1
|
Teichfischer J, Weber R, Kaiser E, Poryo M, Weise JJ, Nisius A, Meyer S. SimSAARlabim study - The role magic tricks play in reducing pain and stress in children. Vaccine 2024; 42:2572-2577. [PMID: 38472068 DOI: 10.1016/j.vaccine.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Vaccination is an essential preventative medical intervention, but needle fearandinjection painmay result in vaccination hesistancy. STUDY PURPOSE To assess the role of magic tricks - no trick vs. one trick ("disappearing handkerchief trick") vs. three tricks ("disappearing handkerchief trick", "jumping rubber band trick", and "disappearing ring trick") - performed by a professional magician and pediatrician during routine vaccination in reducing discomfort/pain and the stress response (heart rate, visual analogue scale (VAS), and biomarkers (cortisol, Immunoglobulin A (IgA), α-amylase, and overall protein concentration in saliva before and after vaccination). PATIENTS AND METHODS Randomized controlled trial (RCT) in healthy children aged 6-11 years undergoing routine vaccination in an outpatient setting. RESULTS 50 children (26 female) were enrolled (no trick: n = 17, 1 trick: n = 16, 3 tricks: n = 17) with a median age of 6.9 years (range: 5.3-10.8 years). We detected no significant differences among the three groups in their stress reponse (heart rate before and after vaccination and cortisol, IgA, α-amylase, and overall protein concentrations in saliva before and after vaccination) or regarding pain assessment using the VAS. CONCLUSIONS Although children undergoing routine outpatient vaccination appeared to enjoy a magician's presence, the concomitant performance of magic tricks revealed no significant effect on the stress response.
Collapse
Affiliation(s)
| | - Regine Weber
- Saarland University Medical Center, Department of General Pediatrics and Neonatology, Homburg, Germany
| | - Elisabeth Kaiser
- Saarland University Medical Center, Department of General Pediatrics and Neonatology, Homburg, Germany
| | - Martin Poryo
- Saarland University Medical Center, Department of Pediatrics Cardiology, Homburg, Germany
| | - Julius Johannes Weise
- Saarland University Medical Center, Institute for Medical Biometry, Epidemiology and Medical Informatics, Homburg, Saar, Germany
| | - Alexander Nisius
- Praxis für Kinderheilunde und Jugendmedizin, Neunkirchen, Germany
| | - Sascha Meyer
- Saarland University Medical Center, Department of General Pediatrics and Neonatology, Homburg, Germany; Franz-Lust Klinik für Kinder und Jugendliche, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany.
| |
Collapse
|
2
|
Temiz Ö, Kargın D. Physiological responses of oxidative damage, genotoxicity and hematological parameters of the toxic effect of neonicotinoid-thiamethoxam in Oreochromis niloticus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104377. [PMID: 38272153 DOI: 10.1016/j.etap.2024.104377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The purpose of investigation assessed the impacts of neonicotinoid thiamethoxam (TMX) at sublethal concentrations in hematological profile and renal function of Oreochromis niloticus. In the experiment, fish were exposed to TMX in four groups (0, 50, 100 and 150 ppm) for 7 days. At the end of the experiment, biochemical analysis of blood samples showed that the parameters indicating renal function showed a significant increase in serum enzymes ALT, AST, ALP and metabolites (BUN, urea, uric acid, creatinine and cortisol) concentrations, while albumin concentration decreased in a dose-dependent manner compared to the control group. In parallel with the decrease in Na+, K+ and Ca+2 in blood ion levels, there was a significant decrease in the activity of Na+/K+ ATPase, Ca+2 ATPase and AChE enzyme, levels of GSH and HSP70 in kidney tissue in TMX groups compared to the control group. It was determined that the toxic effect of TMX caused a significant increase in TBARS, PC, 8-OHdG levels, respectively. In conclusion, our study shows that TMX causes dose-dependent toxic effects, with knock-on effects on physiological processes regarding the hematological profile and renal function of O. niloticus.
Collapse
Affiliation(s)
- Özge Temiz
- Vocational School of Health Services, Osmaniye Korkut Ata University, 80000 Osmaniye, Turkey.
| | - Dicle Kargın
- Faculty of Health Sciences, Marmara University, 34865 Istanbul, Turkey
| |
Collapse
|
3
|
Ilyin NP, Petersen EV, Kolesnikova TO, Demin KA, Khatsko SL, Apuhtin KV, Kalueff AV. Developing Peripheral Biochemical Biomarkers of Brain Disorders: Insights from Zebrafish Models. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:377-391. [PMID: 38622104 DOI: 10.1134/s0006297924020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 04/17/2024]
Abstract
High prevalence of human brain disorders necessitates development of the reliable peripheral biomarkers as diagnostic and disease-monitoring tools. In addition to clinical studies, animal models markedly advance studying of non-brain abnormalities associated with brain pathogenesis. The zebrafish (Danio rerio) is becoming increasingly popular as an animal model organism in translational neuroscience. These fish share some practical advantages over mammalian models together with high genetic homology and evolutionarily conserved biochemical and neurobehavioral phenotypes, thus enabling large-scale modeling of human brain diseases. Here, we review mounting evidence on peripheral biomarkers of brain disorders in zebrafish models, focusing on altered biochemistry (lipids, carbohydrates, proteins, and other non-signal molecules, as well as metabolic reactions and activity of enzymes). Collectively, these data strongly support the utility of zebrafish (from a systems biology standpoint) to study peripheral manifestations of brain disorders, as well as highlight potential applications of biochemical biomarkers in zebrafish models to biomarker-based drug discovery and development.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
| | - Elena V Petersen
- Moscow Institute of Physics and Technology, Moscow, 115184, Russia.
| | - Tatyana O Kolesnikova
- Neuroscience Program, Sirius University of Science and Technology, Sochi, 354340, Russia.
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
- Moscow Institute of Physics and Technology, Moscow, 115184, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of the Russian Federation, St. Petersburg, 197341, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of the Russian Federation, Pesochny, 197758, Russia
| | | | - Kirill V Apuhtin
- Laboratory of Biopsychiatry, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia.
- Neuroscience Division, Sirius University of Science and Technology, Sirius Federal Territory, 354340, Russia
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of the Russian Federation, St. Petersburg, 197341, Russia
- Ural Federal University, Ekaterinburg, 620002, Russia
- Laboratory of Biopsychiatry, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia
| |
Collapse
|
4
|
Rashid H, Jali A, Akhter MS, Abdi SAH. Molecular Mechanisms of Oxidative Stress in Acute Kidney Injury: Targeting the Loci by Resveratrol. Int J Mol Sci 2023; 25:3. [PMID: 38203174 PMCID: PMC10779152 DOI: 10.3390/ijms25010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 01/12/2024] Open
Abstract
Reactive oxygen species are a group of cellular molecules that stand as double-edged swords, their good and bad being discriminated by a precise balance. Several metabolic reactions in the biological system generate these molecules that interact with cellular atoms to regulate functions ranging from cell homeostasis to cell death. A prooxidative state of the cell concomitant with decreased clearance of such molecules leads to oxidative stress, which contributes as a prime pathophysiological mechanism in various diseases including renal disorders, such as acute kidney injury. However, targeting the generation of oxidative stress in renal disorders by an antioxidant, resveratrol, is gaining considerable therapeutic importance and is known to improve the condition in preclinical studies. This review aims to discuss molecular mechanisms of oxidative stress in acute kidney injury and its amelioration by resveratrol. The major sources of data were PubMed and Google Scholar, with studies from the last five years primarily included, with significant earlier data also considered. Mitochondrial dysfunction, various enzymatic reactions, and protein misfolding are the major sources of reactive oxygen species in acute kidney injury, and interrupting these loci of generation or intersection with other cellular components by resveratrol can mitigate the severity of the condition.
Collapse
Affiliation(s)
- Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Abdulmajeed Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Mohammad Suhail Akhter
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jizan 45142, Saudi Arabia
| | - Sayed Aliul Hasan Abdi
- Department of Pharmacy, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65711, Saudi Arabia
| |
Collapse
|
5
|
Kumar P, Ahmed MA, Abubakar AA, Hayat MN, Kaka U, Ajat M, Goh YM, Sazili AQ. Improving animal welfare status and meat quality through assessment of stress biomarkers: A critical review. Meat Sci 2023; 197:109048. [PMID: 36469986 DOI: 10.1016/j.meatsci.2022.109048] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
Stress induces various physiological and biochemical alterations in the animal body, which are used to assess the stress status of animals. Blood profiles, serum hormones, enzymes, and physiological conditions such as body temperature, heart, and breathing rate of animals are the most commonly used stress biomarkers in the livestock sector. Previous exposure, genetics, stress adaptation, intensity, duration, and rearing practices result in wide intra- and inter-animal variations in the expression of various stress biomarkers. The use of meat proteomics by adequately analyzing the expression of various muscle proteins such as heat shock proteins (HSPs), acute phase proteins (APPs), texture, and tenderness biomarkers help predict meat quality and stress in animals before slaughter. Thus, there is a need to identify non-invasive, rapid, and accurate stress biomarkers that can objectively assess stress in animals. The present manuscript critically reviews various aspects of stress biomarkers in animals and their application in mitigating preslaughter stress in meat production.
Collapse
Affiliation(s)
- Pavan Kumar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Muideen Adewale Ahmed
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abubakar Ahmed Abubakar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Muhammad Nizam Hayat
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ubedullah Kaka
- Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yong Meng Goh
- Department of Veterinary Preclinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
6
|
de Menezes Galvão AC, Almeida RN, de Sousa GM, Leocadio-Miguel MA, Palhano-Fontes F, de Araujo DB, Lobão-Soares B, Maia-de-Oliveira JP, Nunes EA, Hallak JEC, Schuch FB, Sarris J, Galvão-Coelho NL. Pathophysiology of Major Depression by Clinical Stages. Front Psychol 2021; 12:641779. [PMID: 34421705 PMCID: PMC8374436 DOI: 10.3389/fpsyg.2021.641779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/23/2021] [Indexed: 01/01/2023] Open
Abstract
The comprehension of the pathophysiology of the major depressive disorder (MDD) is essential to the strengthening of precision psychiatry. In order to determine the relationship between the pathophysiology of the MDD and its clinical progression, analyzed by severity of the depressive symptoms and sleep quality, we conducted a study assessing different peripheral molecular biomarkers, including the levels of plasma C-reactive protein (CRP), serum mature brain-derived neurotrophic factor (mBDNF), serum cortisol (SC), and salivary cortisol awakening response (CAR), of patients with MDD (n = 58) and a control group of healthy volunteers (n = 62). Patients with the first episode of MDD (n = 30) had significantly higher levels of CAR and SC than controls (n = 32) and similar levels of mBDNF of controls. Patients with treatment-resistant depression (TRD, n = 28) presented significantly lower levels of SC and CAR, and higher levels of mBDNF and CRP than controls (n = 30). An increased severity of depressive symptoms and worse sleep quality were correlated with levels low of SC and CAR, and with high levels of mBDNF. These results point out a strong relationship between the stages clinical of MDD and changes in a range of relevant biological markers. This can assist in the development of precision psychiatry and future research on the biological tests for depression.
Collapse
Affiliation(s)
- Ana Cecília de Menezes Galvão
- Postgraduate Program in Psychobiology, Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Raíssa Nobrega Almeida
- Postgraduate Program in Psychobiology, Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Geovan Menezes de Sousa
- Postgraduate Program in Psychobiology, Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Mario André Leocadio-Miguel
- Laboratory of Neurobiology and Biological Rhythms, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - Bruno Lobão-Soares
- National Institute of Science and Technology in Translational Medicine, São Paulo, Brazil
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - João Paulo Maia-de-Oliveira
- National Institute of Science and Technology in Translational Medicine, São Paulo, Brazil
- Department of Clinical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Emerson Arcoverde Nunes
- National Institute of Science and Technology in Translational Medicine, São Paulo, Brazil
- Department of Psychiatry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jaime Eduardo Cecilio Hallak
- National Institute of Science and Technology in Translational Medicine, São Paulo, Brazil
- Department of Neurosciences and Behavior, University of São Paulo, São Paulo, Brazil
| | - Felipe Barreto Schuch
- Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil
| | - Jerome Sarris
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Nicole Leite Galvão-Coelho
- Postgraduate Program in Psychobiology, Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
- National Institute of Science and Technology in Translational Medicine, São Paulo, Brazil
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019; 6:91. [PMID: 31750312 PMCID: PMC6843074 DOI: 10.3389/fmolb.2019.00091] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K. Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
8
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019. [PMID: 31750312 DOI: 10.3389/fmolb.2019.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
9
|
Cox DA, Gottschalk MG, Stelzhammer V, Wesseling H, Cooper JD, Bahn S. Evaluation of molecular brain changes associated with environmental stress in rodent models compared to human major depressive disorder: A proteomic systems approach. World J Biol Psychiatry 2019; 19:S63-S74. [PMID: 27784204 DOI: 10.1080/15622975.2016.1252465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Rodent models of major depressive disorder (MDD) are indispensable when screening for novel treatments, but assessing their translational relevance with human brain pathology has proved difficult. METHODS Using a novel systems approach, proteomics data obtained from post-mortem MDD anterior prefrontal cortex tissue (n = 12) and matched controls (n = 23) were compared with equivalent data from three commonly used preclinical models exposed to environmental stressors (chronic mild stress, prenatal stress and social defeat). Functional pathophysiological features associated with depression-like behaviour were identified in these models through enrichment of protein-protein interaction networks. A cross-species comparison evaluated which model(s) represent human MDD pathology most closely. RESULTS Seven functional domains associated with MDD and represented across at least two models such as "carbohydrate metabolism and cellular respiration" were identified. Through statistical evaluation using kernel-based machine learning techniques, the social defeat model was found to represent MDD brain changes most closely for four of the seven domains. CONCLUSIONS This is the first study to apply a method for directly evaluating the relevance of the molecular pathology of multiple animal models to human MDD on the functional level. The methodology and findings outlined here could help to overcome translational obstacles of preclinical psychiatric research.
Collapse
Affiliation(s)
- David Alan Cox
- a Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge , United Kingdom
| | - Michael Gerd Gottschalk
- a Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge , United Kingdom
| | - Viktoria Stelzhammer
- a Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge , United Kingdom
| | - Hendrik Wesseling
- a Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge , United Kingdom
| | - Jason David Cooper
- a Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge , United Kingdom
| | - Sabine Bahn
- a Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
10
|
Pezzuto JM. Resveratrol: Twenty Years of Growth, Development and Controversy. Biomol Ther (Seoul) 2019; 27:1-14. [PMID: 30332889 PMCID: PMC6319551 DOI: 10.4062/biomolther.2018.176] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 01/09/2023] Open
Abstract
Resveratrol was first isolated in 1939 by Takaoka from Veratrum grandiflorum O. Loes. Following this discovery, sporadic descriptive reports appeared in the literature. However, spurred by our seminal paper published nearly 60 years later, resveratrol became a household word and the subject of extensive investigation. Now, in addition to appearing in over 20,000 research papers, resveratrol has inspired monographs, conferences, symposia, patents, chemical derivatives, etc. In addition, dietary supplements are marketed under various tradenames. Once resveratrol was brought to the limelight, early research tended to focus on pharmacological activities related to the cardiovascular system, inflammation, and cancer but, over the years, the horizon greatly expanded. Around 130 human clinical trials have been (or are being) conducted with varying results. This may be due to factors such as disparate doses (ca. 5 to 5,000 mg/day) and variable experimental settings. Further, molecular targets are numerous and a dominant mechanism is elusive or nonexistent. In this context, the compound is overtly promiscuous. Nonetheless, since the safety profile is pristine, and use as a dietary supplement is prevalent, these features are not viewed as detrimental. Given the ongoing history of resveratrol, it is reasonable to advocate for additional development and further clinical investigation. Topical preparations seem especially promising, as do conditions that can respond to anti-inflammatory action and/or direct exposure, such as colon cancer prevention. Although the ultimate fate of resveratrol remains an open question, thus far, the compound has inspired innovative scientific concepts and enhanced public awareness of preventative health care.
Collapse
Affiliation(s)
- John M Pezzuto
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| |
Collapse
|
11
|
DNA Damage in Major Psychiatric Diseases. Neurotox Res 2016; 30:251-67. [PMID: 27126805 DOI: 10.1007/s12640-016-9621-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/31/2016] [Accepted: 04/09/2016] [Indexed: 12/21/2022]
Abstract
Human cells are exposed to exogenous insults and continuous production of different metabolites. These insults and unwanted metabolic products might interfere with the stability of genomic DNA. Recently, many studies have demonstrated that different psychiatric disorders show substantially high levels of oxidative DNA damage in the brain accompanied with morphological and functional alterations. It reveals that damaged genomic DNA may contribute to the pathophysiology of these mental illnesses. In this article, we review the roles of oxidative damage and reduced antioxidant ability in some vastly studied psychiatric disorders and emphasize the inclusion of treatment options involving DNA repair. In addition, while most currently used antidepressants are based on the manipulation of the neurotransmitter regulation in managing different mental abnormalities, they are able to prevent or reverse neurotoxin-induced DNA damage. Therefore, it may be plausible to target on genomic DNA alterations for psychiatric therapies, which is of pivotal importance for future antipsychiatric drug development.
Collapse
|
12
|
Xu F, Yang J, Chen J, Wu Q, Gong W, Zhang J, Shao W, Mu J, Yang D, Yang Y, Li Z, Xie P. Differential co-expression and regulation analyses reveal different mechanisms underlying major depressive disorder and subsyndromal symptomatic depression. BMC Bioinformatics 2015; 16:112. [PMID: 25880836 PMCID: PMC4434877 DOI: 10.1186/s12859-015-0543-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 03/18/2015] [Indexed: 01/17/2023] Open
Abstract
Background Recent depression research has revealed a growing awareness of how to best classify depression into depressive subtypes. Appropriately subtyping depression can lead to identification of subtypes that are more responsive to current pharmacological treatment and aid in separating out depressed patients in which current antidepressants are not particularly effective. Differential co-expression analysis (DCEA) and differential regulation analysis (DRA) were applied to compare the transcriptomic profiles of peripheral blood lymphocytes from patients with two depressive subtypes: major depressive disorder (MDD) and subsyndromal symptomatic depression (SSD). Results Six differentially regulated genes (DRGs) (FOSL1, SRF, JUN, TFAP4, SOX9, and HLF) and 16 transcription factor-to-target differentially co-expressed gene links or pairs (TF2target DCLs) appear to be the key differential factors in MDD; in contrast, one DRG (PATZ1) and eight TF2target DCLs appear to be the key differential factors in SSD. There was no overlap between the MDD target genes and SSD target genes. Venlafaxine (Efexor™, Effexor™) appears to have a significant effect on the gene expression profile of MDD patients but no significant effect on the gene expression profile of SSD patients. Conclusion DCEA and DRA revealed no apparent similarities between the differential regulatory processes underlying MDD and SSD. This bioinformatic analysis may provide novel insights that can support future antidepressant R&D efforts. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0543-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fan Xu
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China. .,Institute of Neuroscience, Chongqing Medical University, and Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| | - Jing Yang
- School of Biotechnology, East China University of Science and Technology, Shanghai, China.
| | - Jin Chen
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China. .,Institute of Neuroscience, Chongqing Medical University, and Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| | - Qingyuan Wu
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China. .,Institute of Neuroscience, Chongqing Medical University, and Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| | - Wei Gong
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China. .,Institute of Neuroscience, Chongqing Medical University, and Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| | - Jianguo Zhang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China. .,Institute of Neuroscience, Chongqing Medical University, and Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| | - Weihua Shao
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China.
| | - Jun Mu
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China.
| | - Deyu Yang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China.
| | - Yongtao Yang
- Institute of Neuroscience, Chongqing Medical University, and Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| | - Zhiwei Li
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China. .,Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China. .,Institute of Neuroscience, Chongqing Medical University, and Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| |
Collapse
|
13
|
Investigating the mechanism(s) underlying switching between states in bipolar disorder. Eur J Pharmacol 2015; 759:151-62. [PMID: 25814263 DOI: 10.1016/j.ejphar.2015.03.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/03/2015] [Accepted: 03/12/2015] [Indexed: 12/12/2022]
Abstract
Bipolar disorder (BD) is a unique disorder that transcends domains of function since the same patient can exhibit depression or mania, states with polar opposite mood symptoms. During depression, people feel helplessness, reduced energy, and risk aversion, while with mania behaviors include grandiosity, increased energy, less sleep, and risk preference. The neural mechanism(s) underlying each state are gaining clarity, with catecholaminergic disruption seen during mania, and cholinergic dysfunction during depression. The fact that the same patient cycles/switches between these states is the defining characteristic of BD however. Of greater importance therefore, is the mechanism(s) underlying cycling from one state - and its associated neural changes - to another, considered the 'holy grail' of BD research. Herein, we review studies investigating triggers that induce switching to these states. By identifying such triggers, researchers can study neural mechanisms underlying each state and importantly how such mechanistic changes can occur in the same subject. Current animal models of this switch are also discussed, from submissive- and dominant-behaviors to kindling effects. Focus however, is placed on how seasonal changes can induce manic and depressive states in BD sufferers. Importantly, changing photoperiod lengths can induce local switches in neurotransmitter expression in normal animals, from increased catecholaminergic expression during periods of high activity, to increased somatostatin and corticotrophin releasing factor during periods of low activity. Identifying susceptibilities to this switch would enable the development of targeted animal models. From animal models, targeted treatments could be developed and tested that would minimize the likelihood of switching.
Collapse
|
14
|
Park EJ, Pezzuto JM. The pharmacology of resveratrol in animals and humans. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1071-113. [PMID: 25652123 DOI: 10.1016/j.bbadis.2015.01.014] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 01/01/2015] [Accepted: 01/21/2015] [Indexed: 12/12/2022]
Abstract
In addition to thousands of research papers related to resveratrol (RSV), approximately 300 review articles have been published. Earlier research tended to focus on pharmacological activities of RSV related to cardiovascular systems, inflammation, and carcinogenesis/cancer development. More recently, the horizon has been broadened by exploring the potential effect of RSV on the aging process, diabetes, neurological dysfunction, etc. Herein, we primarily focus on the in vivo pharmacological effects of RSV reported over the past 5 years (2009-2014). In addition, recent clinical intervention studies performed with resveratrol are summarized. Some discrepancies exist between in vivo studies with animals and clinical studies, or between clinical studies, which are likely due to disparate doses of RSV, experimental settings, and subject variation. Nevertheless, many positive indications have been reported with mammals, so it is reasonable to advocate for the conduct of more definitive clinical studies. Since the safety profile is pristine, an added advantage is the use of RSV as a dietary supplement. This article is part of a Special Issue entitled: Resveratrol: Challenges in translating pre-clinical findings to improved patient outcomes.
Collapse
Affiliation(s)
- Eun-Jung Park
- The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI 96720, USA
| | - John M Pezzuto
- The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI 96720, USA.
| |
Collapse
|
15
|
Martins-de-Souza D. Proteomics, metabolomics, and protein interactomics in the characterization of the molecular features of major depressive disorder. DIALOGUES IN CLINICAL NEUROSCIENCE 2014. [PMID: 24733971 PMCID: PMC3984892 DOI: 10.31887/dcns.2014.16.1/dmartins] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Omics technologies emerged as complementary strategies to genomics in the attempt to understand human illnesses. In general, proteomics technologies emerged earlier than those of metabolomics for major depressive disorder (MDD) research, but both are driven by the identification of proteins and/or metabolites that can delineate a comprehensive characterization of MDD's molecular mechanisms, as well as lead to the identification of biomarker candidates of all types—prognosis, diagnosis, treatment, and patient stratification. Also, one can explore protein and metabolite interactomes in order to pinpoint additional molecules associated with the disease that had not been picked up initially. Here, results and methodological aspects of MDD research using proteomics, metabolomics, and protein interactomics are reviewed, focusing on human samples.
Collapse
Affiliation(s)
- Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil; Department of Psychiatry and Psychotherapy, Ludwig Maximilians University (LMU), Munich, Germany; Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|