Department of Neurology, China Medical University Hospital, Taichung City, 40447, Taiwan.
| |
Collapse
|
27
|
Ling Y, Jin L, Ma Q, Huang Y, Yang Q, Chen M, Shou Q. Salvianolic acid A alleviated inflammatory response mediated by microglia through inhibiting the activation of TLR2/4 in acute cerebral ischemia-reperfusion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 87:153569. [PMID: 33985878 DOI: 10.1016/j.phymed.2021.153569] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Toll-like receptor 2 and Toll-like receptor 4 (TLR2/4) on microglia have been found as important regulators in the inflammatory response during cerebral ischemia/reperfusion (I/R). In China, traditional Chinese medicine Salvia miltiorrhiza (danshen) and its some components are considered to be effective in rescuing cerebral I/R injury through clinical practice. HYPOTHESIS/PURPOSE Here we examined the effect of Salvianolic acid A (SAA), a monomer compound in the water extract of Salvia miltiorrhiza, on TLR2/4 of microglia and its mediated inflammatory injury during cerebral I/R in vivo and in vitro. STUDY DESIGN For exploring the effect of SAA on cerebral I/R and TLR2/4, classic middle cerebral artery occlusion (MCAO) model and oxygen glucose deprivation / reoxygenation (OGD/R) model of co-culture with primary hippocampal neurons and microglia in vitro were used. Signal pathway research and gene knockout have been applied to further explain its mechanism. METHODS The evaluation indexes of I/R injury included infarct size, edema degree and pathology as well as primary hippocampal neurons and microglia culture, ELISA, western, RT-PCR, HE staining, immunofluorescence, flow cytometry, siRNA gene knockout were also employed. RESULTS SAA significantly improved the degree of brain edema and ischemic area in I/R rats accompanied by decreases in levels of interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α). Pathological staining revealed that SAA could reduce inflammatory cell infiltration and mcirogila activation after reperfusion. Both protein and gene expression of TLR2 and TLR4 in ischemic hemisphere were obviously inhibited by SAA treatment while changes were not found in the non-ischemic hemisphere. In order to further study its mechanism, OGD/R model was used to mimic inflammatory damage of ischemic tissue by co-culturing primary rat hippocampal neurons and microglial cells. It was found that SAA also inhibited the protein and gene expression of TLR2 and TLR4 after OGD/R injury in microglia. After TLR2/4 knockout, the inhibitory effect of SAA on IL-1β and TNF-α levels in cell supernatant and neuron apoptosis were significantly weakened in each dose group. Moreover, expression levels of myeloid differentiation factor 88 (MyD88), NFκB, IL-1β and IL-6 in TLR2/4 mediated inflammatory pathway were reduced with SAA treatment. CONCLUSION SAA could significantly reduce the inflammatory response and injury in cerebral ischemia-reperfusion in vivo and in vitro, and its mechanism may be through the inhibition of TLR2/4 and its related signal pathway.
Collapse
Affiliation(s)
- Yun Ling
- Animal Experimental Research Center, Academy of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Lu Jin
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Quanxin Ma
- Animal Experimental Research Center, Academy of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Yu Huang
- Animal Experimental Research Center, Academy of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Qinqin Yang
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310007, People's Republic of China
| | - Minli Chen
- Animal Experimental Research Center, Academy of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.
| | - Qiyang Shou
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China; Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.
| |
Collapse
|
28
|
Ashayeri Ahmadabad R, Mirzaasgari Z, Gorji A, Khaleghi Ghadiri M. Toll-Like Receptor Signaling Pathways: Novel Therapeutic Targets for Cerebrovascular Disorders. Int J Mol Sci 2021; 22:ijms22116153. [PMID: 34200356 PMCID: PMC8201279 DOI: 10.3390/ijms22116153] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs), a class of pattern recognition proteins, play an integral role in the modulation of systemic inflammatory responses. Cerebrovascular diseases (CVDs) are a group of pathological conditions that temporarily or permanently affect the brain tissue mostly via the decrease of oxygen and glucose supply. TLRs have a critical role in the activation of inflammatory cascades following hypoxic-ischemic events and subsequently contribute to neuroprotective or detrimental effects of CVD-induced neuroinflammation. The TLR signaling pathway and downstream cascades trigger immune responses via the production and release of various inflammatory mediators. The present review describes the modulatory role of the TLR signaling pathway in the inflammatory responses developed following various CVDs and discusses the potential benefits of the modulation of different TLRs in the improvement of functional outcomes after brain ischemia.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
| | - Zahra Mirzaasgari
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Department of Neurology, Iran University of Medical Sciences, Tehran 1593747811, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149 Münster, Germany
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität, 48149 Münster, Germany;
- Department of Neurology, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-8355564; Fax: +49-251-8347479
| | | |
Collapse
|
29
|
Jiang Q, Stone CR, Elkin K, Geng X, Ding Y. Immunosuppression and Neuroinflammation in Stroke Pathobiology. Exp Neurobiol 2021; 30:101-112. [PMID: 33972464 PMCID: PMC8118752 DOI: 10.5607/en20033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Over the preceding decades, there have been substantial advances in our knowledge of the pathophysiology of stroke. One such advance has been an increased understanding of the multifarious crosstalk in which the nervous and immune systems engage in order to maintain homeostasis. By interrupting the immune-nervous nexus, it is thought that stroke induces change in both systems. Additionally, it has been found that both innate and adaptive immunosuppression play protective roles against the effects of stroke. The release of danger-/damage-associated molecular patterns (DAMPs) activates Toll-like receptors (TLRs), contributing to the harmful inflammatory effects of ischemia/reperfusion injury after stroke; the Tyro3, Axl, and MerTK (TAM)/Gas6 system, however, has been shown to suppress inflammation via downstream signaling molecules that inhibit TLR signaling. Anti-inflammatory cytokines have also been found to promote neuroprotection following stroke. Additionally, adaptive immunosuppression merits further consideration as a potential endogenous protective mechanism. In this review, we highlight recent studies regarding the effects and mechanism of immunosuppression on the pathophysiology of stroke, with the hope that a better understanding of the function of both of innate and adaptive immunity in this setting will facilitate the development of effective therapies for post-stroke inflammation.
Collapse
Affiliation(s)
- Qian Jiang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Christopher R Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Kenneth Elkin
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201, MI, USA.,Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit 48201, MI, USA
| |
Collapse
|
30
|
Xu H, Wang E, Chen F, Xiao J, Wang M. Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
31
|
Du H, He Y, Pan Y, Zhao M, Li Z, Wang Y, Yang J, Wan H. Danhong Injection Attenuates Cerebral Ischemia-Reperfusion Injury in Rats Through the Suppression of the Neuroinflammation. Front Pharmacol 2021; 12:561237. [PMID: 33927611 PMCID: PMC8076794 DOI: 10.3389/fphar.2021.561237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
Neuroinflammation is one of the major causes of damage of the central nervous system (CNS) and plays a vital role in the pathogenesis of cerebral ischemia, which can result in long-term disability and neuronal death. Danhong injection (DHI), a traditional Chinese medicine injection, has been applied to the clinical treatment of cerebral stoke for many years. In this study, we investigated the protective effects of DHI on cerebral ischemia-reperfusion injury (CIRI) in rats and explored its potential anti-neuroinflammatory properties. CIRI in adult male SD rats was induced by middle cerebral artery occlusion (MCAO) for 1 h and reperfusion for 24 h. Results showed that DHI (0.5, 1, and 2 ml/kg) dose-dependently improved the neurological deficits and alleviated cerebral infarct volume and histopathological damage of the cerebral cortex caused by CIRI. Moreover, DHI (0.5, 1, and 2 ml/kg) inhibited the mRNA expressions of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), intercellular cell adhesion molecule-1 (ICAM-1), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) in ischemic brains, downregulated TNF-α, IL-1β, and monocyte chemotactic protein-1 (MCP-1) levels in serum, and reduced the neutrophil infiltration (myeloperoxidase, MPO) in ischemic brains, in a dose-dependent manner. Immunohistochemical staining results also revealed that DHI dose-dependently diminished the protein expressions of ICAM-1 and COX-2, and suppressed the activation of microglia (ionized calcium-binding adapter molecule 1, Iba-1) and astrocyte (glial fibrillary acidic protein, GFAP) in the cerebral cortex. Western blot analysis showed that DHI significantly downregulated the phosphorylation levels of the proteins in nuclear factor κB (NF-κB) and mitogen-activated protein kinas (MAPK) signaling pathways in ischemic brains. These results indicate that DHI exerts anti-neuroinflammatory effects against CIRI, which contribute to the amelioration of CNS damage.
Collapse
Affiliation(s)
- Haixia Du
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Mengdi Zhao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiwei Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiehong Yang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.,College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
32
|
Saghazadeh A, Rezaei N. Biosensing surfaces and therapeutic biomaterials for the central nervous system in COVID-19. EMERGENT MATERIALS 2021; 4:293-312. [PMID: 33718777 PMCID: PMC7944718 DOI: 10.1007/s42247-021-00192-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 can affect the central nervous system (CNS) indirectly by inflammatory mechanisms and even directly enter the CNS. Thereby, COVID-19 can evoke a range of neurosensory conditions belonging to infectious, inflammatory, demyelinating, and degenerative classes. A broad range of non-specific options, including anti-viral agents and anti-inflammatory protocols, is available with varying therapeutic. Due to the high mortality and morbidity in COVID-19-related brain damage, some changes to these general protocols, however, are necessary for ensuring the delivery of therapeutic(s) to the specific components of the CNS to meet their specific requirements. The biomaterials approach permits crossing the blood-brain barrier (BBB) and drug delivery in a more accurate and sustained manner. Beyond the BBB, drugs can protect neural cells, stimulate endogenous stem cells, and induce plasticity more effectively. Biomaterials for cell delivery exist, providing an efficient tool to improve cell retention, survival, differentiation, and integration. This paper will review the potentials of the biomaterials approach for the damaged CNS in COVID-19. It mainly includes biomaterials for promoting synaptic plasticity and modulation of inflammation in the post-stroke brain, extracellular vesicles, exosomes, and conductive biomaterials to facilitate neural regeneration, and artificial nerve conduits for treatment of neuropathies. Also, biosensing surfaces applicable to the first sensory interface between the host and the virus that encourage the generation of accelerated anti-viral immunity theoretically offer hope in solving COVID-19.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194 Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194 Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
33
|
[D-Ala 2, D-Leu 5] Enkephalin Inhibits TLR4/NF- κB Signaling Pathway and Protects Rat Brains against Focal Ischemia-Reperfusion Injury. Mediators Inflamm 2021; 2021:6661620. [PMID: 33628116 PMCID: PMC7895595 DOI: 10.1155/2021/6661620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 11/17/2022] Open
Abstract
Background Cerebral ischemia-reperfusion (I/R) injury is the main cause of acute brain injury, which is a life-threatening disease due to the lack of effective treatments. [D-Ala2, D-Leu5] enkephalin (DADLE) is a synthetic delta-opioid receptor agonist that is reported to confer neuroprotective effect; however, the underlying mechanism is still being explored. The purpose of the present study is to determine whether DADLE administrated intracerebroventricularly could attenuate the cerebral I/R injury, to determine if this is through inhibiting the toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway and therefore inhibiting neuroinflammation in an ischemic stroke model. Methods Rats were subjected to 120 minutes of ischemia by transient middle cerebral artery occlusion (MCAO). At 45 minutes after ischemia, DADLE or control vehicle (artificial cerebrospinal fluid, ACSF) was given to the rats intracerebroventricularly. Neurological deficit, cerebral infarct volume, and histopathological changes were assessed at 24 hours after reperfusion. Brain inflammation was assessed by measuring tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the ischemic penumbra by ELISA. The expression of TLR4 was determined by immunohistochemistry staining and western blotting. The expression of NF-κB was investigated by western blotting. Results Compared with the vehicle-treatment (ACSF), DADEL improved neurological deficit (9.6 ± 2.1 versus 13.8 ± 1.9), reduced cerebral infarct volume (18.74 ± 3.30% versus 10.57 ± 2.50%), and increased the number of normal neurons (29.72 ± 8.53% versus 51.37 ± 9.18%) after cerebral I/R injury in rats (all P < 0.05). Expressions of inflammatory molecules including TNF-α and IL-6 were highly expressed in the vehicle-treated rats, whereas treatment with DADLE downregulated these expressions (P < 0.05). Additionally, cerebral I/R injury significantly increased the TLR4 and NF-κB expression in vehicle-control group, which was markedly inhibited by DADLE (P < 0.05). Conclusions DADLE, administrated intracerebroventricularly at 45 minutes after cerebral ischemia, significantly ameliorated I/R-induced brain damage in rats. This kind of neuroprotective effect appears to be related to the downregulation of TLR4-mediated inflammatory responses.
Collapse
|
34
|
Hu Y, Sun X, Wang S, Zhou C, Lin L, Ding X, Han J, Zhou Y, Jin G, Wang Y, Zhang W, Shi H, Zhang Z, Yang X, Hua F. Toll-like receptor-2 gene knockout results in neurobehavioral dysfunctions and multiple brain structural and functional abnormalities in mice. Brain Behav Immun 2021; 91:257-266. [PMID: 33069798 DOI: 10.1016/j.bbi.2020.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Toll-like receptor-2 (TLR2), a member of TLR family, plays an important role in the induction and regulation of immune/inflammation. TLR2 gene knockout (TLR2KO) mice have been widely used for animal models of neurological diseases. Since there is close relationship between immune system and neurobehavioral functions, it is important to clarify the exact role of TLR2 defect itself in neurobehavioral functions. The present study aimed to investigate the effect of TLR2KO on neurobehavioral functions in mice and the mechanisms underlying the observed changes. METHODS Male TLR2KO and wild type (WT) mice aged 3, 7, and 12 months were used for neurobehavioral testing and detection of protein expression by Western blot. Brain magnetic resonance imaging (MRI), electrophysiological recording, and Evans blue (EB) assay were applied to evaluate regional cerebral blood flow (rCBF), synaptic function, and blood-brain barrier (BBB) integrity in 12-month-old TLR2KO and age-matched WT mice. RESULTS Compared to WT mice, TLR2KO mice showed decreased cognitive function and locomotor activity, as well as increased anxiety, which developed from middle age (before 7-month-old) to old age. In addition, significantly reduced regional cerebral blood flow (rCBF), inhibited long-term potentiation (LTP), and increased blood-brain barrier (BBB) permeability were observed in 12-month-old TLR2KO mice. Furthermore, compared with age-matched WT mice, significant reduction in protein levels of tight junction proteins (ZO-1, Occludin, and Claudin-5) and increased neurofilament protein (SMI32) were observed in 7 and 12-month-old TLR2KO mice, and that myelin basic protein (MBP) decreased in 12-month-old TLR2KO mice. CONCLUSION Our data demonstrated that TLR2 defect resulted in significantly observable neurobehavioral dysfunctions in mice starting from middle age, as well as multiple abnormalities in brain structure, function, and molecular metabolism.
Collapse
Affiliation(s)
- Yuting Hu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Xiaoyu Sun
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Shang Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Chao Zhou
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Li Lin
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Xiaohui Ding
- Department of Histology and Embryology, Shenyang Medical College, China
| | - Jingjing Han
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Yan Zhou
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Guoliang Jin
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Yuqiao Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Wei Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Hongjuan Shi
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Zuohui Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Xinxin Yang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China
| | - Fang Hua
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, China; Institute of Neurological Diseases, Xuzhou Medical University, China.
| |
Collapse
|
35
|
Ureña-Peralta JR, Pérez-Moraga R, García-García F, Guerri C. Lack of TLR4 modifies the miRNAs profile and attenuates inflammatory signaling pathways. PLoS One 2020; 15:e0237066. [PMID: 32780740 PMCID: PMC7418977 DOI: 10.1371/journal.pone.0237066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
TLR4 is a member of the toll-like receptors (TLR) immune family, which are activated by lipopolysaccharide, ethanol or damaged tissue, among others, by triggering proinflammatory cytokines release and inflammation. Lack of TLR4 protects against inflammatory processes and neuroinflammation linked with several neuropathologies. By considering that miRNAs are key post-transcriptional regulators of the proteins involved in distinct cellular processes, including inflammation, this study aimed to assess the impact of the miRNAs profile in mice cortices lacking the TLR4 response. Using mice cerebral cortices and next-generation sequencing (NGS), the findings showed that lack of TLR4 significantly reduced the quantity and diversity of the miRNAs expressed in WT mice cortices. The results also revealed a significant down-regulation of the miR-200 family, while cluster miR-99b/let-7e/miR-125a was up-regulated in TLR4-KO vs. WT. The bioinformatics and functional analyses demonstrated that TLR4-KO presented the systematic depletion of many pathways closely related to the immune system response, such as cytokine and interleukin signaling, MAPK and ion Channels routes, MyD88 pathways, NF-κβ and TLR7/8 pathways. Our results provide new insights into the molecular and biological processes associated with the protective effects of TLR-KO against inflammatory damage and neuroinflammation, and reveal the relevance of the TLR4 receptors response in many neuropathologies.
Collapse
Affiliation(s)
- Juan R. Ureña-Peralta
- Molecular and cellular pathology of Alcohol Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Raúl Pérez-Moraga
- Bioinformatics & Biostatistics Unit, Prince Felipe Research Center, Valencia, Spain
- Biomedical Imaging Unit FISABIO-CIPF, Prince Felipe Research Center, Valencia, Spain
| | | | - Consuelo Guerri
- Molecular and cellular pathology of Alcohol Laboratory, Prince Felipe Research Center, Valencia, Spain
- * E-mail:
| |
Collapse
|
36
|
Fan X, Elkin K, Shi Y, Zhang Z, Cheng Y, Gu J, Liang J, Wang C, Ji X. Schisandrin B improves cerebral ischemia and reduces reperfusion injury in rats through TLR4/NF-κB signaling pathway inhibition. Neurol Res 2020; 42:693-702. [PMID: 32657248 DOI: 10.1080/01616412.2020.1782079] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It has been established that poor outcomes in ischemic stroke patients are associated with the post-reperfusion inflammatory response and up-regulation of TLR4. Therefore, suppression of the TLR4 signaling pathway constitutes a potential neuroprotective therapeutic strategy. Schisandrin B, a compound extracted from Schisandra chinensis, has been shown to possess anti-inflammatory and neuroprotective properties. However, the mechanism remains unclear. In the present study, the therapeutic effect of schisandrin B was assessed following cerebral ischemia and reperfusion (I/R) injury in a model of middle cerebral artery occlusion and reperfusion (MCAO/R) in rats. The effects of schisandrin B were investigated with particular emphasis on TLR4 signal transduction and on the inflammatory response. Schisandrin B treatment conferred significant protection against MCAO/R injury, as evidenced by decreases in infarct volume, neurological score, and the number of apoptotic neurons and inflammatory signaling molecules. ABBREVIATIONS I/R: schemia/reperfusion; IL: interleukin; MCAO/R: middle cerebral artery occlusion and reperfusion; NF-κB: nuclear; TLR4: Toll-like receptor 4; TNF-α: tumor necrosis factor-α.
Collapse
Affiliation(s)
- Xingjuan Fan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University , Beijing, China.,Department of Neurology, Affiliated Hospital of Nantong University , Nantong, China
| | - Kenneth Elkin
- Department of Neurosurgery, Wayne State University School of Medicine , Detroit, MI, USA
| | - Yunwei Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University , Nantong, China
| | - Zhihong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University , Nantong, China
| | - Yaqin Cheng
- Department of Neurology, Affiliated Hospital of Nantong University , Nantong, China
| | - Jingxiao Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University , Nantong, China
| | - Jiale Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University , Nantong, China
| | - Caiping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University , Nantong, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University , Beijing, China
| |
Collapse
|
37
|
Polsek D, Cash D, Veronese M, Ilic K, Wood TC, Milosevic M, Kalanj-Bognar S, Morrell MJ, Williams SCR, Gajovic S, Leschziner GD, Mitrecic D, Rosenzweig I. The innate immune toll-like-receptor-2 modulates the depressogenic and anorexiolytic neuroinflammatory response in obstructive sleep apnoea. Sci Rep 2020; 10:11475. [PMID: 32651433 PMCID: PMC7351955 DOI: 10.1038/s41598-020-68299-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
The increased awareness of obstructive sleep apnoea’s (OSA) links to Alzheimer’s disease and major psychiatric disorders has recently directed an intensified search for their potential shared mechanisms. We hypothesised that neuroinflammation and the microglial TLR2-system may act as a core process at the intersection of their pathophysiology. Moreover, we postulated that inflammatory-response might underlie development of key behavioural and neurostructural changes in OSA. Henceforth, we set out to investigate effects of 3 weeks’ exposure to chronic intermittent hypoxia in mice with or without functional TRL2 (TLR2+/+, C57BL/6-Tyrc-Brd-Tg(Tlr2-luc/gfp)Kri/Gaj;TLR2−/−,C57BL/6-Tlr2tm1Kir). By utilising multimodal imaging in this established model of OSA, a discernible neuroinflammatory response was demonstrated for the first time. The septal nuclei and forebrain were shown as the initial key seed-sites of the inflammatory cascade that led to wider structural changes in the associated neurocircuitry. Finally, the modulatory role for the functional TLR2-system was suggested in aetiology of depressive, anxious and anorexiolytic symptoms in OSA.
Collapse
Affiliation(s)
- Dora Polsek
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK.,University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Diana Cash
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK.,BRAIN, Department of Neuroimaging, KCL, London, UK
| | | | - Katarina Ilic
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | | | - Milan Milosevic
- School of Public Health, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Svjetlana Kalanj-Bognar
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Mary J Morrell
- The National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Srecko Gajovic
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Guy D Leschziner
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK.,Department of Neurology, Guy's and St Thomas' Hospital (GSTT) and Clinical Neurosciences, KCL, London, UK.,Sleep Disorders Centre, GSTT, London, UK
| | - Dinko Mitrecic
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK. .,Sleep Disorders Centre, GSTT, London, UK.
| |
Collapse
|
38
|
TLR-2 neutralization potentiates microglial M1 to M2 switching by the combinatorial treatment of ciprofloxacin and dexamethasone during S. aureus infection. J Neuroimmunol 2020; 344:577262. [DOI: 10.1016/j.jneuroim.2020.577262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
|
39
|
Chen H, He Y, Chen S, Qi S, Shen J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol Res 2020; 158:104877. [PMID: 32407958 DOI: 10.1016/j.phrs.2020.104877] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress and neuroinflammation are critical pathological processes in cerebral ischemia-reperfusion injury, and their intimate interactions mediate neuronal damage, blood-brain barrier (BBB) damage and hemorrhagic transformation (HT) during ischemic stroke. We review current progress towards understanding the interactions of oxidative/nitrosative stress and inflammatory responses in ischemic brain injury. The interactions between reactive oxygen species (ROS)/reactive nitrogen species (RNS) and innate immune receptors such as TLR2/4, NOD-like receptor, RAGE, and scavenger receptors are crucial pathological mechanisms that amplify brain damage during cerebral ischemic injury. Furthermore, we review the current progress of omics and systematic biology approaches for studying complex network regulations related to oxidative/nitrosative stress and inflammation in the pathology of ischemic stroke. Targeting oxidative/nitrosative stress and neuroinflammation could be a promising therapeutic strategy for ischemic stroke treatment. We then review recent advances in discovering compounds from medicinal herbs with the bioactivities of simultaneously regulating oxidative/nitrosative stress and pro-inflammatory molecules for minimizing ischemic brain injury. These compounds include sesamin, baicalin, salvianolic acid A, 6-paradol, silymarin, apocynin, 3H-1,2-Dithiole-3-thione, (-)-epicatechin, rutin, Dl-3-N-butylphthalide, and naringin. We finally summarize recent developments of the omics and systematic biology approaches for exploring the molecular mechanisms and active compounds of Traditional Chinese Medicine (TCM) formulae with the properties of antioxidant and anti-inflammation for neuroprotection. The comprehensive omics and systematic biology approaches provide powerful tools for exploring therapeutic principles of TCM formulae and developing precision medicine for stroke treatment.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Yacong He
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Suhua Qi
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China; School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
40
|
Jiang M, Li Z, Zhu G. Immunological regulatory effect of flavonoid baicalin on innate immune toll-like receptors. Pharmacol Res 2020; 158:104890. [PMID: 32389860 DOI: 10.1016/j.phrs.2020.104890] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/01/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
As an essential component of the innate immune system, Toll-like receptors (TLRs) are a family of well-recognized ligand-binding receptors found in various organisms and initiate host immune responses. Activation of TLRs signaling pathways lead to the induction of numerous genes that function in host defense. Baicalin is a natural compound from the dry raw root of Scutellaria baicalensis (S. baicalensis) and it has been found to exhibit several pharmaceutical actions, such as anti-inflammation, anti-tumor and antivirus. These biological activities are mainly related to the regulatory effect of baicalin on the host immune response. In this review, we provide an overview of the regulation of baicalin on TLRs signaling pathways in various pathological conditions, and highlight potential targets for the development of the regulatory effect of natural compound from traditional Chinese medicine on innate immune system.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Zhuoneng Li
- Centers for Disease Control and Prevention of Wuhan, China
| | - Guangxun Zhu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
41
|
VX765 Attenuates Pyroptosis and HMGB1/TLR4/NF- κB Pathways to Improve Functional Outcomes in TBI Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7879629. [PMID: 32377306 PMCID: PMC7181015 DOI: 10.1155/2020/7879629] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/28/2020] [Accepted: 03/20/2020] [Indexed: 01/12/2023]
Abstract
Background Traumatic brain injury (TBI) refers to temporary or permanent damage to brain function caused by penetrating objects or blunt force trauma. TBI activates inflammasome-mediated pathways and other cell death pathways to remove inactive and damaged cells, however, they are also harmful to the central nervous system. The newly discovered cell death pattern termed pyroptosis has become an area of interest. It mainly relies on caspase-1-mediated pathways, leading to cell death. Methods Our research focus is VX765, a known caspase-1 inhibitor which may offer neuroprotection after the process of TBI. We established a controlled cortical impact (CCI) mouse model and then controlled the degree of pyroptosis in TBI with VX765. The effects of caspase-1 inhibition on inflammatory response, pyroptosis, blood-brain barrier (BBB), apoptosis, and microglia activation, in addition to neurological deficits, were investigated. Results We found that TBI led to NOD-like receptors (NLRs) as well as absent in melanoma 2 (AIM2) inflammasome-mediated pyroptosis in the damaged cerebral cortex. VX765 curbed the expressions of indispensable inflammatory subunits (caspase-1 as well as key downstream proinflammatory cytokines such as interleukin- (IL-) 1β and IL-18). It also inhibited gasdermin D (GSDMD) cleavage and apoptosis-associated spot-like protein (ASC) oligomerization in the injured cortex. In addition to the above, VX765 also inhibited the inflammatory activity of the high-mobility cassette -1/Toll-like receptor 4/nuclear factor-kappa B (HMGB1/TLR4/NF-kappa B) pathway. By inhibiting pyroptosis and inflammatory mediator expression, we demonstrated that VX765 can decrease blood-brain barrier (BBB) leakage, apoptosis, and microglia polarization to exhibit its neuroprotective effects. Conclusion In conclusion, VX765 can counteract neurological damage after TBI by reducing pyroptosis and HMGB1/TLR4/NF-κB pathway activities. VX765 may have a good therapeutic effect on TBI.
Collapse
|
42
|
Ashayeri Ahmadabad R, Khaleghi Ghadiri M, Gorji A. The role of Toll-like receptor signaling pathways in cerebrovascular disorders: the impact of spreading depolarization. J Neuroinflammation 2020; 17:108. [PMID: 32264928 PMCID: PMC7140571 DOI: 10.1186/s12974-020-01785-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
Cerebral vascular diseases (CVDs) are a group of disorders that affect the blood supply to the brain and lead to the reduction of oxygen and glucose supply to the neurons and the supporting cells. Spreading depolarization (SD), a propagating wave of neuroglial depolarization, occurs in different CVDs. A growing amount of evidence suggests that the inflammatory responses following hypoxic-ischemic insults and after SD plays a double-edged role in brain tissue injury and clinical outcome; a beneficial effect in the acute phase and a destructive role in the late phase. Toll-like receptors (TLRs) play a crucial role in the activation of inflammatory cascades and subsequent neuroprotective or harmful effects after CVDs and SD. Here, we review current data regarding the pathophysiological role of TLR signaling pathways in different CVDs and discuss the role of SD in the potentiation of the inflammatory cascade in CVDs through the modulation of TLRs.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Neuroscience research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
43
|
Liu GJ, Zhang QR, Gao X, Wang H, Tao T, Gao YY, Zhou Y, Chen XX, Li W, Hang CH. MiR-146a Ameliorates Hemoglobin-Induced Microglial Inflammatory Response via TLR4/IRAK1/TRAF6 Associated Pathways. Front Neurosci 2020; 14:311. [PMID: 32317924 PMCID: PMC7147172 DOI: 10.3389/fnins.2020.00311] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/17/2020] [Indexed: 12/27/2022] Open
Abstract
Microglial activation and sustained inflammation in the brain can lead to neuronal damage. Hence, limiting microglial activation and brain inflammation is a good therapeutic strategy for inflammatory-associated central nervous disease. MiR-146a is a promising therapeutic microRNA, since it can negatively regulate the inflammatory response. We thus investigated the expression changes of miR-146a after experimental induction of a subarachnoid hemorrhage (SAH) in vivo and in vitro, and we assessed the anti-inflammatory effects of miR-146a in microglial cells in vitro. Primary microglial cells were preincubated with miR-146a before hemoglobin (Hb) treatment. The results indicated that miR-146a decreased gene expression of Hb-induced pro-inflammatory cytokines (TNF-α and IL-1β) and phenotype-related genes (iNOS and CD86) through IRAK1/TRAF6/NF-κB or MAPK signaling pathways, suggesting its pro-resolution activity in microglia. However, contrary to the LPS-induced microglia or macrophage activation model, we did not observe an elevation in miR-146a after activation. Overall, our findings demonstrated that miR-146a was involved in the regulation of brain inflammation and could be considered a novel therapeutic agent for treating brain inflammation.
Collapse
Affiliation(s)
- Guang-Jie Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing-Rong Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuan Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Han Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yong-Yue Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
44
|
Le K, Wu S, Chibaatar E, Ali AI, Guo Y. Alarmin HMGB1 Plays a Detrimental Role in Hippocampal Dysfunction Caused by Hypoxia-Ischemia Insult in Neonatal Mice: Evidence from the Application of the HMGB1 Inhibitor Glycyrrhizin. ACS Chem Neurosci 2020; 11:979-993. [PMID: 32073822 DOI: 10.1021/acschemneuro.0c00084] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hippocampal dysfunction related to cognitive impairment and emotional disorders in young children and adolescents caused by neonatal hypoxic-ischemic brain injury (HIBI) has attracted increasing attention in recent years. Crosstalk between the nervous and immune systems organized by hypoxia-ischemia (HI) insult may contribute to hippocampal dysfunction after HIBI. Extracellular HMGB1 functions as a damage-associated molecular pattern to instigate and amplify inflammatory responses, but whether this molecule is correlated with hippocampal dysfunction after HIBI is largely unknown. Therefore, this study examined hippocampal function after HMGB1 inhibition in an experimental HIBI model to verify the hypothesis that HMGB1 is a key mediator of hippocampal neuropathology in neonatal HIBI. By administering different doses of the HMGB1-specific inhibitor glycyrrhizin (GLY), we first found that GLY reversed the HI insult-induced loss of neurons and myelin in the hippocampal region and neurobehavioral impairments, partially in a dose-dependent manner, and based on this, we determined the optimal drug concentration to be 50 mg/kg. Subsequent analysis found that this neuroprotective effect was achieved through the inhibition of HMGB1 expression and nucleocytoplasmic translocation, a reduction in the abnormal expression of proteins associated with the downstream signaling pathway of HMGB1, a decrease in the inflammatory response, the suppression of increases in microglia/astrocytes, and the inhibition of hippocampal cell apoptosis. Collectively, our discoveries contribute to the rising appreciation of the role of HMGB1 in the neuropathology of hippocampal dysfunction and related behavioral outcomes following HIBI.
Collapse
Affiliation(s)
- Kai Le
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Shanshan Wu
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Enkhmurun Chibaatar
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Abdoulaye Idriss Ali
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Yijing Guo
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
| |
Collapse
|
45
|
Deng Y, Liu K, Pan Y, Ren J, Shang J, Chen L, Liu H. TLR2 antagonism attenuates the hippocampal neuronal damage in a murine model of sleep apnea via inhibiting neuroinflammation and oxidative stress. Sleep Breath 2020; 24:1613-1621. [PMID: 32170671 DOI: 10.1007/s11325-020-02030-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) in humans chronically promotes the neuronal damage in the hippocampus. Toll-like receptor 2 (TLR2) is pivotal for the development of numerous hippocampal diseases. Chronic intermittent hypoxia (CIH) is a prominent feature of OSA. Here in our study, the effects of TLR2 antagonism on the neural damage elicited by CIH were examined. METHODS Ortho-vanillin (O-vanillin) is an inhibitor of TLR2. Adult male mice were subjected to 8 h of intermittent hypoxia per day with or without O-vanillin for 28 days. Neuronal damage, the number of microglia, the interaction of TLR2 with its adapter protein myeloid differentiation factor 88 (MYD88), the expressions of inflammatory cytokines, and the oxidative stress were observed. RESULTS O-vanillin inhibited the increased interaction of TLR2 and MyD88, the activation of NFκB, the aggregation of microglia, the overexpression of proinflammatory agents, the elevation of oxidative stress, and hippocampal neuron cell apoptosis induced by CIH. CONCLUSIONS Our experiments indicate that TLR2 antagonism may alleviate the hippocampal neuronal damage caused by CIH via inhibiting neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Yan Deng
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Kui Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yueying Pan
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Jie Ren
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Jin Shang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China.
| |
Collapse
|
46
|
Gad SN, Nofal S, Raafat EM, Ahmed AAE. Lixisenatide Reduced Damage in Hippocampus CA1 Neurons in a Rat Model of Cerebral Ischemia-Reperfusion Possibly Via the ERK/P38 Signaling Pathway. J Mol Neurosci 2020; 70:1026-1037. [PMID: 32040827 DOI: 10.1007/s12031-020-01497-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a gut-derived peptide that has various physiological actions. One of its main actions is the regulation of blood glucose level when it is elevated as it potentiates insulin release. It is also known that GLP-1 protects neurons from damage caused by neurodegenerative diseases. Lixisenatide is one of the GLP-1 analogues that has a strong affinity to the GLP-1 receptor. Experimental animal studies have shown that it holds a neuroprotective effect in Parkinson, myocardial, and cerebral ischemic disease animal models. The beneficial effect of lixisenatide on the brain after cerebral ischemia-reperfusion (I/R) is not clarified yet; thus, it needs further explanatory studies. Our research is the first to study the effect of lixisenatide on myeloperoxidase (MPO) and toll-like receptors (TLRs)/mitogen-activated protein kinase (MAPK) pathway in a rat model of cerebral I/R. Lixisenatide with 2 doses 0.7 and 7 nmol/kg was given intraperitoneal in 2 different groups for 14 days; then, the bilateral common carotid artery was occluded for 1 h followed by reperfusion for 1 h. Examination of hippocampus CA1 neurons by Nissl stain showed that the number of intact neurons was elevated in the lixisenatide-treated group related to the control group (I/R group). Lixisenatide exhibited neuroprotection action possibly via downregulation of MPO, TLR2/4, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and pP38 and upregulation of phosphorylated extracellular signal-regulated kinase (pERK1/2); thus, this study gives possible link between lixisenatide and TLR/MAPK pathway following cerebral I/R and supports the use of lixisenatide for neuroprotection against stroke.
Collapse
Affiliation(s)
- Salma N Gad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt.
| | - Shahira Nofal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Eman M Raafat
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Amany A E Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
47
|
Neuroprotective Properties of Linagliptin: Focus on Biochemical Mechanisms in Cerebral Ischemia, Vascular Dysfunction and Certain Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20164052. [PMID: 31434198 PMCID: PMC6719127 DOI: 10.3390/ijms20164052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 02/08/2023] Open
Abstract
Linagliptin is a representative of dipeptidyl peptidase 4 (DPP-4) inhibitors which are registered and used effectively in a treatment of diabetes mellitus type 2. They increase the levels of active forms of endogenous incretins such as GLP-1 and GIP by inhibiting their enzymatic decomposition. Scientific reports suggest beneficial effects of linagliptin administration via immunological and biochemical pathways involved in neuroprotective processes of CNS. Linagliptin’s administration leads to a decrease in the concentration of proinflammatory factors such as: TNF-α, IL-6 and increases the number of anti-inflammatory patrolling monocytes CX3CR1bright. Significant reduction in Aβ42 level has been associated with the use of linagliptin implying potential application in Alzheimer’s disease. Linagliptin improved vascular functions by increasing production of nitric oxide (NO) and limiting concentration of apolipoprotein B. Linagliptin-induced decrease in macrophages infiltration may provide improvement in atheromatous plaque stabilization. Premedication with linagliptin increases neuron’s survival after stroke and augments neuronal stem cells proliferation. It seems to be connected with SDF-1α/CXCR4 signaling pathway. Linagliptin prevented abnormal proliferation and migration of rat brain microvascular endothelial cells in a state of hypoperfusion via SIRT1/HIF-1α/VEGF pathway. The article presents a summary of the studies assessing neuroprotective properties of linagliptin with special emphasis on cerebral ischemia, vascular dysfunction and neurodegenerative diseases.
Collapse
|
48
|
Toll-like receptor 4 deficiency or inhibition does not modulate survival and neurofunctional outcome in a murine model of cardiac arrest and resuscitation. PLoS One 2019; 14:e0220404. [PMID: 31369614 PMCID: PMC6675321 DOI: 10.1371/journal.pone.0220404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023] Open
Abstract
Background Patients experiencing cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) often die or suffer from severe neurological impairment. Post resuscitation syndrome is characterized by a systemic inflammatory response. Toll-like receptor 4 (TLR4) is a major mediator of inflammation and TLR4 has been implicated in the pathogenesis of post-resuscitation encephalopathy. The aim of this study was to evaluate whether TLR4 deficiency or inhibition can modulate survival and neurofunctional outcome after CA/CPR. Methods Following intubation and central venous cannulation, CA was induced in wild type (C57Bl/6J, n = 38), TLR4 deficient (TLR4-/-, n = 37) and TLR4 antibody treated mice (5mg/kg MTS510, n = 15) by high potassium. After 10min, CPR was performed using a modified sewing machine until return of spontaneous circulation (ROSC). Cytokines and cerebral TNFalpha levels were measured 8h after CA/CPR. Survival, early neurological recovery, locomotion, spatial learning and memory were assessed over a period of 28 days. Results Following CA/CPR, all mice exhibited ROSC and 31.5% of wild type mice survived until day 28. Compared to wild type mice, neither TLR4-/- nor MTS510 treated wild type mice had statistically significant altered survival following CA/CPR (51.3 and 26.7%, P = 0.104 and P = 0.423 vs. WT, respectively). Antibody-treated but not TLR4-/- mice had higher IL-1β and IL-6 levels and TLR4-/- mice had higher IL-10 and cerebral TNFalpha levels. No differences existed between mice of all groups in early neurological recovery, locomotion, spatial learning ability or remembrance. Conclusion Therapeutic strategies targeting TLR4 may not be suitable for the reduction of mortality or neurofunctional impairment after CA/CPR.
Collapse
|
49
|
Parada E, Casas AI, Palomino-Antolin A, Gómez-Rangel V, Rubio-Navarro A, Farré-Alins V, Narros-Fernandez P, Guerrero-Hue M, Moreno JA, Rosa JM, Roda JM, Hernández-García BJ, Egea J. Early toll-like receptor 4 blockade reduces ROS and inflammation triggered by microglial pro-inflammatory phenotype in rodent and human brain ischaemia models. Br J Pharmacol 2019; 176:2764-2779. [PMID: 31074003 DOI: 10.1111/bph.14703] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Ischaemic stroke is a leading cause of death, disability, and a high unmet medical need. Post-reperfusion inflammation and an up-regulation of toll-like receptor 4 (TLR4), an upstream sensor of innate immunity, are associated with poor outcome in stroke patients. Here, we identified the therapeutic effect of targeting the LPS/TLR4 signal transduction pathway. EXPERIMENTAL APPROACH We tested the effect of the TLR4 inhibitor, eritoran (E5564) in different in vitro ischaemia-related models: human organotypic cortex culture, rat organotypic hippocampal cultures, and primary mixed glia cultures. We explored the therapeutic window of E5564 in the transient middle cerebral artery occlusion model of cerebral ischaemia in mice. KEY RESULTS In vivo, administration of E5564 1 and 4 hr post-ischaemia reduced the expression of different pro-inflammatory chemokines and cytokines, infarct volume, blood-brain barrier breakdown, and improved neuromotor function, an important clinically relevant outcome. In the human organotypic cortex culture, E5564 reduced the activation of microglia and ROS production evoked by LPS. CONCLUSION AND IMPLICATIONS TLR4 signalling has a causal role in the inflammation associated with a poor post-stroke outcome. Importantly, its inhibition by eritoran (E5564) provides neuroprotection both in vitro and in vivo, including in human tissue, suggesting a promising new therapeutic approach for ischaemic stroke.
Collapse
Affiliation(s)
- Esther Parada
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Ana I Casas
- Department of Pharmacology and Personalised Medicine, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Alejandra Palomino-Antolin
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Vanessa Gómez-Rangel
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Alfonso Rubio-Navarro
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Victor Farré-Alins
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Paloma Narros-Fernandez
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Melania Guerrero-Hue
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Antonio Moreno
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juliana M Rosa
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - José M Roda
- Servicio de Neurocirugía, Hospital Universitario La Paz, Madrid, Spain
| | | | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW To discuss the mechanisms of iron regulation in the brain and the pathophysiological role of deregulation of iron homeostasis following a stroke, and to review existing evidence supporting the potential role of iron chelators in the treatment of ischemic and hemorrhagic stroke. RECENT FINDINGS In recent years, accumulating evidence has highlighted the role of neuroinflammation in neurological injury after ischemic and hemorrhagic stroke, and that free iron is central to this process. Via the Fenton reaction, free iron catalyzes the conversion of superoxide ion and hydrogen peroxide into hydroxyl radicals, which promote oxidative stress. Advances in our understanding of changes in brain iron metabolism and its relationship to neuronal injury in stroke could provide new therapeutic strategies to improve the outcome of stroke patients. Pharmacological agents targeting brain iron regulation hold promise as potentially effective treatments in both ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Khalid A Hanafy
- Beth Israel Deaconess Medical Center, Department of Neurology, Division of Stroke & Cerebrovascular Disease, Harvard Medical School, 330 Brookline Avenue - Palmer 127, Boston, MA, 02215, USA
| | - Joao A Gomes
- Cerebrovascular Center, Cleveland Clinic, Cleveland, OH, USA
| | - Magdy Selim
- Beth Israel Deaconess Medical Center, Department of Neurology, Division of Stroke & Cerebrovascular Disease, Harvard Medical School, 330 Brookline Avenue - Palmer 127, Boston, MA, 02215, USA.
| |
Collapse
|