1
|
Noor I, Sohail H, Wentao C, Zhu K, Hasanuzzaman M, Li G, Liu J. Phosphorus-induced restructuring of the ascorbate-glutathione cycle and lignin biosynthesis alleviates manganese toxicity in peach roots. TREE PHYSIOLOGY 2024; 44:tpae098. [PMID: 39113606 DOI: 10.1093/treephys/tpae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/17/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024]
Abstract
Manganese (Mn) is indispensable for plant growth, but its excessive uptake in acidic soils leads to toxicity, hampering food safety. Phosphorus (P) application is known to mitigate Mn toxicity, yet the underlying molecular mechanism remains elusive. Here, we conducted physiological and transcriptomic analyses of peach roots response to P supply under Mn toxicity. Manganese treatment disrupted root architecture and caused ultrastructural damage due to oxidative injury. Notably, P application ameliorated the detrimental effects and improved the damaged roots by preventing the shrinkage of cortical cells, epidermis and endodermis, as well as reducing the accumulation of reactive oxygen species (ROS). Transcriptomic analysis revealed the differentially expressed genes enriched in phenylpropanoid biosynthesis, cysteine, methionine and glutathione metabolism under Mn and P treatments. Phosphorus application upregulated the transcripts and activities of core enzymes crucial for lignin biosynthesis, enhancing cell wall integrity. Furthermore, P treatment activated ascorbate-glutathione cycle, augmenting ROS detoxification. Additionally, under Mn toxicity, P application downregulated Mn uptake transporter while enhancing vacuolar sequestration transporter transcripts, reducing Mn uptake and facilitating vacuolar storage. Collectively, P application prevents Mn accumulation in roots by modulating Mn transporters, bolstering lignin biosynthesis and attenuating oxidative stress, thereby improving root growth under Mn toxicity. Our findings provide novel insights into the mechanism of P-mediated alleviation of Mn stress and strategies for managing metal toxicity in peach orchards.
Collapse
Affiliation(s)
- Iqra Noor
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, Hubei, PR China
- School of Horticulture and Landscape Architecture, Yangzhou University, 88 South Daxue road, Yangzhou, 225009, Jiangsu, PR China
| | - Hamza Sohail
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, Hubei, PR China
- School of Horticulture and Landscape Architecture, Yangzhou University, 88 South Daxue road, Yangzhou, 225009, Jiangsu, PR China
| | - Cao Wentao
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, Hubei, PR China
| | - Kaijie Zhu
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, Hubei, PR China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Nagar, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Guohuai Li
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, Hubei, PR China
| | - Junwei Liu
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, Hubei, PR China
| |
Collapse
|
2
|
Kyawt YY, Aung M, Xu Y, Zhou Y, Li Y, Sun Z, Zhu W, Cheng Y. Methane production and lignocellulosic degradation of wastes from rice, corn and sugarcane by natural anaerobic fungi-methanogens co-culture. World J Microbiol Biotechnol 2024; 40:109. [PMID: 38411737 DOI: 10.1007/s11274-024-03938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Biomass from agriculture, forestry, and urban wastes is a potential renewable organic resource for energy generation. Many investigations have demonstrated that anaerobic fungi and methanogens could be co-cultured to degrade lignocellulose for methane generation. Thus, this study aimed to evaluate the effect of natural anaerobic fungi-methanogens co-culture on the methane production and lignocellulosic degradation of wastes from rice, corn and sugarcane. Hu sheep rumen digesta was used to develop a natural anaerobic fungi-methanogen co-culture. The substrates were rice straw (RS), rich husk (RH), corn stover (CS), corn cobs (CC), and sugarcane baggage (SB). Production of total gas and methane, metabolization rate of reducing sugar, glucose, and xylose, digestibility of hemicellulose and cellulose, activity of carboxymethylcellulase and xylanase, and concentrations of total acid and acetate were highest (P < 0.05) in CC, moderate (P < 0.05) in RS and CS, and lowest (P < 0.05) in SB and RH. The pH, lactate and ethanol were lowest (P < 0.05) in CC, moderate (P < 0.05) in RS and CS, and lowest (P < 0.05) SB and RH. Formate was lowest (P < 0.05) in CC, RS and CS, moderate (P < 0.05) in SB, and lowest (P < 0.05) in RH. Therefore, this study indicated that the potential of methane production and lignocellulosic degradation by natural anaerobic fungi-methanogens co-culture were highest in CC, moderate in RS and CS, and lowest in SB and RH.
Collapse
Affiliation(s)
- Yin Yin Kyawt
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Animal Nutrition, University of Veterinary Science, Nay Pyi Taw, 15013, Myanmar
| | - Min Aung
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Animal Nutrition, University of Veterinary Science, Nay Pyi Taw, 15013, Myanmar
| | - Yao Xu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaqi Zhou
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuqi Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhanying Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Duarte RDC, Iannetta PPM, Gomes AM, Vasconcelos MW. More than a meat- or synthetic nitrogen fertiliser-substitute: a review of legume phytochemicals as drivers of 'One Health' via their influence on the functional diversity of soil- and gut-microbes. FRONTIERS IN PLANT SCIENCE 2024; 15:1337653. [PMID: 38450400 PMCID: PMC10915056 DOI: 10.3389/fpls.2024.1337653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Legumes are essential to healthy agroecosystems, with a rich phytochemical content that impacts overall human and animal well-being and environmental sustainability. While these phytochemicals can have both positive and negative effects, legumes have traditionally been bred to produce genotypes with lower levels of certain plant phytochemicals, specifically those commonly termed as 'antifeedants' including phenolic compounds, saponins, alkaloids, tannins, and raffinose family oligosaccharides (RFOs). However, when incorporated into a balanced diet, such legume phytochemicals can offer health benefits for both humans and animals. They can positively influence the human gut microbiome by promoting the growth of beneficial bacteria, contributing to gut health, and demonstrating anti-inflammatory and antioxidant properties. Beyond their nutritional value, legume phytochemicals also play a vital role in soil health. The phytochemical containing residues from their shoots and roots usually remain in-field to positively affect soil nutrient status and microbiome diversity, so enhancing soil functions and benefiting performance and yield of following crops. This review explores the role of legume phytochemicals from a 'one health' perspective, examining their on soil- and gut-microbial ecology, bridging the gap between human nutrition and agroecological science.
Collapse
Affiliation(s)
- Rafael D. C. Duarte
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Pietro P. M. Iannetta
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
- Ecological Sciences, James Hutton Institute, Dundee, United Kingdom
| | - Ana M. Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
4
|
Zhang YC, Zhuang LH, Zhou JJ, Song SW, Li J, Huang HZ, Chi BJ, Zhong YH, Liu JW, Zheng HL, Zhu XY. Combined metabolome and transcriptome analysis reveals a critical role of lignin biosynthesis and lignification in stem-like pneumatophore development of the mangrove Avicennia marina. PLANTA 2023; 259:12. [PMID: 38057597 DOI: 10.1007/s00425-023-04291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023]
Abstract
MAIN CONCLUSION Transcriptional and metabolic regulation of lignin biosynthesis and lignification plays crucial roles in Avicennia marina pneumatophore development, facilitating its adaptation to coastal habitats. Avicennia marina is a pioneer mangrove species in coastal wetland. To cope with the periodic intertidal flooding and hypoxia environment, this species has developed a complex and extensive root system, with its most unique feature being a pneumatophore with a distinct above- and below-ground morphology and vascular structure. However, the characteristics of pneumatophore lignification remain unknown. Studies comparing the anatomy among above-ground pneumatophore, below-ground pneumatophore, and feeding root have suggested that vascular structure development in the pneumatophore is more like the development of a stem than of a root. Metabolome and transcriptome analysis illustrated that the accumulation of syringyl (S) and guaiacyl (G) units in the pneumatophore plays a critical role in lignification of the stem-like structure. Fourteen differentially accumulated metabolites (DAMs) and 10 differentially expressed genes involved in the lignin biosynthesis pathway were targeted. To identify genes significantly associated with lignification, we analyzed the correlation between 14 genes and 8 metabolites and further built a co-expression network between 10 transcription factors (TFs), including 5 for each of MYB and NAC, and 23 enzyme-coding genes involved in lignin biosynthesis. 4-Coumarate-CoA ligase, shikimate/quinate hydroxycinnamoyl transferase, cinnamyl alcohol dehydrogenase, caffeic acid 3-O-methyltransferase, phenylalanine ammonia-lyase, and peroxidase were identified to be strongly correlated with these TFs. Finally, we examined 9 key candidate genes through quantitative real-time PCR to validate the reliability of transcriptome data. Together, our metabolome and transcriptome findings reveal that lignin biosynthesis and lignification regulate pneumatophore development in the mangrove species A. marina and facilitate its adaptation to coastal habitats.
Collapse
Affiliation(s)
- Yu-Chen Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361105, Fujian, China
| | - Li-Han Zhuang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361105, Fujian, China
| | - Jia-Jie Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361105, Fujian, China
| | - Shi-Wei Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361105, Fujian, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361105, Fujian, China
| | - He-Zi Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361105, Fujian, China
| | - Bing-Jie Chi
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361105, Fujian, China
| | - You-Hui Zhong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361105, Fujian, China
| | - Jing-Wen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361105, Fujian, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361105, Fujian, China.
| | - Xue-Yi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361105, Fujian, China.
| |
Collapse
|
5
|
Davoudpour Y, Kümmel S, Musat N, Richnow HH, Schmidt M. Tracking deuterium uptake in hydroponically grown maize roots using correlative helium ion microscopy and Raman micro-spectroscopy. PLANT METHODS 2023; 19:71. [PMID: 37452400 PMCID: PMC10347822 DOI: 10.1186/s13007-023-01040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Investigations into the growth and self-organization of plant roots is subject to fundamental and applied research in various areas such as botany, agriculture, and soil science. The growth activity of the plant tissue can be investigated by isotope labeling experiments with heavy water and subsequent detection of the deuterium in non-exchangeable positions incorporated into the plant biomass. Commonly used analytical methods to detect deuterium in plants are based on mass-spectrometry or neutron-scattering and they either suffer from elaborated sample preparation, destruction of the sample during analysis, or low spatial resolution. Confocal Raman micro-spectroscopy (CRM) can be considered a promising method to overcome the aforementioned challenges. The substitution of hydrogen with deuterium results in the measurable shift of the CH-related Raman bands. By employing correlative approaches with a high-resolution technique, such as helium ion microscopy (HIM), additional structural information can be added to CRM isotope maps and spatial resolution can be further increased. For that, it is necessary to develop a comprehensive workflow from sample preparation to data processing. RESULTS A workflow to prepare and analyze roots of hydroponically grown and deuterium labeled Zea mays by correlative HIM-CRM micro-analysis was developed. The accuracy and linearity of deuterium detection by CRM were tested and confirmed with samples of deuterated glucose. A set of root samples taken from deuterated Zea mays in a time-series experiment was used to test the entire workflow. The deuterium content in the roots measured by CRM was close to the values obtained by isotope-ratio mass spectrometry. As expected, root tips being the most actively growing root zone had incorporated the highest amount of deuterium which increased with increasing time of labeling. Furthermore, correlative HIM-CRM analysis allowed for obtaining the spatial distribution pattern of deuterium and lignin in root cross-sections. Here, more active root zones with higher deuterium incorporation showed less lignification. CONCLUSIONS We demonstrated that CRM in combination with deuterium labeling can be an alternative and reliable tool for the analysis of plant growth. This approach together with the developed workflow has the potential to be extended to complex systems such as plant roots grown in soil.
Collapse
Affiliation(s)
- Yalda Davoudpour
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hans Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Matthias Schmidt
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
6
|
Richely E, Beaugrand J, Coret M, Binetruy C, Ouagne P, Bourmaud A, Guessasma S. In Situ Tensile Testing under High-Speed Optical Recording to Determine Hierarchical Damage Kinetics in Polymer Layers of Flax Fibre Elements. Polymers (Basel) 2023; 15:2794. [PMID: 37447440 DOI: 10.3390/polym15132794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
This study aims at better understanding the damage and fracture kinetics in flax fibre elements at both the unitary and bundle scales, using an experimental setup allowing optical observation at high recording rate in the course of tensile loading. Defects and issues from flax unitary fibre extraction are quantitated using polarized light microscopy. Tensile loading is conducted according to a particular setup, adapted to fibres of 10 to 20 µm in diameter and 10 mm in length. Optical recording using a high-speed camera is performed during loading up to the failure at acquisition, with speed ranging from 108,000 to 270,000 frames per second. Crack initiation in polymer layers of fibre elements, propagation as well as damage mechanisms are captured. The results show different failure scenarios depending on the fibre element's nature. In particular, fractured fibres underline either a fully transverse failure propagation or a combination of transverse and longitudinal cracking with different balances. Image recordings with high time resolution of down to 3.7 μs suggest an unstable system and transverse crack speed higher than 4 m/s and a slower propagation for longitudinal crack deviation. Failure propagation monitoring and fracture mechanism studies in individual natural fibre or bundles, using tensile load with optical observation, showed contrasted behaviour and the importance of the structural scale exanimated. This study can help in tailoring the eco-design of flax-based composites, in terms of toughness and mechanical performances, for both replacement of synthetic fibre materials and innovative composites with advanced properties.
Collapse
Affiliation(s)
- Emmanuelle Richely
- INRAE, Research Unit BIA UR1268, 3, Impasse Yvette Cauchois, 44316 Nantes, France
| | - Johnny Beaugrand
- INRAE, Research Unit BIA UR1268, 3, Impasse Yvette Cauchois, 44316 Nantes, France
| | - Michel Coret
- Lab Therm & Energie Nantes, LTeN, École Centrale de Nantes, Nantes Université, CNRS, GeM, UMR 6183, 44321 Nantes, France
| | - Christophe Binetruy
- Lab Therm & Energie Nantes, LTeN, École Centrale de Nantes, Nantes Université, CNRS, GeM, UMR 6183, 44321 Nantes, France
| | - Pierre Ouagne
- Laboratoire Génie de Production (LGP), Université de Toulouse, INP-ENIT, 65016 Tarbes, France
| | - Alain Bourmaud
- Université de Bretagne Sud, IRDL UMR CNRS 6027, 56100 Lorient, France
| | - Sofiane Guessasma
- INRAE, Research Unit BIA UR1268, 3, Impasse Yvette Cauchois, 44316 Nantes, France
| |
Collapse
|
7
|
Nikolić D, Bosnić D, Samardžić J. Silicon in action: Between iron scarcity and excess copper. FRONTIERS IN PLANT SCIENCE 2023; 14:1039053. [PMID: 36818840 PMCID: PMC9935840 DOI: 10.3389/fpls.2023.1039053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Essential micronutrients belonging to the transition metals, such as Fe and Cu, are indispensable for plant growth and stress tolerance; however, when present in excess, they can become potentially dangerous producers of reactive oxygen species. Therefore, their homeostases must be strictly regulated. Both microelement deficiencies and elevated concentrations of heavy metals in the soil are global problems that reduce the nutritional value of crops and seriously affect human health. Silicon, a beneficial element known for its protective properties, has been reported to alleviate the symptoms of Cu toxicity and Fe deficiency stress in plants; however, we are still far from a comprehensive understanding of the underlying molecular mechanisms. Although Si-mediated mitigation of these stresses has been clearly demonstrated for some species, the effects of Si vary depending on plant species, growing conditions and experimental design. In this review, the proposed mechanistic models explaining the effect of Si are summarized and discussed. Iron and copper compete for the common metal transporters and share the same transport routes, hence, inadequate concentration of one element leads to disturbances of another. Silicon is reported to beneficially influence not only the distribution of the element supplied below or above the optimal concentration, but also the distribution of other microelements, as well as their molar ratios. The influence of Si on Cu immobilization and retention in the root, as well as Si-induced Fe remobilization from the source to the sink organs are of vital importance. The changes in cellular Cu and Fe localization are considered to play a crucial role in restoring homeostasis of these microelements. Silicon has been shown to stimulate the accumulation of metal chelators involved in both the mobilization of deficient elements and scavenging excess heavy metals. Research into the mechanisms of the ameliorative effects of Si is valuable for reducing mineral stress in plants and improving the nutritional value of crops. This review aims to provide a thorough and critical overview of the current state of knowledge in this field and to discuss discrepancies in the observed effects of Si and different views on its mode of action.
Collapse
|
8
|
Li S, Li G, Huang X, Chen Y, Lv C, Bai L, Zhang K, He H, Dai J. Cultivar-specific response of rhizosphere bacterial community to uptake of cadmium and mineral elements in rice (Oryza sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114403. [PMID: 36508785 DOI: 10.1016/j.ecoenv.2022.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Toxic metal-contaminated farmland from Cadmium (Cd) can enhance the accumulation of Cd and impair the absorption of mineral elements in brown rice. Although several studies have been conducted on Cd exposure on rice, little has been reported on the relationship between Cd and mineral elements in brown rice and the regulatory mechanism of rhizosphere microorganisms during element uptake. Thus, a field study was undertaken to screen japonica rice cultivars with low Cd and high mineral elements levels, analyze the quantitative relationship between Cd and seven mineral elements, and investigate the cultivar-specific response of rice rhizosphere bacterial communities to differences in Cd and mineral uptake in japonica rice. Results showed that Huaidao-9 and Xudao-7 had low Cd absorption and high amounts of mineral nutrient elements (Fe, Zn, Mg, and Ca, LCHM group), whereas Zhongdao-1 and Xinkedao-31 showed opposite accumulation characteristics (HCLM group). Stepwise regression analysis showed that zinc, iron, and potassium are the key minerals that affect Cd accumulation in japonica rice and zinc was the most important factor, accounting for 68.99 %. The accumulation of Cd and mineral elements is potentially associated with rhizosphere soil bacteria. Taxa enriched in the LCHM rhizosphere (phyla Acidobacteriota and MBNT15) indicated the high nutrient characteristics of the soil and reduced activity of Cd in soil. The HCLM rhizosphere was highly colonized by metal-activating bacteria (Actinobacteria), lignin-degrading bacteria (Actinobacteria and Chlorofexi), and bacteria scavenging nutrients and trace elements (Anaerolinea and Ketobacter). Moreover, the differences in the uptake of Cd and mineral elements affected predicted functions of microbial communities, including sulfur oxidation and sulfur derivative formation, human or plant pathogen, and functions related to the iron oxidation and nitrate reduction. The results indicate a potential association of Cd and mineral elements uptake and accumulation with rhizosphere bacteria in rice, thus providing theoretical basis and a new perspective on the maintenance of rice security and high quality simultaneously.
Collapse
Affiliation(s)
- Shuangshuang Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Guangxian Li
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xianmin Huang
- Shandong General Station of Agricultural Environmental Protection and Rural Energy, Jinan 250100, China
| | - Yihui Chen
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Cheng Lv
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Liyong Bai
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ke Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Huan He
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jiulan Dai
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
9
|
Siegwalt F, Jeantet L, Lelong P, Martin J, Girondot M, Bustamante P, Benhalilou A, Murgale C, Andreani L, Jacaria F, Campistron G, Lathière A, Barotin C, Buret-Rochas G, Barre P, Hielard G, Arqué A, Régis S, Lecerf N, Frouin C, Lefebvre F, Aubert N, Arthus M, Etienne D, Allenou JP, Delnatte C, Lafolle R, Thobor F, Chevallier P, Chevallier T, Lepori M, Assio C, Grand C, Bonola M, Tursi Y, Varkala PW, Meslier S, Landreau A, Le Maho Y, Habold C, Robin JP, Chevallier D. Food selection and habitat use patterns of immature green turtles (Chelonia mydas) on Caribbean seagrass beds dominated by the alien species Halophila stipulacea. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Hlahla JM, Mafa MS, van der Merwe R, Alexander O, Duvenhage MM, Kemp G, Moloi MJ. The Photosynthetic Efficiency and Carbohydrates Responses of Six Edamame ( Glycine max. L. Merrill) Cultivars under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030394. [PMID: 35161375 PMCID: PMC8840725 DOI: 10.3390/plants11030394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 05/06/2023]
Abstract
Vegetable-type soybean, also known as edamame, was recently introduced to South Africa. However, there is lack of information on its responses to drought. The aim of this study was to investigate the photosynthetic efficiency and carbohydrates responses of six edamame cultivars under drought stress. Photosynthetic efficiency parameters, including chlorophyll fluorescence and stomatal conductance, were determined using non-invasive methods, while pigments were quantified spectrophotometrically. Non-structural carbohydrates were quantified using Megazyme kits. Structural carbohydrates were determined using Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Drought stress significantly increased the Fv/Fm and PIabs of AGS429 and UVE17 at pod filling stage. Chlorophyll-a, which was most sensitive to drought, was significantly reduced in AGS429 and UVE17, but chlorophyll-b was relatively stable in all cultivars, except UVE17, which showed a significant decline at flowering stage. AGS354 and AGS429 also showed reduced chlorophyll-b at pod filling. UVE17 showed a significant reduction in carotenoid content and a substantial reduction in stomatal conductance during pod filling. Drought stress during pod filling resulted in a significant increase in the contents of trehalose, sucrose and starch, but glucose was decreased. Chlorophyll-a positively correlated with starch. The FTIR and XRD results suggest that the cell wall of UVE14, followed by UVE8 and AGS429, was the most intact during drought stress. It was concluded that carotenoids, stomatal conductance, starch and hemicellulose could be used as physiological/biochemical indicators of drought tolerance in edamame. This information expands our knowledge of the drought defense responses in edamame, and it is essential for the physiological and biochemical screening of drought tolerance.
Collapse
Affiliation(s)
- Jeremiah M. Hlahla
- Department of Plant Sciences-Botany Division, Faculty of Natural and Agricultural Sciences, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa; (J.M.H.); (R.v.d.M.)
| | - Mpho S. Mafa
- Carbohydrates and Enzymology Laboratory (CHEM-LAB), Department of Plant Sciences-Botany Division, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa;
| | - Rouxléne van der Merwe
- Department of Plant Sciences-Botany Division, Faculty of Natural and Agricultural Sciences, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa; (J.M.H.); (R.v.d.M.)
| | - Orbett Alexander
- Department of Chemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa;
| | - Mart-Mari Duvenhage
- Department of Physics, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa;
| | - Gabre Kemp
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa;
| | - Makoena J. Moloi
- Department of Plant Sciences-Botany Division, Faculty of Natural and Agricultural Sciences, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa; (J.M.H.); (R.v.d.M.)
- Correspondence: ; Tel.: +27-51-4019483
| |
Collapse
|
11
|
Ayala-Doñas A, Gómez P, de Cara-García M. Gene Expression in Cucurbita spp. Root and Crown during Phytophthora capsici Infection. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122718. [PMID: 34961189 PMCID: PMC8706148 DOI: 10.3390/plants10122718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Phytophtora capsici causes major diseases in cucurbit crops worldwide. In this study, we inoculated this pathogen into Cucurbita pepo subsp. pepo susceptible MUCU-16 and C. moschata tolerant M63. The gene expression of plant pathogenesis-related proteins chitinase (CpChiIV), lignin-forming peroxidase (CpLPOX), and defensin (CpDEF) and hormone-related enzymes salicylic acid (CpPAL) and ethylene (CpACO) was analyzed for two weeks post-inoculation in root and crown tissues. Differentially expressed genes were found between genotypes, tissues, days post-inoculation, and inoculated/non-inoculated samples. After inoculation, CpPAL and CpChiIV (crown) were downregulated in MUCU-16, while CpLPOX and CpDEF were upregulated in M63. In inoculated samples, higher expression changes were presented on days 10-14 than on day 3 for CpACO, CpLPOX, and CpDEF genes. Overexpression was higher for CpDEF compared to the other tested genes, indicating good suitability as a marker of biotic stress. The overexpression of CpDEF was higher in crown than in roots for both inoculated genotypes. The basal expression of CpPAL and CpDEF was higher in MUCU-16, but after inoculation, CpPAL and CpDEF gene expression were higher in M63. These changes suggest an association between CpDEF upregulation and tolerance, and between CpPAL downregulation and susceptibility.
Collapse
|
12
|
Berger K, Hank T, Halabuk A, Rivera-Caicedo JP, Wocher M, Mojses M, Gerhátová K, Tagliabue G, Dolz MM, Venteo ABP, Verrelst J. Assessing Non-Photosynthetic Cropland Biomass from Spaceborne Hyperspectral Imagery. REMOTE SENSING 2021; 13:4711. [PMID: 36082004 PMCID: PMC7613388 DOI: 10.3390/rs13224711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Non-photosynthetic vegetation (NPV) biomass has been identified as a priority variable for upcoming spaceborne imaging spectroscopy missions, calling for a quantitative estimation of lignocellulosic plant material as opposed to the sole indication of surface coverage. Therefore, we propose a hybrid model for the retrieval of non-photosynthetic cropland biomass. The workflow included coupling the leaf optical model PROSPECT-PRO with the canopy reflectance model 4SAIL, which allowed us to simulate NPV biomass from carbon-based constituents (CBC) and leaf area index (LAI). PROSAIL-PRO provided a training database for a Gaussian process regression (GPR) algorithm, simulating a wide range of non-photosynthetic vegetation states. Active learning was employed to reduce and optimize the training data set. In addition, we applied spectral dimensionality reduction to condense essential information of non-photosynthetic signals. The resulting NPV-GPR model was successfully validated against soybean field data with normalized root mean square error (nRMSE) of 13.4% and a coefficient of determination (R2) of 0.85. To demonstrate mapping capability, the NPV-GPR model was tested on a PRISMA hyperspectral image acquired over agricultural areas in the North of Munich, Germany. Reliable estimates were mainly achieved over senescent vegetation areas as suggested by model uncertainties. The proposed workflow is the first step towards the quantification of non-photosynthetic cropland biomass as a next-generation product from near-term operational missions, such as CHIME.
Collapse
Affiliation(s)
- Katja Berger
- Department of Geography, Ludwig-Maximilians-Universitat Munchen (LMU), Luisenstr. 37, 80333 Munich, Germany
| | - Tobias Hank
- Department of Geography, Ludwig-Maximilians-Universitat Munchen (LMU), Luisenstr. 37, 80333 Munich, Germany
| | - Andrej Halabuk
- Institute of Landscape Ecology, Slovak Academy of Sciences, Branch Nitra, 949 01 Nitra, Slovakia
| | | | - Matthias Wocher
- Department of Geography, Ludwig-Maximilians-Universitat Munchen (LMU), Luisenstr. 37, 80333 Munich, Germany
| | - Matej Mojses
- Institute of Landscape Ecology, Slovak Academy of Sciences, Branch Nitra, 949 01 Nitra, Slovakia
| | - Katarina Gerhátová
- Institute of Landscape Ecology, Slovak Academy of Sciences, Branch Nitra, 949 01 Nitra, Slovakia
| | - Giulia Tagliabue
- Remote Sensing of Environmental Dynamics Lab, University Milano-Bicocca, 20126 Milano, Italy
| | - Miguel Morata Dolz
- Image Processing Laboratory (IPL), Parc Cientific, Universitat de Valencia, 46980 Paterna, Spain
| | - Ana Belen Pascual Venteo
- Image Processing Laboratory (IPL), Parc Cientific, Universitat de Valencia, 46980 Paterna, Spain
| | - Jochem Verrelst
- Image Processing Laboratory (IPL), Parc Cientific, Universitat de Valencia, 46980 Paterna, Spain
| |
Collapse
|
13
|
Tong NN, Peng LP, Liu ZA, Li Y, Zhou XY, Wang XR, Shu QY. Comparative transcriptomic analysis of genes involved in stem lignin biosynthesis in woody and herbaceous Paeonia species. PHYSIOLOGIA PLANTARUM 2021; 173:961-977. [PMID: 34237150 DOI: 10.1111/ppl.13495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/12/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Paeonia is recognized globally due to its ornamental value. However, the mechanisms behind the formation of distinct levels of lignification in Paeonia stems remain largely unknown. In this study, we selected three representative Paeonia species, namely P. ostii (shrub), P. lactiflora (herb), and P. × 'Hexie' (semi-shrub), to evaluate and contrast their respective anatomical structure, phytochemical composition and transcriptomic profile. Our results showed that the degree of lignin deposition on the cell wall, along with the total amount of lignin and its monomers (especially G-lignin) were higher in P. ostii stems compared to the other two species at almost all development stages except 80 days after flowering. Furthermore, we estimated a total number of unigenes of 60,238 in P. ostii, 43,563 in P. × 'Hexie', and 40,212 in P. lactiflora from stem transcriptome. We then built a co-expression network of 25 transcription factors and 21 enzyme genes involved in lignin biosynthesis and identified nine key candidate genes. The expression patterns of these genes were positively correlated with the transcription levels of PAL, C4H, 4CL2, CCR, and COMT, as well as lignin content. Moreover, the highest relative expression levels of CCR, 4CL2, and C4H were found in P. ostii. This study provides an explanation for the observed differences in lignification between woody and herbaceous Paeonia stems, and constitutes a novel reference for molecular studies of stem-specific lignification process and lignin biosynthesis that can impact the ornamental industry.
Collapse
Affiliation(s)
- Ning-Ning Tong
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li-Ping Peng
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zheng-An Liu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yang Li
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yang Zhou
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xi-Ruo Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yan Shu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Constitutive Defense Strategy of Coffee Under Field Conditions: A Comparative Assessment of Resistant and Susceptible Cultivars to Rust. Mol Biotechnol 2021; 64:263-277. [PMID: 34595725 DOI: 10.1007/s12033-021-00405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Coffea arabica is the most economically important coffee species worldwide. However, its production is severely limited by diseases such as rust. The mechanisms underlying constitutive defense responses in coffee are still poorly understood, compared with induced defense mechanisms. We aimed to characterize constitutive defense responses of thirteen cultivars of C. arabica. Cultivars were classified under field conditions according to the level of resistance to rust: resistant (R), moderately resistant (MR), and susceptible (S). Based on this classification, the stability of eight reference genes (RGs) was evaluated. The most stable RGs were EF1α, APT1, and 24S. We also evaluated the expression of CaWRKY1, CaPAL1, CaCAD1, and CaPOX1, and activities of PAL, CAD, and POX, which are involved in lignin biosynthesis, and leaf content of total phenolic compounds and lignin. Gene expression and enzymatic activity were not correlated with defense metabolites in the R cultivar group but showed a negative correlation with phenolic compounds in MR cultivars. Cultivar S showed positive correlations of gene expression and enzyme activity with phenolic compounds. These results may assist coffee breeding programs regarding selection of genotypes and in optimization of rust resistance.
Collapse
|
15
|
Adeleke A, Ikubanni P, Orhadahwe T, Christopher C, Akano J, Agboola O, Adegoke S, Balogun A, Ibikunle R. Sustainability of multifaceted usage of biomass: A review. Heliyon 2021; 7:e08025. [PMID: 34589634 PMCID: PMC8461380 DOI: 10.1016/j.heliyon.2021.e08025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/19/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
The paper focuses on collection of information on recent multifaceted usage of biomass materials with critical examination on its sustainability. The use of biomass is becoming popular, with wide global acceptance as it is considered as green technology. The use of biomass products across industrial parallels, the material combination and production processes were elucidated in this paper. Biomass materials are seen as affordable alternative to conventional materials for domestic and industrial applications. The multifaceted use of biomass, which includes, energy generation, metallurgical applications, construction purposes, reinforcement in metal matrix composite, microelectromechanical system, biochemical and traditional medicine were discussed. This underscores the need to develop a sustainable plan to meet with its diverse usage to be beyond laboratory efforts. This paper examined whether the availability of biomass can sustain its multifaceted usage or not. It also examined the modalities to ensure sustainable use of biomass. Different policies were highlighted and discussed in line with continuous multifaceted use of biomass.
Collapse
Affiliation(s)
- A.A. Adeleke
- Department of Mechanical Engineering, Landmark University, Kwara State, Nigeria
| | - P.P. Ikubanni
- Department of Mechanical Engineering, Landmark University, Kwara State, Nigeria
| | - T.A. Orhadahwe
- Department of Mechanical Engineering, University of Ibadan, Oyo State, Nigeria
| | - C.T. Christopher
- Department of Mechanical Engineering, Landmark University, Kwara State, Nigeria
| | - J.M. Akano
- Department of Pharmacognosy, University of Ibadan, Oyo State, Nigeria
| | - O.O. Agboola
- Department of Mechanical Engineering, Landmark University, Kwara State, Nigeria
| | - S.O. Adegoke
- Department of Petroleum Engineering, University of Ibadan, Oyo State, Nigeria
| | - A.O. Balogun
- Department of Mechanical Engineering, Landmark University, Kwara State, Nigeria
| | - R.A. Ibikunle
- Department of Mechanical Engineering, Landmark University, Kwara State, Nigeria
| |
Collapse
|
16
|
Tamayao P, Ribeiro GO, McAllister TA, Ominski KH, Saleem AM, Yang HE, Okine EK, McGeough EJ. Effect of pine-based biochars with differing physiochemical properties on methane production, ruminal fermentation, and rumen microbiota in an artificial rumen (RUSITEC) fed barley silage. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study investigated the effects of three pine-based biochar products on nutrient disappearance, total gas and methane (CH4) production, rumen fermentation, microbial protein synthesis, and rumen microbiota in a rumen simulation technique (RUSITEC) fed a barley-silage-based total mixed ration (TMR). Treatments consisted of 10 g TMR supplemented with no biochar (control) and three different biochars (CP016, CP024, and CP028) included at 20 g·kg−1 DM. Treatments were assigned to 16 fermenters (n = 4 per treatment) in two RUSITEC units in a randomized block design for a 17 d experimental period. Data were analyzed using MIXED procedure in SAS, with treatment and day of sampling as fixed effects and RUSITEC unit and fermenters as random effects. Biochar did not affect nutrient disappearance (P > 0.05), nor total gas or CH4, irrespective of unit of expression. The volatile fatty acid, NH3-N, total protozoa, and microbial protein synthesis were not affected by biochar inclusion (P > 0.05). Alpha and beta diversity and rumen microbiota families were not affected by biochar inclusion (P > 0.05). In conclusion, biochar did not reduce CH4 emissions nor affect nutrient disappearance, rumen fermentation, microbial protein synthesis, or rumen microbiota in the RUSITEC.
Collapse
Affiliation(s)
- Paul Tamayao
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- National Centre for Livestock and the Environment, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Gabriel O. Ribeiro
- Department of Animal and Poultry Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Tim A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Kim H. Ominski
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- National Centre for Livestock and the Environment, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Atef M. Saleem
- Animal and Poultry Production Department, Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | - Hee Eun Yang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Erasmus K. Okine
- Office of the Provost and Vice-President Academic, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Emma J. McGeough
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- National Centre for Livestock and the Environment, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
17
|
Peñailillo KA, Aedo MF, Scorcione MC, Mathias ML, Jobet C, Vial M, Lobos IA, Saldaña RC, Escobar-Bahamondes P, Etcheverría P, Ungerfeld EM. Effect of Oats and Wheat Genotype on In Vitro Gas Production Kinetics of Straw. Animals (Basel) 2021; 11:ani11061552. [PMID: 34073369 PMCID: PMC8228468 DOI: 10.3390/ani11061552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Increases in cereal grain yields cause the accumulation of large amounts of straw on the soils after grain harvest. Straw is usually burned in the field to help soil preparation for the next crop, a practice resulting in local and global pollution, erosion, loss of soil carbon, and wildfires. An alternative is feeding straw to ruminants, but straw has poor nutritive value, making this option unattractive to Chilean farmers. Oats and wheat have been bred for greater grain yield and improved agronomic traits, but it is unknown whether the straw of different varieties and breeding lines differs in nutritive quality. To investigate this possibility, we incubated the straws from 49 different varieties and breeding lines of oats and 24 of wheat with rumen microorganisms, and studied gas production as an indication of the extent of straw digestion. We found moderate differences among varieties and breeding lines of oats and wheat in gas production, which were not detrimental to agronomic characteristics of importance. If these results can be confirmed in animal experiments, gas production of straw incubated in rumen microbial cultures may be used to identify cereal genotypes whose straw has a better nutritive quality for ruminants. Abstract Increases in cereals grain yield in the last decades have increased the accumulation of straw on the soil after harvest. Farmers typically open burn the straw to prepare the soil for the next crop, resulting in pollution, emission of greenhouse gases, erosion, loss of soil organic matter, and wildfires. An alternative is feeding straw to ruminants, but straw nutritive value is limited by its high content of lignocellulose and low content of protein. Cereal breeding programs have focused on improving grain yield and quality and agronomic traits, but little attention has been paid to straw nutritive value. We screened straw from 49 genotypes of oats and 24 genotypes of wheat from three cereal breeding trials conducted in Chile for in vitro gas production kinetics. We found moderate effects of the genotype on gas production at 8, 24, and 40 h of incubation, and on the maximum extent and rate of gas production. Gas production was negatively associated with lignin and cellulose contents and not negatively associated with grain yield and resistance to diseases and lodging. Effects observed in vitro need to be confirmed in animal experiments before gas production kinetics can be adopted to identify cereal genotypes with more digestible straw.
Collapse
Affiliation(s)
- Karen A. Peñailillo
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco 4780000, La Araucanía, Chile;
| | - María Fernanda Aedo
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Vilcún 4880000, La Araucanía, Chile; (M.F.A.); (M.L.M.); (C.J.); (M.V.); (P.E.-B.); (P.E.)
| | - María Carolina Scorcione
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires C1417DSE, Provincia de Buenos Aires, Argentina;
| | - Mónica L. Mathias
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Vilcún 4880000, La Araucanía, Chile; (M.F.A.); (M.L.M.); (C.J.); (M.V.); (P.E.-B.); (P.E.)
| | - Claudio Jobet
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Vilcún 4880000, La Araucanía, Chile; (M.F.A.); (M.L.M.); (C.J.); (M.V.); (P.E.-B.); (P.E.)
| | - Manuel Vial
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Vilcún 4880000, La Araucanía, Chile; (M.F.A.); (M.L.M.); (C.J.); (M.V.); (P.E.-B.); (P.E.)
| | - Iris A. Lobos
- Centro Regional de Investigación Remehue, Instituto de Investigaciones Agropecuarias INIA, Osorno 5290000, Los Lagos, Chile; (I.A.L.); (R.C.S.)
| | - Rodolfo C. Saldaña
- Centro Regional de Investigación Remehue, Instituto de Investigaciones Agropecuarias INIA, Osorno 5290000, Los Lagos, Chile; (I.A.L.); (R.C.S.)
| | - Paul Escobar-Bahamondes
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Vilcún 4880000, La Araucanía, Chile; (M.F.A.); (M.L.M.); (C.J.); (M.V.); (P.E.-B.); (P.E.)
| | - Paulina Etcheverría
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Vilcún 4880000, La Araucanía, Chile; (M.F.A.); (M.L.M.); (C.J.); (M.V.); (P.E.-B.); (P.E.)
| | - Emilio M. Ungerfeld
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Vilcún 4880000, La Araucanía, Chile; (M.F.A.); (M.L.M.); (C.J.); (M.V.); (P.E.-B.); (P.E.)
- Correspondence: ; Tel.: +56-45-2297296
| |
Collapse
|
18
|
Li X. Plant cell wall chemistry: implications for ruminant utilisation. JOURNAL OF APPLIED ANIMAL NUTRITION 2021. [DOI: 10.3920/jaan2020.0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ruminants have adapted to cope with bulky, fibrous forage diets by accommodating a large, diverse microbial population in the reticulo-rumen. Ruminants are dependent on forages as their main sources of energy and other nutrients. Forages are comprised of a complex matrix of cellulose, hemicellulose, protein, minerals and phenolic compounds (including lignin and tannins) with various linkages; many of which are poorly defined. The composition and characteristics of polysaccharides vary greatly among forages and plant cell walls. Plant cell walls are linked and packed together in tight configurations to resist degradation, and hence their nutritional value to animals varies considerably, depending on composition, structure and degradability. An understanding of the inter-relationship between the chemical composition and the degradation of plant cell walls by rumen microorganisms is of major economic importance to ruminant production. Increasing the efficiency of fibre degradation in the rumen has been the subject of extensive research for many decades. This review summarises current knowledge of forage chemistry in order to develop strategies to increase efficiency of forage utilisation by ruminants.
Collapse
Affiliation(s)
- X. Li
- The University of Queensland, School of Agriculture and Food Sciences, Gatton, Qld 4343, Australia
| |
Collapse
|
19
|
Shah AN, Tanveer M, Abbas A, Yildirim M, Shah AA, Ahmad MI, Wang Z, Sun W, Song Y. Combating Dual Challenges in Maize Under High Planting Density: Stem Lodging and Kernel Abortion. FRONTIERS IN PLANT SCIENCE 2021; 12:699085. [PMID: 34868101 PMCID: PMC8636062 DOI: 10.3389/fpls.2021.699085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/13/2021] [Indexed: 05/09/2023]
Abstract
High plant density is considered a proficient approach to increase maize production in countries with limited agricultural land; however, this creates a high risk of stem lodging and kernel abortion by reducing the ratio of biomass to the development of the stem and ear. Stem lodging and kernel abortion are major constraints in maize yield production for high plant density cropping; therefore, it is very important to overcome stem lodging and kernel abortion in maize. In this review, we discuss various morphophysiological and genetic characteristics of maize that may reduce the risk of stem lodging and kernel abortion, with a focus on carbohydrate metabolism and partitioning in maize. These characteristics illustrate a strong relationship between stem lodging resistance and kernel abortion. Previous studies have focused on targeting lignin and cellulose accumulation to improve lodging resistance. Nonetheless, a critical analysis of the literature showed that considering sugar metabolism and examining its effects on lodging resistance and kernel abortion in maize may provide considerable results to improve maize productivity. A constructive summary of management approaches that could be used to efficiently control the effects of stem lodging and kernel abortion is also included. The preferred management choice is based on the genotype of maize; nevertheless, various genetic and physiological approaches can control stem lodging and kernel abortion. However, plant growth regulators and nutrient application can also help reduce the risk for stem lodging and kernel abortion in maize.
Collapse
Affiliation(s)
- Adnan Noor Shah
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Mehmet Yildirim
- Department of Field Crop, Faculty of Agriculture, Dicle University, Diyarbakir, Turkey
| | - Anis Ali Shah
- Department of Botany, University of Narowal, Narowal, Pakistan
| | | | - Zhiwei Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Weiwei Sun
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, China
- *Correspondence: Youhong Song
| |
Collapse
|
20
|
FREITAS SGD, BAYÃO GFV, QUEIROZ ACD, PIMENTEL RM, ROCHA Junior CM, SOUSA KRS. In vitro degradation dynamics of neutral detergent fiber and silage quality of waste from production of heart of palm of peach palm. REVISTA BRASILEIRA DE SAÚDE E PRODUÇÃO ANIMAL 2021. [DOI: 10.1590/s1519-99402122082021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT The objective of the present work was to evaluate the chemical composition, fermentation profile, and degradation parameters of the neutral detergent fiber of three silages made with the waste from production of heart of peach of palm, which consisted of leaf, leaf sheath, and their compound (55% leaf and 45% leaf sheath). The waste was packed in experimental silos and open after sixty days of fermentation; silage samples were collected for determination of chemical composition and degradation parameters of neutral detergent fiber at 0, 3, 6, 9, 12, 24, 36, 48, 72, and 96 h of incubation in vitro. A difference was detected in the dry matter, crude protein, neutral detergent fiber, acid detergent fiber, and lignin contents between the three types of silage. The leaf silage showed a higher fractional degradation rate and a higher potentially digestible fraction of neutral detergent fiber over the 96 h of incubation. As for the fermentative parameters, silage made with the leaf showed a higher pH (3,79) and lactic acid (1,18%), acetic acid (0,39%) and propionic acid (0,24%). The butyric acid was higher for compound silage (0,012%) and ammoniacal nitrogen was higher for sheath silage (0,94%). The leaf silage displayed better chemical characteristics, fermentation parameters and in vitro degradability properties, proving to be the silage with best nutritional value for feeding ruminants.
Collapse
|
21
|
Jo Heuschele D, Smith KP, Annor GA. Variation in Lignin, Cell Wall-Bound p-Coumaric, and Ferulic Acid in the Nodes and Internodes of Cereals and Their Impact on Lodging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12569-12576. [PMID: 33126793 DOI: 10.1021/acs.jafc.0c04025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Understanding the contribution of stem cell wall components to lodging is important in developing breeding programs aimed at reducing lodging in cereal crops. This study is one of the first to investigate the correlation between the amounts of cell wall-bound ferulic acid, p-coumaric acid, and lignin in the nodes and internodes of cereals (oat, wheat, and barley) and their lodging susceptibility during grain fill. All samples, except two-row barley, were susceptible to lodging and expressed a significantly lower stalk strength. Lignin and phenolic contents between nodes and internodes of all samples were significantly different, with internodes having higher amounts (5.5-7.0 and 10.9-16.2 μg/g p-coumaric acid, and 2.5-3.2 and 3.9-7.1 μg/g ferulic acid in nodes and internodes, respectively). The acid-soluble lignin content was different between nodes and internodes but not between crops. This data set did not correlate with lodging classification, possibly due to sample size and type.
Collapse
Affiliation(s)
- D Jo Heuschele
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, Saint Paul, Minnesota 55108, United States
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, Saint Paul, Minnesota 55108, United States
| | - George A Annor
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, Saint Paul, Minnesota 55108, United States
| |
Collapse
|
22
|
Agathokleous E, Feng Z, Oksanen E, Sicard P, Wang Q, Saitanis CJ, Araminiene V, Blande JD, Hayes F, Calatayud V, Domingos M, Veresoglou SD, Peñuelas J, Wardle DA, De Marco A, Li Z, Harmens H, Yuan X, Vitale M, Paoletti E. Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity. SCIENCE ADVANCES 2020; 6:eabc1176. [PMID: 32851188 PMCID: PMC7423369 DOI: 10.1126/sciadv.abc1176] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/29/2020] [Indexed: 05/03/2023]
Abstract
Elevated tropospheric ozone concentrations induce adverse effects in plants. We reviewed how ozone affects (i) the composition and diversity of plant communities by affecting key physiological traits; (ii) foliar chemistry and the emission of volatiles, thereby affecting plant-plant competition, plant-insect interactions, and the composition of insect communities; and (iii) plant-soil-microbe interactions and the composition of soil communities by disrupting plant litterfall and altering root exudation, soil enzymatic activities, decomposition, and nutrient cycling. The community composition of soil microbes is consequently changed, and alpha diversity is often reduced. The effects depend on the environment and vary across space and time. We suggest that Atlantic islands in the Northern Hemisphere, the Mediterranean Basin, equatorial Africa, Ethiopia, the Indian coastline, the Himalayan region, southern Asia, and Japan have high endemic richness at high ozone risk by 2100.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Elina Oksanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, POB 111, 80101 Joensuu, Finland
| | - Pierre Sicard
- ARGANS, 260 route du Pin Montard, 06410 Biot, France
| | - Qi Wang
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Costas J. Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Valda Araminiene
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Girionys 53101 Kaunas District, Lithuania
| | - James D. Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Felicity Hayes
- UK Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Vicent Calatayud
- Fundación CEAM, c/Charles R. Darwin 14, Parque Tecnológico, Paterna, Valencia 46980, Spain
| | - Marisa Domingos
- Instituto de Botânica, Núcleo de Pesquisa em Ecologia, PO Box 68041, 04045-972 São Paulo, Brazil
| | - Stavros D. Veresoglou
- Freie Universität Berlin-Institut für Biologie, Dahlem Center of Plant Sciences, Plant Ecology, Berlin, Germany
| | - Josep Peñuelas
- Consejo Superior de Investigaciones Científicas, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia E-08193, Spain
- CREAF, Cerdanyola del Vallès, Catalonia E-08193, Spain
| | - David A. Wardle
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Alessandra De Marco
- Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, S. Maria di Galeria, Rome I-00123, Italy
| | - Zhengzhen Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China
| | - Harry Harmens
- UK Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China
| | - Marcello Vitale
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome I-00185, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
23
|
George N, Antony A, Ramachandran T, Hamed F, Kamal-Eldin A. Microscopic Investigationsof Silicification and Lignification Suggest Their Coexistence in Tracheary Phytoliths in Date Fruits ( Phoenix dactylifera L.). FRONTIERS IN PLANT SCIENCE 2020; 11:977. [PMID: 32733510 PMCID: PMC7359715 DOI: 10.3389/fpls.2020.00977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Date fruits are special representative of hard fruits and one of the richest sources of dietary silica and edible lignin, which are believed to have several health benefits. In this study, we used optical and scanning electron microscopy (SEM) to investigate the presence of associations between silicification and lignification in date fruits (Phoenix dactylifera, L.). Phloroglucinol staining was employed to observe lignification in date fruits, while silicification was studied by SEM of whole fruits and their acid digesta. This work revealed the presence of heterogeneity and complexity in the silica phytoliths and the lignified structures in date fruits. It was found that lignin exists independently of silica in the secondary cell walls of parenchymal and sclereid cells and that silica exists independently of lignin in the spheroid phytoliths that surround the sclereid cells. Interestingly, a small proportion of lignin and silica seemed to co-exist as partners in the spiral coils of the tracheid phytoliths.
Collapse
Affiliation(s)
- Navomy George
- Department of Food, Nutrition & Health, College of Food & Agriculture, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Asha Antony
- Department of Veterinary Medicine, College of Food & Agriculture, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Tholkappiyan Ramachandran
- Department of Physics, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Fathalla Hamed
- Department of Physics, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Afaf Kamal-Eldin
- Department of Food, Nutrition & Health, College of Food & Agriculture, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
24
|
Ungerfeld EM. Metabolic Hydrogen Flows in Rumen Fermentation: Principles and Possibilities of Interventions. Front Microbiol 2020; 11:589. [PMID: 32351469 PMCID: PMC7174568 DOI: 10.3389/fmicb.2020.00589] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/18/2020] [Indexed: 01/10/2023] Open
Abstract
Rumen fermentation affects ruminants productivity and the environmental impact of ruminant production. The release to the atmosphere of methane produced in the rumen is a loss of energy and a cause of climate change, and the profile of volatile fatty acids produced in the rumen affects the post-absorptive metabolism of the host animal. Rumen fermentation is shaped by intracellular and intercellular flows of metabolic hydrogen centered on the production, interspecies transfer, and incorporation of dihydrogen into competing pathways. Factors that affect the growth of methanogens and the rate of feed fermentation impact dihydrogen concentration in the rumen, which in turn controls the balance between pathways that produce and incorporate metabolic hydrogen, determining methane production and the profile of volatile fatty acids. A basic kinetic model of competition for dihydrogen is presented, and possibilities for intervention to redirect metabolic hydrogen from methanogenesis toward alternative useful electron sinks are discussed. The flows of metabolic hydrogen toward nutritionally beneficial sinks could be enhanced by adding to the rumen fermentation electron acceptors or direct fed microbials. It is proposed to screen hydrogenotrophs for dihydrogen thresholds and affinities, as well as identifying and studying microorganisms that produce and utilize intercellular electron carriers other than dihydrogen. These approaches can allow identifying potential microbial additives to compete with methanogens for metabolic hydrogen. The combination of adequate microbial additives or electron acceptors with inhibitors of methanogenesis can be effective approaches to decrease methane production and simultaneously redirect metabolic hydrogen toward end products of fermentation with a nutritional value for the host animal. The design of strategies to redirect metabolic hydrogen from methane to other sinks should be based on knowledge of the physicochemical control of rumen fermentation pathways. The application of new –omics techniques together with classical biochemistry methods and mechanistic modeling can lead to exciting developments in the understanding and manipulation of the flows of metabolic hydrogen in rumen fermentation.
Collapse
Affiliation(s)
- Emilio M Ungerfeld
- Laboratorio de Fermentación Ruminal, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional Carillanca, Temuco, Chile
| |
Collapse
|
25
|
Liu F, Xu Y, Wang H, Zhou Y, Cheng B, Li X. APETALA 2 transcription factor CBX1 is a regulator of mycorrhizal symbiosis and growth of Lotus japonicus. PLANT CELL REPORTS 2020; 39:445-455. [PMID: 31912218 DOI: 10.1007/s00299-019-02501-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
An AP2 family gene CBX1 is involved in mycorrhizal symbiosis and growth of Lotus japonicus. APETALA 2 (AP2) transcriptional regulator is highly conserved in plants. CBX1 from Lotus japonicus is a member of AP2 family. AMF (Arbuscular mycorrhizal fungi) inoculation experiment demonstrated that expression of CBX1 was significantly induced by AMF. Further promoter analysis showed that the - 764 to - 498 bp region of the CBX1 promoter containing CTTC motif is the AMF responsive region. Functional analysis of cbx1 mutant suggested CBX1 is critical for mycorrhizal symbiosis, especially for arbuscule formation. Moreover, under noncolonized condition, overexpression of CBX1 reduced the root length of L. japonicus but increased the size of root system and shoot length, whereas cbx1 mutant reduced the root size and shoot length, but not effect on root length. In addition, cbx1 altered activity of monolignol biosynthetic gene and increased lignin levels. Collectively, these data indicated that CBX1 is a positive regulator of symbiotic activity and plays roles in the growth of L. japonicus.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Yunjian Xu
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Hequn Wang
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Yuan Zhou
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Beijiu Cheng
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Xiaoyu Li
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China.
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
26
|
Khadr A, Wang Y, Que F, Li T, Xu Z, Xiong A. Exogenous abscisic acid suppresses the lignification and changes the growth, root anatomical structure and related gene profiles of carrot. Acta Biochim Biophys Sin (Shanghai) 2020; 52:97-100. [PMID: 31897466 DOI: 10.1093/abbs/gmz138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ahmed Khadr
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Yahui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhisheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aisheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
27
|
Bayão GFV, Cunha CS, Queiroz ACD, Pimentel RM, Cardoso LL, Silva TÉD, Cardoso AJDS, Sousa KRS, Marcondes MI. Heart-of-palm byproduct for lactating cows. JOURNAL OF APPLIED ANIMAL RESEARCH 2019. [DOI: 10.1080/09712119.2019.1701480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Geraldo Fábio Viana Bayão
- Department of Animal Science, Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, São Luís, MA, Brazil
| | - Camila Soares Cunha
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | | | - Tadeu Éder da Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | - Katiene Régia Silva Sousa
- Department of Animal Science, Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, São Luís, MA, Brazil
| | | |
Collapse
|
28
|
Amyot L, McDowell T, Martin SL, Renaud J, Gruber MY, Hannoufa A. Assessment of Antinutritional Compounds and Chemotaxonomic Relationships between Camelina sativa and Its Wild Relatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:796-806. [PMID: 30572704 DOI: 10.1021/acs.jafc.8b04724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We compared the secondary metabolite composition in seeds of Camelina sativa and its wild relatives to identify potential germplasm with reduced levels of antinutritional compounds. Twenty Camelina accessions, from five different species, were analyzed by liquid chromatography mass spectrometry and subjected to principal component analysis, which revealed that Camelina spp. separated into distinct chemotaxonomic groups. Three major glucosinolates (GSs) were identified in our study, namely, 9-methylsulfinylnonyl GS (GS9), 10-methylsulfinyldecyl GS (GS10), and 11-methylsulfinylundecyl GS (GS11). While there were differences in total GS levels, species-specific patterns for GS9 and GS11 were noted. Sinapine content ranged between 1.4 and 5.6 mg/g FW, with the lowest levels observed in C. laxa and C. sativa. Lignin levels were also lowest in C. sativa, with most accessions containing less than 6 mg/g FW. Our results show that wild Camelina spp. have distinct metabolomes, and based on their levels of major antinutritionals, some could be incorporated into breeding programs with C. sativa.
Collapse
Affiliation(s)
- Lisa Amyot
- Agriculture and Agri-Food Canada , 1391 Sandford Street , London , ON N5V 4T3 , Canada
| | - Tim McDowell
- Agriculture and Agri-Food Canada , 1391 Sandford Street , London , ON N5V 4T3 , Canada
| | - Sara L Martin
- Ottawa Research and Development Centre , Agriculture and Agri-Food Canada , 960 Carling Ave. , Ottawa , ON K1A 06C , Canada
| | - Justin Renaud
- Agriculture and Agri-Food Canada , 1391 Sandford Street , London , ON N5V 4T3 , Canada
| | - Margaret Y Gruber
- Saskatoon Research Centre , Agriculture and Agri-Food Canada , 107 Science Place , Saskatoon , SK S7N 0X2 , Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada , 1391 Sandford Street , London , ON N5V 4T3 , Canada
| |
Collapse
|
29
|
Zhao X, Zhou N, Lai S, Frei M, Wang Y, Yang L. Elevated CO 2 improves lodging resistance of rice by changing physicochemical properties of the basal internodes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:223-231. [PMID: 30077851 DOI: 10.1016/j.scitotenv.2018.07.431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 05/12/2023]
Abstract
Elevated atmospheric CO2 concentration has been shown to increase rice yield but its effect on plant lodging resistance is still under debate. In this study, we examined lodging incidence in the field and lodging-related traits of two rice cultivars with contrasting lodging susceptibility under ambient and elevated CO2 (ca. 200 μmol mol-1 above ambient) concentrations by using a free-air CO2 enrichment (FACE) system. Elevated CO2 (E-CO2) increased lodging resistance as shown by reduced visual lodging incidence in the field at the late grain filling stage in E-CO2 plots. This coincided with enhanced in situ pushing resistance of intact plants one week before lodging occurred. The positive CO2 effect was more pronounced in the lodging-susceptible cultivar LY084. In contrast, the cultivar WYJ23 displayed greater pushing resistance in the field, and no lodging occurred at either ambient or elevated CO2 conditions throughout the cropping season. The field observations were consistent with the physicochemical characterization of basal internodes of rice plants at the grain filling stage. Greater lodging-resistance of WYJ23 was mainly attributed to its shorter plant height and thicker culm wall of basal internodes. The improvement of lodging resistance by E-CO2 for the lodging-susceptible cultivar LY084 was mainly related to enhanced culm density, which was explained by elevated starch deposition in the stem. Less lodging incidence under elevated CO2 contributed to an increase in grain yield by 36% for LY084. In conclusion, rice production could benefit from elevated CO2 in a changing climate because of an increase in lodging resistance as a result of CO2-induced improvements in mechanical strength of basal internodes.
Collapse
Affiliation(s)
- Xinyong Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Nan Zhou
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Shuangkun Lai
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Michael Frei
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Germany
| | - Yunxia Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Lianxing Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
30
|
Fortes Portela GL, Ramalho Silva PR, Girão Filho JE, de Moura Pádua LE, de Melo Júnior LC. Silicon as resistance inducer in to control black aphid Aphis craccivora Koch, 1854 in Phaseolus lunatus lima beans. ARQUIVOS DO INSTITUTO BIOLÓGICO 2019. [DOI: 10.1590/1808-1657000512018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT In Brazil, there are few records of insects associated with the cultivation of lima beans; among them, there is the black aphid Aphis craccivora Koch, 1854. The objective of this study was to evaluate the effects of silicon application on the resistance induction of lima bean plants, Phaseolus lunatus, to the black aphid A. craccivora. The experiment was conducted in the Entomology Laboratory of the Phytosanitary Sector of Centro de Ciências Agrárias, Universidade Federal do Piauí (UFPI), Brazil. The effects of the following treatments on biological aspects of the insect were evaluated: silicon applied to soil; silicon applied to soil + leaf; silicon applied to leaf; and control, without silicon application. The following biological variables were evaluated: generation period, reproductive period, and the fertility and daily average of produced nymphs per female. Plant silicon and lignin content were also evaluated. A 1% solution of silicic acid (2.0 g of product diluted in 200 mL of water) was applied around the plant stem (on soil), 15 days after emergence. Leaf application was performed with a 1-L spray, 5 days after the soil application. The non-preference of A. craccivora on lima beans was also evaluated. The evaluations were performed after 48 and 72 hours of infestation by counting nymphs and adults at each leaf section. Silicon application reduces nymph production, thereby interfering in the biological aspects of A. craccivora. Therefore, it can be used in cowpea pest management programs.
Collapse
|
31
|
Moreno-Espíndola IP, Ferrara-Guerrero MJ, Luna-Guido ML, Ramírez-Villanueva DA, De León-Lorenzana AS, Gómez-Acata S, González-Terreros E, Ramírez-Barajas B, Navarro-Noya YE, Sánchez-Rodríguez LM, Fuentes-Ponce M, Macedas-Jímenez JU, Dendooven L. The Bacterial Community Structure and Microbial Activity in a Traditional Organic Milpa Farming System Under Different Soil Moisture Conditions. Front Microbiol 2018; 9:2737. [PMID: 30487784 PMCID: PMC6246654 DOI: 10.3389/fmicb.2018.02737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/25/2018] [Indexed: 12/03/2022] Open
Abstract
Agricultural practices affect the bacterial community structure, but how they determine the response of the bacterial community to drought, is still largely unknown. Conventional cultivated soil, i.e., inorganic fertilization, tillage, crop residue removal and maize (Zea mays L.) monoculture, and traditional organic farmed soil "milpa," i.e., minimum tillage, rotation of maize, pumpkin (Cucurbita sp.) and beans (Phaseolus vulgaris L.) and organic fertilization were sampled. Both soils from the central highlands of Mexico were characterized and incubated aerobically at 5% field capacity (5%FC) and 100% field capacity (FC) for 45 days, while the C and N mineralization, enzyme activity and the bacterial community structure were monitored. After applying the different agricultural practices 3 years, the organic C content was 1.8-times larger in the milpa than in the conventional cultivated soil, the microbial biomass C 1.3-times, and C and N mineralization 2.0-times (mean for soil incubated at 5%FC and FC). The dehydrogenase, activity was significantly higher in the conventional cultivated soil than in the milpa soil when incubated at 5%FC, but not when incubated at FC. The relative abundance of Gemmatimonadetes was larger in the conventional cultivated soil than in the milpa soil in soil both at 5%FC and FC, while that of Bacteroidetes showed an opposite trend. The relative abundance of other groups, such as Nitrospirae and Proteobacteria, was affected by cultivation technique, but controlled by soil water content. The relative abundance of other groups, e.g., FBP, Gemmatimonadetes and Proteobacteria, was affected by water content, but the effect depended on agricultural practice. For soil incubated at FC, the xenobiotics biodegradation and metabolism related functions were higher in the milpa soil than in the conventional cultivated soil, and carbohydrate metabolism showed an opposite trend. It was found that agricultural practices and soil water content had a strong effect on soil characteristics, C and N mineralization, enzyme activity, and the bacterial community structure and its functionality. Decreases or increases in the relative abundance of bacterial groups when the soil water content decreased, i.e., from FC to 5%FC, was defined often by the cultivation technique, and the larger organic matter content in the milpa soil did not prevent large changes in the bacterial community structure when the soil was dried.
Collapse
Affiliation(s)
- Iván P. Moreno-Espíndola
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - María J. Ferrara-Guerrero
- Departamento de El Hombre y su Ambiente, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Marco L. Luna-Guido
- Laboratory of Soil Ecology, ABACUS, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | | | - Arit S. De León-Lorenzana
- Laboratory of Soil Ecology, ABACUS, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Selene Gómez-Acata
- Laboratory of Soil Ecology, ABACUS, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | | | - Blanca Ramírez-Barajas
- Laboratory of Soil Ecology, ABACUS, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | | | - Luis M. Sánchez-Rodríguez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Mariela Fuentes-Ponce
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Juan U. Macedas-Jímenez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Luc Dendooven
- Laboratory of Soil Ecology, ABACUS, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| |
Collapse
|
32
|
Tolesa LD, Gupta BS, Lee MJ. Treatment of Coffee Husk with Ammonium-Based Ionic Liquids: Lignin Extraction, Degradation, and Characterization. ACS OMEGA 2018; 3:10866-10876. [PMID: 30320254 PMCID: PMC6173516 DOI: 10.1021/acsomega.8b01447] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Four ammonium-based ionic liquids were synthesized for the selective extraction and degradation of lignin from coffee husk. The extracted lignin samples were characterized by Fourier transform infrared, gel permeation chromatography, gas chromatography-mass spectrometry, UV-vis, 1H and 13C NMR, heteronuclear single-quantum coherence-NMR, thermogravimetric analysis, X-ray diffraction, and field emission scanning electron microscopy analyses. The analyzed results confirmed that these ionic liquids are able to effectively extract and decompose the lignin to smaller molecules from the biomass. Experimental results show that a significantly high yield, 71.2% of the original lignin, has been achieved. This processing method is an efficient, economical, and environmentally friendly green route for producing high-added-value lignin from wasted coffee husk.
Collapse
|
33
|
Young E, Carey M, Meharg AA, Meharg C. Microbiome and ecotypic adaption of Holcus lanatus (L.) to extremes of its soil pH range, investigated through transcriptome sequencing. MICROBIOME 2018; 6:48. [PMID: 29554982 PMCID: PMC5859661 DOI: 10.1186/s40168-018-0434-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/05/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Plants can adapt to edaphic stress, such as nutrient deficiency, toxicity and biotic challenges, by controlled transcriptomic responses, including microbiome interactions. Traditionally studied in model plant species with controlled microbiota inoculation treatments, molecular plant-microbiome interactions can be functionally investigated via RNA-Seq. Complex, natural plant-microbiome studies are limited, typically focusing on microbial rRNA and omitting functional microbiome investigations, presenting a fundamental knowledge gap. Here, root and shoot meta-transcriptome analyses, in tandem with shoot elemental content and root staining, were employed to investigate transcriptome responses in the wild grass Holcus lanatus and its associated natural multi-species eukaryotic microbiome. A full factorial reciprocal soil transplant experiment was employed, using plant ecotypes from two widely contrasting natural habitats, acid bog and limestone quarry soil, to investigate naturally occurring, and ecologically meaningful, edaphically driven molecular plant-microbiome interactions. RESULTS Arbuscular mycorrhizal (AM) and non-AM fungal colonization was detected in roots in both soils. Staining showed greater levels of non-AM fungi, and transcriptomics indicated a predominance of Ascomycota-annotated genes. Roots in acid bog soil were dominated by Phialocephala-annotated transcripts, a putative growth-promoting endophyte, potentially involved in N nutrition and ion homeostasis. Limestone roots in acid bog soil had greater expression of other Ascomycete genera and Oomycetes and lower expression of Phialocephala-annotated transcripts compared to acid ecotype roots, which corresponded with reduced induction of pathogen defense processes, particularly lignin biosynthesis in limestone ecotypes. Ascomycota dominated in shoots and limestone soil roots, but Phialocephala-annotated transcripts were insignificant, and no single Ascomycete genus dominated. Fusarium-annotated transcripts were the most common genus in shoots, with Colletotrichum and Rhizophagus (AM fungi) most numerous in limestone soil roots. The latter coincided with upregulation of plant genes involved in AM symbiosis initiation and AM-based P acquisition in an environment where P availability is low. CONCLUSIONS Meta-transcriptome analyses provided novel insights into H. lanatus transcriptome responses, associated eukaryotic microbiota functions and taxonomic community composition. Significant edaphic and plant ecotype effects were identified, demonstrating that meta-transcriptome-based functional analysis is a powerful tool for the study of natural plant-microbiome interactions.
Collapse
Affiliation(s)
- Ellen Young
- Institute for Global Food Security, Queens University Belfast, David Keir Building, Belfast, BT9 5BN Northern Ireland, UK
| | - Manus Carey
- Institute for Global Food Security, Queens University Belfast, David Keir Building, Belfast, BT9 5BN Northern Ireland, UK
| | - Andrew A. Meharg
- Institute for Global Food Security, Queens University Belfast, David Keir Building, Belfast, BT9 5BN Northern Ireland, UK
| | - Caroline Meharg
- Institute for Global Food Security, Queens University Belfast, David Keir Building, Belfast, BT9 5BN Northern Ireland, UK
| |
Collapse
|
34
|
Dziwornu AK, Shrestha A, Matthus E, Ali B, Wu LB, Frei M. Responses of contrasting rice genotypes to excess manganese and their implications for lignin synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:252-259. [PMID: 29257997 DOI: 10.1016/j.plaphy.2017.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 05/10/2023]
Abstract
Manganese (Mn) toxicity is frequently encountered in crops grown on soils with low pH or low redox potential, and harmful to plant development and growth. This study aimed at exploring adaptive mechanisms to Mn toxicity in rice, and investigated the effects of Mn toxicity on shoot lignification. Sixteen rice genotypes were grown in hydroponic solutions and exposed to normal (0.5 mg dm-3) or toxic (5 mg dm-3) Mn concentrations for three weeks. Morphological responses to Mn toxicity included a significant reduction in shoot length and the formation of visible symptoms scored as leaf damage index (LDI). Based on shoot Mn concentrations in the Mn toxic treatment, genotypes were classified as Mn includers and excluders. Across different genotypes, shoot Mn concentrations were significantly negatively correlated with relative shoot length and positively correlated with LDI. Consequently, the most tolerant genotypes in terms of morphology were all excluders, while the most sensitive genotypes were includers. The sensitive genotypes were also more responsive to manganese in terms of lipid peroxidation than tolerant genotypes. Shoots of rice plants grown in the high Mn treatment showed a higher level of lignification measured as thioglycolic acid lignin (TGAL), especially among Mn includers. TGAL was positively correlated with shoot Mn concentration and the levels of phenolics. In contrast, peroxidase activity was not responsive to the Mn treatment and was not significantly correlated with shoot lignification. In conclusion, exclusion is a dominant tolerance mechanism to Mn toxicity in rice. Further, Mn stimulated lignin biosynthesis in rice, especially in genotypes that were unable to exclude Mn.
Collapse
Affiliation(s)
- Ambrose Kwaku Dziwornu
- Institute of Crop Sciences and Resource Conservation (INRES), Plant Nutrition, University of Bonn, Germany
| | - Asis Shrestha
- Institute of Crop Sciences and Resource Conservation (INRES), Plant Nutrition, University of Bonn, Germany; Institute of Crop Sciences and Resource Conservation (INRES), Plant Breeding, University of Bonn, Germany
| | - Elsa Matthus
- Institute of Crop Sciences and Resource Conservation (INRES), Plant Nutrition, University of Bonn, Germany; Department of Plant Sciences, University of Cambridge, UK
| | - Basharat Ali
- Institute of Crop Sciences and Resource Conservation (INRES), Plant Nutrition, University of Bonn, Germany
| | - Lin-Bo Wu
- Institute of Crop Sciences and Resource Conservation (INRES), Plant Nutrition, University of Bonn, Germany
| | - Michael Frei
- Institute of Crop Sciences and Resource Conservation (INRES), Plant Nutrition, University of Bonn, Germany.
| |
Collapse
|
35
|
Ligaba-Osena A, Hankoua B, DiMarco K, Pace R, Crocker M, McAtee J, Nagachar N, Tien M, Richard TL. Reducing biomass recalcitrance by heterologous expression of a bacterial peroxidase in tobacco (Nicotiana benthamiana). Sci Rep 2017; 7:17104. [PMID: 29213132 PMCID: PMC5719049 DOI: 10.1038/s41598-017-16909-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 10/25/2017] [Indexed: 11/13/2022] Open
Abstract
Commercial scale production of biofuels from lignocellulosic feed stocks has been hampered by the resistance of plant cell walls to enzymatic conversion, primarily owing to lignin. This study investigated whether DypB, the lignin-degrading peroxidase from Rodococcus jostii, depolymerizes lignin and reduces recalcitrance in transgenic tobacco (Nicotiana benthamiana). The protein was targeted to the cytosol or the ER using ER-targeting and retention signal peptides. For each construct, five independent transgenic lines were characterized phenotypically and genotypically. Our findings reveal that expression of DypB in the cytosol and ER does not affect plant development. ER-targeting increased protein accumulation, and extracts from transgenic leaves showed higher activity on classic peroxidase substrates than the control. Intriguingly, in situ DypB activation and subsequent saccharification released nearly 200% more fermentable sugars from transgenic lines than controls, which were not explained by variation in initial structural and non-structural carbohydrates and lignin content. Pyrolysis-GC-MS analysis showed more reduction in the level of lignin associated pyrolysates in the transgenic lines than the control primarily when the enzyme is activated prior to pyrolysis, consistent with increased lignin degradation and improved saccharification. The findings reveal for the first time that accumulation and in situ activation of a peroxidase improves biomass digestibility.
Collapse
Affiliation(s)
- Ayalew Ligaba-Osena
- College of Agriculture and Related Sciences, Delaware State University, 1200 N DuPont Highway, Dover, DE, 19901, USA
| | - Bertrand Hankoua
- College of Agriculture and Related Sciences, Delaware State University, 1200 N DuPont Highway, Dover, DE, 19901, USA.
| | - Kay DiMarco
- Agricultural and Biological Engineering, Pennsylvania State University, 111 Research Unit A, University Park, Pennsylvania, PA, 16802, USA
| | - Robert Pace
- Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY, 40511, USA
| | - Mark Crocker
- Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY, 40511, USA
| | - Jesse McAtee
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Nivedita Nagachar
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 305 South Frear Laboratory, University Park, Pennsylvania, PA, 16802, USA
| | - Ming Tien
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 305 South Frear Laboratory, University Park, Pennsylvania, PA, 16802, USA
| | - Tom L Richard
- Agricultural and Biological Engineering, Pennsylvania State University, 111 Research Unit A, University Park, Pennsylvania, PA, 16802, USA
| |
Collapse
|
36
|
|
37
|
Zhai N, Jia H, Liu D, Liu S, Ma M, Guo X, Li H. GhMAP3K65, a Cotton Raf-Like MAP3K Gene, Enhances Susceptibility to Pathogen Infection and Heat Stress by Negatively Modulating Growth and Development in Transgenic Nicotiana benthamiana. Int J Mol Sci 2017; 18:E2462. [PMID: 29160794 PMCID: PMC5713428 DOI: 10.3390/ijms18112462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 11/21/2022] Open
Abstract
Mitogen-activated protein kinase kinase kinases (MAP3Ks), the top components of MAPK cascades, modulate many biological processes, such as growth, development and various environmental stresses. Nevertheless, the roles of MAP3Ks remain poorly understood in cotton. In this study, GhMAP3K65 was identified in cotton, and its transcription was inducible by pathogen infection, heat stress, and multiple signalling molecules. Silencing of GhMAP3K65 enhanced resistance to pathogen infection and heat stress in cotton. In contrast, overexpression of GhMAP3K65 enhanced susceptibility to pathogen infection and heat stress in transgenic Nicotiana benthamiana. The expression of defence-associated genes was activated in transgenic N. benthamiana plants after pathogen infection and heat stress, indicating that GhMAP3K65 positively regulates plant defence responses. Nevertheless, transgenic N. benthamiana plants impaired lignin biosynthesis and stomatal immunity in their leaves and repressed vitality of their root systems. In addition, the expression of lignin biosynthesis genes and lignin content were inhibited after pathogen infection and heat stress. Collectively, these results demonstrate that GhMAP3K65 enhances susceptibility to pathogen infection and heat stress by negatively modulating growth and development in transgenic N. benthamiana plants.
Collapse
Affiliation(s)
- Na Zhai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Haihong Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Dongdong Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Shuchang Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Manli Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
38
|
Khattab H, El Marid Z. Environmental alterations in biofuel generating molecules in Zilla spinosa. ACTA ACUST UNITED AC 2017; 72:77-91. [PMID: 27740933 DOI: 10.1515/znc-2016-0151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 09/04/2016] [Indexed: 11/15/2022]
Abstract
Now days, production of fuels and petrochemicals from renewable lignocellulosic biomass is an indispensable issue to meet the growing energy demand. Meanwhile, the changes in the climate and soil topography influence the growth and development as well as canopy level of the lignocellulosic biomass. In this study, Zilla spinosa Turr (Zilla) plants with similar age and size were collected from three main sectors (upstream, midstream, and downstream) of Wadi Hagul during spring (April) and summer (July) seasons. Environmental stresses evoked reduction in the energy trapping pigments concomitant with increments in chlorophyll fluorescence in summer harvested plants particularly at downstream. Furthermore, the biofuels generating compounds including carbohydrate, lignin, and lipid making the plant biomasses are greatly affected by environmental conditions. Greater amount of lignin was estimated in summer harvested Z. spinosa shoots particularly at downstream. Moreover, the total oil content which is a promising source of biodiesel was considerably decreased during summer season particularly at downstream. The physical properties of the lipids major constituent fatty acid methyl esters determine the biofuel properties and contribute in the adaptation of plants against environmental stresses. Hence, the analysis of fatty acid profile showed significant modifications under combined drought and heat stress displayed in the summer season. The maximum increase in saturated fatty acid levels including tridecanoic acid (C13:0), pentadeanoic acid (C15:0), palmitic acid (C16:0), and stearic acid (C18:0) were estimated in spring harvested Z. spinosa aerial portions particularly at midstream. In spite of the reduction in the total oil content, a marked increase in the value of unsaturated to saturated fatty acids ratio and thereby the unsaturation index were achieved during the dry summer period. Henceforth, these seasonal and spatial variations in fatty acids profiles may contribute in the acclimatization of Z. spinosa plants to soil water scarcity associated with heat stress experienced during summer. In addition, the alterations in the fatty acid profiles may match biofuel requirements. In conclusion, the most adequate growing season (spring) will be decisive for achieving high lipid productivity associated with improved biofuel quality in terms of high saturated fatty acids percentage that improves its cetane number. However, the dry summer season enhanced the accumulation of greater amount of lignin that may enhance the biodiesel quantity.
Collapse
Affiliation(s)
- Hemmat Khattab
- Botany Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Zeinab El Marid
- Botany Department, Faculty of Science, Al Zawiya University>, Al Zawiya, Lybia
| |
Collapse
|
39
|
Chen Y, Li F, Tian L, Huang M, Deng R, Li X, Chen W, Wu P, Li M, Jiang H, Wu G. The Phenylalanine Ammonia Lyase Gene LjPAL1 Is Involved in Plant Defense Responses to Pathogens and Plays Diverse Roles in Lotus japonicus-Rhizobium Symbioses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:739-753. [PMID: 28598263 DOI: 10.1094/mpmi-04-17-0080-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phenylalanine ammonia lyase (PAL) is important in the biosynthesis of plant secondary metabolites that regulate growth responses. Although its function is well-established in various plants, the functional significance of PAL genes in nodulation is poorly understood. Here, we demonstrate that the Lotus japonicus PAL (LjPAL1) gene is induced by Mesorhizobium loti infection and methyl-jasmonate (Me-JA) treatment in roots. LjPAL1 altered PAL activity, leading to changes in lignin contents and thicknesses of cell walls in roots and nodules of transgenic plants and, hence, to structural changes in roots and nodules. LjPAL1-knockdown plants (LjPAL1i) exhibited increased infection thread and nodule numbers and the induced upregulation of nodulin gene expression after M. loti infection. Conversely, LjPAL1 overexpression delayed the infection process and reduced infection thread and nodule numbers after M. loti inoculation. LjPAL1i plants also exhibited reduced endogenous salicylic acid (SA) accumulation and expression of the SA-dependent marker gene. Their infection phenotype could be partially restored by exogenous SA or Me-JA application. Our data demonstrate that LjPAL1 plays diverse roles in L. japonicus-rhizobium symbiosis, affecting rhizobial infection progress and nodule structure, likely by inducing lignin modification, regulating endogenous SA biosynthesis, and modulating SA signaling.
Collapse
Affiliation(s)
- Yaping Chen
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
| | - Fengjiao Li
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
- 3 University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Tian
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
- 3 University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingchao Huang
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
- 3 University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rufang Deng
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
| | - Xueliu Li
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
- 3 University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Chen
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
- 3 University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingzhi Wu
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
| | - Meiru Li
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
| | - Huawu Jiang
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
| | - Guojiang Wu
- 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- 2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; and
| |
Collapse
|
40
|
Xiao C, Barnes WJ, Zamil MS, Yi H, Puri VM, Anderson CT. Activation tagging of Arabidopsis POLYGALACTURONASE INVOLVED IN EXPANSION2 promotes hypocotyl elongation, leaf expansion, stem lignification, mechanical stiffening, and lodging. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:1159-1173. [PMID: 28004869 DOI: 10.1111/tpj.13453] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/14/2016] [Accepted: 12/08/2016] [Indexed: 05/19/2023]
Abstract
Pectin is the most abundant component of primary cell walls in eudicot plants. The modification and degradation of pectin affects multiple processes during plant development, including cell expansion, organ initiation, and cell separation. However, the extent to which pectin degradation by polygalacturonases affects stem development and secondary wall formation remains unclear. Using an activation tag screen, we identified a transgenic Arabidopsis thaliana line with longer etiolated hypocotyls, which overexpresses a gene encoding a polygalacturonase. We designated this gene as POLYGALACTURONASE INVOLVED IN EXPANSION2 (PGX2), and the corresponding activation tagged line as PGX2AT . PGX2 is widely expressed in young seedlings and in roots, stems, leaves, flowers, and siliques of adult plants. PGX2-GFP localizes to the cell wall, and PGX2AT plants show higher total polygalacturonase activity and smaller pectin molecular masses than wild-type controls, supporting a function for this protein in apoplastic pectin degradation. A heterologously expressed, truncated version of PGX2 also displays polygalacturonase activity in vitro. Like previously identified PGX1AT plants, PGX2AT plants have longer hypocotyls and larger rosette leaves, but they also uniquely display early flowering, earlier stem lignification, and lodging stems with enhanced mechanical stiffness that is possibly due to decreased stem thickness. Together, these results indicate that PGX2 both functions in cell expansion and influences secondary wall formation, providing a possible link between these two developmental processes.
Collapse
Affiliation(s)
- Chaowen Xiao
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA
| | - William J Barnes
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA
| | - M Shafayet Zamil
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hojae Yi
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Virendra M Puri
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
41
|
Reddy YR, Kumari NN, Monika T, Sridhar K. Evaluation of optimum roughage to concentrate ratio in maize stover based complete rations for efficient microbial biomass production using in vitro gas production technique. Vet World 2016; 9:611-5. [PMID: 27397985 PMCID: PMC4937053 DOI: 10.14202/vetworld.2016.611-615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/10/2016] [Indexed: 11/16/2022] Open
Abstract
AIM A study was undertaken to evaluate the optimum roughage to concentrate ratio in maize stover (MS) based complete diets for efficient microbial biomass production (EMBP) using in vitro gas production technique. MATERIALS AND METHODS MS based complete diets with roughage to concentrate ratio of 100:0, 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, and 30:70 were formulated, and 200 mg of oven-dried sample was incubated in water bath at 39°C along with media (rumen liquor [RL] - buffer) in in vitro gas syringes to evaluate the gas production. The gas produced was recorded at 8 and 24 h of incubation. In vitro organic matter digestibility (IVOMD), metabolizable energy (ME), truly digestible organic matter (TDOM), partitioning factor (PF), and EMBP were calculated using appropriate formulae. Ammonia nitrogen and total volatile fatty acids (TVFAs) production were analyzed in RL fluid-media mixture after 24 h of incubation. RESULTS In vitro gas production (ml) at 24 h incubation, IVOMD, ME, TDOM, TVFA concentration, and ammonia nitrogen production were increased (p<0.01) in proportion to the increase in the level of concentrate in the diet. Significantly (p<0.01) higher PF and EMBP was noticed in total mixed ration with roughage to concentrate ratio of 60:40 and 50:50 followed by 70:30 and 40:60. CONCLUSION Based on the results, it was concluded that the MS can be included in complete rations for ruminants at the level of 50-60% for better microbial biomass synthesis which in turn influences the performance of growing sheep.
Collapse
Affiliation(s)
- Y Ramana Reddy
- Department of Animal Nutrition, College of Veterinary Science, Kadapa - 516 360, Andhra Pradesh, India
| | - N Nalini Kumari
- Department of Animal Nutrition, College of Veterinary Science, Hyderabad - 500 030, Telangana, India
| | - T Monika
- Department of Animal Nutrition, College of Veterinary Science, Hyderabad - 500 030, Telangana, India
| | - K Sridhar
- Department of Animal Nutrition, College of Veterinary Science, Hyderabad - 500 030, Telangana, India
| |
Collapse
|
42
|
Wojtasik W, Kulma A, Dymińska L, Hanuza J, Czemplik M, Szopa J. Evaluation of the significance of cell wall polymers in flax infected with a pathogenic strain of Fusarium oxysporum. BMC PLANT BIOLOGY 2016; 16:75. [PMID: 27005923 PMCID: PMC4804541 DOI: 10.1186/s12870-016-0762-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/15/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND Fusarium oxysporum infection leads to Fusarium-derived wilt, which is responsible for the greatest losses in flax (Linum usitatissimum) crop yield. Plants infected by Fusarium oxysporum show severe symptoms of dehydration due to the growth of the fungus in vascular tissues. As the disease develops, vascular browning and leaf yellowing can be observed. In the case of more virulent strains, plants die. The pathogen's attack starts with secretion of enzymes degrading the host cell wall. The main aim of the study was to evaluate the role of the cell wall polymers in the flax plant response to the infection in order to better understand the process of resistance and develop new ways to protect plants against infection. For this purpose, the expression of genes involved in cell wall polymer metabolism and corresponding polymer levels were investigated in flax seedlings after incubation with Fusarium oxysporum. RESULTS This analysis was facilitated by selecting two groups of genes responding differently to the infection. The first group comprised genes strongly affected by the infection and activated later (phenylalanine ammonia lyase and glucosyltransferase). The second group comprised genes which are slightly affected (up to five times) and their expression vary as the infection progresses. Fusarium oxysporum infection did not affect the contents of cell wall polymers, but changed their structure. CONCLUSION The results suggest that the role of the cell wall polymers in the plant response to Fusarium oxysporum infection is manifested through changes in expression of their genes and rearrangement of the cell wall polymers. Our studies provided new information about the role of cellulose and hemicelluloses in the infection process, the change of their structure and the expression of genes participating in their metabolism during the pathogen infection. We also confirmed the role of pectin and lignin in this process, indicating the major changes at the mRNA level of lignin metabolism genes and the loosening of the pectin structure.
Collapse
Affiliation(s)
- Wioleta Wojtasik
- />Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
- />Department of Genetics, Plant Breeding and Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Plant Sciences, Plac Grunwaldzki 24A, 53-363 Wroclaw, Poland
| | - Anna Kulma
- />Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Lucyna Dymińska
- />Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Economics and Engineering, University of Economics, Komandorska 118/120, 50-345 Wroclaw, Poland
| | - Jerzy Hanuza
- />Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Economics and Engineering, University of Economics, Komandorska 118/120, 50-345 Wroclaw, Poland
- />Institute of Low Temperatures and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
| | - Magdalena Czemplik
- />Faculty of Natural Sciences, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Jan Szopa
- />Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
- />Department of Genetics, Plant Breeding and Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Plant Sciences, Plac Grunwaldzki 24A, 53-363 Wroclaw, Poland
| |
Collapse
|
43
|
Tomková-Drábková L, Psota V, Sachambula L, Leišová-Svobodová L, Mikyška A, Kučera L. Changes in polyphenol compounds and barley laccase expression during the malting process. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:497-504. [PMID: 25639800 DOI: 10.1002/jsfa.7116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/16/2014] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Polyphenols and phenolic acid are able to slow down or prevent oxidation processes and are therefore thought to have important effects in malting and brewing. Laccase catalyses the oxidation of a wide variety of substrates, including polyphenols. The aim of this paper was to determine the changes in polyphenol compounds and the relative expression of the HvLac1 gene during malting. RESULTS The dominant phenolic acid was ferulic acid. The amount of ferulic acid increased, whereas the amount of vanillic acid decreased during malting. The highest levels of expression of the HvLac1 gene were observed during the third air rest period in varieties with the 'Haruna Nijo' (HN) allele, as recommended for the production of beer with the protected geographical indication (PGI) 'Česke pivo' (Czech beer), whereas the highest expression was observed in the first day of germination in varieties with the 'Morex' (M) allele. However, the profiles of HvLac1 gene expression in varieties with alternative alleles during malting were similar, and the level of polyphenol compounds throughout malting was different. CONCLUSION The polyphenol contents in barley increased several-fold during malting, and the degree of increase differed with variety. The expression of HvLac1 transcript was similar in every barley variety.
Collapse
Affiliation(s)
| | - Vratislav Psota
- Research Institute of Brewing and Malting, PLC (RIBM), 12044 Praha, Czech Republic
| | - Lenka Sachambula
- Research Institute of Brewing and Malting, PLC (RIBM), 12044 Praha, Czech Republic
| | | | - Alexandr Mikyška
- Research Institute of Brewing and Malting, PLC (RIBM), 12044 Praha, Czech Republic
| | - Ladislav Kučera
- Crop Research Institute, Drnovská 507, 161 06 Praha 6, Ruzyně, Czech Republic
| |
Collapse
|
44
|
Lewandowski I, Clifton-Brown J, Trindade LM, van der Linden GC, Schwarz KU, Müller-Sämann K, Anisimov A, Chen CL, Dolstra O, Donnison IS, Farrar K, Fonteyne S, Harding G, Hastings A, Huxley LM, Iqbal Y, Khokhlov N, Kiesel A, Lootens P, Meyer H, Mos M, Muylle H, Nunn C, Özgüven M, Roldán-Ruiz I, Schüle H, Tarakanov I, van der Weijde T, Wagner M, Xi Q, Kalinina O. Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC. FRONTIERS IN PLANT SCIENCE 2016; 7:1620. [PMID: 27917177 PMCID: PMC5114296 DOI: 10.3389/fpls.2016.01620] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/13/2016] [Indexed: 05/23/2023]
Abstract
This paper describes the complete findings of the EU-funded research project OPTIMISC, which investigated methods to optimize the production and use of miscanthus biomass. Miscanthus bioenergy and bioproduct chains were investigated by trialing 15 diverse germplasm types in a range of climatic and soil environments across central Europe, Ukraine, Russia, and China. The abiotic stress tolerances of a wider panel of 100 germplasm types to drought, salinity, and low temperatures were measured in the laboratory and a field trial in Belgium. A small selection of germplasm types was evaluated for performance in grasslands on marginal sites in Germany and the UK. The growth traits underlying biomass yield and quality were measured to improve regional estimates of feedstock availability. Several potential high-value bioproducts were identified. The combined results provide recommendations to policymakers, growers and industry. The major technical advances in miscanthus production achieved by OPTIMISC include: (1) demonstration that novel hybrids can out-yield the standard commercially grown genotype Miscanthus x giganteus; (2) characterization of the interactions of physiological growth responses with environmental variation within and between sites; (3) quantification of biomass-quality-relevant traits; (4) abiotic stress tolerances of miscanthus genotypes; (5) selections suitable for production on marginal land; (6) field establishment methods for seeds using plugs; (7) evaluation of harvesting methods; and (8) quantification of energy used in densification (pellet) technologies with a range of hybrids with differences in stem wall properties. End-user needs were addressed by demonstrating the potential of optimizing miscanthus biomass composition for the production of ethanol and biogas as well as for combustion. The costs and life-cycle assessment of seven miscanthus-based value chains, including small- and large-scale heat and power, ethanol, biogas, and insulation material production, revealed GHG-emission- and fossil-energy-saving potentials of up to 30.6 t CO2eq C ha-1y-1 and 429 GJ ha-1y-1, respectively. Transport distance was identified as an important cost factor. Negative carbon mitigation costs of -78€ t-1 CO2eq C were recorded for local biomass use. The OPTIMISC results demonstrate the potential of miscanthus as a crop for marginal sites and provide information and technologies for the commercial implementation of miscanthus-based value chains.
Collapse
Affiliation(s)
- Iris Lewandowski
- Department of Biobased Products and Energy Crops, Institute of Crop Science, University of HohenheimStuttgart, Germany
| | - John Clifton-Brown
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Luisa M. Trindade
- Department of Plant Breeding, Wageningen UniversityWageningen, Netherlands
| | | | | | - Karl Müller-Sämann
- ANNA - The Agency for Sustainable Management of Agricultural LandscapeFreiburg, Germany
| | - Alexander Anisimov
- Department of Plant Physiology, Russian State Agrarian University–Moscow Timiryazev Agricultural AcademyMoscow, Russia
| | - C.-L. Chen
- Department of Plant Breeding, Wageningen UniversityWageningen, Netherlands
| | - Oene Dolstra
- Department of Plant Breeding, Wageningen UniversityWageningen, Netherlands
| | - Iain S. Donnison
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Kerrie Farrar
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Simon Fonteyne
- Plant Sciences Unit, Institute for Agricultural and Fisheries ResearchMelle, Belgium
| | | | - Astley Hastings
- The Institute of Biological and Environmental Sciences, University of AberdeenAberdeen, UK
| | - Laurie M. Huxley
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Yasir Iqbal
- Department of Biobased Products and Energy Crops, Institute of Crop Science, University of HohenheimStuttgart, Germany
| | - Nikolay Khokhlov
- Department of Plant Physiology, Russian State Agrarian University–Moscow Timiryazev Agricultural AcademyMoscow, Russia
| | - Andreas Kiesel
- Department of Biobased Products and Energy Crops, Institute of Crop Science, University of HohenheimStuttgart, Germany
| | - Peter Lootens
- Plant Sciences Unit, Institute for Agricultural and Fisheries ResearchMelle, Belgium
| | | | | | - Hilde Muylle
- Plant Sciences Unit, Institute for Agricultural and Fisheries ResearchMelle, Belgium
| | - Chris Nunn
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Mensure Özgüven
- Faculty of Agriculture and Natural Sciences, Konya Food and Agriculture UniversityKonya, Turkey
| | - Isabel Roldán-Ruiz
- Plant Sciences Unit, Institute for Agricultural and Fisheries ResearchMelle, Belgium
| | | | - Ivan Tarakanov
- Department of Plant Physiology, Russian State Agrarian University–Moscow Timiryazev Agricultural AcademyMoscow, Russia
| | - Tim van der Weijde
- Department of Plant Breeding, Wageningen UniversityWageningen, Netherlands
| | - Moritz Wagner
- Department of Biobased Products and Energy Crops, Institute of Crop Science, University of HohenheimStuttgart, Germany
| | - Qingguo Xi
- Dongying Agricultural InstituteDongying, China
| | - Olena Kalinina
- Department of Biobased Products and Energy Crops, Institute of Crop Science, University of HohenheimStuttgart, Germany
| |
Collapse
|
45
|
Commisso M, Toffali K, Strazzer P, Stocchero M, Ceoldo S, Baldan B, Levi M, Guzzo F. Impact of Phenylpropanoid Compounds on Heat Stress Tolerance in Carrot Cell Cultures. FRONTIERS IN PLANT SCIENCE 2016; 7:1439. [PMID: 27713760 PMCID: PMC5031593 DOI: 10.3389/fpls.2016.01439] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/08/2016] [Indexed: 05/20/2023]
Abstract
The phenylpropanoid and flavonoid families include thousands of specialized metabolites that influence a wide range of processes in plants, including seed dispersal, auxin transport, photoprotection, mechanical support and protection against insect herbivory. Such metabolites play a key role in the protection of plants against abiotic stress, in many cases through their well-known ability to inhibit the formation of reactive oxygen species (ROS). However, the precise role of specific phenylpropanoid and flavonoid molecules is unclear. We therefore investigated the role of specific anthocyanins (ACs) and other phenylpropanoids that accumulate in carrot cells cultivated in vitro, focusing on their supposed ability to protect cells from heat stress. First we characterized the effects of heat stress to identify quantifiable morphological traits as markers of heat stress susceptibility. We then fed the cultures with precursors to induce the targeted accumulation of specific compounds, and compared the impact of heat stress in these cultures and unfed controls. Data modeling based on projection to latent structures (PLS) regression revealed that metabolites containing coumaric or caffeic acid, including ACs, correlate with less heat damage. Further experiments suggested that one of the cellular targets damaged by heat stress and protected by these metabolites is the actin microfilament cytoskeleton.
Collapse
Affiliation(s)
- Mauro Commisso
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Ketti Toffali
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Pamela Strazzer
- Department of Biotechnology, University of VeronaVerona, Italy
| | | | - Stefania Ceoldo
- Department of Biotechnology, University of VeronaVerona, Italy
| | | | - Marisa Levi
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of VeronaVerona, Italy
- *Correspondence: Flavia Guzzo,
| |
Collapse
|
46
|
Kapp N, Barnes WJ, Richard TL, Anderson CT. Imaging with the fluorogenic dye Basic Fuchsin reveals subcellular patterning and ecotype variation of lignification in Brachypodium distachyon. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4295-304. [PMID: 25922482 PMCID: PMC4493785 DOI: 10.1093/jxb/erv158] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Lignin is a complex polyphenolic heteropolymer that is abundant in the secondary cell walls of plants and functions in growth and defence. It is also a major barrier to the deconstruction of plant biomass for bioenergy production, but the spatiotemporal details of how lignin is deposited in actively lignifying tissues and the precise relationships between wall lignification in different cell types and developmental events, such as flowering, are incompletely understood. Here, the lignin-detecting fluorogenic dye, Basic Fuchsin, was adapted to enable comparative fluorescence-based imaging of lignin in the basal internodes of three Brachypodium distachyon ecotypes that display divergent flowering times. It was found that the extent and intensity of Basic Fuchsin fluorescence increase over time in the Bd21-3 ecotype, that Basic Fuchsin staining is more widespread and intense in 4-week-old Bd21-3 and Adi-10 basal internodes than in Bd1-1 internodes, and that Basic Fuchsin staining reveals subcellular patterns of lignin in vascular and interfascicular fibre cell walls. Basic Fuchsin fluorescence did not correlate with lignin quantification by acetyl bromide analysis, indicating that whole-plant and subcellular lignin analyses provide distinct information about the extent and patterns of lignification in B. distachyon. Finally, it was found that flowering time correlated with a transient increase in total lignin, but did not correlate strongly with the patterning of stem lignification, suggesting that additional developmental pathways might regulate secondary wall formation in grasses. This study provides a new comparative tool for imaging lignin in plants and helps inform our views of how lignification proceeds in grasses.
Collapse
Affiliation(s)
- Nikki Kapp
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - William J Barnes
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tom L Richard
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Charles T Anderson
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
47
|
Theuretzbacher F, Lizasoain J, Lefever C, Saylor MK, Enguidanos R, Weran N, Gronauer A, Bauer A. Steam explosion pretreatment of wheat straw to improve methane yields: investigation of the degradation kinetics of structural compounds during anaerobic digestion. BIORESOURCE TECHNOLOGY 2015; 179:299-305. [PMID: 25549903 DOI: 10.1016/j.biortech.2014.12.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 05/11/2023]
Abstract
Wheat straw can serve as a low-cost substrate for energy production without competing with food or feed production. This study investigated the effect of steam explosion pretreatment on the biological methane potential and the degradation kinetics of wheat straw during anaerobic digestion. It was observed that the biological methane potential of the non steam exploded, ground wheat straw (276 l(N) kg VS(-1)) did not significantly differ from the best steam explosion treated sample (286 l(N) kg VS(-1)) which was achieved at a pretreatment temperature of 140°C and a retention time of 60 min. Nevertheless degradation speed was improved by the pretreatment. Furthermore it was observed that compounds resulting from chemical reactions during the pretreatment and classified as pseudo-lignin were also degraded during the anaerobic batch experiments. Based on the rumen simulation technique, a model was developed to characterise the degradation process.
Collapse
Affiliation(s)
- Franz Theuretzbacher
- University of Natural Resources and Life Sciences, Department of Sustainable Agricultural Systems, Institute of Agricultural Engineering, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Javier Lizasoain
- University of Natural Resources and Life Sciences, Department of Sustainable Agricultural Systems, Institute of Agricultural Engineering, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria; alpS - Centre for Climate Change Adaptation, Grabenweg 68, A-6010 Innsbruck, Austria
| | - Christopher Lefever
- University of Natural Resources and Life Sciences, Department of Sustainable Agricultural Systems, Institute of Agricultural Engineering, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Molly K Saylor
- University of Natural Resources and Life Sciences, Department of Sustainable Agricultural Systems, Institute of Agricultural Engineering, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Ramon Enguidanos
- University of Natural Resources and Life Sciences, Department of Sustainable Agricultural Systems, Institute of Agricultural Engineering, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Nikolaus Weran
- Biogas Systems GmbH, Am Futterplatz 3106, 7111 Parndorf, Austria
| | - Andreas Gronauer
- University of Natural Resources and Life Sciences, Department of Sustainable Agricultural Systems, Institute of Agricultural Engineering, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Alexander Bauer
- University of Natural Resources and Life Sciences, Department of Sustainable Agricultural Systems, Institute of Agricultural Engineering, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria.
| |
Collapse
|
48
|
Ueda Y, Frimpong F, Qi Y, Matthus E, Wu L, Höller S, Kraska T, Frei M. Genetic dissection of ozone tolerance in rice (Oryza sativa L.) by a genome-wide association study. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:293-306. [PMID: 25371505 PMCID: PMC4265164 DOI: 10.1093/jxb/eru419] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tropospheric ozone causes various negative effects on plants and affects the yield and quality of agricultural crops. Here, we report a genome-wide association study (GWAS) in rice (Oryza sativa L.) to determine candidate loci associated with ozone tolerance. A diversity panel consisting of 328 accessions representing all subgroups of O. sativa was exposed to ozone stress at 60 nl l(-1) for 7h every day throughout the growth season, or to control conditions. Averaged over all genotypes, ozone significantly affected biomass-related traits (plant height -1.0%, shoot dry weight -15.9%, tiller number -8.3%, grain weight -9.3%, total panicle weight -19.7%, single panicle weight -5.5%) and biochemical/physiological traits (symptom formation, SPAD value -4.4%, foliar lignin content +3.4%). A wide range of genotypic variance in response to ozone stress were observed in all phenotypes. Association mapping based on more than 30 000 single-nucleotide polymorphism (SNP) markers yielded 16 significant markers throughout the genome by applying a significance threshold of P<0.0001. Furthermore, by determining linkage disequilibrium blocks associated with significant SNPs, we gained a total of 195 candidate genes for these traits. The following sequence analysis revealed a number of novel polymorphisms in two candidate genes for the formation of visible leaf symptoms, a RING and an EREBP gene, both of which are involved in cell death and stress defence reactions. This study demonstrated substantial natural variation of responses to ozone in rice and the possibility of using GWAS in elucidating the genetic factors underlying ozone tolerance.
Collapse
Affiliation(s)
- Yoshiaki Ueda
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Felix Frimpong
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Yitao Qi
- Key Laboratory of Crop Genetics & Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Elsa Matthus
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Linbo Wu
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Stefanie Höller
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Thorsten Kraska
- Campus Klein-Altendorf, University of Bonn, Klein-Altendorf 2, 53359 Rheinbach, Germany
| | - Michael Frei
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| |
Collapse
|
49
|
Höller S, Meyer A, Frei M. Zinc deficiency differentially affects redox homeostasis of rice genotypes contrasting in ascorbate level. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1748-56. [PMID: 25238655 DOI: 10.1016/j.jplph.2014.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/28/2014] [Accepted: 08/22/2014] [Indexed: 05/14/2023]
Abstract
Zinc (Zn) deficiency is an important mineral disorder affecting rice production, and is associated with the formation of oxidative stress in plant tissue. In this study we investigated processes of oxidative stress formation as affected by ascorbate (AsA) in two pairs of contrasting rice genotypes: (i) two indica lines differing in field tolerance to Zn deficiency and AsA metabolism, i.e. RIL46 (tolerant) and IR74 (sensitive); (ii) the japonica wild-type Nipponbare (tolerant) and the AsA deficient TOS17 mutant line ND6172 (sensitive) having a 20-30% lower AsA level due to the knockout of an AsA biosynthetic gene (OsGME1). Plants were grown hydroponically under +Zn and -Zn conditions for 21 days and samples were investigated after 7, 14, and 21 days of treatment. Tissue Zn concentrations below 20mg kg(-1) in the -Zn treatment induced the formation of visible symptoms of Zn deficiency from day 14 in all genotypes, but especially in the sensitive IR74. Significant increases in lipid peroxidation were observed in the leaves of the sensitive genotypes IR74 and ND6172, and in the roots of IR74, but not in the tolerant genotypes. At day 21, the tolerant genotypes RIL46 and Nipponbare had significantly higher AsA levels in both shoots and roots compared to the sensitive lines. Consistently, higher levels of hydrogen peroxide formation in leaves and roots of the sensitive genotypes were detected using staining methods. Differences in foliar hydrogen peroxide formation between IR74 and RIL46 became apparent on day 7 and between ND6172 and Nipponbare on day 14. Similarly, genotypic differences in hydrogen peroxide formation in the roots were seen on day 21. In conclusion, our data demonstrate that Zn deficiency leads to a redox imbalance in roots and shoots prior to the occurrence of visible symptoms, and that the antioxidant AsA plays an important role in maintaining the redox homeostasis under Zn deficiency.
Collapse
Affiliation(s)
- Stefanie Höller
- Institute for Crop Science and Resource Conservation (INRES), Plant Nutrition, University of Bonn, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany
| | - Andreas Meyer
- Institute for Crop Science and Resource Conservation (INRES), Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Michael Frei
- Institute for Crop Science and Resource Conservation (INRES), Plant Nutrition, University of Bonn, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany.
| |
Collapse
|
50
|
Cho HY, Lee C, Hwang SG, Park YC, Lim HL, Jang CS. Overexpression of the OsChI1 gene, encoding a putative laccase precursor, increases tolerance to drought and salinity stress in transgenic Arabidopsis. Gene 2014; 552:98-105. [DOI: 10.1016/j.gene.2014.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 09/02/2014] [Accepted: 09/09/2014] [Indexed: 11/16/2022]
|