1
|
Almahdy AG, El-Sayed A, Eltarahony M. A novel functionalized CuTi hybrid nanocomposites: facile one-pot mycosynthesis, characterization, antimicrobial, antibiofilm, antifouling and wastewater disinfection performance. Microb Cell Fact 2024; 23:148. [PMID: 38783243 PMCID: PMC11112895 DOI: 10.1186/s12934-024-02400-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The continuous progress in nanotechnology is rapid and extensive with overwhelming futuristic aspects. Through modernizing inventive synthesis protocols, a paradigm leapfrogging in novelties and findings are channeled toward fostering human health and sustaining the surrounding environment. Owing to the overpricing and jeopardy of physicochemical synthesizing approaches, the quest for ecologically adequate schemes is incontestable. By developing environmentally friendly strategies, mycosynthesis of nanocomposites has been alluring. RESULTS Herein, a novel architecture of binary CuO and TiO2 in nanocomposites form was fabricated using bionanofactory Candida sp., for the first time. For accentuating the structural properties of CuTi nanocomposites (CuTiNCs), various characterization techniques were employed. UV-Vis spectroscopy detected SPR at 350 nm, and XRD ascertained the crystalline nature of a hybrid system. However, absorption peaks at 8, 4.5, and 0.5 keV confirmed the presence of Cu, Ti and oxygen, respectively, in an undefined assemblage of polygonal-spheres of 15-75 nm aggregated in the fungal matrix of biomolecules as revealed by EDX, SEM and TEM. However, FTIR, ζ-potential and TGA reflected long-term stability (- 27.7 mV) of self-functionalized CuTiNCs. Interestingly, a considerable and significant biocide performance was detected at 50 µg/mL of CuTiNCs against some human and plant pathogens, compared to monometallic counterparts. Further, CuTiNCs (200 µg/mL) ceased significantly the development of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans biofilms by 80.3 ± 1.4, 68.7 ± 3.0 and 55.7 ± 3.0%, respectively. Whereas, 64.63 ± 3.5 and 89.82 ± 4.3% antimicrofouling potentiality was recorded for 100 and 200 µg/ml of CuTiNCs, respectively; highlighting their destructive effect against marine microfoulers cells and decaying of their extracellular polymeric skeleton as visualized by SEM. Moreover, CuTiNCs (100 and 200 µg/ml) exerted significantly outstanding disinfection potency within 2 h by reducing the microbial load (i.e., total plate count, mold & yeast, total coliforms and faecal Streptococcus) in domestic and agricultural effluents reached >50%. CONCLUSION The synergistic efficiency provided by CuNPs and TiNPs in mycofunctionalized CuTiNCs boosted its recruitment as antiphytopathogenic, antibiofilm, antimicrofouling and disinfectant agent in various realms.
Collapse
Affiliation(s)
- Asmaa G Almahdy
- Botany and Microbiology Department, Faculty of science, Damietta University, Damietta, Egypt
| | - Ahmed El-Sayed
- Botany and Microbiology Department, Faculty of science, Damietta University, Damietta, Egypt
| | - Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El- Arab City, Alexandria, 21934, Egypt.
| |
Collapse
|
2
|
Leong MY, Kong YL, Harun MY, Looi CY, Wong WF. Current advances of nanocellulose application in biomedical field. Carbohydr Res 2023; 532:108899. [PMID: 37478689 DOI: 10.1016/j.carres.2023.108899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Nanocellulose (NC) is a natural fiber that can be extracted in fibrils or crystals form from different natural sources, including plants, bacteria, and algae. In recent years, nanocellulose has emerged as a sustainable biomaterial for various medicinal applications including drug delivery systems, wound healing, tissue engineering, and antimicrobial treatment due to its biocompatibility, low cytotoxicity, and exceptional water holding capacity for cell immobilization. Many antimicrobial products can be produced due to the chemical functionality of nanocellulose, such disposable antibacterial smart masks for healthcare use. This article discusses comprehensively three types of nanocellulose: cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and bacterial nanocellulose (BNC) in view of their structural and functional properties, extraction methods, and the distinctive biomedical applications based on the recently published work. On top of that, the biosafety profile and the future perspectives of nanocellulose-based biomaterials have been further discussed in this review.
Collapse
Affiliation(s)
- M Y Leong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Y L Kong
- Department of Engineering and Applied Sciences, American Degree Program, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - M Y Harun
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - C Y Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - W F Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Ippili S, Jung JS, Thomas AM, Vuong VH, Lee JM, Sha MS, Sadasivuni KK, Jella V, Yoon SG. An Overview of Polymer Composite Films for Antibacterial Display Coatings and Sensor Applications. Polymers (Basel) 2023; 15:3791. [PMID: 37765645 PMCID: PMC10536203 DOI: 10.3390/polym15183791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The escalating presence of pathogenic microbes has spurred a heightened interest in antimicrobial polymer composites tailored for hygiene applications. These innovative composites ingeniously incorporate potent antimicrobial agents such as metals, metal oxides, and carbon derivatives. This integration equips them with the unique ability to offer robust and persistent protection against a diverse array of pathogens. By effectively countering the challenges posed by microbial contamination, these pioneering composites hold the potential to create safer environments and contribute to the advancement of public health on a substantial scale. This review discusses the recent progress of antibacterial polymer composite films with the inclusion of metals, metal oxides, and carbon derivatives, highlighting their antimicrobial activity against various pathogenic microorganisms. Furthermore, the review summarizes the recent developments in antibacterial polymer composites for display coatings, sensors, and multifunctional applications. Through a comprehensive examination of various research studies, this review aims to provide valuable insights into the design, performance, and real-time applications of these smart antimicrobial coatings for interactive devices, thus enhancing their overall user experience and safety. It concludes with an outlook on the future perspectives and challenges of antimicrobial polymer composites and their potential applications across diverse fields.
Collapse
Affiliation(s)
- Swathi Ippili
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-S.J.); (A.M.T.); (V.-H.V.); (J.-M.L.)
| | - Jang-Su Jung
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-S.J.); (A.M.T.); (V.-H.V.); (J.-M.L.)
| | - Alphi Maria Thomas
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-S.J.); (A.M.T.); (V.-H.V.); (J.-M.L.)
| | - Van-Hoang Vuong
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-S.J.); (A.M.T.); (V.-H.V.); (J.-M.L.)
| | - Jeong-Min Lee
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-S.J.); (A.M.T.); (V.-H.V.); (J.-M.L.)
| | - Mizaj Shabil Sha
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (M.S.S.); (K.K.S.)
| | - Kishor Kumar Sadasivuni
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (M.S.S.); (K.K.S.)
- Department of Mechanical and Industrial Engineering, Qatar University, Doha P.O. Box 2713, Qatar
| | - Venkatraju Jella
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-S.J.); (A.M.T.); (V.-H.V.); (J.-M.L.)
| | - Soon-Gil Yoon
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-S.J.); (A.M.T.); (V.-H.V.); (J.-M.L.)
| |
Collapse
|
4
|
Hassan M, Diab MA, Abd El-Wahab MG, Hegazi AH, Emwas AH, Jaremko M, Hagar M. Bismuth Oxide Composite-Based Agricultural Waste for Wound Dressing Applications. Molecules 2023; 28:5900. [PMID: 37570869 PMCID: PMC10421204 DOI: 10.3390/molecules28155900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 08/13/2023] Open
Abstract
The purpose of this study was to enhance the antimicrobial activity of bagasse paper by coating the paper with bismuth oxide (Bi2O3) and using it to accelerate the process of wound healing. Paper sheets were prepared from sugarcane waste (bagasse). First, the paper sheets were coated with different Bi2O3 concentrations to improve the antimicrobial activity of the paper. After that, the paper sheets were allowed to dry in an oven at 50 °C for 3 h. Then, in vitro antimicrobial activity was evaluated against different microbial species, including Gram-negative bacteria (i.e., Klebsiella pneumonia, Escherichia coli) and Gram-positive bacteria (i.e., Staphylococcus aureus, Streptococcus pyogenes). The obtained results showed that the paper coated with 25% and 100% Bi2O3 had activity against all models of bacteria; however, the paper coated with 100% Bi2O3 composite had the strongest inhibitory effect. Then, bagasse paper was coated with 100% Bi2O3 and different antibiotics, to investigate their wound-healing potency in a wounded rat model for 14 days. Moreover, the paper coated with 100% Bi2O3 inhibited the cellular migration in vitro. Conclusively, coating paper with Bi2O3 enhances the wound-healing potential when applied to wounds. This impact could be ascribed to Bi2O3's broad antibacterial activity, which reduced infection and accelerated the healing process.
Collapse
Affiliation(s)
- Mayar Hassan
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Mohamed A. Diab
- National Research Center, Cellulose and Paper Department, 33El-Bohouth St. (Former El-Tahrir St.), Dokki, Giza 12622, Egypt
| | - Miral G. Abd El-Wahab
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation, Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab 21934, Egypt
| | - Abdelrahman H. Hegazi
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Abdul-Hamid Emwas
- Core Labs., King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohamed Hagar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| |
Collapse
|
5
|
Yochabedh CA, Nandhini L, Preetha R, Rejish Kumar VJ. Nanomaterials in aquatic products and aquatic systems, and its safety aspects. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-023-02834-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
6
|
Gabrić D, Kurek M, Ščetar M, Brnčić M, Galić K. Effect of Non-Thermal Food Processing Techniques on Selected Packaging Materials. Polymers (Basel) 2022; 14:polym14235069. [PMID: 36501462 PMCID: PMC9741052 DOI: 10.3390/polym14235069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
In the last decade both scientific and industrial community focuses on food with the highest nutritional and organoleptic quality, together with appropriate safety. Accordingly, strong efforts have been made in finding appropriate emerging technologies for food processing and packaging. Parallel to this, an enormous effort is also made to decrease the negative impact of synthetic polymers not only on food products (migration issues) but on the entire environment (pollution). The science of packaging is also subjected to changes, resulting in development of novel biomaterials, biodegradable or not, with active, smart, edible and intelligent properties. Combining non-thermal processing with new materials opens completely new interdisciplinary area of interest for both food and material scientists. The aim of this review article is to give an insight in the latest research data about synergies between non-thermal processing technologies and selected packaging materials/concepts.
Collapse
|
7
|
Bacterial Cellulose as a Versatile Biomaterial for Wound Dressing Application. Molecules 2022; 27:molecules27175580. [PMID: 36080341 PMCID: PMC9458019 DOI: 10.3390/molecules27175580] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic ulcers are among the main causes of morbidity and mortality due to the high probability of infection and sepsis and therefore exert a significant impact on public health resources. Numerous types of dressings are used for the treatment of skin ulcers-each with different advantages and disadvantages. Bacterial cellulose (BC) has received enormous interest in the cosmetic, pharmaceutical, and medical fields due to its biological, physical, and mechanical characteristics, which enable the creation of polymer composites and blends with broad applications. In the medical field, BC was at first used in wound dressings, tissue regeneration, and artificial blood vessels. This material is suitable for treating various skin diseases due its considerable fluid retention and medication loading properties. BC membranes are used as a temporary dressing for skin treatments due to their excellent fit to the body, reduction in pain, and acceleration of epithelial regeneration. BC-based composites and blends have been evaluated and synthesized both in vitro and in vivo to create an ideal microenvironment for wound healing. This review describes different methods of producing and handling BC for use in the medical field and highlights the qualities of BC in detail with emphasis on biomedical reports that demonstrate its utility. Moreover, it gives an account of biomedical applications, especially for tissue engineering and wound dressing materials reported until date. This review also includes patents of BC applied as a wound dressing material.
Collapse
|
8
|
Electroconductive cellulose nanocrystals — Synthesis, properties and applications: A review. Carbohydr Polym 2022; 289:119419. [DOI: 10.1016/j.carbpol.2022.119419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/29/2022]
|
9
|
Tang Y, Guo B, Cruz MA, Chen H, Zhou Q, Lin Z, Xu F, Xu F, Chen X, Cai D, Wiley BJ, Kang J. Colorful Conductive Threads for Wearable Electronics: Transparent Cu-Ag Nanonets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201111. [PMID: 35839473 PMCID: PMC9405525 DOI: 10.1002/advs.202201111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Electronic textiles have been regarded as the basic building blocks for constructing a new generation of wearable electronics. However, the electronization of textiles often changes their original properties such as color, softness, glossiness, or flexibility. Here a rapid room-temperature fabrication method toward conductive colorful threads and fabrics with Ag-coated Cu (Cu-Ag) nanonets is demonstrated. Cu-Ag core-shell nanowires are produced through a one-pot synthesis followed by electroless deposition. According to the balance of draining and entraining forces, a fast dip-withdraw process in a volatile solution is developed to tightly wrap Cu-Ag nanonets onto the fibers of thread. The modified threads are not only conductive, but they also retain their original features with enhanced mechanical stability and dry-wash durability. Furthermore, various e-textile devices are fabricated such as a fabric heater, touch screen gloves, a wearable real-time temperature sensor, and warm fabrics against infrared thermal dissipation. These high quality and colorful conductive textiles will provide powerful materials for promoting next-generation applications in wearable electronics.
Collapse
Affiliation(s)
- Yan Tang
- Fujian Key Laboratory of Semiconductor Materials and ApplicationsCI center for OSEDCollege of Physical Science and TechnologyXiamen UniversityXiamen361005P. R. China
| | - Bin Guo
- Fujian Key Laboratory of Semiconductor Materials and ApplicationsCI center for OSEDCollege of Physical Science and TechnologyXiamen UniversityXiamen361005P. R. China
| | - Mutya A. Cruz
- Department of ChemistryDuke UniversityDurhamNC27708‐0354USA
| | - Han Chen
- Fujian Key Laboratory of Semiconductor Materials and ApplicationsCI center for OSEDCollege of Physical Science and TechnologyXiamen UniversityXiamen361005P. R. China
| | - Qicheng Zhou
- Fujian Key Laboratory of Semiconductor Materials and ApplicationsCI center for OSEDCollege of Physical Science and TechnologyXiamen UniversityXiamen361005P. R. China
| | - Zefeng Lin
- Fujian Key Laboratory of Semiconductor Materials and ApplicationsCI center for OSEDCollege of Physical Science and TechnologyXiamen UniversityXiamen361005P. R. China
| | - Fuchun Xu
- Fujian Key Laboratory of Semiconductor Materials and ApplicationsCI center for OSEDCollege of Physical Science and TechnologyXiamen UniversityXiamen361005P. R. China
| | - Feiya Xu
- Fujian Key Laboratory of Semiconductor Materials and ApplicationsCI center for OSEDCollege of Physical Science and TechnologyXiamen UniversityXiamen361005P. R. China
| | - Xiaohong Chen
- Fujian Key Laboratory of Semiconductor Materials and ApplicationsCI center for OSEDCollege of Physical Science and TechnologyXiamen UniversityXiamen361005P. R. China
| | - Duanjun Cai
- Fujian Key Laboratory of Semiconductor Materials and ApplicationsCI center for OSEDCollege of Physical Science and TechnologyXiamen UniversityXiamen361005P. R. China
| | | | - Junyong Kang
- Fujian Key Laboratory of Semiconductor Materials and ApplicationsCI center for OSEDCollege of Physical Science and TechnologyXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
10
|
Karthick Raja Namasivayam S, Nizar M, Samrat K, Sudarsan AV, Valli Nachiyar C, Arvind Bharani RS. Green Synthesis of Chitosan–Selenium Bionanocomposite with High Biocompatibility and Its Marked Impact on Las B and RhII Genes Expression in Pseudomonas aeruginosa. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02431-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Geotrichum candidum Mediated [Cu8O7 + P2O5] Nanocomposite Bio Fabrication, Characterization, Physicochemical Properties, and its In-Vitro Biocompatibility Evaluation. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02252-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Tauseef A, Hisam F, Hussain T, Caruso A, Hussain K, Châtel A, Chénais B. Nanomicrobiology: Emerging Trends in Microbial Synthesis of Nanomaterials and Their Applications. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Laourari I, Lakhdari N, Belgherbi O, Medjili C, Berkani M, Vasseghian Y, Golzadeh N, Lakhdari D. Antimicrobial and antifungal properties of NiCu-PANI/PVA quaternary nanocomposite synthesized by chemical oxidative polymerization of polyaniline. CHEMOSPHERE 2022; 291:132696. [PMID: 34718011 DOI: 10.1016/j.chemosphere.2021.132696] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/09/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Increasing antimicrobial resistance has led to use of novel technologies such as nanomaterials and nanocomposites that have shown effective antimicrobial and/or antifungal activities against several gram-positive and gram-negative bacteria. There have been limited studies on antimicrobial properties of the combined polymer nanocomposites with transitional bimetallic nanoparticles such as nickel (Ni) and copper (Cu). Thus, the main objective of this study was to synthesis, characterize and investigate the antibacterial and antifungal properties of NiCu-PANI/PVA nanocomposite. The nanocomposite films with different amount of Ni and Cu salts were synthesized by chemical oxidative polymerization of polyaniline using HCl as oxidant and PVA as a stabilizer. Optical, chemical composition, and morphological characteristics as well as thermal stability were evaluated using UV-Visible, FTIR, SEM-EDX, and TGA analyses. Antimicrobial properties were then determined using the disc diffusion assay against gram-negative bacteria (i.e., Escherichia coli ATCC 25922, Klebsiella pneumonia ATCC 700603, Proteus sp.,) and gram-positive bacteria (i.e., Staphylococcus aureus ATCC 2593). Fungal plant pathogens including Aspergillus niger and Fusarium oxysporum f. sp. pisi were also evaluated for determination of antifungal activity of NiCu-PANI/PVA films. Among the synthesized films, Ni65Cu35-PANI/PVA showed excellent antibacterial activity against all the bacteria strains examined in this study. The diameters of inhibition zones for Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 700603, Proteus sp., and Staphylococcus aureus ATCC 2593 were 23, 23, 17, and 18 mm, respectively indicating good antibacterial activities. Additionally, NiCu-PANI/PVA, particularly the films with higher Cu intake, showed better antifungal activity against Fusarium oxysporum f. sp. pisi. However, NiCu-PANI/PVA was ineffective against Aspergillus niger.
Collapse
Affiliation(s)
- Ines Laourari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100, Constantine, Algeria
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100, Constantine, Algeria.
| | - Ouafia Belgherbi
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria
| | - Chahinaz Medjili
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100, Constantine, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100, Constantine, Algeria.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Nasrin Golzadeh
- Science, Technology, Engineering, and Mathematics (STEM) Knowledge Translations Institute, Montreal, Quebec, Canada
| | - Delloula Lakhdari
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria.
| |
Collapse
|
14
|
Bagchi B, Salvadores Fernandez C, Bhatti M, Ciric L, Lovat L, Tiwari MK. Copper nanowire embedded hypromellose: An antibacterial nanocomposite film. J Colloid Interface Sci 2022; 608:30-39. [PMID: 34624763 PMCID: PMC7611964 DOI: 10.1016/j.jcis.2021.09.130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/18/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022]
Abstract
The present work reports a novel antibacterial nanocomposite film comprising of copper nanowire impregnated biocompatible hypromellose using polyethylene glycol as a plasticiser. Detailed physico-chemical characterization using X-ray diffraction, Fourier transform infrared spectroscopy, UV-Visible spectroscopy and electron microscopy shows uniform dispersion of copper nanowire in the polymer matrix without any apparent oxidation. The film is flexible and shows excellent antibacterial activity against both Gram positive and negative bacteria at 4.8 wt% nanowire loading with MIC values of 400 μg/mL and 500 μg/mL for E. coli and S. aureus respectively. Investigation into the antibacterial mechanism of the composite indicates multiple pathways including cellular membrane damage caused by released copper ions and reactive oxygen species generation in the microbial cell. Interestingly, the film showed good biocompatibility towards normal human dermal fibroblast at minimum bactericidal concentration (MBC). Compared to copper nanoparticles as reported earlier in vitro studies, this low cytotoxicity of copper nanowires is due to the slow dissolution rate of the film and production of lower amount of ROS producing Cu2+ ions. Thus, the study indicates a strong potential for copper nanowire-based composites films in broader biomedical and clinical applications.
Collapse
Affiliation(s)
- Biswajoy Bagchi
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London W1W 7TS, UK; Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Carmen Salvadores Fernandez
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London W1W 7TS, UK; Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Manni Bhatti
- UCL Department of Civil, Environmental and Geomatic Engineering, London WC1E 6BT, UK
| | - Lena Ciric
- UCL Department of Civil, Environmental and Geomatic Engineering, London WC1E 6BT, UK
| | - Laurence Lovat
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London W1W 7TS, UK
| | - Manish K Tiwari
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London W1W 7TS, UK; Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, UK.
| |
Collapse
|
15
|
Di Cerbo A, Mescola A, Rosace G, Trovato V, Canton R, Iseppi R, Stocchi R, Ghazanfar S, Rea S, Loschi AR, Sabia C. A Time-Course Study on a Food Contact Material (FCM)-Certified Coating Based on Titanium Oxide Deposited onto Aluminum. BIOLOGY 2022; 11:97. [PMID: 35053094 PMCID: PMC8772801 DOI: 10.3390/biology11010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/16/2022]
Abstract
Aluminum is the second most widely used metal worldwide. It is present as an additive in cosmetics, pharmaceuticals, food, and food contact materials (FCM). In this study, we confirm the bactericidal effect of a special anodizing method, based on TiO2 nanoparticles (DURALTI®) deposited on aluminum disks with different roughness and subjected to two sanitizing treatments: UV and alcohol 70%. Consequently, we perform a time-course evaluation against both Gram-negative and Gram-positive bacteria to better frame the time required to achieve the best result. Approximately 106 CFU/mL of Escherichia coli ATCC 25922; Salmonella Typhimurium ATCC 1402; Yersinia enterocolitica ATCC 9610; Pseudomonas aeruginosa ATCC 27588; Staphylococcus aureus ATCC 6538; Enterococcus faecalis ATCC 29212; Bacillus cereus ATCC 14579 and Listeria monocytogenes NCTT 10888 were inoculated onto each aluminum surface and challenged with UV and alcohol 70% at 0, 15", 30", 1', 5', 15', 30', 1, 2, 4 and 6 h. DURALTI® coating already confirmed its ability to induce a 4-logarithmic decrease (from 106 to 102 CFU/mL) after 6 h. Once each sanitizing treatment was applied, an overall bacterial inhibition occurred in a time ranging from 15'' to 1'. The results are innovative in terms of preventing microbial adhesion and growth in the food industry.
Collapse
Affiliation(s)
- Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (R.S.); (S.R.); (A.R.L.)
| | | | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, 24044 Dalmine, Italy; (G.R.); (V.T.)
| | - Valentina Trovato
- Department of Engineering and Applied Sciences, University of Bergamo, 24044 Dalmine, Italy; (G.R.); (V.T.)
| | | | - Ramona Iseppi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.I.); (C.S.)
| | - Roberta Stocchi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (R.S.); (S.R.); (A.R.L.)
| | - Shakira Ghazanfar
- National Agricultural Research Centre, National Institute of Genomics and Agriculture Biotechnology (NIGAB), Park Road, Islamabad 45500, Pakistan;
| | - Stefano Rea
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (R.S.); (S.R.); (A.R.L.)
| | - Anna Rita Loschi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (R.S.); (S.R.); (A.R.L.)
| | - Carla Sabia
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.I.); (C.S.)
| |
Collapse
|
16
|
Prospects for the creation of antimicrobial preparations based on copper and copper oxides nanoparticles. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.6-2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The spread of strains of microorganisms that are multidrug resistant to modern antimicrobial drugs is still an urgent problem in the treatment and prevention of infectious diseases and public health in general.Currently, the possibility of using metal nanopreparations in various fields of medicine is being actively studied. Nanoparticles of metals and metal oxides are promising antimicrobial agents and are attracting growing interest due to their effectiveness. Nanoscale copper metal particles have shown high antimicrobial activity againstvarious types of gram-positive and gram-negative bacteria, as well as fungi. Taking into account the potential of copper nanoparticles in antimicrobial therapy, we present an overview of the current state of research related to their antimicrobial properties, consideration of the mechanisms of action, key factors affecting antimicrobial activity, including the polymer matrix. The issues of toxicity and resistance to copper are considered. The advantage of copper nanoparticles over other metal nanoparticles is shown.The studies summarized in this review have shown the promise of copper nanoparticles in the creation of new antimicrobial drugs that can be used in the future to control, prevent, and treat various diseases.
Collapse
|
17
|
Neme K, Nafady A, Uddin S, Tola YB. Application of nanotechnology in agriculture, postharvest loss reduction and food processing: food security implication and challenges. Heliyon 2021; 7:e08539. [PMID: 34934845 PMCID: PMC8661015 DOI: 10.1016/j.heliyon.2021.e08539] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022] Open
Abstract
Ensuring food security in developing countries is highly challenging due to low productivity of the agriculture sector, degradation of natural resources, high post farming losses, less or no value addition, and high population growth. Researchers are striving to adopt newer technologies to enhance supply to narrow the food demand gap. Nanotechnology is one of the promising technologies that could improve agricultural productivity via nano fertilizers, use of efficient herbicides and pesticides, soil feature regulation, wastewater management, and pathogen detection. It is equally beneficial for industrial food processing with enhanced food production with excellent market value, elevated nutritional and sensing property, improved safety, and better antimicrobial protection. Nanotechnology can also reduce post-farming losses by increasing the shelf life with the aid of nanoparticles. However, further investigation is required to solve the safety and health risks associated with the technology.
Collapse
Affiliation(s)
- Kumera Neme
- Department of Food and Nutritional Sciences, College of Agriculture, Wollega University, Box 38, Shambu, Ethiopia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Siraj Uddin
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Center, University of Karachi, 75270, Pakistan
| | - Yetenayet B. Tola
- Department of Food Science and Postharvest Technology, Jimma University College of Agriculture & Veterinary Medicine, Box 307, Jimma, Ethiopia
| |
Collapse
|
18
|
Mubeen B, Ansar AN, Rasool R, Ullah I, Imam SS, Alshehri S, Ghoneim MM, Alzarea SI, Nadeem MS, Kazmi I. Nanotechnology as a Novel Approach in Combating Microbes Providing an Alternative to Antibiotics. Antibiotics (Basel) 2021; 10:1473. [PMID: 34943685 PMCID: PMC8698349 DOI: 10.3390/antibiotics10121473] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
The emergence of infectious diseases promises to be one of the leading mortality factors in the healthcare sector. Although several drugs are available on the market, newly found microorganisms carrying multidrug resistance (MDR) against which existing drugs cannot function effectively, giving rise to escalated antibiotic dosage therapies and the need to develop novel drugs, which require time, money, and manpower. Thus, the exploitation of antimicrobials has led to the production of MDR bacteria, and their prevalence and growth are a major concern. Novel approaches to prevent antimicrobial drug resistance are in practice. Nanotechnology-based innovation provides physicians and patients the opportunity to overcome the crisis of drug resistance. Nanoparticles have promising potential in the healthcare sector. Recently, nanoparticles have been designed to address pathogenic microorganisms. A multitude of processes that can vary with various traits, including size, morphology, electrical charge, and surface coatings, allow researchers to develop novel composite antimicrobial substances for use in different applications performing antimicrobial activities. The antimicrobial activity of inorganic and carbon-based nanoparticles can be applied to various research, medical, and industrial uses in the future and offer a solution to the crisis of antimicrobial resistance to traditional approaches. Metal-based nanoparticles have also been extensively studied for many biomedical applications. In addition to reduced size and selectivity for bacteria, metal-based nanoparticles have proven effective against pathogens listed as a priority, according to the World Health Organization (WHO). Moreover, antimicrobial studies of nanoparticles were carried out not only in vitro but in vivo as well in order to investigate their efficacy. In addition, nanomaterials provide numerous opportunities for infection prevention, diagnosis, treatment, and biofilm control. This study emphasizes the antimicrobial effects of nanoparticles and contrasts nanoparticles' with antibiotics' role in the fight against pathogenic microorganisms. Future prospects revolve around developing new strategies and products to prevent, control, and treat microbial infections in humans and other animals, including viral infections seen in the current pandemic scenarios.
Collapse
Affiliation(s)
- Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Aunza Nayab Ansar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
19
|
Bacterial Cellulose: Production, Characterization, and Application as Antimicrobial Agent. Int J Mol Sci 2021; 22:ijms222312984. [PMID: 34884787 PMCID: PMC8657668 DOI: 10.3390/ijms222312984] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
Bacterial cellulose (BC) is recognized as a multifaceted, versatile biomaterial with abundant applications. Groups of microorganisms such as bacteria are accountable for BC synthesis through static or agitated fermentation processes in the presence of competent media. In comparison to static cultivation, agitated cultivation provides the maximum yield of the BC. A pure cellulose BC can positively interact with hydrophilic or hydrophobic biopolymers while being used in the biomedical domain. From the last two decades, the reinforcement of biopolymer-based biocomposites and its applicability with BC have increased in the research field. The harmony of hydrophobic biopolymers can be reduced due to the high moisture content of BC in comparison to hydrophilic biopolymers. Mechanical properties are the important parameters not only in producing green composite but also in dealing with tissue engineering, medical implants, and biofilm. The wide requisition of BC in medical as well as industrial fields has warranted the scaling up of the production of BC with added economy. This review provides a detailed overview of the production and properties of BC and several parameters affecting the production of BC and its biocomposites, elucidating their antimicrobial and antibiofilm efficacy with an insight to highlight their therapeutic potential.
Collapse
|
20
|
Enhanced Photocatalytic and Biological Observations of Green Synthesized Activated Carbon, Activated Carbon Doped Silver and Activated Carbon/Silver/Titanium Dioxide Nanocomposites. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02096-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Shende S, Rajput VD, Gade A, Minkina T, Fedorov Y, Sushkova S, Mandzhieva S, Burachevskaya M, Boldyreva V. Metal-based Green Synthesized Nanoparticles: Boon for Sustainable Agriculture and Food Security. IEEE Trans Nanobioscience 2021; 21:44-54. [PMID: 34133281 DOI: 10.1109/tnb.2021.3089773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The applications of metal-based nanoparticles (MNPs) in the sustainable development of agriculture and food security have received greater attention in recent years in the science community. Different biological resources have been employed to replace harmful chemicals to reduce metal salts and stabilize MNPs, i.e., green methods for the synthesis have paid attention to the nanobiotechnological advances. This review mainly focused on the applications of green synthesized MNPs for the agriculture sector and food security. Because of the novel domains, the green synthesized MNPs could be helpful in the different areas of agriculture like plant growth promotion, plant disease, and insect/pest management, fungicidal agent, in food security for food packaging, for increasing the shelf life and protection from spoilage, and other purposes. In the present review, the global scenario of the recent studies on the applications of green synthesized MNPs, particularly in sustainable agriculture and food security, is comprehensively discussed.
Collapse
|
22
|
Eltarahony M, Abu-Serie M, Hamad H, Zaki S, Abd-El-Haleem D. Unveiling the role of novel biogenic functionalized CuFe hybrid nanocomposites in boosting anticancer, antimicrobial and biosorption activities. Sci Rep 2021; 11:7790. [PMID: 33833365 PMCID: PMC8032780 DOI: 10.1038/s41598-021-87363-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/23/2021] [Indexed: 02/01/2023] Open
Abstract
The quest for eco-friendly and biocompatible nanoparticles (NPs) is an urgent issue in the agenda of the scientific community and applied technology, which compressing synthesis routes. For the first time, a simple route for the biosynthesis of functionalized CuFe-hybrid nanocomposites (FCFNCs) was achieved using Streptomyces cyaneofuscatus through a simultaneous bioreduction strategy of Cu and Fe salts. The suitability of FCFNCs was evaluated medically and environmentally as an anticancer agent, antimicrobial agent and dye bio-sorbent. The physicochemical characteristics of FCFNCs using XRD, EDX, elemental mapping, FTIR, UV-Vis., TEM and ζ-potential confirmed the formation of spheres agglomerated into chains (37 ± 2.2 nm), self-functionalized nanocomposite by proteinaceous moieties with considerable stability (- 26.2 mV). As an anticancer agent, FCFNCs displayed the highest apoptotic impact (> 77.7%) on Caco-2, HepG-2, MCF-7 and PC-3 cancer cells at IC50 ≤ 17.21 μg/mL with the maximum up regulation of p53 and caspase 3 expression and the lowest Ki-67 level, relative to both functionalized CuNPs (FCNPs) and FeNPs (FFNPs). Meanwhile, it maintained the viability of normal human cells by EC100 up to 1999.7 μg/mL. Regarding the antimicrobial activity, FCFNCs offered > 70% growth reduction among wide spectrum prokaryotic and eukaryotic pathogens. Additionally, the synergistic feature of FCFNCs disintegrated the pre-established biofilm and algal growth in a dose-dependent manner. However, as a bio-sorbent, FCFNCs decolorized > 68% of malachite green and congo red dyes (200 mg/L), reflecting considerable remediation efficiency, confirmed by FTIR of FCFNCs- adsorbed dyes and microtoxicity/cytotoxicity of solutions after remediation. This study offers new insights into promising CuFe-hybrid nanocomposites for recruitment in several applications.
Collapse
Affiliation(s)
- Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Marwa Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Hesham Hamad
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| | - Sahar Zaki
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Desouky Abd-El-Haleem
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| |
Collapse
|
23
|
Molapour Rashedi S, Khajavi R, Rashidi A, Rahimi MK, Bahador A. Nanocomposite-Coated Sterile Cotton Gas Based on Polylactic Acid and Nanoparticles (Zinc Oxide and Copper Oxide) and Tranexamic Acid Drug with the Aim of Wound Dressing. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00203-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Singh N, Bhuker A, Jeevanadam J. Effects of metal nanoparticle-mediated treatment on seed quality parameters of different crops. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1067-1089. [PMID: 33660031 DOI: 10.1007/s00210-021-02057-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
Abstract
The increasing population of the world requires novel techniques to feed everyone, which can replace or work along with traditional methods to increase production of agricultural crops. In recent times, nanotechnology is considered as a promising and emerging approach to be incorporated in agriculture to improve productivity of different crops by the administration of nanoparticles through seed treatment, foliar spray on plants, nano-fertilizers for balanced crop nutrition, nano-herbicides for effective weed control, nanoinsecticides for plant protection, early detection of plant diseases and nutrient deficiencies using diagnostics kits, and nano-pheromones for effective monitoring of pests. Further, distinct nanoparticles with unique physicochemical and biological properties are used in agriculture to increase the percentage of seed germination, which is the initial step to increase the crop yield. In the context of agricultural crops, nanoparticles have both positive effects on seed quality parameters, such as germination percentage, seedling length, seedling dry weight and vigor indices, as well as negative impacts of causing toxicity toward the environment. Thus, the aim of this review article is to provide a comprehensive overview on the effects of super-dispersive metal powders, such as zinc, silver, and titanium nanoparticles on the seed quality parameters of different crops. In addition, the drawback of conventional seed growth enhancers, impact of metal nanoparticles toward seeds, and mechanism of nanoparticles to increase seed germination were also discussed.
Collapse
Affiliation(s)
- Nirmal Singh
- Department of Seed Science and Technology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Axay Bhuker
- Department of Seed Science and Technology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India.
| | - Jaison Jeevanadam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
25
|
Bautista‐Del‐Ángel JE, Morales‐Cepeda AB, Wood‐Adams PM. Compatibility, crystallinity and mechanical properties of poly(lactic acid)‐poly(ether‐
block
‐amide) based copper nanocomposites. POLYM INT 2020. [DOI: 10.1002/pi.6058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Ana B Morales‐Cepeda
- División de Estudios de Posgrado e Investigación Instituto Tecnológico de Cd. Madero Tamaulipas Mexico
| | - Paula M Wood‐Adams
- Department of Chemical and Materials Engineering Concordia University Quebec Canada
| |
Collapse
|
26
|
Shome S, Talukdar AD, Tewari S, Choudhury S, Bhattacharya MK, Upadhyaya H. Conjugation of micro/nanocurcumin particles to ZnO nanoparticles changes the surface charge and hydrodynamic size thereby enhancing its antibacterial activity against Escherichia coli and Staphylococcus aureus. Biotechnol Appl Biochem 2020; 68:603-615. [PMID: 32533898 DOI: 10.1002/bab.1968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/05/2020] [Indexed: 11/08/2022]
Abstract
Nanobiotechnology-mediated synthesis of ZnO nanoparticles, micro/nanocurcumin, and curcumin-ZnO nanocomposites and their characterization followed by comparative study of their antibacterial, antioxidant, and iron-chelating efficiency at various dosages are discussed. Micro/nanocurcumin and ZnO nanoparticles were synthesized using curcumin and zinc nitrate as precursor and then conjugated by sonication to synthesize curcumin-ZnO nanocomposites. The synthesized nanoparticles were then characterized by using ultraviolet-visible spectroscopy, X-ray diffraction, Scanning electron microscopy, Fourier-transform infrared spectroscopy, and dynamic light scattering analysis. After that, the antibacterial activity of the synthesized nanoparticles was evaluated by the optical density (OD600 ) method against Escherichia coli and Staphylococcus aureus cells. The DPPH (2,2-diphenyl-1-picrylhydrazyl ), hydroxyl radical scavenging activity, and ferrous ion-chelating efficiency of synthesized nanoparticles were evaluated by spectrophotometry analysis. Nanocurcumin (mean zeta potential = -25 mV; average hydrodynamic diameter = 410 nm) based coating of ZnO nanoparticles (mean zeta potential = -15.9 mV; average hydrodynamic diameter = 274 nm) to synthesize curcumin-ZnO nanocomposites (mean zeta potential = -18.8 mV; average hydrodynamic diameter = 224 nm) exhibited enhanced zeta potential, which resulted in reduced agglomeration, smaller hydrodynamic size in water, improved aqueous solubility, and dispersion. All the aforesaid factors including the synergistic antibacterial effect of ZnO nanoparticle and micro/nanocurcumin contributed to increased antibacterial efficiency of curcumin-ZnO nanocomposites. Micro/nanocurcumin due to its better water solubility and small hydrodynamic diameter exhibited enhanced antioxidant and ferrous ion-chelating efficiency than curcumin.
Collapse
Affiliation(s)
- Soumitra Shome
- Department of Botany and Biotechnology, Karimganj College, Karimganj, India.,Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Anupam Das Talukdar
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Sujit Tewari
- Department of Physics, Karimganj College, Karimganj, India
| | - Sudip Choudhury
- Centre for Soft Matter, Department of Chemistry, Assam University, Silchar, India
| | | | | |
Collapse
|
27
|
Yang M, Ward J, Choy KL. Nature-Inspired Bacterial Cellulose/Methylglyoxal (BC/MGO) Nanocomposite for Broad-Spectrum Antimicrobial Wound Dressing. Macromol Biosci 2020; 20:e2000070. [PMID: 32567254 DOI: 10.1002/mabi.202000070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/07/2020] [Indexed: 11/05/2022]
Abstract
Bacterial cellulose (BC) is a natural material produced by Acetobacter xylinum, widely used in wound dressings due to the high water-holding capacity and great mechanical strength. In this paper, a novel antimicrobial dressing made from BC/methylglyoxal (MGO) composite with a dip-coating method inspired by naturally antimicrobial Manuka honey is proposed, which to our best knowledge, has not yet to be reported. Characterizations by scanning electron microscope and atomic force microscopy show the interconnected nanostructure of BC and MGO and increase surface roughness of the BC/MGO composite. Thermal analysis indicates high temperature stability of both BC and BC/MGO, while compared with BC, BC/MGO exhibits slightly weaker thermal stability possibly due to reduction of hydrogen bonding and increase of crystallinity. Mechanical test confirms the strong mechanical property of BC and BC/MGO nanocomposite. From the disk diffusion antimicrobial test, the BC/MGO nanocomposite with highest MGO concentration (4%) shows great zone inhibition diameter (around 14.3, 12.3, 17.1, and 15.5 mm against Micrococcus luteus, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli). Compared with other antimicrobial wound dressing composite materials, the proposed BC/MGO nanocomposite has among the greatest antimicrobial property against broad-spectrum bacteria, making it a promising antimicrobial dressing in chronic wounds care.
Collapse
Affiliation(s)
- Manni Yang
- Institute for Materials Discovery, Department of Chemistry, University College London, Roberts Building 1.08 Laboratory, London, WC1E 7JE, UK
| | - John Ward
- The Advanced Center for Biochemical Engineering, Department of Biochemical Engineering, University College London, Room 6.09 Bernard Katz Building, London, WC1E 6BT, UK
| | - Kwang-Leong Choy
- Institute for Materials Discovery, Faculty of Maths and Physical Sciences, University College London, Room 1.07 Roberts Building, London, WC1E 7JE, UK
| |
Collapse
|
28
|
Vachanont Tangsatianpan, Torgbo S, Sukyai P. Release Kinetic Model and Antimicrobial Activity of Freeze-Dried Curcumin-loaded Bacterial Nanocellulose Composite. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20030153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Al-Kadmy IM. Manufacturing silver nano-coating currencies to prevent the bacteria growing on the surface of currency. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Mitra D, Kang ET, Neoh KG. Antimicrobial Copper-Based Materials and Coatings: Potential Multifaceted Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21159-21182. [PMID: 31880421 DOI: 10.1021/acsami.9b17815] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface contamination by microbes leads to several detrimental consequences like hospital- and device-associated infections. One measure to inhibit surface contamination is to confer the surfaces with antimicrobial properties. Copper's antimicrobial properties have been known since ancient times, and the recent resurgence in exploiting copper for application as antimicrobial materials or coatings is motivated by the growing concern about antibiotic resistance and the pressure to reduce antibiotic use. Copper, unlike silver, demonstrates rapid and high microbicidal efficacy against pathogens that are in close contact under ambient indoor conditions, which enhances its range of applicability. This review highlights the mechanisms behind copper's potent antimicrobial property, the design and fabrication of different copper-based antimicrobial materials and coatings comprising metallic copper/copper alloys, copper nanoparticles or ions, and their potential for practical applications. Finally, as the antimicrobial coatings market is expected to grow, we offer our perspectives on the implications of increased copper release into the environment and the potential ecotoxicity effects and possibility of development of resistant genes in pathogens.
Collapse
Affiliation(s)
- Debirupa Mitra
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| | - Koon Gee Neoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| |
Collapse
|
31
|
Nile SH, Baskar V, Selvaraj D, Nile A, Xiao J, Kai G. Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectives. NANO-MICRO LETTERS 2020; 12:45. [PMID: 34138283 PMCID: PMC7770847 DOI: 10.1007/s40820-020-0383-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/31/2019] [Indexed: 02/05/2023]
Abstract
Nanotechnology is a key advanced technology enabling contribution, development, and sustainable impact on food, medicine, and agriculture sectors. Nanomaterials have potential to lead qualitative and quantitative production of healthier, safer, and high-quality functional foods which are perishable or semi-perishable in nature. Nanotechnologies are superior than conventional food processing technologies with increased shelf life of food products, preventing contamination, and production of enhanced food quality. This comprehensive review on nanotechnologies for functional food development describes the current trends and future perspectives of advanced nanomaterials in food sector considering processing, packaging, security, and storage. Applications of nanotechnologies enhance the food bioavailability, taste, texture, and consistency, achieved through modification of particle size, possible cluster formation, and surface charge of food nanomaterials. In addition, the nanodelivery-mediated nutraceuticals, synergistic action of nanomaterials in food protection, and the application of nanosensors in smart food packaging for monitoring the quality of the stored foods and the common methods employed for assessing the impact of nanomaterials in biological systems are also discussed.
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Venkidasamy Baskar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Dhivya Selvaraj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Arti Nile
- Department of Bioresources and Food Science, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau, Macau SAR, People's Republic of China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
32
|
Liu H, Hu Y, Zhu Y, Wu X, Zhou X, Pan H, Chen S, Tian P. A simultaneous grafting/vinyl polymerization process generates a polycationic surface for enhanced antibacterial activity of bacterial cellulose. Int J Biol Macromol 2020; 143:224-234. [DOI: 10.1016/j.ijbiomac.2019.12.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
|
33
|
Bimetallic and Trimetallic Nanoparticles for Active Food Packaging Applications: A Review. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02370-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Ghosh T, Bardhan P, Mandal M, Karak N. Interpenetrating polymer network-based nanocomposites reinforced with octadecylamine capped Cu/reduced graphene oxide nanohybrid with hydrophobic, antimicrobial and antistatic attributes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110055. [PMID: 31546416 DOI: 10.1016/j.msec.2019.110055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/30/2019] [Accepted: 08/03/2019] [Indexed: 01/11/2023]
Abstract
Designing of mechanically tough elastomeric materials encompassed with intrinsic surface hydrophobicity, antistatic and antimicrobial attributes is in skyrocketing demands, especially to protect the instruments which are submerged in water. Herein, the authors depicted the fabrication of interpenetrating polymer network-based nanocomposites containing different doses of octadecylamine capped Cu/RGO nanohybrid. The structures and morphologies of the synthesized nanohybrid and the fabricated nanocomposites were characterized by using FTIR, XRD, XPS, TGA, FESEM and TEM analyses. Most interestingly the nanocomposites showed good hydrophobicity (static contact angle: 119.2°-129.3°), low surface resistivity (~107 Ω m) and strong antimicrobial activity towards Gram negative (Pseudomonas aeruginosa and Yersinia pestis) and Gram positive (Bacillus cereus) bacterial strains. The fabricated nanocomposites also exhibited antifungal (Candida albicans) activity. In addition, the fabricated nanocomposites showed excellent mechanical properties including high tensile strength (14.03-20.9 MPa), outstanding flexibility (1887-2470%), excellent toughness (249.89-510.1 MJ.m-3), high scratch resistance (>10 kg) and high thermostability (281-288 °C). Therefore, the fabricated nanocomposites can be used as an effective thin film for many advanced applications.
Collapse
Affiliation(s)
- Tuhin Ghosh
- Advanced Polymer and Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Assam 784028, India
| | - Pritam Bardhan
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam 784028, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam 784028, India
| | - Niranjan Karak
- Advanced Polymer and Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Assam 784028, India.
| |
Collapse
|
35
|
Adeyeye SAO, Fayemi OE. Nanotechnology and food processing: between innovations and consumer safety. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2019. [DOI: 10.1080/15428052.2018.1476276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Samuel Ayofemi Olalekan Adeyeye
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Olanrewaju Emmanuel Fayemi
- Biological Sciences, Mountain Top University, Prayer City, Ogun State, Nigeria
- Food Science & Technology, College of Basic and Applied Sciences, Mountain Top University, Prayer City, Ogun State, Nigeria
| |
Collapse
|
36
|
El-Wakil NA, Hassan EA, Hassan ML, Abd El-Salam SS. Bacterial cellulose/phytochemical's extracts biocomposites for potential active wound dressings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26529-26541. [PMID: 31292868 DOI: 10.1007/s11356-019-05776-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
The present study describes the impregnation of coffee extract (CE) into bacterial cellulose synthesized from kombucha tea fungus (KBC) of different cellulose content, incubated for different incubation periods (2, 4, and 10 days), to prepare biocomposites having the potential for wound healing applications. Total polyphenols in hydroalcoholic extracts from ground roasted coffee and its release from the prepared biocomposites were determined as gallic acid equivalent. The polyphenols content was found to be 13.66 mg/g and the minimum inhibitory concentration (MIC) of the CE was determined using colony-forming unit (CFU) method against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus where the growth inhibition was 86 and 97% respectively. Biocomposites (KBC/CE) with the lowest cellulose and CE content showed the highest wet tensile stress (3.35 MPa), absorption of pseudo extracellular fluid (154.32% ± 4.84), and water vapor transmission rate (3184.94 ± 198.07 g/m2/day), whereas it showed the lowest polyphenols' release (51.85% ± 2.94)when immersed in PBS buffer of pH 7.4. The impregnation of CE into KBC provided biocomposites that can enlarge the range of BC in the biomedical application.
Collapse
Affiliation(s)
- Nahla A El-Wakil
- Cellulose and Paper Department, National Research Centre, 33 Bohouthst., Dokki, Giza, 12622, Egypt
| | - Enas A Hassan
- Cellulose and Paper Department, National Research Centre, 33 Bohouthst., Dokki, Giza, 12622, Egypt.
| | - Mohammad L Hassan
- Cellulose and Paper Department, National Research Centre, 33 Bohouthst., Dokki, Giza, 12622, Egypt
| | | |
Collapse
|
37
|
Green Synthesis of Microbial Nanoparticle: Approaches to Application. NANOTECHNOLOGY IN THE LIFE SCIENCES 2019. [DOI: 10.1007/978-3-030-16534-5_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Vanaamudan A, Sadhu M, Pamidimukkala P. Chitosan-Guar gum blend silver nanoparticle bionanocomposite with potential for catalytic degradation of dyes and catalytic reduction of nitrophenol. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.136] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Prospecting the interactions of nanoparticles with beneficial microorganisms for developing green technologies for agriculture. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.enmm.2018.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
40
|
Matharu RK, Ciric L, Edirisinghe M. Nanocomposites: suitable alternatives as antimicrobial agents. NANOTECHNOLOGY 2018; 29:282001. [PMID: 29620531 DOI: 10.1088/1361-6528/aabbff] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The exploration of nanocomposites has gained a strong research following over the last decade. These materials have been heavily exploited in several fields, with applications ranging from biosensors to biomedicine. Among these applications, great advances have been made in the field of microbiology, specifically as antimicrobial agents. This review aims to provide a comprehensive account of various nanocomposites that elucidate promising antimicrobial activity. The composition, physical and chemical properties, as well as the antimicrobial performance of these nanocomposites, are discussed in detail.
Collapse
Affiliation(s)
- Rupy Kaur Matharu
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom. Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London, WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
41
|
Matharu RK, Charani Z, Ciric L, Illangakoon UE, Edirisinghe M. Antimicrobial activity of tellurium-loaded polymeric fiber meshes. J Appl Polym Sci 2018. [DOI: 10.1002/app.46368] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rupy Kaur Matharu
- Department of Mechanical Engineering; University College London; London WC1E 7JE United Kingdom
- Department of Civil, Environmental and Geomatic Engineering; University College London; London WC1E 7JE United Kingdom
| | - Zhalan Charani
- Department of Mechanical Engineering; University College London; London WC1E 7JE United Kingdom
| | - Lena Ciric
- Department of Civil, Environmental and Geomatic Engineering; University College London; London WC1E 7JE United Kingdom
| | | | - Mohan Edirisinghe
- Department of Mechanical Engineering; University College London; London WC1E 7JE United Kingdom
| |
Collapse
|
42
|
Palza H, Nuñez M, Bastías R, Delgado K. In situ antimicrobial behavior of materials with copper-based additives in a hospital environment. Int J Antimicrob Agents 2018; 51:912-917. [PMID: 29471024 DOI: 10.1016/j.ijantimicag.2018.02.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/22/2018] [Accepted: 02/11/2018] [Indexed: 10/18/2022]
Abstract
Copper and its alloys are effective antimicrobial surface materials in the laboratory and in clinical trials. Copper has been used in the healthcare setting to reduce environmental contamination, and thus prevent healthcare-associated infections, complementing traditional protocols. The addition of copper nanoparticles to polymer/plastic matrices can also produce antimicrobial materials, as confirmed under laboratory conditions. However, there is a lack of studies validating the antimicrobial effects of these nanocomposite materials in clinical trials. To satisfy this issue, plastic waiting room chairs with embedded metal copper nanoparticles, and metal hospital IV pools coated with an organic paint with nanostructured zeolite/copper particles were produced and tested in a hospital environment. These prototypes were sampled once weekly for 10 weeks and the viable microorganisms were analysed and compared with the copper-free materials. In the waiting rooms, chairs with copper reduced by around 73% the total viable microorganisms present, showing activity regardless of the microorganism tested. Although there were only low levels of microorganisms in the IV pools installed in operating rooms because of rigorous hygiene protocols, samples with copper presented lower total viable microorganisms than unfilled materials. Some results did not have statistical significance because of the low load of microorganisms; however, during at least three weeks the IV pools with copper had reduced levels of microorganisms by a statistically significant 50%. These findings show for the first time the feasibility of utilizing the antimicrobial property of copper by adding nanosized fillers to other materials in a hospital environment.
Collapse
Affiliation(s)
- Humberto Palza
- Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile.
| | - Mauricio Nuñez
- Laboratorio de Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Roberto Bastías
- Laboratorio de Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | |
Collapse
|
43
|
Vincent M, Duval RE, Hartemann P, Engels-Deutsch M. Contact killing and antimicrobial properties of copper. J Appl Microbiol 2018; 124:1032-1046. [PMID: 29280540 DOI: 10.1111/jam.13681] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
With the emergence of antibiotic resistance, the interest for antimicrobial agents has recently increased again in public health. Copper was recognized in 2008 by the United States Environmental Protection Agency (EPA) as the first metallic antimicrobial agent. This led to many investigations of the various properties of copper as an antibacterial, antifungal and antiviral agent. This review summarizes the latest findings about 'contact killing', the mechanism of action of copper nanoparticles and the different ways micro-organisms develop resistance to copper.
Collapse
Affiliation(s)
- M Vincent
- CNRS, LEMTA, UMR 7563, Vandœuvre-lès-Nancy, France.,Université de Lorraine, LEMTA, UMR 7563, Vandœuvre-lès Nancy, France
| | - R E Duval
- CNRS, UMR 7565, SRSMC, Vandœuvre-lès-Nancy, France.,Université de Lorraine, UMR 7565, SRSMC, Nancy, France.,ABC Platform®, Nancy, France
| | - P Hartemann
- Faculté de Médecine, EA 7298, ERAMBO, DESP, Vandœuvre-lès-Nancy, France
| | - M Engels-Deutsch
- CNRS, LEMTA, UMR 7563, Vandœuvre-lès-Nancy, France.,Université de Lorraine, LEMTA, UMR 7563, Vandœuvre-lès Nancy, France.,Faculté de Médecine, EA 7298, ERAMBO, DESP, Vandœuvre-lès-Nancy, France
| |
Collapse
|
44
|
Cellulose-Organic Montmorillonite Nanocomposites as Biomacromolecular Quorum-Sensing Inhibitor. Biomacromolecules 2017; 18:3439-3446. [DOI: 10.1021/acs.biomac.7b01116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK. Application of Nanotechnology in Food Science: Perception and Overview. Front Microbiol 2017; 8:1501. [PMID: 28824605 PMCID: PMC5545585 DOI: 10.3389/fmicb.2017.01501] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022] Open
Abstract
Recent innovations in nanotechnology have transformed a number of scientific and industrial areas including the food industry. Applications of nanotechnology have emerged with increasing need of nanoparticle uses in various fields of food science and food microbiology, including food processing, food packaging, functional food development, food safety, detection of foodborne pathogens, and shelf-life extension of food and/or food products. This review summarizes the potential of nanoparticles for their uses in the food industry in order to provide consumers a safe and contamination free food and to ensure the consumer acceptability of the food with enhanced functional properties. Aspects of application of nanotechnology in relation to increasing in food nutrition and organoleptic properties of foods have also been discussed briefly along with a few insights on safety issues and regulatory concerns on nano-processed food products.
Collapse
Affiliation(s)
- Trepti Singh
- Department of Microbiology, Gurukula Kangri UniversityHaridwar, India
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University-SeoulSeoul, South Korea
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and TechnologyItanagar, India
| | - Verinder Wahla
- Department of Microbiology, Gurukula Kangri UniversityHaridwar, India
| | - Vivek K Bajpai
- Department of Applied Microbiology and Biotechnology, Yeungnam UniversityGyeongsan-si, South Korea
| |
Collapse
|
46
|
Ashfaq M, Verma N, Khan S. Highly effective Cu/Zn-carbon micro/nanofiber-polymer nanocomposite-based wound dressing biomaterial against the P. aeruginosa multi- and extensively drug-resistant strains. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:630-641. [PMID: 28532074 DOI: 10.1016/j.msec.2017.03.187] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/25/2016] [Accepted: 03/21/2017] [Indexed: 12/18/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is the most prevalent bacteria in the infections caused by burn, surgery, and traumatic injuries. Emergence of the P. aeruginosa bacterial resistance against various clinical drugs for wound treatment is the major concern nowadays. The present study describes the synthesis of the polyvinyl alcohol (PVA) and cellulose acetate phthalate (CAP) polymeric composite film (~0.2mm thickness) reinforced with the Cu/Zn bimetal-dispersed activated carbon micro/nanofiber (ACF/CNF), as a wound dressing material. The focus is on determining the efficacy of the prepared biomaterial against the multi and extensively drug-resistant P. aeruginosa strains isolated from the burning, surgical, and traumatic injury-wounds. The primary synthesis steps for the biomaterial include the mixing of a blend of CAP powder and the asymmetrically distributed Cu/Zn bimetals in ACF/CNF, into the polymerization reaction mixture of PVA. Biochemical tests showed that the prepared composite material significantly enhanced the in-vitro blood clotting rate, platelet aggregation, and macrophage cell proliferation, indicating the suitability of the material as a fast wound healer. The antibacterial tests performed against the P. aeruginosa strains showed that the material effectively suppressed the bacterial growth, with the bimetal nanoparticles dispersed in the material serving as an antibacterial agent. The PVA/CAP polymer composite served as an encapsulating agent providing a slow release of the nanoparticles, besides increasing the hemostatic properties of the biomaterial. The ACF/CNF served as a support to the dispersed bimetal nanoparticles, which also provided a mechanical and thermal stability to the material. Experimentally demonstrated to be biocompatible, the prepared metal-carbon-polymer nanocomposite in this study is an effective dressing material for the P. aeruginosa-infected wounds.
Collapse
Affiliation(s)
- Mohammad Ashfaq
- Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Department of Bioscience and Biotechnology, Banasthali University, Banasthali, 304022, India
| | - Nishith Verma
- Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Suphiya Khan
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali, 304022, India
| |
Collapse
|
47
|
Tamayo L, Azócar M, Kogan M, Riveros A, Páez M. Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1391-409. [DOI: 10.1016/j.msec.2016.08.041] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/25/2016] [Accepted: 08/14/2016] [Indexed: 12/15/2022]
|
48
|
Rai M, Ingle A, Gaikwad S, Gupta I, Gade A, Silvério da Silva S. Nanotechnology based anti-infectives to fight microbial intrusions. J Appl Microbiol 2016; 120:527-42. [DOI: 10.1111/jam.13010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/26/2015] [Accepted: 08/29/2015] [Indexed: 12/14/2022]
Affiliation(s)
- M. Rai
- Nanobiotechnology Laboratory; Department of Biotechnology; S.G.B. Amravati University; Amravati Maharashtra India
| | - A.P. Ingle
- Nanobiotechnology Laboratory; Department of Biotechnology; S.G.B. Amravati University; Amravati Maharashtra India
| | - S. Gaikwad
- Nanobiotechnology Laboratory; Department of Biotechnology; S.G.B. Amravati University; Amravati Maharashtra India
- Department of Biotechnology; Engineering School of Lorena; Estrada municipal do Campinho; University of Sao Paulo; Lorena SP Brazil
| | - I. Gupta
- Nanobiotechnology Laboratory; Department of Biotechnology; S.G.B. Amravati University; Amravati Maharashtra India
- Department of Biotechnology; Institute of Science; Aurangabad Maharashtra India
| | - A. Gade
- Nanobiotechnology Laboratory; Department of Biotechnology; S.G.B. Amravati University; Amravati Maharashtra India
| | - S. Silvério da Silva
- Department of Biotechnology; Engineering School of Lorena; Estrada municipal do Campinho; University of Sao Paulo; Lorena SP Brazil
| |
Collapse
|
49
|
Palza H. Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 2015; 16:2099-116. [PMID: 25607734 PMCID: PMC4307351 DOI: 10.3390/ijms16012099] [Citation(s) in RCA: 332] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/09/2015] [Indexed: 11/23/2022] Open
Abstract
Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms.
Collapse
Affiliation(s)
- Humberto Palza
- Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 850, Santiago 8320000, Chile.
| |
Collapse
|