1
|
Zheng Y, Ren Z, Liu Y, Yan J, Chen C, He Y, Shi Y, Cheng F, Wang Q, Li C, Wang X. T cell interactions with microglia in immune-inflammatory processes of ischemic stroke. Neural Regen Res 2025; 20:1277-1292. [PMID: 39075894 DOI: 10.4103/nrr.nrr-d-23-01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/07/2024] [Indexed: 07/31/2024] Open
Abstract
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke, which promotes neuronal death and inhibits nerve tissue regeneration. As the first immune cells to be activated after an ischemic stroke, microglia play an important immunomodulatory role in the progression of the condition. After an ischemic stroke, peripheral blood immune cells (mainly T cells) are recruited to the central nervous system by chemokines secreted by immune cells in the brain, where they interact with central nervous system cells (mainly microglia) to trigger a secondary neuroimmune response. This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke. We found that, during ischemic stroke, T cells and microglia demonstrate a more pronounced synergistic effect. Th1, Th17, and M1 microglia can co-secrete pro-inflammatory factors, such as interferon-γ, tumor necrosis factor-α, and interleukin-1β, to promote neuroinflammation and exacerbate brain injury. Th2, Treg, and M2 microglia jointly secrete anti-inflammatory factors, such as interleukin-4, interleukin-10, and transforming growth factor-β, to inhibit the progression of neuroinflammation, as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury. Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation, which in turn determines the prognosis of ischemic stroke patients. Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke. However, such studies have been relatively infrequent, and clinical experience is still insufficient. In summary, in ischemic stroke, T cell subsets and activated microglia act synergistically to regulate inflammatory progression, mainly by secreting inflammatory factors. In the future, a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells, along with the activation of M2-type microglia. These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.
Collapse
Affiliation(s)
- Yuxiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zilin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Juntang Yan
- Library, Beijing University of Chinese Medicine, Beijing, China
| | - Congai Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanhui He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuyu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Changxiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Luo J, Ma J. Correlation between thrombus composition and regulatory T cell counts with clinical outcomes of acute ischemic stroke patients with thrombectomy. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:160-167. [PMID: 38650441 PMCID: PMC11057995 DOI: 10.3724/zdxbyxb-2023-0424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/29/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVES To analyze the relationship of thrombus composition and regulatory T cell expression with clinical outcome in acute ischemic stroke (AIS) patients with thrombectomy. METHODS A total of 44 AIS patients who underwent thrombectomy in the Department of Neurology of Shaoxing Hospital from June 2021 to October 2022 were enrolled. All thrombus specimens were subjected to hematoxylin-eosin staining and immunohistochemistry. Semi-quantitative analysis was performed to determine the content of red blood cells, fibrinogen/platelets, and regulatory T (CD4+CD25+) cells. Clinical data, vascular recanalization status, and neurologic outcomes at 3 months after thrombectomy were collected. A modified Rankin Scale score of 0-2 was defined as a favorable outcome. RESULTS Among 44 patients with complete thrombus data there were 15 cases of red cell type, 11 cases of mixed type and 18 cases of fibrin/platelet type. There was a significant difference in trial of ORG 10172 in acute stroke treatment (TOAST) etiological classification among the three groups (P<0.01), while no significant differences were found in other general clinical and surgical data (all P>0.05). According to the TOAST etiology, 28 cases were classified as large atherosclerosis type and 16 cases as cardioembolic type. The proportion of red blood cells in thrombus was significantly higher in patients with large atherosclerosis type than that in those with cardioembolic type [58.0% (44.2%, 72.5%) vs. 24.5% (12.7%, 48.0%), P<0.01]. The ratio of fibrin to platelet in patients with cardiogenic embolism was significantly higher than that in patients with large atherosclerosis [73.0% (49.2%, 84.5%) vs. 40.0% (25.2%, 54.5%), P<0.01). Among the 44 patients, 19 had good while 25 had poor neurological outcomes. Univariate binary logistic regression analysis showed that age, operation time, CD4+CD25+T cell number were correlated with the functional outcomes of the patients (all P<0.05). Multivariate binary logistic regression analysis showed that thrombus CD4+CD25+T cell count was an independent factor affecting the functional outcome of patients (OR=1.369, 95%CI: 1.101-1.701, P<0.01). CONCLUSIONS There is no significant correlation of erythrocyte and fibrin/platelet components in thrombus with functional outcome in AIS patients, but an increased count of regulatory T cells associates with good functional outcome.
Collapse
Affiliation(s)
- Jia Luo
- Department of Neurology, Shaoxing Hospital Affiliated to China Medical University, Shaoxing 312030, Zhejiang Province, China.
| | - Jun Ma
- Department of Neurology, Shaoxing Hospital Affiliated to China Medical University, Shaoxing 312030, Zhejiang Province, China.
| |
Collapse
|
3
|
Liu Y, Dong J, Zhang Z, Liu Y, Wang Y. Regulatory T cells: A suppressor arm in post-stroke immune homeostasis. Neurobiol Dis 2023; 189:106350. [PMID: 37952680 DOI: 10.1016/j.nbd.2023.106350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/09/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
The activation of the immune system and the onset of pro- and anti-inflammatory responses play crucial roles in the pathophysiological processes of ischaemic stroke (IS). CD4+ regulatory T (Treg) cells is the main immunosuppressive cell population that is studied in the context of peripheral tolerance, autoimmunity, and the development of chronic inflammatory diseases. In recent years, more studies have focused on immune modulation after IS, and Treg cells have been demonstrated to be essential in the remission of inflammation, nerve regeneration, and behavioural recovery. However, the exact effects of Treg cells in the context of IS remain controversial, with some studies suggesting a negative correlation with stroke outcomes. In this review, we aim to provide a comprehensive overview of the current understanding of Treg cell involvement in post-stroke homeostasis. We summarized the literature focusing on the temporal changes in Treg cell populations after IS, the mechanisms of Treg cell-mediated immunomodulation in the brain, and the potential of Treg cell-based therapies for treatment. The purposes of the current article are to address the importance of Treg cells and inspire more studies to help physicians, as well as scientists, understand the whole map of immune responses during IS.
Collapse
Affiliation(s)
- Yiqi Liu
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jing Dong
- Department of Medical Engineering, Tsinghua University Yuquan Hospital, Beijing 100049, China
| | - Ziqing Zhang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yunpeng Liu
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Yang Wang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
4
|
Wang YR, Cui WQ, Wu HY, Xu XD, Xu XQ. The role of T cells in acute ischemic stroke. Brain Res Bull 2023; 196:20-33. [PMID: 36906042 DOI: 10.1016/j.brainresbull.2023.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Acute ischemic stroke (AIS) is associated with high rates of disability and mortality, exerting a substantial impact on overall survival and health-related quality of life. Treatment of AIS remains challenging given that the underlying pathologic mechanisms remain unclear. However, recent research has demonstrated that the immune system plays a key role in the development of AIS. Numerous studies have reported infiltration of T cells into ischemic brain tissue. While some types of T cells can promote the development of inflammatory responses and aggravate ischemic damage in patients with AIS, other T cells appear to exert neuroprotective effects via immunosuppression and other mechanisms. In this review, we discuss the recent findings regarding the infiltration of T cells into ischemic brain tissue, and the mechanisms governing how T cells can facilitate tissue injury or neuroprotection in AIS. Factors influencing the function of T cells, such as intestinal microflora and sex differences, are also discussed. We also explore the recent research on the effect of non-coding RNA on T cells after stroke, as well as the potential for specifically targeting T cells in the treatment of stroke patients.
Collapse
Affiliation(s)
- Yi-Ran Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang-Dong Xu
- Experimental Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang-Qing Xu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
5
|
Yoshimura A, Ohyagi M, Ito M. T cells in the brain inflammation. Adv Immunol 2022; 157:29-58. [PMID: 37061287 DOI: 10.1016/bs.ai.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The immune system is deeply involved in autoimmune diseases of the central nervous system (CNS), such as multiple sclerosis, N-methyl-d-aspartate (NMDA) receptor encephalitis, and narcolepsy. Additionally, the immune system is involved in various brain diseases including cerebral infarction and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). In particular, reports related to T cells are increasing. T cells may also play important roles in brain deterioration and dementia that occur with aging. Our understanding of the role of immune cells in the context of the brain has been greatly improved by the use of acute ischemic brain injury models. Additionally, similar neural damage and repair events are shown to occur in more chronic brain neurodegenerative brain diseases. In this review, we focus on the role of T cells, including CD4+ T cells, CD8+ T cells and regulatory T cells (Tregs) in cerebral infarction and neurodegenerative diseases.
Collapse
|
6
|
Malone K, Diaz Diaz AC, Shearer JA, Moore AC, Waeber C. The effect of fingolimod on regulatory T cells in a mouse model of brain ischaemia. J Neuroinflammation 2021; 18:37. [PMID: 33516262 PMCID: PMC7847573 DOI: 10.1186/s12974-021-02083-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/14/2021] [Indexed: 11/30/2022] Open
Abstract
Background The role of the immune system in stroke is well-recognised. Fingolimod, an immunomodulatory agent licensed for the management of relapsing-remitting multiple sclerosis, has been shown to provide benefit in rodent models of stroke. Its mechanism of action, however, remains unclear. We hypothesised fingolimod increases the number and/or function of regulatory T cells (Treg), a lymphocyte population which promotes stroke recovery. The primary aim of this study was to rigorously investigate the effect of fingolimod on Tregs in a mouse model of brain ischaemia. The effect of fingolimod in mice with common stroke-related comorbidities (ageing and hypercholesteremia) was also investigated. Methods Young (15–17 weeks), aged C57BL/6 mice (72–73 weeks), and ApoE−/− mice fed a high-fat diet (20–21 weeks) underwent permanent electrocoagulation of the left middle cerebral artery. Mice received either saline or fingolimod (0.5 mg/kg or 1 mg/kg) at 2, 24, and 48 h post-ischaemia via intraperitoneal injection. Another cohort of young mice (8–9, 17–19 weeks) received short-term (5 days) or long-term (10 days) fingolimod (0.5 mg/kg) treatment. Flow cytometry was used to quantify Tregs in blood, spleen, and lymph nodes. Immunohistochemistry was used to quantify FoxP3+ cell infiltration into the ischaemic brain. Results Fingolimod significantly increased the frequency of Tregs within the CD4+ T cell population in blood and spleen post-ischaemia in all three mouse cohorts compared to untreated ischemic mice. The highest splenic Treg frequency in fingolimod-treated mice was observed in ApoE−/− mice (9.32 ± 1.73% vs. 7.8 ± 3.01% in young, 6.09 ± 1.64% in aged mice). The highest circulating Treg frequency was also noted in ApoE−/− mice (8.39 ± 3.26% vs. 5.43 ± 2.74% in young, 4.56 ± 1.60% in aged mice). Fingolimod significantly increased the number of FoxP3+ cells in the infarct core of all mice. The most pronounced effects were seen when mice were treated for 10 days post-ischaemia. Conclusions Fingolimod increases Treg frequency in spleen and blood post-ischaemia and enhances the number of FoxP3+ cells in the ischaemic brain. The effect of fingolimod on this regulatory cell population may underlie its neuroprotective activity and could be exploited as part of future stroke therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02083-5.
Collapse
Affiliation(s)
- Kyle Malone
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland.,School of Pharmacy, University College Cork, Cork, Ireland
| | - Andrea C Diaz Diaz
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland.,School of Pharmacy, University College Cork, Cork, Ireland
| | - Jennifer A Shearer
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland.,School of Pharmacy, University College Cork, Cork, Ireland
| | - Anne C Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Christian Waeber
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland. .,School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
7
|
Wang H, Wang Z, Wu Q, Yuan Y, Cao W, Zhang X. Regulatory T cells in ischemic stroke. CNS Neurosci Ther 2021; 27:643-651. [PMID: 33470530 PMCID: PMC8111493 DOI: 10.1111/cns.13611] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
The pathophysiological mechanisms of neuroinflammation, angiogenesis, and neuroplasticity are currently the hotspots of researches in ischemic stroke. Regulatory T cells (Tregs), a subset of T cells that control inflammatory and immune responses in the body, are closely related to the pathogenesis of ischemic stroke. They participate in the inflammatory response and neuroplasticity process of ischemic stroke by various mechanisms, such as secretion of anti‐inflammatory factors, inhibition of pro‐inflammatory factors, induction of cell lysis, production of the factors that promote neural regeneration, and modulation of microglial and macrophage polarization. However, it remains unclear whether Tregs play a beneficial or deleterious role in ischemic stroke and the effect of Tregs in different stages of ischemic stroke. Here, we discuss the dynamic changes of Tregs at various stages of experimental and clinical stroke, the potential mechanisms under Tregs in regulating stroke and the preclinical studies of Tregs‐related treatments, in order to provide a reference for clinical treatment.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Zhao Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Qianqian Wu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yujia Yuan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Wen Cao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, PR China.,Hebei Vascular Homeostasis Key Laboratory, Shijiazhuang, Hebei, PR China
| |
Collapse
|
8
|
Atif F, Yousuf S, Espinosa-Garcia C, Harris WAC, Stein DG. Post-ischemic stroke systemic inflammation: Immunomodulation by progesterone and vitamin D hormone. Neuropharmacology 2020; 181:108327. [PMID: 32950558 DOI: 10.1016/j.neuropharm.2020.108327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022]
Abstract
Post-stroke systemic inflammation, due to the injury itself and exacerbated by in-hospital infections, can increase morbidity and mortality in stroke patients. In this study, we examined the immunomodulatory effects of progesterone (P4) alone and in combination with vitamin D hormone (VDH) on acute phase post-stroke peripheral immune dysfunction and functional/behavioral deficits. Adult rats underwent transient middle cerebral artery occlusion/reperfusion (tMCAO) and delayed systemic inflammation was induced by injections of lipopolysaccharide (LPS) beginning 24 h post-stroke. Animals were tested for behavioral outcomes and immune function at day 4 post-stroke. We also measured infarction volume and markers of neuronal inflammation (GFAP, IL-6) and apoptosis (cleaved caspase-3) in brain post-stroke. We observed the worst stroke outcomes in the stroke + systemic inflammation group compared to the stroke-alone group. Flow cytometric analysis of different subsets of immune cells in blood, spleen and thymus revealed peripheral immune dysfunction which was restored by both P4 and VDH monotherapy. P4 monotherapy reduced infarction volume, behavioral/functional deficits, peripheral immune dysfunction, neuronal inflammation, and apoptosis induced by post-stroke systemic inflammation. Combination treatment with P4+VDH improved outcomes better than monotherapy. Our findings can be taken to suggest that the current standard of care for stroke and post-stroke infection can be substantially improved by P4 and VDH combination therapy.
Collapse
Affiliation(s)
- Fahim Atif
- Brain Research Laboratory, Department of Emergency Medicine, USA.
| | - Seema Yousuf
- Brain Research Laboratory, Department of Emergency Medicine, USA
| | | | - Wayne A C Harris
- Emory Integrated Computing Core, School of Medicine, Emory University, Atlanta, GA, 30322,, USA
| | - Donald G Stein
- Brain Research Laboratory, Department of Emergency Medicine, USA
| |
Collapse
|
9
|
Ito M, Komai K, Nakamura T, Srirat T, Yoshimura A. Tissue regulatory T cells and neural repair. Int Immunol 2020; 31:361-369. [PMID: 30893423 DOI: 10.1093/intimm/dxz031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Inflammation and immune responses after tissue injury play pivotal roles in the pathology, resolution of inflammation, tissue recovery, fibrosis and remodeling. Regulatory T cells (Tregs) are the cells responsible for suppressing immune responses and can be activated in secondary lymphatic tissues, where they subsequently regulate effector T cell and dendritic cell activation. Recently, Tregs that reside in non-lymphoid tissues, called tissue Tregs, have been shown to exhibit tissue-specific functions that contribute to the maintenance of tissue homeostasis and repair. Unlike other tissue Tregs, the role of Tregs in the brain has not been well elucidated because the number of brain Tregs is very small under normal conditions. However, we found that Tregs accumulate in the brain at the chronic phase of ischemic brain injury and control astrogliosis through secretion of a cytokine, amphiregulin (Areg). Brain Tregs resemble other tissue Tregs in many ways but, unlike the other tissue Tregs, brain Tregs express neural-cell-specific genes such as the serotonin receptor (Htr7) and respond to serotonin. Administering serotonin or selective serotonin reuptake inhibitors (SSRIs) in an experimental mouse model of stroke increases the number of brain Tregs and ameliorates neurological symptoms. Knowledge of brain Tregs will contribute to the understanding of various types of neuroinflammation.
Collapse
Affiliation(s)
- Minako Ito
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kyoko Komai
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Toshihiro Nakamura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tanakorn Srirat
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
10
|
Zera KA, Buckwalter MS. The Local and Peripheral Immune Responses to Stroke: Implications for Therapeutic Development. Neurotherapeutics 2020; 17:414-435. [PMID: 32193840 PMCID: PMC7283378 DOI: 10.1007/s13311-020-00844-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The immune response to stroke is an exciting target for future stroke therapies. Stroke is a leading cause of morbidity and mortality worldwide, and clot removal (mechanical or pharmacological) to achieve tissue reperfusion is the only therapy currently approved for patient use. Due to a short therapeutic window and incomplete effectiveness, however, many patients are left with infarcted tissue that stimulates inflammation. Although this is critical to promote repair, it can also damage surrounding healthy brain tissue. In addition, acute immunodepression and subsequent infections are common and are associated with worse patient outcomes. Thus, the acute immune response is a major focus of researchers attempting to identify ways to amplify its benefits and suppress its negative effects to improve short-term recovery of patients. Here we review what is known about this powerful process. This includes the role of brain resident cells such as microglia, peripherally activated cells such as macrophages and neutrophils, and activated endothelium. The role of systemic immune activation and subsequent immunodepression in the days after stroke is also discussed, as is the chronic immune responses and its effects on cognitive function. The biphasic role of inflammation, as well as complex timelines of cell production, differentiation, and trafficking, suggests that the relationship between the acute and chronic phases of stroke recovery is complex. Gaining a more complete understanding of this intricate process by which inflammation is initiated, propagated, and terminated may potentially lead to therapeutics that can treat a larger population of stroke patients than what is currently available. The immune response plays a critical role in patient recovery in both the acute and chronic phases after stroke. In patients, the immune response can be beneficial by promoting repair and recovery, and also detrimental by propagating a pro-inflammatory microenvironment. Thus, it is critical to understand the mechanisms of immune activation following stroke in order to successfully design therapeutics.
Collapse
Affiliation(s)
- Kristy A Zera
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Department of Neurosurgery, Stanford Univeristy School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Krämer TJ, Hack N, Brühl TJ, Menzel L, Hummel R, Griemert EV, Klein M, Thal SC, Bopp T, Schäfer MKE. Depletion of regulatory T cells increases T cell brain infiltration, reactive astrogliosis, and interferon-γ gene expression in acute experimental traumatic brain injury. J Neuroinflammation 2019; 16:163. [PMID: 31383034 PMCID: PMC6683516 DOI: 10.1186/s12974-019-1550-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of death and disability. T cells were shown to infiltrate the brain during the first days after injury and to exacerbate tissue damage. The objective of this study was to investigate the hitherto unresolved role of immunosuppressive, regulatory T cells (Tregs) in experimental TBI. Methods “Depletion of regulatory T cell” (DEREG) and wild type (WT) C57Bl/6 mice, treated with diphtheria toxin (DTx) to deplete Tregs or to serve as control, were subjected to the controlled cortical impact (CCI) model of TBI. Neurological and motor deficits were examined until 5 days post-injury (dpi). At the 5 dpi endpoint, (immuno-) histological, protein, and gene expression analyses were carried out to evaluate the consequences of Tregs depletion. Comparison of parametric or non-parametric data between two groups was done using Student’s t test or the Mann-Whitney U test. For multiple comparisons, p values were calculated by one-way or two-way ANOVA followed by specific post hoc tests. Results The overall neurological outcome at 5 dpi was not different between DEREG and WT mice but more severe motor deficits occurred transiently at 1 dpi in DEREG mice. DEREG and WT mice did not differ in the extent of brain damage, blood-brain barrier (BBB) disruption, or neuronal excitotoxicity, as examined by lesion volumetry, immunoglobulin G (IgG) extravasation, or calpain-generated αII-spectrin breakdown products (SBDPs), respectively. In contrast, increased protein levels of glial fibrillary acidic protein (GFAP) and GFAP+ astrocytes in the ipsilesional brain tissue indicated exaggerated reactive astrogliosis in DEREG mice. T cell counts following anti-CD3 immunohistochemistry and gene expression analyses of Cd247 (CD3 subunit zeta) and Cd8a (CD8a) further indicated an increased number of T cells infiltrating the brain injury sites of DEREG mice compared to WT. These changes coincided with increased gene expression of pro-inflammatory interferon-γ (Ifng) in DEREG mice compared to WT in the injured brain. Conclusions The results show that the depletion of Tregs attenuates T cell brain infiltration, reactive astrogliosis, interferon-γ gene expression, and transiently motor deficits in murine acute traumatic brain injury.
Collapse
Affiliation(s)
- Tobias J Krämer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131, Mainz, Germany
| | - Nathalia Hack
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131, Mainz, Germany
| | - Till J Brühl
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Lutz Menzel
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131, Mainz, Germany
| | - Regina Hummel
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131, Mainz, Germany
| | - Eva-Verena Griemert
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131, Mainz, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.,Research Center for Immunotherapy (FZI), Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131, Mainz, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.,Research Center for Immunotherapy (FZI), Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131, Mainz, Germany. .,Research Center for Immunotherapy (FZI), Johannes Gutenberg-University Mainz, Mainz, Germany. .,Focus Program Translational Neurosciences (FTN), Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
12
|
|
13
|
Yin P, Wei Y, Wang X, Zhu M, Feng J. Roles of Specialized Pro-Resolving Lipid Mediators in Cerebral Ischemia Reperfusion Injury. Front Neurol 2018; 9:617. [PMID: 30131754 PMCID: PMC6090140 DOI: 10.3389/fneur.2018.00617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke contributes to ~80% of all stroke cases. Recanalization with thrombolysis or endovascular thrombectomy are currently critical therapeutic strategies for rebuilding the blood supply following ischemic stroke. However, recanalization is often accompanied by cerebral ischemia reperfusion injury that is mediated by oxidative stress and inflammation. Resolution of inflammation belongs to the end stage of inflammation where inflammation is terminated and the repair of damaged tissue is started. Resolution of inflammation is mediated by a group of newly discovered lipid mediators called specialized pro-resolving lipid mediators (SPMs). Accumulating evidence suggests that SPMs decrease leukocyte infiltration, enhance efferocytosis, reduce local neuronal injury, and decrease both oxidative stress and the production of inflammatory cytokines in various in vitro and in vivo models of ischemic stroke. In this review, we summarize the mechanisms of reperfusion injury and the various roles of SPMs in stroke therapy.
Collapse
Affiliation(s)
- Ping Yin
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China.,First Department of Neurology and Neuroscience Center, Heilongjiang Provincial Hospital, Harbin, China
| | - Yafen Wei
- First Department of Neurology and Neuroscience Center, Heilongjiang Provincial Hospital, Harbin, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Mingqin Zhu
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Mays RW, Savitz SI. Intravenous Cellular Therapies for Acute Ischemic Stroke. Stroke 2018; 49:1058-1065. [DOI: 10.1161/strokeaha.118.018287] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/01/2018] [Accepted: 03/08/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Robert W. Mays
- From the Department of Neurosciences, Athersys, Inc, (R.W.M.)
| | - Sean I. Savitz
- Institute for Stroke and Cerebrovascular Disease, UTHealth, Houston, TX (S.I.S.)
| |
Collapse
|
15
|
Dolati S, Ahmadi M, Khalili M, Taheraghdam AA, Siahmansouri H, Babaloo Z, Aghebati-Maleki L, Jadidi-Niaragh F, Younesi V, Yousefi M. Peripheral Th17/Treg imbalance in elderly patients with ischemic stroke. Neurol Sci 2018; 39:647-654. [DOI: 10.1007/s10072-018-3250-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
|
16
|
Dotson AL, Offner H. Sex differences in the immune response to experimental stroke: Implications for translational research. J Neurosci Res 2017; 95:437-446. [PMID: 27870460 DOI: 10.1002/jnr.23784] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/16/2016] [Indexed: 12/24/2022]
Abstract
Ischemic stroke is a leading cause of death and disability in the United States. It is known that males and females respond differently to stroke. Depending on age, the incidence, prevalence, mortality rate, and disability outcome of stroke differ between the sexes. Females generally have strokes at older ages than males and, therefore, have a worse stroke outcome. There are also major differences in how the sexes respond to stroke at the cellular level. Immune response is a critical factor in determining the progress of neurodegeneration after stroke and is fundamentally different for males and females. Additionally, females respond to stroke therapies differently from males, yet they are often left out of the basic research that is focused on developing those therapies. With a resounding failure to translate stroke therapies from the bench to the bedside, it is clearer than ever that inclusion of both sexes in stroke studies is essential for future clinical success. This Mini-Review examines sex differences in the immune response to experimental stroke and its implications for therapy development. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abby L Dotson
- Neuroimmunology Research, Veterans Affairs Portland Health Care System, Portland, Oregon
- Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | - Halina Offner
- Neuroimmunology Research, Veterans Affairs Portland Health Care System, Portland, Oregon
- Department of Neurology, Oregon Health and Science University, Portland, Oregon
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
17
|
Petrovic-Djergovic D, Goonewardena SN, Pinsky DJ. Inflammatory Disequilibrium in Stroke. Circ Res 2017; 119:142-58. [PMID: 27340273 DOI: 10.1161/circresaha.116.308022] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/25/2016] [Indexed: 01/01/2023]
Abstract
Over the past several decades, there have been substantial advances in our knowledge of the pathophysiology of stroke. Understanding the benefits of timely reperfusion has led to the development of thrombolytic therapy as the cornerstone of current management of ischemic stroke, but there remains much to be learned about mechanisms of neuronal ischemic and reperfusion injury and associated inflammation. For ischemic stroke, novel therapeutic targets have continued to remain elusive. When considering modern molecular biological techniques, advanced translational stroke models, and clinical studies, a consistent pattern emerges, implicating perturbation of the immune equilibrium by stroke in both central nervous system injury and repair responses. Stroke triggers activation of the neuroimmune axis, comprised of multiple cellular constituents of the immune system resident within the parenchyma of the brain, leptomeninges, and vascular beds, as well as through secretion of biological response modifiers and recruitment of immune effector cells. This neuroimmune activation can directly impact the initiation, propagation, and resolution phases of ischemic brain injury. To leverage a potential opportunity to modulate local and systemic immune responses to favorably affect the stroke disease curve, it is necessary to expand our mechanistic understanding of the neuroimmune axis in ischemic stroke. This review explores the frontiers of current knowledge of innate and adaptive immune responses in the brain and how these responses together shape the course of ischemic stroke.
Collapse
Affiliation(s)
- Danica Petrovic-Djergovic
- From the Departments of Internal Medicine (D.P.-D., S.N.G., D.J.P.) and Molecular and Integrative Physiology (D.J.P.), University of Michigan, Ann Arbor
| | - Sascha N Goonewardena
- From the Departments of Internal Medicine (D.P.-D., S.N.G., D.J.P.) and Molecular and Integrative Physiology (D.J.P.), University of Michigan, Ann Arbor
| | - David J Pinsky
- From the Departments of Internal Medicine (D.P.-D., S.N.G., D.J.P.) and Molecular and Integrative Physiology (D.J.P.), University of Michigan, Ann Arbor.
| |
Collapse
|
18
|
Minhas G, Sharma J, Khan N. Cellular Stress Response and Immune Signaling in Retinal Ischemia-Reperfusion Injury. Front Immunol 2016; 7:444. [PMID: 27822213 PMCID: PMC5075763 DOI: 10.3389/fimmu.2016.00444] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/07/2016] [Indexed: 01/04/2023] Open
Abstract
Ischemia–reperfusion injury is a well-known pathological hallmark associated with diabetic retinopathy, glaucoma, and other related retinopathies that ultimately can lead to visual impairment and vision loss. Retinal ischemia pathogenesis involves a cascade of detrimental events that include energy failure, excitotoxic damage, calcium imbalance, oxidative stress, and eventually cell death. Retina for a long time has been known to be an immune privileged site; however, recent investigations reveal that retina, as well as the central nervous system, elicits immunological responses during various stress cues. Stress condition, such as reperfusion of blood supply post-ischemia results in the sequestration of different immune cells, inflammatory mediators including cytokines, chemokines, etc., to the ischemic region, which in turn facilitates induction of inflammatory conditions in these tissues. The immunological activation during injury or stress per se is beneficial for repair and maintenance of cellular homeostasis, but whether the associated inflammation is good or bad, during ischemia–reperfusion injury, hitherto remains to be explored. Keeping all these notions in mind, the current review tries to address the immune response and host stress response mechanisms involved in ischemia–reperfusion injury with the focus on the retina.
Collapse
Affiliation(s)
- Gillipsie Minhas
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad , Telangana, India
| | - Jyoti Sharma
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad , Telangana, India
| | - Nooruddin Khan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad , Telangana, India
| |
Collapse
|
19
|
Dotson AL, Wang J, Chen Y, Manning D, Nguyen H, Saugstad JA, Offner H. Sex differences and the role of PPAR alpha in experimental stroke. Metab Brain Dis 2016; 31:539-47. [PMID: 26581674 PMCID: PMC4864150 DOI: 10.1007/s11011-015-9766-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
Males and females respond differently to stroke. Moreover, females often experience worse long-term stroke outcomes. Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist has been shown to improve stroke outcome and resolve neuroinflammation in male mice. The present study compares the effect of pretreatment with fenofibrate versus vehicle control in male and female mice during experimental stroke. Mice were treated with low-dose fenofibrate 30 min before and once a day for three additional days after stroke onset. We observed a reduction in infarct volume in male mice 96 h post-stroke with low-dose fenofibrate pretreatment that was due to increase of an M2 macrophage phenotype in the brain and an increase in regulatory cells in the periphery. These outcomes were not replicated in females, likely due to the lower PPARα expression in cells and tissues in females vs males. We conclude that PPARα agonist treatment prior to stroke is neuroprotective in males but not females. These findings indicate PPARα as a probable mechanism of sex difference in stroke outcome and support the need for representation of females in stroke therapy research.
Collapse
Affiliation(s)
- Abby L Dotson
- Neuroimmunology Research, Veterans Affairs Medical Center, R&D-31, 3710 SW US Veterans Hospital Rd., Portland, OR, 97239, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Jianming Wang
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Yingxin Chen
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Dustin Manning
- Neuroimmunology Research, Veterans Affairs Medical Center, R&D-31, 3710 SW US Veterans Hospital Rd., Portland, OR, 97239, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Ha Nguyen
- Neuroimmunology Research, Veterans Affairs Medical Center, R&D-31, 3710 SW US Veterans Hospital Rd., Portland, OR, 97239, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Julie A Saugstad
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Halina Offner
- Neuroimmunology Research, Veterans Affairs Medical Center, R&D-31, 3710 SW US Veterans Hospital Rd., Portland, OR, 97239, USA.
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA.
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
20
|
Chan A, Yan J, Csurhes P, Greer J, McCombe P. Circulating brain derived neurotrophic factor (BDNF) and frequency of BDNF positive T cells in peripheral blood in human ischemic stroke: Effect on outcome. J Neuroimmunol 2015; 286:42-7. [PMID: 26298323 DOI: 10.1016/j.jneuroim.2015.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 06/17/2015] [Accepted: 06/22/2015] [Indexed: 01/05/2023]
Abstract
The aim of this study was to measure the levels of circulating BDNF and the frequency of BDNF-producing T cells after acute ischaemic stroke. Serum BDNF levels were measured by ELISA. Flow cytometry was used to enumerate peripheral blood leukocytes that were labelled with antibodies against markers of T cells, T regulatory cells (Tregs), and intracellular BDNF. There was a slight increase in serum BDNF levels after stroke. There was no overall difference between stroke patients and controls in the frequency of CD4(+) and CD8(+) BDNF(+) cells, although a subgroup of stroke patients showed high frequencies of these cells. However, there was an increase in the percentage of BDNF(+) Treg cells in the CD4(+) population in stroke patients compared to controls. Patients with high percentages of CD4(+) BDNF(+) Treg cells had a better outcome at 6months than those with lower levels. These groups did not differ in age, gender or initial stroke severity. Enhancement of BDNF production after stroke could be a useful means of improving neuroprotection and recovery after stroke.
Collapse
Affiliation(s)
- Adeline Chan
- University of Queensland, Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Jun Yan
- University of Queensland, Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Peter Csurhes
- University of Queensland, Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Judith Greer
- University of Queensland, Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Pamela McCombe
- University of Queensland, Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.
| |
Collapse
|
21
|
Interaction of astrocytes and T cells in physiological and pathological conditions. Brain Res 2015; 1623:63-73. [PMID: 25813828 DOI: 10.1016/j.brainres.2015.03.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 12/24/2022]
Abstract
The central nervous system (CNS) has long been recognized as a site of 'immune privilege' because of the existence of the blood brain barrier (BBB) which presumably isolates CNS from the peripheral immunosurveillance. Different from the peripheral organs, CNS is unique in response to all forms of CNS injury and disease which is mainly mediated by resident microglia and astrocyte. There is increasing evidence that immune cells are not only involved in neuroinflammation process but also the maintenance of CNS homeostasis. T cells, an important immune cell population, are involved in the pathogenesis of some neurological diseases by inducing either innate or adaptive immune responses. Astrocytes, which are the most abundant cell type in the CNS, maintain the integrity of BBB and actively participate in the initiation and progression of neurological diseases. Surprisingly, how astrocytes and T cells interact and the consequences of their interaction are not clear. In this review we briefly summarized T cells diversity and astrocyte function. Then, we examined the evidence for the astrocytes and T cells interaction under physiological and pathological conditions including ischemic stroke, multiple sclerosis, viral infection, and Alzheimer's disease. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
|
22
|
Liesz A, Hu X, Kleinschnitz C, Offner H. Functional role of regulatory lymphocytes in stroke: facts and controversies. Stroke 2015; 46:1422-30. [PMID: 25791715 DOI: 10.1161/strokeaha.114.008608] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/24/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Arthur Liesz
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany (A.L.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (A.L.); Department of Neurology, University of Pittsburgh, PA (X.H.); Department of Neurology, University Hospital Würzburg, Würzburg, Germany (C.K.); Department of Neurology and Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland (H.O.); and Neuroimmunology Research, Portland, OR (H.O.).
| | - Xiaoming Hu
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany (A.L.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (A.L.); Department of Neurology, University of Pittsburgh, PA (X.H.); Department of Neurology, University Hospital Würzburg, Würzburg, Germany (C.K.); Department of Neurology and Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland (H.O.); and Neuroimmunology Research, Portland, OR (H.O.)
| | - Christoph Kleinschnitz
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany (A.L.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (A.L.); Department of Neurology, University of Pittsburgh, PA (X.H.); Department of Neurology, University Hospital Würzburg, Würzburg, Germany (C.K.); Department of Neurology and Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland (H.O.); and Neuroimmunology Research, Portland, OR (H.O.)
| | - Halina Offner
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany (A.L.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (A.L.); Department of Neurology, University of Pittsburgh, PA (X.H.); Department of Neurology, University Hospital Würzburg, Würzburg, Germany (C.K.); Department of Neurology and Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland (H.O.); and Neuroimmunology Research, Portland, OR (H.O.)
| |
Collapse
|
23
|
Splenectomy reduces infarct volume and neuroinflammation in male but not female mice in experimental stroke. J Neuroimmunol 2014; 278:289-98. [PMID: 25434281 DOI: 10.1016/j.jneuroim.2014.11.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/21/2022]
Abstract
The peripheral immune response contributes to neurodegeneration after stroke yet little is known about how this process differs between males and females. The current study demonstrates that splenectomy prior to experimental stroke eliminates sex differences in infarct volume and activated brain monocytes/microglia. In the periphery of both sexes, activated T cells correlate directly with stroke outcome while monocytes are reduced by splenectomy only in males. This study provides new information about the sex specific mechanisms of the peripheral immune response in neurodegeneration after stroke and demonstrates the need for representation of both sexes in basic and clinical stroke research.
Collapse
|
24
|
Dotson AL, Zhu W, Libal N, Alkayed NJ, Offner H. Different immunological mechanisms govern protection from experimental stroke in young and older mice with recombinant TCR ligand therapy. Front Cell Neurosci 2014; 8:284. [PMID: 25309326 PMCID: PMC4174768 DOI: 10.3389/fncel.2014.00284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/26/2014] [Indexed: 12/02/2022] Open
Abstract
Stroke is a leading cause of death and disability in the United States. The lack of clinical success in stroke therapies can be attributed, in part, to inadequate basic research on aging rodents. The current study demonstrates that recombinant TCR ligand therapy uses different immunological mechanisms to protect young and older mice from experimental stroke. In young mice, RTL1000 therapy inhibited splenocyte efflux while reducing frequency of T cells and macrophages in the spleen. Older mice treated with RTL1000 exhibited a significant reduction in inflammatory cells in the brain and inhibition of splenic atrophy. Our data suggest age specific differences in immune response to stroke that allow unique targeting of stroke immunotherapies.
Collapse
Affiliation(s)
- Abby L Dotson
- Neuroimmunology Research, VA Medical Center Portland, OR, USA ; Department of Neurology, Oregon Health and Science University Portland, OR, USA
| | - Wenbin Zhu
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University Portland, OR, USA
| | - Nicole Libal
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University Portland, OR, USA
| | - Nabil J Alkayed
- Department of Neurology, Oregon Health and Science University Portland, OR, USA ; Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University Portland, OR, USA ; Knight Cardiovascular Institute, Oregon Health and Science University Portland, OR, USA
| | - Halina Offner
- Neuroimmunology Research, VA Medical Center Portland, OR, USA ; Department of Neurology, Oregon Health and Science University Portland, OR, USA ; Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
25
|
Machado DDCD, Lima GC, Souza Dos Santos R, Ramos AJB, Menezes de Sousa CC, Moreira Dos Santos RP, Coelho KKO, Cagy M, Orsini M, Bastos VH. Comparative analysis electroencephalographic of alpha, Beta and gamma bands of a healthy individual and one with hemiparesis. J Phys Ther Sci 2014; 26:801-4. [PMID: 25013270 PMCID: PMC4085195 DOI: 10.1589/jpts.26.801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/24/2013] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The study analyzed the electroencephalographic (EEG) data of the central
cortical areas, during execution of the motor gestures of feeding, activation of the
system of mirror neurons, and imagery between a right hemiparetic volunteer (RHV) and a
healthy volunteer (HV). [Subjects and Methods] The volunteers’ EEG data were recorded with
their eyes open for 4 minutes while they performed five experimental tasks. [Results] The
alpha band, absolute power value of HV was lower than that of RHV. In the beta band,
during the practice condition, there was an increase in the magnitude of the absolute
power value of HV at T3, possibly because T3 is representative of secondary motor areas
that work with cortical neurons related to planning and organizing sequence of movements
performed by the hands. The gamma band is related to the state of preparation for movement
and memory. The results of this study indicate that there was increased activation of the
gamma frequency band of HV. [Conclusion] The findings of this study have revealed the
changes in pattern characteristics of each band which may be associated with the brain
injury of the hemiparetic patient.
Collapse
Affiliation(s)
- Dionis de Castro Dutra Machado
- Department of Physical Therapy, Federal University of Piauí, Brazil ; Brain Mapping and Functionality Laboratory (LAMCEF), Federal University of Piauí, Brazil ; Brain Mapping and Sensory Motor Integration Laboratory, Federal University of Rio de Janeiro (IPUB/UFRJ), Brazil
| | - Glenda Crispim Lima
- Department of Physical Therapy, Federal University of Piauí, Brazil ; Brain Mapping and Functionality Laboratory (LAMCEF), Federal University of Piauí, Brazil
| | - Rodrigo Souza Dos Santos
- Department of Physical Therapy, Federal University of Piauí, Brazil ; Brain Mapping and Functionality Laboratory (LAMCEF), Federal University of Piauí, Brazil
| | - Amanda Júlia Bezerra Ramos
- Department of Physical Therapy, Federal University of Piauí, Brazil ; Brain Mapping and Functionality Laboratory (LAMCEF), Federal University of Piauí, Brazil
| | - Cáio César Menezes de Sousa
- Department of Physical Therapy, Federal University of Piauí, Brazil ; Brain Mapping and Functionality Laboratory (LAMCEF), Federal University of Piauí, Brazil
| | | | - Karyna Kelly Oliveira Coelho
- Department of Physical Therapy, Federal University of Piauí, Brazil ; Brain Mapping and Functionality Laboratory (LAMCEF), Federal University of Piauí, Brazil
| | - Mauricio Cagy
- Brain Mapping and Sensory Motor Integration Laboratory, Federal University of Rio de Janeiro (IPUB/UFRJ), Brazil
| | - Marco Orsini
- Master Program of the Rehabilitation Science, UNISUAM, Brazil
| | - Victor Hugo Bastos
- Department of Physical Therapy, Federal University of Piauí, Brazil ; Brain Mapping and Functionality Laboratory (LAMCEF), Federal University of Piauí, Brazil
| |
Collapse
|