1
|
Hu Y, Schnabl B, Stärkel P. Origin, Function, and Implications of Intestinal and Hepatic Macrophages in the Pathogenesis of Alcohol-Associated Liver Disease. Cells 2025; 14:207. [PMID: 39936998 PMCID: PMC11816606 DOI: 10.3390/cells14030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/13/2025] Open
Abstract
Macrophages are members of the human innate immune system, and the majority reside in the liver. In recent years, they have been recognized as essential players in the maintenance of liver and intestinal homeostasis as well as key guardians of their respective immune systems, and they are increasingly being recognized as such. Paradoxically, they are also likely involved in chronic pathologies of the gastrointestinal tract and potentially in the alteration of the gut-liver axis in alcohol use disorder (AUD) and alcohol-associated liver disease (ALD). To date, the causal relationship between macrophages, the pathogenesis of ALD, and the immune dysregulation of the gut remains unclear. In this review, we will discuss our current understanding of the heterogeneity of intestinal and hepatic macrophages, their ontogeny, the potential factors that regulate their origin, and the evidence of how they are associated with the manifestation of chronic inflammation. We will also illustrate how the micro-environment of the intestine shapes the phenotypes and functionality of the macrophage compartment in both the intestines and liver and how they change during chronic alcohol abuse. Finally, we highlight the obstacles to current research and the prospects for this field.
Collapse
Affiliation(s)
- Yifan Hu
- Laboratory of Hepato-Gastroenterology, Institute of Clinical and Experimental Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA;
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Peter Stärkel
- Laboratory of Hepato-Gastroenterology, Institute of Clinical and Experimental Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
2
|
Sánchez-Valle J, Flores-Rodero M, Costa FX, Carbonell-Caballero J, Núñez-Carpintero I, Tabarés-Seisdedos R, Rocha LM, Cirillo D, Valencia A. Sex-specific transcriptome similarity networks elucidate comorbidity relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634077. [PMID: 39896586 PMCID: PMC11785135 DOI: 10.1101/2025.01.22.634077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2025]
Abstract
Humans present sex-driven biological differences. Consequently, the prevalence of analyzing specific diseases and comorbidities differs between the sexes, directly impacting patients' management and treatment. Despite its relevance and the growing evidence of said differences across numerous diseases (with 4,370 PubMed results published within the past year), knowledge at the comorbidity level remains limited. In fact, to date, no study has attempted to identify the biological processes altered differently in women and men, promoting differences in comorbidities. To shed light on this problem, we analyze expression data for more than 100 diseases from public repositories, analyzing each sex independently. We calculate similarities between differential expression profiles by disease pairs and find that 13-16% of transcriptomically similar disease pairs are sex-specific. By comparing these results with epidemiological evidence, we recapitulate 53-60% of known comorbidities distinctly described for men and women, finding sex-specific transcriptomic similarities between sex-specific comorbid diseases. The analysis of shared underlying pathways shows that diseases can co-occur in men and women by altering alternative biological processes. Finally, we identify different drugs differentially associated with comorbid diseases depending on patients' sex, highlighting the need to consider this relevant variable in the administration of drugs due to their possible influence on comorbidities.
Collapse
Affiliation(s)
- Jon Sánchez-Valle
- Computational Biology, Barcelona Supercomputing Center, Barcelona, 08034, Spain
| | - María Flores-Rodero
- Computational Biology, Barcelona Supercomputing Center, Barcelona, 08034, Spain
- Department of Medicine, University of Valencia, CIBERSAM, INCLIVA, 46010, Valencia, Spain
| | - Felipe Xavier Costa
- Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research Centre, 1649-023 Lisbon, Portugal
- School of Systems Science and Industrial Engineering, Binghamton University (State University of New York), Binghamton, NY 13902, USA
| | | | - Iker Núñez-Carpintero
- Computational Biology, Barcelona Supercomputing Center, Barcelona, 08034, Spain
- Machine Learning for Biomedical Research, Barcelona Supercomputing Center, Barcelona, 08034, Spain
| | | | - Luis Mateus Rocha
- Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research Centre, 1649-023 Lisbon, Portugal
- School of Systems Science and Industrial Engineering, Binghamton University (State University of New York), Binghamton, NY 13902, USA
| | - Davide Cirillo
- Machine Learning for Biomedical Research, Barcelona Supercomputing Center, Barcelona, 08034, Spain
| | - Alfonso Valencia
- Computational Biology, Barcelona Supercomputing Center, Barcelona, 08034, Spain
- ICREA, Barcelona, 08010 Spain
| |
Collapse
|
3
|
Lee SJ, Yang J, Keum GB, Kwak J, Doo H, Choi S, Park DG, Kim CH, Kim HB, Lee JH. Therapeutic Potential of Lactiplantibacillus plantarum FB091 in Alleviating Alcohol-Induced Liver Disease through Gut-Liver Axis. J Microbiol Biotechnol 2024; 34:2100-2111. [PMID: 39300956 PMCID: PMC11540612 DOI: 10.4014/jmb.2407.07051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/22/2024]
Abstract
Alcoholic liver disease (ALD) poses a significant global health burden, often requiring liver transplantation and resulting in fatalities. Current treatments, like corticosteroids, effectively reduce inflammation but carry significant immunosuppressive risks. This study evaluates Lactiplantibacillus plantarum FB091, a newly isolated probiotic strain, as a safer alternative for ALD treatment. Using an in vivo mouse model, we assessed the effects of L. plantarum FB091 on alcohol-induced liver damage and gut microbiota composition. Alcohol and probiotics administration did not significantly impact water/feed intake or body weight. Histopathological analysis showed that L. plantarum FB091 reduced hepatocellular ballooning and inflammatory cell infiltration in liver tissues and mitigated structural damage in colon tissues, demonstrating protective effects against alcohol-induced damage. Biomarker analysis indicated that L. plantarum FB091 decreased aspartate aminotransferase levels, suggesting reduced liver damage, and increased alcohol dehydrogenase activity, indicating enhanced alcohol metabolism. Additionally, cytokine assays revealed a reduction in pro-inflammatory TNF-α and an increase in anti-inflammatory IL-10 levels in colon tissues of the L. plantarum FB091 group, suggesting an anti-inflammatory effect. Gut microbiota analysis showed changes in the L. plantarum FB091 group, including a reduction in Cyanobacteria and an increase in beneficial bacteria such as Akkermansia and Lactobacillus. These changes correlated with the recovery and protection of liver and colon health. Overall, L. plantarum FB091 shows potential as a therapeutic probiotic for managing ALD through its protective effects on liver and colon tissues, enhancement of alcohol metabolism, and beneficial modulation of gut microbiota. Further clinical studies are warranted to confirm these findings in humans.
Collapse
Affiliation(s)
- Soo-Jeong Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihye Yang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Gi Beom Keum
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea
| | - Jinok Kwak
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea
| | - Hyunok Doo
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea
| | - Sungwoo Choi
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Geun Park
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Chul-Hong Kim
- Binggrae Company, Namyangju 12253, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
El-Shoura EAM, Abdelzaher LA, Mahmoud NI, Farghaly OA, Sabry M, Girgis Shahataa M, Salem EA, Saad HM, Elhussieny O, Kozman MR, Atwa AM. Combined sulforaphane and β-sitosterol mitigate olanzapine-induced metabolic disorders in rats: Insights on FOXO, PI3K/AKT, JAK/STAT3, and MAPK signaling pathways. Int Immunopharmacol 2024; 140:112904. [PMID: 39116489 DOI: 10.1016/j.intimp.2024.112904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/25/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
One of the best antipsychotics for treating schizophrenia and bipolar disorders is olanzapine (OLA). However, its use is restricted owing to unfavorable adverse effects as liver damage, dyslipidemia, and weight gain. The primary objective of the present investigation was to examine the signaling mechanisms that underlie the metabolic disruption generated by OLA. Besides, the potential protective effect of sulforaphane (SFN) and β-sitosterol (βSS) against obesity and metabolic toxicity induced by OLA were inspected as well. A total of five groups of male Wistar rats were established, including the control, OLA, SFN+OLA, βSS+OLA, and the combination + OLA groups. Hepatic histopathology, biochemical analyses, ultimate body weights, liver function, oxidative stress, and pro-inflammatory cytokines were evaluated. In addition to the relative expression of FOXO, the signaling pathways for PI3K/AKT, JAK/STAT3, and MAPK were assessed as well. All biochemical and hepatic histopathological abnormalities caused by OLA were alleviated by SFN and/or βSS. A substantial decrease in systolic blood pressure (SBP), proinflammatory cytokines, serum lipid profile parameters, hepatic MDA, TBIL, AST, and ALT were reduced through SFN or/and βSS. To sum up, the detrimental effects of OLA are mediated by alterations in the Akt/FOXO3a/ATG12, Ras/SOS2/Raf-1/MEK/ERK1/2, and Smad3,4/TGF-β signaling pathways. The administration of SFN and/or βSS has the potential to mitigate the metabolic deficit, biochemical imbalances, hepatic histological abnormalities, and the overall unfavorable consequences induced by OLA by modulating the abovementioned signaling pathways.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nesreen I Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Omar A Farghaly
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Egypt
| | - Mostafa Sabry
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Egypt
| | - Mary Girgis Shahataa
- Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa A Salem
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom, 32511, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh 51744, Egypt
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh 51744, Egypt
| | - Magy R Kozman
- Clinical Pharmacy Department, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12563, Egypt
| | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Ayen Iraqi University, Thi-Qar 64001, Iraq
| |
Collapse
|
5
|
Gao H, Jiang Y, Zeng G, Huda N, Thoudam T, Yang Z, Liangpunsakul S, Ma J. Cell-to-cell and organ-to-organ crosstalk in the pathogenesis of alcohol-associated liver disease. EGASTROENTEROLOGY 2024; 2:e100104. [PMID: 39735421 PMCID: PMC11674000 DOI: 10.1136/egastro-2024-100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2024]
Abstract
Alcohol-associated liver disease (ALD) is a growing global health concern and its prevalence and severity are increasing steadily. While bacterial endotoxin translocation into the portal circulation is a well-established key factor, recent evidence highlights the critical role of sterile inflammation, triggered by diverse stimuli, in alcohol-induced liver injury. This review provides a comprehensive analysis of the complex interactions within the hepatic microenvironment in ALD. It examines the contributions of both parenchymal cells, like hepatocytes, and non-parenchymal cells, such as hepatic stellate cells, Kupffer cells, neutrophils, and liver sinusoidal endothelial cells, in driving the progression of the disease. Additionally, we explored the involvement of key mediators, including cytokines, chemokines and inflammasomes, which regulate inflammatory responses and promote liver injury and fibrosis. A particular focus has been placed on extracellular vesicles (EVs) as essential mediators of intercellular communication both within and beyond the liver. These vesicles facilitate the transfer of signalling molecules, such as microRNAs and proteins, which modulate immune responses, fibrogenesis and lipid metabolism, thereby influencing disease progression. Moreover, we underscore the importance of organ-to-organ crosstalk, particularly in the gut-liver axis, where dysbiosis and increased intestinal permeability lead to microbial translocation, exacerbating hepatic inflammation. The adipose-liver axis is also highlighted, particularly the impact of adipokines and free fatty acids from adipose tissue on hepatic steatosis and inflammation in the context of alcohol consumption.
Collapse
Affiliation(s)
- Hui Gao
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yanchao Jiang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ge Zeng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Infectious Diseases, Southern Medical University, Guangzhou, China
| | - Nazmul Huda
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Themis Thoudam
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhihong Yang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Suthat Liangpunsakul
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Jing Ma
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Chen Z, Ding C, Chen K, Lu C, Li Q. Exploring the impact of inflammatory cytokines on alcoholic liver disease: a Mendelian randomization study with bioinformatics insights into potential biological mechanisms. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:643-658. [PMID: 39321414 DOI: 10.1080/00952990.2024.2402569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/06/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
Abstract
Background: Alcoholic liver disease (ALD) significantly contributes to global morbidity and mortality. The role of inflammatory cytokines in alcohol-induced liver injury is pivotal yet not fully elucidated.Objectives: To establish a causal link between inflammatory cytokines and ALD using a Mendelian Randomization (MR) framework.Methods: This MR study utilized genome-wide significant variants as instrumental variables (IVs) for assessing the relationship between inflammatory cytokines and ALD risk, focusing on individuals of European descent. The approach was supported by comprehensive sensitivity analyses and augmented by bioinformatics tools including differential gene expression, protein-protein interactions (PPI), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and analysis of immune cell infiltration.Results: Our findings reveal that increased levels of stem cell growth factor beta (SCGF-β, beta = 0.141, p = .032) and interleukin-7 (IL-7, beta = 0.311, p = .002) are associated with heightened ALD risk, whereas higher levels of macrophage inflammatory protein-1α (MIP-1α, beta = -0.396, p = .004) and basic fibroblast growth factor (bFGF, beta = -0.628, p = .008) are linked to reduced risk. The sensitivity analyses support these robust causal relationships. Bioinformatics analyses around inflammatory cytokine-associated SNP loci suggest multiple pathways through which cytokines influence ALD.Conclusion: The genetic evidence from this study convincingly demonstrates that certain inflammatory cytokines play directional roles in ALD pathogenesis. These findings provide insights into the complex biological pathways involved and underscore the potential for developing targeted therapies that modulate these inflammatory responses, ultimately improving clinical outcomes for ALD patients.
Collapse
Affiliation(s)
- Zhitao Chen
- Department of Hepatobiliary Surgery, International Medical College, Shulan (Hangzhou) Hospital, Zhejiang Shuren University Shulan, Hangzhou, China
| | - Chenchen Ding
- Mental Health Centre & Hangzhou Seventh People's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kailei Chen
- School of Medicine, Zhejiang Shuren University, Hangzhou, China
| | - Chicheng Lu
- School of Medicine, Zhejiang Shuren College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiyong Li
- Department of Hepatobiliary Surgery, International Medical College, Shulan (Hangzhou) Hospital, Zhejiang Shuren University Shulan, Hangzhou, China
| |
Collapse
|
7
|
Liu R, Mo C, Wei X, Ma A. Hepatoprotective Effect of Annulohypoxylon stygium Melanin on Acute Alcoholic Liver Injury in Mice. Appl Biochem Biotechnol 2024; 196:6395-6408. [PMID: 38381310 DOI: 10.1007/s12010-024-04863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Annulohypoxylon stygium melanin (AsM) has various functional properties such as antioxidant and anti-radiation, but its biological activity in vivo has not been fully investigated. In this study, we researched the effects of AsM on the protection against acute liver injury in mice and its mechanism. The results showed that AsM had no significant effect on body weight in mice but reduced the liver index. It was able to significantly decrease the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), the contents of triglyceride (TG) and total cholesterol (TC) in mice. Simultaneously, it raised the levels of superoxide dismutase (SOD), peroxidase (CAT), and glutathione peroxidase (GSH-Px), which obviously exceeded those of the EtOH group. AsM could significantly lower the levels of inflammatory factors, with inhibition rates of 68.30%, 29.0%, and 19.50% for IL-1β, IL-6, and TNF-α, respectively. H&E and Oil red O staining also showed that AsM ameliorated liver damage and lipid accumulation in mice. The protective mechanism of AsM may be associated to the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant signaling pathway, which could activate the downstream antioxidant enzymes heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and glutamate-cysteine ligase catalytic subunit (GCLC). These findings confirmed that AsM had an alleviating effect on alcoholic liver injury and provided new thoughts for the development of natural product.
Collapse
Affiliation(s)
- Ruofan Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cuiyuan Mo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Wuhan, 430070, China.
| |
Collapse
|
8
|
Chandrashekar DV, Roules GC, Jagadeesan N, Panchal UR, Oyegbesan A, Imiruaye OE, Zhang H, Garcia J, Kaur K, Win S, Than TA, Kaplowitz N, Roosan MR, Han D, Sumbria RK. Hepatic LRP-1 plays an important role in amyloidosis in Alzheimer's disease mice: Potential role in chronic heavy alcohol feeding. Neurobiol Dis 2024; 199:106570. [PMID: 38885850 PMCID: PMC11845272 DOI: 10.1016/j.nbd.2024.106570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Hepatic lipoprotein receptor-related protein 1 (LRP-1) plays a central role in peripheral amyloid beta (Aβ) clearance, but its importance in Alzheimer's disease (AD) pathology is understudied. Our previous work showed that intragastric alcohol feeding to C57BL/6 J mice reduced hepatic LRP-1 expression which correlated with significant AD-relevant brain changes. Herein, we examined the role of hepatic LRP-1 in AD pathogenesis in APP/PS1 AD mice using two approaches to modulate hepatic LRP-1, intragastric alcohol feeding to model chronic heavy drinking shown by us to reduce hepatic LRP-1, and hepato-specific LRP-1 silencing. METHODS Eight-month-old male APP/PS1 mice were fed ethanol or control diet intragastrically for 5 weeks (n = 7-11/group). Brain and liver Aβ were assessed using immunoassays. Three important mechanisms of brain amyloidosis were investigated: hepatic LRP-1 (major peripheral Aβ regulator), blood-brain barrier (BBB) function (vascular Aβ regulator), and microglia (major brain Aβ regulator) using immunoassays. Spatial LRP-1 gene expression in the periportal versus pericentral hepatic regions was confirmed using NanoString GeoMx Digital Spatial Profiler. Further, hepatic LRP-1 was silenced by injecting LRP-1 microRNA delivered by the adeno-associated virus 8 (AAV8) and the hepato-specific thyroxine-binding globulin (TBG) promoter to 4-month-old male APP/PS1 mice (n = 6). Control male APP/PS1 mice received control AAV8 (n = 6). Spatial memory and locomotion were assessed 12 weeks after LRP-1 silencing using Y-maze and open-field test, respectively, and brain and liver Aβ were measured. RESULTS Alcohol feeding reduced plaque-associated microglia in APP/PS1 mice brains and increased aggregated Aβ (p < 0.05) by ELISA and 6E10-positive Aβ load by immunostaining (p < 0.05). Increased brain Aβ corresponded with a significant downregulation of hepatic LRP-1 (p < 0.01) at the protein and transcript level, primarily in pericentral hepatocytes (zone 3) where alcohol-induced injury occurs. Hepato-specific LRP-1 silencing significantly increased brain Aβ and locomotion hyperactivity (p < 0.05) in APP/PS1 mice. CONCLUSION Chronic heavy alcohol intake reduced hepatic LRP-1 expression and increased brain Aβ. The hepato-specific LRP-1 silencing similarly increased brain Aβ which was associated with behavioral deficits in APP/PS1 mice. Collectively, our results suggest that hepatic LRP-1 is a key regulator of brain amyloidosis in alcohol-dependent AD.
Collapse
Affiliation(s)
- Devaraj V Chandrashekar
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - G Chuli Roules
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Nataraj Jagadeesan
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Urvashi R Panchal
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Adenike Oyegbesan
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Oghenetega E Imiruaye
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, United States
| | - Hai Zhang
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, United States
| | - Jerome Garcia
- Department of Biology, University of La Verne, La Verne, CA, United States
| | - Kamaljit Kaur
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Sanda Win
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tin A Than
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Neil Kaplowitz
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Moom R Roosan
- Pharmacy Practice, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Derick Han
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, United States.
| | - Rachita K Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States; Department of Neurology, University of California, Irvine, CA, United States.
| |
Collapse
|
9
|
Hwang S, Eom YW, Kang SH, Baik SK, Kim MY. IFN-β Overexpressing Adipose-Derived Mesenchymal Stem Cells Mitigate Alcohol-Induced Liver Damage and Gut Permeability. Int J Mol Sci 2024; 25:8509. [PMID: 39126076 PMCID: PMC11313321 DOI: 10.3390/ijms25158509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Alcoholic liver disease (ALD) is a form of hepatic inflammation. ALD is mediated by gut leakiness. This study evaluates the anti-inflammatory effects of ASCs overexpressing interferon-beta (ASC-IFN-β) on binge alcohol-induced liver injury and intestinal permeability. In vitro, ASCs were transfected with a non-viral vector carrying the human IFN-β gene, which promoted hepatocyte growth factor (HGF) secretion in the cells. To assess the potential effects of ASC-IFN-β, C57BL/6 mice were treated with three oral doses of binge alcohol and were administered intraperitoneal injections of ASC-IFN-β. Mice treated with binge alcohol and administered ASC-IFN-β showed reduced liver injury and inflammation compared to those administered a control ASC. Analysis of intestinal tissue from ethanol-treated mice administered ASC-IFN-β also indicated decreased inflammation. Additionally, fecal albumin, blood endotoxin, and bacterial colony levels were reduced, indicating less gut leakiness in the binge alcohol-exposed mice. Treatment with HGF, but not IFN-β or TRAIL, mitigated the ethanol-induced down-regulation of cell death and permeability in Caco-2 cells. These results demonstrate that ASCs transfected with a non-viral vector to induce IFN-β overexpression have protective effects against binge alcohol-mediated liver injury and gut leakiness via HGF.
Collapse
Affiliation(s)
- Soonjae Hwang
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
- Regeneration Medicine Research Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea; (Y.W.E.); (S.K.B.)
- Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea
| | - Young Woo Eom
- Regeneration Medicine Research Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea; (Y.W.E.); (S.K.B.)
- Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea
| | - Seong Hee Kang
- Department of Internal Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea;
| | - Soon Koo Baik
- Regeneration Medicine Research Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea; (Y.W.E.); (S.K.B.)
- Department of Internal Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea
| | - Moon Young Kim
- Regeneration Medicine Research Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea; (Y.W.E.); (S.K.B.)
- Department of Internal Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea
| |
Collapse
|
10
|
Mohammadhasani K, Vahedi Fard M, Mottaghi Moghaddam Shahri A, Khorasanchi Z. Polyphenols improve non-alcoholic fatty liver disease via gut microbiota: A comprehensive review. Food Sci Nutr 2024; 12:5341-5356. [PMID: 39139973 PMCID: PMC11317728 DOI: 10.1002/fsn3.4178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 08/15/2024] Open
Abstract
Polyphenols, natural micronutrients derived from plants, are valued for their anti-inflammatory and antioxidant properties. The escalating global prevalence of non-alcoholic fatty liver disease (NAFLD) underscores its status as a chronic progressive liver condition. Furthermore, the dysregulation of gut microbiota (GM) is implicated in the onset and progression of NAFLD through the actions of metabolites such as bile acids (BAs), lipopolysaccharide (LPS), choline, and short-chain fatty acids (SCFAs). Additionally, GM may influence the integrity of the intestinal barrier. This review aims to evaluate the potential effects of polyphenols on GM and intestinal barrier function, and their subsequent impact on NAFLD. We searched through a wide range of databases, such as Web of Science, PubMed, EMBASE, and Scopus to gather information for our non-systematic review of English literature. GM functions and composition can be regulated by polyphenols such as chlorogenic acid, curcumin, green tea catechins, naringenin, quercetin, resveratrol, and sulforaphane. Regulating GM composition improves NAFLD by alleviating inflammation, liver fat accumulation, and liver enzymes. Furthermore, it improves serum lipid profile and gut barrier integrity. All of these components affect NAFLD through the metabolites of GM, including SCFAs, choline, LPS, and BAs. Current evidence indicates that chlorogenic acid, resveratrol, quercetin, and curcumin can modulate GM, improving intestinal barrier integrity and positively impacting NAFLD. More studies are necessary to evaluate the safety and efficacy of naringenin, sulforaphane, and catechin.
Collapse
Affiliation(s)
- Kimia Mohammadhasani
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Mohammad Vahedi Fard
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Ali Mottaghi Moghaddam Shahri
- International UNESCO Center for Health‐Related Basic Sciences and Human NutritionMashhad University of Medical SciencesMashhadIran
| | - Zahra Khorasanchi
- Department of Nutrition, School of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
11
|
Gao S, Gao T, Li L, Wang S, Hu J, Zhang R, Zhou Y, Dong H. Exploring the therapeutic potential of garlic in alcoholic liver disease: a network pharmacology and experimental validation study. GENES & NUTRITION 2024; 19:13. [PMID: 39044161 PMCID: PMC11267778 DOI: 10.1186/s12263-024-00748-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/08/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVE Employing network pharmacology and molecular docking, the study predicts the active compounds in garlic and elucidates their mechanism in inhibiting the development of alcoholic liver disease (ALD). ALD is a global chronic liver disease with potential for hepatocellular carcinoma progression. METHODS The main active ingredients and targets of garlic were identified through screening the TCMSP, TCM-ID, and ETCM databases. ALD disease targets were sourced from DisGeNET, GeneCards, and DiGSeE databases, and intervention targets for garlic were determined through intersections. Protein interaction networks were constructed using the STRING platform, and GO and KEGG pathway enrichment analyses were performed with R software. The garlic component-disease-target network was established using Cytoscape software. Validation of active ingredients against core targets was conducted through molecular docking simulations using AutoDock Vina software. Expression validation of core targets was carried out using human sequencing data of ALD obtained from the GEO database. RESULTS Integration of garlic drug targets with ALD disease targets identified 83 target genes. Validation through an alcohol-induced ALD mouse model supported certain network pharmacology findings, suggesting that garlic may impede disease progression by mitigating the inflammatory response and promoting ethanol metabolism. CONCLUSION This study provides insights into the potential therapeutic mechanisms of garlic in inhibiting ALD development. The identified active ingredients offer promising avenues for further investigation and development of treatments for ALD, emphasizing the importance of botanical remedies in liver disease management.
Collapse
Affiliation(s)
- Siqi Gao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Tingting Gao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lizheng Li
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shule Wang
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Hu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yun Zhou
- Shanxi Province Integrated Traditional and Western Medicine Hospital, Taiyuan, China.
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
12
|
Sharma K, Sharma V. Allium sativum Essential Oil Supplementation Reverses the Hepatic Inflammation, Genotoxicity and Apoptotic Effects in Swiss Albino Mice Intoxicated with the Lead Nitrate. Biol Trace Elem Res 2024; 202:3258-3277. [PMID: 37964042 DOI: 10.1007/s12011-023-03924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/01/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Prolonged lead (Pb) exposure impairs human health due to its interference with physiological and biochemical processes. Therefore, it is necessary to investigate natural therapeutics to alleviate Pb-induced intoxication. In the current investigation, essential oil extracted from the fresh bulbs of Allium sativum was considered as a natural remedy. Initially, in vitro antioxidant and anti-inflammatory activity of A. sativum essential oil (ASEO) were explored. The results reported that ASEO exhibits potent antioxidant and anti-inflammatory potential. Additionally, an in vivo study was conducted to elucidate its preventive role against Lead-nitrate (LN)-induced hepatic damage in Swiss albino mice. The experimental mice were allocated into six groups: Control, LN-intoxicated group (50 mg/kg), LN + ASEO (50 mg/kg), LN + ASEO (80 mg/kg), LN + Silymarin (25 mg/kg), and LN + vehicle oil control group. The entire duration of the study was of 30 days. From the results, it was determined that LN exposure elevated the Pb content in hepatic tissues which subsequently increased the serum biomarkers, inflammatory cytokines (NF-kB, TNF-α, IL-6) as well as apoptotic factors (caspase-3, BAX), all of which contribute to DNA damage. Meanwhile, it reduced anti-inflammatory (IFN-γ and IL-10) and anti-apoptotic factors (Bcl-2). Furthermore, Pb accumulation in hepatic tissues changed the histological architecture, which was linked to necrosis, central vein dilation, inflammatory cell infiltration and Kupffer cell activation. In contrast to this, ASEO administration decreased the Pb content, which in turn reduced the level of serum biomarkers, inflammatory and apoptotic factors. At the same time, it increased the anti-inflammatory and anti-apoptotic factors, thereby reduced DNA damage and restored the hepatic histology. In conclusion, exhaustive research is of the utmost demand to elucidate the precise defense mechanisms of ASEO against LN-induced hepatotoxicity.
Collapse
Affiliation(s)
- Kusum Sharma
- Banasthali Vidyapith, Department of Bioscience and Biotechnology, Tonk, Rajasthan, 304022, India
| | - Veena Sharma
- Banasthali Vidyapith, Department of Bioscience and Biotechnology, Tonk, Rajasthan, 304022, India.
| |
Collapse
|
13
|
Solleiro-Villavicencio H, Méndez-García LA, Ocampo-Aguilera NA, Baltazar-Pérez I, Arreola-Miranda JA, Aguayo-Guerrero JA, Alfaro-Cruz A, González-Chávez A, Fonseca-Sánchez MA, Fragoso JM, Escobedo G. Decreased Hepatic and Serum Levels of IL-10 Concur with Increased Lobular Inflammation in Morbidly Obese Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:862. [PMID: 38929479 PMCID: PMC11205754 DOI: 10.3390/medicina60060862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Non-alcoholic fatty liver disease (NAFLD) is associated with obesity and ranges from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. Accumulating evidence in animal models suggests that loss of interleukin-10 (IL-10) anti-inflammatory actions might contribute to lobular inflammation, considered one of the first steps toward NASH development. However, the role of IL-10 in lobular inflammation remains poorly explored in humans. We examined mRNA and protein levels of IL-10 in liver biopsies and serum samples from morbidly obese patients, investigating the relationship between IL-10 and lobular inflammation degree. Materials and Methods: We prospectively enrolled morbidly obese patients of both sexes, assessing the lobular inflammation grade by the Brunt scoring system to categorize participants into mild (n = 7), moderate (n = 19), or severe (n = 13) lobular inflammation groups. We quantified the hepatic mRNA expression of IL-10 by quantitative polymerase chain reaction and protein IL-10 levels in liver and serum samples by Luminex Assay. We estimated statistical differences by one-way analysis of variance (ANOVA) and Tukey's multiple comparison test. Results: The hepatic expression of IL-10 significantly diminished in patients with severe lobular inflammation compared with the moderate lobular inflammation group (p = 0.01). The hepatic IL-10 protein levels decreased in patients with moderate or severe lobular inflammation compared with the mild lobular inflammation group (p = 0.008 and p = 0.0008, respectively). In circulation, IL-10 also significantly decreased in subjects with moderate or severe lobular inflammation compared with the mild lobular inflammation group (p = 0.005 and p < 0.0001, respectively). Conclusions: In liver biopsies and serum samples of morbidly obese patients, the protein levels of IL-10 progressively decrease as lobular inflammation increases, supporting the hypothesis that lobular inflammation develops because of the loss of the IL-10-mediated anti-inflammatory counterbalance.
Collapse
Affiliation(s)
| | - Lucía Angélica Méndez-García
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| | - Nydia A. Ocampo-Aguilera
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| | - Itzel Baltazar-Pérez
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| | - José A. Arreola-Miranda
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| | - José A. Aguayo-Guerrero
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| | - Ana Alfaro-Cruz
- Pathological Anatomy Department, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico;
| | - Antonio González-Chávez
- Clínica de Atención Integral para Pacientes con Diabetes y Obesidad (CAIDO), General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico;
| | | | - José Manuel Fragoso
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Galileo Escobedo
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| |
Collapse
|
14
|
Yun M, Jo HE, Kim N, Park HK, Jang YS, Choi GH, Jo HE, Seo JH, Mok JY, Park SM, Choi HJ. Oral Administration of Alcohol-Tolerant Lactic Acid Bacteria Alleviates Blood Alcohol Concentration and Ethanol-Induced Liver Damage in Rodents. J Microbiol Biotechnol 2024; 34:838-845. [PMID: 38247212 PMCID: PMC11102817 DOI: 10.4014/jmb.2312.12040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Excessive alcohol consumption can have serious negative consequences on health, including addiction, liver damage, and other long-term effects. The causes of hangovers include dehydration, alcohol and alcohol metabolite toxicity, and nutrient deficiency due to absorption disorders. Additionally, alcohol consumption can slow reaction times, making it more difficult to rapidly respond to situations that require quick thinking. Exposure to a large amount of ethanol can also negatively affect a person's righting reflex and balance. In this study, we evaluated the potential of lactic acid bacteria (LAB) to alleviate alcohol-induced effects and behavioral responses. Two LAB strains isolated from kimchi, Levilactobacillus brevis WiKim0168 and Leuconostoc mesenteroides WiKim0172, were selected for their ethanol tolerance and potential to alleviate hangover symptoms. Enzyme activity assays for alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) were then conducted to evaluate the role of these bacteria in alcohol metabolism. Through in vitro and in vivo studies, these strains were assessed for their ability to reduce blood alcohol concentrations and protect against alcohol-induced liver damage. The results indicated that these LAB strains possess significant ethanol tolerance and elevate ADH and ALDH activities. LAB administration remarkably reduced blood alcohol levels in rats after excessive alcohol consumption. Moreover, the LAB strains showed hepatoprotective effects and enhanced behavioral outcomes, highlighting their potential as probiotics for counteracting the adverse effects of alcohol consumption. These findings support the development of functional foods incorporating LAB strains that can mediate behavioral improvements following alcohol intake.
Collapse
Affiliation(s)
- Misun Yun
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Hee Eun Jo
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Namhee Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Hyo Kyeong Park
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Young Seo Jang
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Ga Hee Choi
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Division of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ha Eun Jo
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Division of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | | | - Ji Ye Mok
- Pharmsville Co., Ltd., Seoul 07793, Republic of Korea
| | - Sang Min Park
- Pharmsville Co., Ltd., Seoul 07793, Republic of Korea
| | - Hak-Jong Choi
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| |
Collapse
|
15
|
Wu D, Hao O, Hu W, Wu Z, Bian L, Wang H, Zhu J. Circulating cytokines and alcoholic liver disease: a two-sample bidirectional Mendelian randomization study. Scand J Gastroenterol 2024; 59:325-332. [PMID: 37994815 DOI: 10.1080/00365521.2023.2286190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/06/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Increased inflammation in the liver during ethanol exposure is a major feature of alcoholic liver disease (ALD). An important contributing component to the development of ALD is the inflammatory response brought on by immunological response, however the connection between individual circulating cytokines and ALD is still unclear. To ascertain the causation, we conducted a two-sample bidirectional Mendelian randomization research. METHODS We extracted 41 cytokines and growth factors of 8293 Europeans and ALD cases of the same ethnicity (1416 cases and 217,376 controls) from the Genome-Wide Association Studies (GWAS) database for two-sample bidirectional MR analysis. RESULTS Our analyses suggest that higher interleukin-7 (IL-7) levels are associated with an increased risk of ALD (p = 0.028, OR = 1.191,95% CI = 1.019-1.392), while tumor necrosis factor related apoptosis inducing ligand (TRAIL) is a protective factor for ALD (p = 0.032, OR = 0.863, 95% CI = 0.754-0.988) which can reduce the risk of disease occurrence. In addition, genetically predicted ALD does not affect the expression of circulating cytokines regulators. CONCLUSIONS Our study supports that cytokines play a pivotal role in the pathogenesis of ALD. To determine the mechanisms and pathways of action of these biomarkers, further basic research is required to ensure their clinical suitability for preventing and treating ALD.
Collapse
Affiliation(s)
- Duan Wu
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ouyang Hao
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiye Hu
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaorong Wu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linke Bian
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongye Wang
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfeng Zhu
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
He KY, Lei XY, Zhang L, Wu DH, Li JQ, Lu LY, Laila UE, Cui CY, Xu ZX, Jian YP. Development and management of gastrointestinal symptoms in long-term COVID-19. Front Microbiol 2023; 14:1278479. [PMID: 38156008 PMCID: PMC10752947 DOI: 10.3389/fmicb.2023.1278479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Background Emerging evidence reveals that SARS-CoV-2 possesses the capability to disrupt the gastrointestinal (GI) homeostasis, resulting in the long-term symptoms such as loss of appetite, diarrhea, gastroesophageal reflux, and nausea. In the current review, we summarized recent reports regarding the long-term effects of COVID-19 (long COVID) on the gastrointestine. Objective To provide a narrative review of abundant clinical evidence regarding the development and management of long-term GI symptoms in COVID-19 patients. Results Long-term persistent digestive symptoms are exhibited in a majority of long-COVID patients. SARS-CoV-2 infection of intestinal epithelial cells, cytokine storm, gut dysbiosis, therapeutic drugs, psychological factors and exacerbation of primary underlying diseases lead to long-term GI symptoms in COVID-19 patients. Interventions like probiotics, prebiotics, fecal microbiota transplantation, and antibiotics are proved to be beneficial in preserving intestinal microecological homeostasis and alleviating GI symptoms. Conclusion Timely diagnosis and treatment of GI symptoms in long-COVID patients hold great significance as they may contribute to the mitigation of severe conditions and ultimately lead to the improvement of outcomes of the patients.
Collapse
Affiliation(s)
- Kai-Yue He
- School of Life Sciences, Henan University, Kaifeng, China
| | - Xin-Yuan Lei
- School of Life Sciences, Henan University, Kaifeng, China
| | - Lei Zhang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Dan-Hui Wu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jun-Qi Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Li-Yuan Lu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Umm E. Laila
- School of Life Sciences, Henan University, Kaifeng, China
| | - Cui-Yun Cui
- Department of Blood Transfusion, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yong-Ping Jian
- School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
17
|
Dasgupta D, Ghosh S, Dey I, Majumdar S, Chowdhury S, Das S, Banerjee S, Saha M, Ghosh A, Roy N, Manna A, Ray S, Agarwal S, Bhaumik P, Datta S, Chowdhury A, Banerjee S. Influence of polymorphisms in TNF-α and IL1β on susceptibility to alcohol induced liver diseases and therapeutic potential of miR-124-3p impeding TNF-α/IL1β mediated multi-cellular signaling in liver microenvironment. Front Immunol 2023; 14:1241755. [PMID: 38146363 PMCID: PMC10749309 DOI: 10.3389/fimmu.2023.1241755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2023] [Accepted: 10/23/2023] [Indexed: 12/27/2023] Open
Abstract
Background and aims Alcoholic liver disease (ALD) is the leading cause of the liver cirrhosis related death worldwide. Excessive alcohol consumption resulting enhanced gut permeability which trigger sensitization of inflammatory cells to bacterial endotoxins and induces secretion of cytokines, chemokines leading to activation of stellate cells, neutrophil infiltration and hepatocyte injury followed by steatohepatitis, fibrosis and cirrhosis. But all chronic alcoholics are not susceptible to ALD. This study investigated the causes of differential immune responses among ALD patients and alcoholic controls (ALC) to identify genetic risk factors and assessed the therapeutic potential of a microRNA, miR-124-3p. Materials and methods Bio-Plex Pro™ Human Chemokine analysis/qRT-PCR array was used for identification of deregulated immune genes. Sequencing/luciferase assay/ELISA detected and confirmed the polymorphisms. THP1 co-cultured with HepG2/LX2/HUVEC and apoptosis assay/qRT-PCR/neutrophil migration assay were employed as required. Results The combined data analysis of the GSE143318/Bio-Plex Pro™ Human Chemokine array and qRT-PCR array revealed that six genes (TNFα/IL1β/IL8/MCP1/IL6/TGFβ) were commonly overexpressed in both serum/liver tissue of ALD-patients compared to ALC. The promoter sequence analysis of these 6 genes among ALD (n=322)/ALC (n=168) samples revealed that only two SNPs, rs361525(G/A) at -238 in TNF-α/rs1143627(C/T) at -31 in IL1β were independently associated with ALD respectively. To evaluate the functional implication of these SNPs on ALD development, the serum level of TNF-α/IL1β was verified and observed significantly higher in ALD patients with risk genotypes TNF-α-238GA/IL1β-31CT+TT than TNF-α-238GG/IL1β-31CC. The TNF-α/IL1β promoter Luciferase-reporter assays showed significantly elevated level of luciferase activities with risk genotypes -238AA/-31TT than -238GG/-31CC respectively. Furthermore, treatment of conditioned medium of TNF-α/IL1β over-expressed THP1 cells to HepG2/LX2/HUVEC cells independently showed enhanced level of ER stress and apoptosis in HepG2/increased TGFβ and collagen-I production by LX2/huge neutrophil infiltration through endothelial layer. However, restoration of miR-124-3p in THP1 attenuated such inter-cellular communications and hepatocyte damage/collagen production/neutrophil infiltration were prohibited. Target analysis/luciferase-reporter assays revealed that both TNF-α/IL1β were inhibited by miR-124-3p along with multiple genes from TLR4 signaling/apoptosis/fibrogenesis pathways including MYD88, TRAF3/TRADD, Caspase8/PDGFRA, TGFβR2/MCP1, and ICAM1 respectively. Conclusion Thus, rs361525(G/A) in TNF-α and rs1143627(C/T) in IL1β gene may be used as early predictors of ALD susceptibility among East Indian population. Impeding overexpressed TNF-α/IL1β and various genes from associated immune response pathways, miR-124-3p exhibits robust therapeutic potential for ALD patients.
Collapse
Affiliation(s)
- Debanjali Dasgupta
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Suchandrima Ghosh
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Indrashish Dey
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Swagata Majumdar
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Saheli Chowdhury
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Subhas Das
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Sanjana Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Mehelana Saha
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Amit Ghosh
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Neelanjana Roy
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Alak Manna
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Sukanta Ray
- Department Gastro-Surgery, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Shaleen Agarwal
- Liver Transplant and Biliary Sciences, Max Saket West Super Speciality Hospital, New Delhi, India
| | - Pradeep Bhaumik
- Department of Medicine, Agartala Government Medical College, West Tripura, India
| | - Simanti Datta
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Soma Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| |
Collapse
|
18
|
Wu S, Wen F, Zhong X, Du W, Chen M, Wang J. Astragaloside IV ameliorate acute alcohol-induced liver injury in mice via modulating gut microbiota and regulating NLRP3/caspase-1 signaling pathway. Ann Med 2023; 55:2216942. [PMID: 37243569 DOI: 10.1080/07853890.2023.2216942] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/09/2022] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023] Open
Abstract
PURPOSE Astragaloside IV (AS-IV) is a natural saponin substance extracted from the plant Radix Astragali with anti-inflammatory, antioxidant, anti-apoptotic, and liver-protecting effects. This study was to evaluate the liver protection effect of AS-IV on mice after acute alcohol stimulation. MATERIALS AND METHODS Mice were orally administrated with AS-IV (50, 150, and 500 mg/kg, respectively), and sodium carboxymethyl cellulose (CMC, 50 mg/kg) daily for 7 days, before giving five alcohol-intragastric injections. RESULTS Results suggested that the levels of serum ALT and AST, liver SOD, GSH-PX, 4-HNE, and MDA, serum and liver TNF-α, IL-1β, and IL-6, serum lipopolysaccharide (LPS), lipopolysaccharide binding protein (LBP), diamine oxidase (DAO) and Myeloperoxidase (MPO), the mRNA and protein expression of hepatic NLRP3, Caspase-1, IL-1β, and IL-18 were significantly decreased in AS-IV-treated mice compared with the model group. Moreover, the effect of AS-IV on histopathology of liver tissue confirmed its protective function. Furthermore, AS-IV ameliorated the gut microbiota imbalance and adjusted the abundance of the following dysfunctional bacteria closer to the control group: Butyricicoccus, Turicibacter, Akkermansia, Anaerotruncus, and Mucispirillum. A strong correlation between intestinal bacteria and potential biomarkers was found. CONCLUSION Together, our findings indicated that AS-IV exert the hepatoprotective effect by modulating the gut microbiota imbalance and regulating NLRP3/Caspase-1 signaling pathway.
Collapse
Affiliation(s)
- Shan Wu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fei Wen
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiangbin Zhong
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjing Du
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Manlian Chen
- The Sixth People's Hospital of Dongguan, Dongguan, China
| | - Junyi Wang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
19
|
Moslemi M, Jannat B, Mahmoudzadeh M, Ghasemlou M, Abedi A. Detoxification activity of bioactive food compounds against ethanol-induced injuries and hangover symptoms: A review. Food Sci Nutr 2023; 11:5028-5040. [PMID: 37701198 PMCID: PMC10494618 DOI: 10.1002/fsn3.3520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2022] [Revised: 04/08/2023] [Accepted: 06/08/2023] [Indexed: 09/14/2023] Open
Abstract
Alcohol drinking is a popular activity among adolescents in many countries, largely due to its pleasant, relaxing effects. As a major concern, ethanol consumption put the drinkers at risk of nutrients' deficiency due to the disordered eating, anorexia, and malabsorption of nutrients. Moreover, alcohol drinking may lead to the development of hangover symptoms including diarrhea, thirsty, fatigue, and oxidative stress. A broad range of functional food components with antioxidant and/or anti-inflammatory properties including pectin, aloe vera polysaccharides, chito-oligosaccharides, and other herbal components have been explored due to their detoxification effects against ethanol. The underlying anti-hangover mechanisms include reducing the intestinal absorption of ethanol or its metabolites, increasing the activity of ethanol metabolizing enzymes, development of fatty acid β-oxidation in mitochondria, inhibition of inflammatory response, blocking the target receptors of ethanol in the body, and possession of antioxidant activity under the oxidative stress developed by ethanol consumption. Therefore, the development of bioactive food-based therapeutic formula can assist clinicians and also drinkers in the alleviation of alcohol side effects.
Collapse
Affiliation(s)
- Masoumeh Moslemi
- Halal Research Center of IRIMinistry of Health and Medical EducationTehranIran
| | - Behrooz Jannat
- Halal Research Center of IRIMinistry of Health and Medical EducationTehranIran
| | - Maryam Mahmoudzadeh
- Nutrition Research Center and Department of Food Science and Technology, Faculty of Nutrition and Food ScienceTabriz University of Medical SciencesTabrizIran
| | - Mehran Ghasemlou
- School of ScienceSTEM College, RMIT UniversityMelbourneVictoriaAustralia
| | - Abdol‐Samad Abedi
- Department of Research Deputy, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
20
|
Lin CY, Omoscharka E, Liu Y, Cheng K. Establishment of a Rat Model of Alcoholic Liver Fibrosis with Simulated Human Drinking Patterns and Low-Dose Chemical Stimulation. Biomolecules 2023; 13:1293. [PMID: 37759693 PMCID: PMC10526499 DOI: 10.3390/biom13091293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Although alcohol is a well-known causal factor associated with liver diseases, challenges remain in inducing liver fibrosis in experimental rodent models. These challenges include rodents' natural aversion to high concentrations of alcohol, rapid alcohol metabolism, the need for a prolonged duration of alcohol administration, and technical difficulties. Therefore, it is crucial to establish an experimental model that can replicate the features of alcoholic liver fibrosis. The objective of this study was to develop a feasible rat model of alcoholic liver fibrosis that emulates human drinking patterns and combines low-dose chemicals within a relatively short time frame. We successfully developed an 8-week rat model of alcoholic liver fibrosis that mimics chronic and heavy drinking patterns. Rats were fed with a control liquid diet, an alcohol liquid diet, or alcohol liquid diet combined with multiple binges via oral gavage. To accelerate the progression of alcoholic liver fibrosis, we introduced low-dose carbon tetrachloride (CCl4) through intraperitoneal injection. This model allows researchers to efficiently evaluate potential therapeutics in preclinical studies of alcoholic liver fibrosis within a reasonable time frame.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Evanthia Omoscharka
- Department of Pathology, University Health/Truman Medical Center, School of Medicine, University of Missouri-Kansas City, 2301 Holmes Street, Kansas City, MO 64108, USA
| | - Yanli Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| |
Collapse
|
21
|
Niemelä O, Bloigu A, Bloigu R, Nivukoski U, Kultti J, Pohjasniemi H. Patterns of IgA Autoantibody Generation, Inflammatory Responses and Extracellular Matrix Metabolism in Patients with Alcohol Use Disorder. Int J Mol Sci 2023; 24:13124. [PMID: 37685930 PMCID: PMC10487441 DOI: 10.3390/ijms241713124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Recent data have emphasized the role of inflammation and intestinal immunoglobulin A (IgA) responses in the pathogenesis of alcoholic liver disease (ALD). In order to further explore such associations, we compared IgA titers against antigens targeted to ethanol metabolites and tissue transglutaminase with pro- and anti-inflammatory mediators of inflammation, markers of liver status, transferrin protein desialylation and extracellular matrix metabolism in alcohol-dependent patients with or without liver disease and in healthy controls. Serum IgAs against protein adducts with acetaldehyde (HbAch-IgA), the first metabolite of ethanol, and tissue transglutaminase (tTG-IgA), desialylated transferrin (CDT), pro- and anti-inflammatory cytokines, markers of liver status (GT, ALP) and extracellular matrix metabolism (PIIINP, PINP, hyaluronic acid, ICTP and CTx) were measured in alcohol-dependent patients with (n = 83) or without (n = 105) liver disease and 88 healthy controls representing either moderate drinkers or abstainers. In ALD patients, both tTG-IgA and HbAch-IgA titers were significantly higher than those in the alcoholics without liver disease (p < 0.0005 for tTG-IgA, p = 0.006 for Hb-Ach-IgA) or in healthy controls (p < 0.0005 for both comparisons). The HbAch-IgA levels in the alcoholics without liver disease also exceeded those found in healthy controls (p = 0.0008). In ROC analyses, anti-tTG-antibodies showed an excellent discriminative value in differentiating between ALD patients and healthy controls (AUC = 0.95, p < 0.0005). Significant correlations emerged between tTG-IgAs and HbAch-IgAs (rs = 0.462, p < 0.0005), CDT (rs = 0.413, p < 0.0001), GT (rs = 0.487, p < 0.0001), alkaline phosphatase (rs = 0.466, p < 0.0001), serum markers of fibrogenesis: PIIINP (rs = 0.634, p < 0.0001), hyaluronic acid (rs = 0.575, p < 0.0001), ICTP (rs = 0.482, p < 0.0001), pro-inflammatory cytokines IL-6 (rs = 0.581, p < 0.0001), IL-8 (rs = 0.535, p < 0.0001) and TNF-α (rs = 0.591, p < 0.0001), whereas significant inverse correlations were observed with serum TGF-β (rs = -0.366, p < 0.0001) and CTx, a marker of collagen degradation (rs = -0.495, p < 0.0001). The data indicate that the induction of IgA immune responses toward ethanol metabolites and tissue transglutaminaseis a characteristic feature of patients with AUD and coincides with the activation of inflammation, extracellular matrix remodeling and the generation of aberrantly glycosylated proteins. These processes appear to work in concert in the sequence of events leading from heavy drinking to ALD.
Collapse
Affiliation(s)
- Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Aini Bloigu
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland;
| | - Risto Bloigu
- Infrastructure of Population Studies, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland;
| | - Ulla Nivukoski
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Johanna Kultti
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Heidi Pohjasniemi
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| |
Collapse
|
22
|
Janilkarn-Urena I, Idrissova A, Zhang M, VanDreal M, Sanghavi N, Skinner SG, Cheng S, Zhang Z, Watanabe J, Asatryan L, Cadenas E, Davies DL. Dihydromyricetin supplementation improves ethanol-induced lipid accumulation and inflammation. Front Nutr 2023; 10:1201007. [PMID: 37680900 PMCID: PMC10481966 DOI: 10.3389/fnut.2023.1201007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/05/2023] [Accepted: 08/01/2023] [Indexed: 09/09/2023] Open
Abstract
Introduction Excessive alcohol consumption leads to a myriad of detrimental health effects, including alcohol-associated liver disease (ALD). Unfortunately, no available treatments exist to combat the progression of ALD beyond corticosteroid administration and/or liver transplants. Dihydromyricetin (DHM) is a bioactive polyphenol and flavonoid that has traditionally been used in Chinese herbal medicine for its robust antioxidant and anti-inflammatory properties. It is derived from many plants, including Hovenia dulcis and is found as the active ingredient in a variety of popular hangover remedies. Investigations utilizing DHM have demonstrated its ability to alleviate ethanol-induced disruptions in mitochondrial and lipid metabolism, while demonstrating hepatoprotective activity. Methods Female c57BL/6J mice (n = 12/group) were treated using the Lieber DeCarli forced-drinking and ethanol (EtOH) containing liquid diet, for 5 weeks. Mice were randomly divided into three groups: (1) No-EtOH, (2) EtOH [5% (v/v)], and (3) EtOH [5% (v/v)] + DHM (6 mg/mL). Mice were exposed to ethanol for 2 weeks to ensure the development of ALD pathology prior to receiving dihydromyricetin supplementation. Statistical analysis included one-way ANOVA along with Bonferroni multiple comparison tests, where p ≤ 0.05 was considered statistically significant. Results Dihydromyricetin administration significantly improved aminotransferase levels (AST/ALT) and reduced levels of circulating lipids including LDL/VLDL, total cholesterol (free cholesterol), and triglycerides. DHM demonstrated enhanced lipid clearance by way of increased lipophagy activity, shown as the increased interaction and colocalization of p62/SQSTM-1, LC3B, and PLIN-1 proteins. DHM-fed mice had increased hepatocyte-to-hepatocyte lipid droplet (LD) heterogeneity, suggesting increased neutralization and sequestration of free lipids into LDs. DHM administration significantly reduced prominent pro-inflammatory cytokines commonly associated with ALD pathology such as TNF-α, IL-6, and IL-17. Discussion Dihydromyricetin is commercially available as a dietary supplement. The results of this proof-of-concept study demonstrate its potential utility and functionality as a cost-effective and safe candidate to combat inflammation and the progression of ALD pathology.
Collapse
Affiliation(s)
- Isis Janilkarn-Urena
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Alina Idrissova
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Mindy Zhang
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Masha VanDreal
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Neysa Sanghavi
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Samantha G. Skinner
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Sydney Cheng
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Zeyu Zhang
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
- Translational Research Lab, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Junji Watanabe
- Translational Research Lab, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Liana Asatryan
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Enrique Cadenas
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Daryl L. Davies
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| |
Collapse
|
23
|
Jegal KH, Park HR, Choi BR, Kim JK, Ku SK. Synergistic Protective Effect of Fermented Schizandrae Fructus Pomace and Hoveniae Semen cum Fructus Extracts Mixture in the Ethanol-Induced Hepatotoxicity. Antioxidants (Basel) 2023; 12:1602. [PMID: 37627597 PMCID: PMC10451898 DOI: 10.3390/antiox12081602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Schizandrae Fructus (SF), fruits of Schisandra chinensis (Turcz.) Baill. and Hoveniae Semen cum Fructus (HSCF), the dried peduncle of Hovenia dulcis Thunb., have long been used for alcohol detoxification in the traditional medicine of Korea and China. In the current study, we aimed to evaluate the potential synergistic hepatoprotective effect of a combination mixture (MSH) comprising fermented SF pomace (fSFP) and HSCF hot water extracts at a 1:1 (w:w) ratio against ethanol-induced liver toxicity. Subacute ethanol-mediated hepatotoxicity was induced by the oral administration of ethanol (5 g/kg) in C57BL/6J mice once daily for 14 consecutive days. One hour after each ethanol administration, MSH (50, 100, and 200 mg/kg) was also orally administered daily. MSH administration significantly reduced the serum activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and γ-glutamyl transpeptidase. Histological observation indicated that MSH administration synergistically and significantly decreased the fatty changed region of hepatic parenchyma and the formation of lipid droplet in hepatocytes. Moreover, MSH significantly attenuated the hepatic triglyceride accumulation through reducing lipogenesis genes expression and increasing fatty acid oxidation genes expression. In addition, MSH significantly inhibited protein nitrosylation and lipid peroxidation by lowering cytochrome P450 2E1 enzyme activity and restoring the glutathione level, superoxide dismutase and catalase activity in liver. Furthermore, MSH synergistically decreased the mRNA level of tumor necrosis factor-α in the hepatic tissue. These findings indicate that MSH has potential for preventing alcoholic liver disease through inhibiting hepatic steatosis, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Kyung-Hwan Jegal
- Department of Korean Medical Classics, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea;
| | - Hye-Rim Park
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea;
- Nutracore Co., Ltd., Suwon 16514, Republic of Korea;
| | - Beom-Rak Choi
- Nutracore Co., Ltd., Suwon 16514, Republic of Korea;
| | - Jae-Kwang Kim
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea;
| |
Collapse
|
24
|
Blaine SK, Ridner CM, Campbell BR, Crone L, Claus ED, Wilson JR, West SN, McClanahan AJ, Siddiq AS, Layman IM, Macatee R, Ansell EB, Robinson JL, Beck DT. IL-6, but not TNF-α, response to alcohol cues and acute consumption associated with neural cue reactivity, craving, and future drinking in binge drinkers. Brain Behav Immun Health 2023; 31:100645. [PMID: 37484196 PMCID: PMC10362517 DOI: 10.1016/j.bbih.2023.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/24/2022] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 07/25/2023] Open
Abstract
Objective and design Preclinical studies suggest learned immune system responses to alcohol cues and consumption may contribute to alcohol's pharmacodynamic properties and/or Alcohol Use Disorder (AUD) pathogenesis. Mechanistically, these immune alterations may be associated with increased craving and alcohol consumption, both acutely and over time. We sought to characterize this relationship in a randomized, counter-balanced, crossover neuroimaging experiment which took place between June 2020-November 2021. Methods Thirty-three binge drinkers (BD) and 31 non-binge, social drinkers (SD), matched for demographic and psychological variables, were exposed to alcohol cues and water cues in two separate 7 T functional magnetic resonance imaging (fMRI) scans. Each scan was followed by the Alcohol Taste Test (ATT) of implicit motivation for acute alcohol. Craving measures and blood cytokine levels were collected repeatedly during and after scanning to examine the effects of alcohol cues and alcohol consumption on craving levels, Tumor necrosis factor alpha (TNF-α), and Interleukin 6 (IL-6) levels. A post-experiment one-month prospective measurement of participants' "real world" drinking behavior was performed to approximate chronic effects. Results BD demonstrated significantly higher peak craving and IL-6 levels than SD in response to alcohol cues and relative to water cues. Ventromedial Prefrontal Cortex (VmPFC) signal change in the alcohol-water contrast positively related to alcohol cue condition craving and IL-6 levels, relative to water cue condition craving and IL-6 levels, in BD only. Additionally, peak craving and IL-6 levels were each independently related to ATT alcohol consumption and the number of drinks consumed in the next month for BD, again after controlling for craving and IL-6 repones to water cues. However, TNF-α release in the alcohol cue condition was not related to craving, neural activation, IL-6 levels, immediate and future alcohol consumption in either group after controlling for water cue condition responses. Conclusions In sum, BD show greater craving and IL-6 release in the alcohol cue condition than SD, both of which were associated with prefrontal cue reactivity, immediate alcohol consumption, and future alcohol consumption over the subsequent 30 days. Alcohol associated immune changes and craving effects on drinking behavior may be independent of one another or may be indicative of a common pathway by which immune changes in BD could influence motivation to consume alcohol. Trial registration Clinical Trials NCT04412824.
Collapse
Affiliation(s)
- Sara K. Blaine
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA
| | - Clayton M. Ridner
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA
| | | | - Lily Crone
- College of Sciences and Mathematics, Auburn University, Auburn, AL, USA
| | - Eric D. Claus
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | - Juliet R. Wilson
- Edward Via College of Osteopathic Medicine, Auburn University, Auburn, AL, USA
| | - Summer N. West
- Edward Via College of Osteopathic Medicine, Auburn University, Auburn, AL, USA
| | | | - Anna S. Siddiq
- Edward Via College of Osteopathic Medicine, Auburn University, Auburn, AL, USA
| | - Isaak M.P. Layman
- Edward Via College of Osteopathic Medicine, Auburn University, Auburn, AL, USA
| | - Richard Macatee
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA
| | - Emily B. Ansell
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | | | - Darren T. Beck
- Edward Via College of Osteopathic Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
25
|
Liu R, Li D, Xie J, Wang L, Hu Y, Tian Y. Air pollution, alcohol consumption, and the risk of elevated liver enzyme levels: a cross-sectional study in the UK Biobank. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87527-87534. [PMID: 37428318 DOI: 10.1007/s11356-023-28659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/01/2022] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Evidences on the association between exposure to air pollution and liver enzymes was scarce in low pollution area. We aimed to investigate the association between air pollution and liver enzyme levels and further explore whether alcohol intake influence this association. This cross-sectional study included 425,773 participants aged 37 to 73 years from the UK Biobank. Land Use Regression was applied to assess levels of PM2.5, PM10, NO2, and NOx. Levels of liver enzymes including AST, ALT, GGT, and ALP were determined by enzymatic rate method. Long-term low-level exposure to PM2.5 (per 5-μg/m3 increase) was significantly associated with AST (0.596% increase, 95% CI, 0.414 to 0.778%), ALT (0.311% increase, 0.031 to 0.593%), and GGT (1.552% increase, 1.172 to 1.933%); The results were similar for PM10; NOX and NO2 were only significantly correlated with AST and GGT Significant modification effects by alcohol consumption were found (P-interaction < 0.05). The effects of pollutants on AST, ALT, and GGT levels gradually increased along with the weekly alcohol drinking frequency. In conclusion, long-term low-level air pollutants exposure was associated with elevated liver enzyme levels. And alcohol intake may exacerbate the effect of air pollution on liver enzymes.
Collapse
Affiliation(s)
- Run Liu
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Junqing Xie
- Center for Statistics in Medicine, NDORMS, University of Oxford, The Botnar Research Centre, Oxford, UK
| | - Lulin Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No.38 Xueyuan Road, Beijing, 100191, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China.
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
26
|
Choi H, Shim DH, Kim MS, Shin BS, Na CH. New Onset of Alcohol Flushing in an Atopic Dermatitis Patient Treated with Dupilumab. Ann Dermatol 2023; 35:S163-S164. [PMID: 37853899 PMCID: PMC10608370 DOI: 10.5021/ad.21b.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2021] [Revised: 07/21/2021] [Accepted: 11/04/2021] [Indexed: 10/20/2023] Open
Affiliation(s)
- Hoon Choi
- Department of Dermatology, Chosun University College of Medicine, Gwangju, Korea
| | - Dong Hyun Shim
- Department of Dermatology, Chosun University College of Medicine, Gwangju, Korea
| | - Min Sung Kim
- Department of Dermatology, Chosun University College of Medicine, Gwangju, Korea
| | - Bong Seok Shin
- Department of Dermatology, Chosun University College of Medicine, Gwangju, Korea
| | - Chan Ho Na
- Department of Dermatology, Chosun University College of Medicine, Gwangju, Korea.
| |
Collapse
|
27
|
Martinez-Castillo M, Altamirano-Mendoza I, Sánchez-Valle S, García-Islas L, Sánchez-Barragán M, Hernández-Santillán M, Hernández-Barragán A, Pérez-Hernández J, Higuera-de la Tijera F, Gutierrez-Reyes G. Desregulación inmunológica y fisiopatología del consumo de alcohol y la enfermedad hepática alcohólica. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2023; 88:136-154. [DOI: 10.1016/j.rgmx.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2025]
|
28
|
Rifaximin Improves Liver Functional Reserve by Regulating Systemic Inflammation. J Clin Med 2023; 12:jcm12062210. [PMID: 36983211 PMCID: PMC10054398 DOI: 10.3390/jcm12062210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Rifaximin, a non-absorbable antibiotic, has been demonstrated to be effective against hepatic encephalopathy (HE); however, its efficacy on liver functional reserve remains unknown. Here, we evaluated the efficacy of rifaximin on the liver functional reserve and serological inflammation-based markers in patients with cirrhosis. A retrospective study was conducted on patients who received rifaximin for more than three months at our hospital between November 2016 and October 2021. The recurrence and grade of HE, serological ammonia levels, Child–Pugh score (CPS), and serological inflammation-based markers such as the neutrophil–lymphocyte ratio (NLR), lymphocyte–monocyte ratio (LMR), platelet–lymphocyte ratio (PLR), C-reactive protein (CRP), and CRP to albumin ratio (CAR) were evaluated. The correlations between serological inflammation-based markers and liver functional reserve were evaluated. HE grades, serum ammonia levels, and inflammation-based markers significantly improved at three months compared with those at baseline. Patients with improved albumin levels showed significantly higher CRP improvement rates at both 3 and 12 months. Patients with an improvement in CAR at 3 months demonstrated a significant improvement in CPS at 12 months. Rifaximin improved the liver functional reserve in patients with cirrhosis. Improvements in inflammation-based markers, particularly CRP and albumin, may be involved in this process.
Collapse
|
29
|
Tang YL, Zhu L, Tao Y, Lu W, Cheng H. Role of targeting TLR4 signaling axis in liver-related diseases. Pathol Res Pract 2023; 244:154410. [PMID: 36917917 DOI: 10.1016/j.prp.2023.154410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/13/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Toll-like receptor 4 (TLR4) plays an important role as a key signal-receiving transmembrane protein molecule in the liver, and substances that target the liver exert therapeutic effects via TLR4-related signaling pathways. This article provides a comprehensive review of targeting the TLR4 signaling axis to play an important role in the liver based on endogenous substances. Articles were divided into 5 major types of liver disease, acute liver injury, viral hepatitis, alcoholic and non-alcoholic liver disease, cirrhosis, and liver cancer, to elucidate how various endogenous substances affect the liver via the TLR4 pathway and the important role of the pathway itself in liver-related diseases to discover the potential therapeutic implications of the TLR4-related pathway in the liver. The results indicate that activation of the TLR4-related signaling axis primarily plays a role in promoting disease progression in liver-related diseases, and the TLR4/MyD88/NF-κB axis plays the most dominant role. Therefore, exploring the full effects of drugs targeting the TLR4-related signaling axis in the liver and the new use of old drugs may be a new research direction.
Collapse
Affiliation(s)
- Ying-Le Tang
- Medical College, Yangzhou University, Yangzhou, China
| | - Lin Zhu
- Medical College, Yangzhou University, Yangzhou, China
| | - Yan Tao
- Medical College, Yangzhou University, Yangzhou, China
| | - Wen Lu
- Medical College, Yangzhou University, Yangzhou, China
| | - Hong Cheng
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China.
| |
Collapse
|
30
|
Teng S, Zhang Y, Jin X, Zhu Y, Li L, Huang X, Wang D, Lin Z. Structure and hepatoprotective activity of Usp10/NF-κB/Nrf2 pathway-related Morchella esculenta polysaccharide. Carbohydr Polym 2023; 303:120453. [PMID: 36657860 DOI: 10.1016/j.carbpol.2022.120453] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2022] [Revised: 11/19/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
The water-soluble Morchella esculenta polysaccharide 2 (MEP2) was purified and isolated from an aqueous extract of the Morchella esculenta fruiting bodies. MEP2, having a molecular weight of 959 kDa, has a →4)-α-D-Glcp-(1→ glucan backbone, and this branch was substituted at the H-6 position by an α-D-Glcp-(1 → 4)-α-D-Glcp-(1→ residue and an α-D-Glcp-(1→ residue. The hepatoprotective activity and potential mechanism of action of MEP2 were also investigated. MEP2 ameliorated severe liver damage and regulated the liver function indicators and the alcohol-related enzyme levels in chronic alcohol-induced mice. Combined with biochemical detection, the gut microbiota, metabolites, and proteomics results revealed that MEP2 regulates the levels of hepatic cytokines related to inflammatory response and oxidative stress, as well as those of intestinal Bacteroides, Oscillospira, Parabacteroides, Alistipes, and Prevotella, through the ubiquitin-specific peptidase 10 (Usp10)/nuclear factor κB (NF-κB)/nuclear factor erythroid-2 related factor 2 (Nrf2) signaling pathway in the liver of mice induced by long-term alcohol intake. These data provide experimental evidence for the application of MEP2 in chronic alcohol-induced liver injury.
Collapse
Affiliation(s)
- Shanshan Teng
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Xinghui Jin
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Xiaowei Huang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Zhe Lin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
31
|
Martinez-Castillo M, Altamirano-Mendoza I, Sánchez-Valle S, García-Islas L, Sánchez-Barragán M, Hernández-Santillán M, Hernández-Barragán A, Pérez-Hernández J, Higuera-de la Tijera F, Gutierrez-Reyes G. Immune dysregulation and pathophysiology of alcohol consumption and alcoholic liver disease. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2023; 88:136-154. [PMID: 36973122 DOI: 10.1016/j.rgmxen.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/10/2022] [Accepted: 01/13/2023] [Indexed: 03/28/2023] Open
Abstract
Alcoholic liver disease (ALD) is a clinical-pathologic entity caused by the chronic excessive consumption of alcohol. The disease includes a broad spectrum of anomalies at the cellular and tissual level that can cause acute-on-chronic (alcoholic hepatitis) or chronic (fibrosis, cirrhosis, hepatocellular cancer) injury, having a great impact on morbidity and mortality worldwide. Alcohol is metabolized mainly in the liver. During alcohol metabolism, toxic metabolites, such as acetaldehyde and oxygen reactive species, are produced. At the intestinal level, alcohol consumption can cause dysbiosis and alter intestinal permeability, promoting the translocation of bacterial products and causing the production of inflammatory cytokines in the liver, perpetuating local inflammation during the progression of ALD. Different study groups have reported systemic inflammatory response disturbances, but reports containing a compendium of the cytokines and cells involved in the pathophysiology of the disease, from the early stages, are difficult to find. In the present review article, the role of the inflammatory mediators involved in ALD progression are described, from risky patterns of alcohol consumption to advanced stages of the disease, with the aim of understanding the involvement of immune dysregulation in the pathophysiology of ALD.
Collapse
|
32
|
Iturrospe E, Robeyns R, da Silva KM, van de Lavoir M, Boeckmans J, Vanhaecke T, van Nuijs ALN, Covaci A. Metabolic signature of HepaRG cells exposed to ethanol and tumor necrosis factor alpha to study alcoholic steatohepatitis by LC-MS-based untargeted metabolomics. Arch Toxicol 2023; 97:1335-1353. [PMID: 36826472 DOI: 10.1007/s00204-023-03470-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2022] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Despite the high prevalence of alcoholic liver disease, its identification and characterization remain poor, especially in early stages such as alcoholic fatty liver disease and alcoholic steatohepatitis. This latter implies diagnostic difficulties, few therapeutic options and unclear mechanisms of action. To elucidate the metabolic alterations and pinpoint affected biochemical pathways, alcoholic steatohepatitis was simulated in vitro by exposing HepaRG cells to ethanol (IC10, 368 mM) and tumor necrosis factor alpha (TNF-α, 50 ng/mL) for 24 h. This combined exposure was compared to solely ethanol-exposed as well as -nonexposed cells. Four different metabolomics platforms were used combining liquid chromatography, high-resolution mass spectrometry and drift tube ion mobility to elucidate both intracellular and extracellular metabolic alterations. Some of the key findings include the influence of TNF-α in the upregulation of hepatic triglycerides and the downregulation of hepatic phosphatidylethanolamines and phosphatidylcholines. S-Adenosylmethionine showed to play a central role in the progression of alcoholic steatohepatitis. In addition, fatty acyl esters of hydroxy fatty acid (FAHFA)-containing triglycerides were detected for the first time in human hepatocytes and their alterations showed a potentially important role during the progression of alcoholic steatohepatitis. Ethoxylated phosphorylcholine was identified as a potential new biomarker of ethanol exposure.
Collapse
Affiliation(s)
- Elias Iturrospe
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Belgium.
| | - Rani Robeyns
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | | | - Maria van de Lavoir
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Belgium
| | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| |
Collapse
|
33
|
Cao L, Wu D, Qin L, Tan D, Fan Q, Jia X, Yang M, Zhou T, Feng C, Lu Y, He Y. Single-Cell RNA Transcriptome Profiling of Liver Cells of Short-Term Alcoholic Liver Injury in Mice. Int J Mol Sci 2023; 24:ijms24054344. [PMID: 36901774 PMCID: PMC10002329 DOI: 10.3390/ijms24054344] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2022] [Revised: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Alcoholic liver disease (ALD) is currently considered a global healthcare problem with limited pharmacological treatment options. There are abundant cell types in the liver, such as hepatocytes, endothelial cells, Kupffer cells and so on, but little is known about which kind of liver cells play the most important role in the process of ALD. To obtain a cellular resolution of alcoholic liver injury pathogenesis, 51,619 liver single-cell transcriptomes (scRNA-seq) with different alcohol consumption durations were investigated, 12 liver cell types were identified, and the cellular and molecular mechanisms of the alcoholic liver injury were revealed. We found that more aberrantly differential expressed genes (DEGs) were present in hepatocytes, endothelial cells, and Kupffer cells than in other cell types in alcoholic treatment mice. Alcohol promoted the pathological processes of liver injury; the specific mechanisms involved: lipid metabolism, oxidative stress, hypoxia, complementation and anticoagulation, and hepatocyte energy metabolism on hepatocytes; NO production, immune regulation, epithelial and cell migration on endothelial cells; antigen presentation and energy metabolism on Kupffer cells, based on the GO analysis. In addition, our results showed that some transcription factors (TFs) are activated in alcohol-treated mice. In conclusion, our study improves the understanding of liver cell heterogeneity in alcohol-fed mice at the single-cell level. It has potential value for understanding key molecular mechanisms and improving current prevention and treatment strategies for short-term alcoholic liver injury.
Collapse
Affiliation(s)
- Ligang Cao
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
| | - Di Wu
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Daopeng Tan
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Qingjie Fan
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xiaohuan Jia
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
| | - Mengting Yang
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
| | - Tingting Zhou
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
| | - Chengcheng Feng
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
| | - Yanliu Lu
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Correspondence:
| |
Collapse
|
34
|
Guo R, Chen L, Zhu J, Li J, Ding Q, Chang K, Han Q, Li S. Monounsaturated fatty acid-enriched olive oil exacerbates chronic alcohol-induced hepatic steatosis and liver injury in C57BL/6J mice. Food Funct 2023; 14:1573-1583. [PMID: 36655918 DOI: 10.1039/d2fo03323b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Abstract
Dietary oil composition determines the pathological processes of alcoholic fatty liver disease (AFLD). Oil rich in saturated fatty acids protects, whereas oil rich in polyunsaturated fatty acids aggravates the alcohol-induced liver injury. However, limited studies have been conducted to address how monounsaturated fatty acids (MUFAs) enriched oil controls the pathological development of AFLD. Therefore, this study was designed to evaluate the effect of MUFA-enriched extra virgin olive oil (OO) on AFLD. Twenty C57BL/6J mice were randomly allocated into four groups and fed modified Lieber-DeCarli liquid diets containing isocaloric maltose dextrin a non-alcohol or alcohol with corn oil and OO for four weeks. Dietary OO significantly exacerbated alcohol-induced liver dysfunction, evidenced by histological examinations and disturbed biochemical parameters. Dietary OO with alcohol decreased hormone-sensitive lipase (HSL), phosphorylated 5'-AMP-activated protein kinase (p-AMPK), and carnitine palmitoyltransferase-Iα (CPT1α) expression, and increased sterol regulatory element-binding protein-1c (SREBP-1c), diacylglycerol acyltransferase-2 (DGAT2), and very low-density lipoprotein receptor (VLDLR) expression in the liver. It also promoted the expression of hepatic interleukin-6 (IL-6) and hepatic tumour necrosis factor-alpha (TNF-α) at the transcriptional level. Additionally, adipose tissue lipolysis partially had an etiologic effect on alcohol-induced hepatic steatosis under OO pretreatment. In conclusion, MUFA-enriched OO exacerbated liver dysfunction in vivo. OO should be cautiously considered as a unique dietary oil source for individuals with AFLD.
Collapse
Affiliation(s)
- Rui Guo
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China. .,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Lin Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Jinyan Zhu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Jiaomei Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China. .,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Qingchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Kaixin Chang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Qiang Han
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China. .,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China. .,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| |
Collapse
|
35
|
Kotlyarov S. Immune and metabolic cross-links in the pathogenesis of comorbid non-alcoholic fatty liver disease. World J Gastroenterol 2023; 29:597-615. [PMID: 36742172 PMCID: PMC9896611 DOI: 10.3748/wjg.v29.i4.597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 01/20/2023] Open
Abstract
In recent years, there has been a steady growth of interest in non-alcoholic fatty liver disease (NAFLD), which is associated with negative epidemiological data on the prevalence of the disease and its clinical significance. NAFLD is closely related to the metabolic syndrome and these relationships are the subject of active research. A growing body of evidence shows cross-linkages between metabolic abnormalities and the innate immune system in the development and progression of NAFLD. These links are bidirectional and largely still unclear, but a better understanding of them will improve the quality of diagnosis and management of patients. In addition, lipid metabolic disorders and the innate immune system link NAFLD with other diseases, such as atherosclerosis, which is of great clinical importance.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, Ryazan 390026, Russia
| |
Collapse
|
36
|
Fallah A, Sedighian H, Behzadi E, Havaei SA, Kachuei R, Imani Fooladi AA. The role of serum circulating microbial toxins in severity and cytokine storm of COVID positive patients. Microb Pathog 2023; 174:105888. [PMID: 36402345 PMCID: PMC9671676 DOI: 10.1016/j.micpath.2022.105888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
The emergence of Coronavirus disease 2019 (Covid-19) is a global problem nowadays, causing health difficulty with increasing mortality rates, which doesn't have a verified treatment. SARS-CoV-2 infection has various pathological and epidemiological characteristics, one of them is increased amounts of cytokine production, which in order activate an abnormal unrestricted response called "cytokine storm". This event contributes to severe acute respiratory distress syndrome (ARDS), which results in respiratory failure and pneumonia and is the great cause of death associated with Covid-19. Endotoxemia and the release of bacterial lipopolysaccharides (endotoxins) from the lumen into the bloodstream enhance proinflammatory cytokines. SARS-CoV-2 can straightly interplay with endotoxins via its S protein, leading to the extremely elevating release of cytokines and consequently increase the harshness of Covid-19. In this review, we will discuss the possible role of viral-bacterial interaction that occurs through the transfer of bacterial products such as lipopolysaccharide (LPS) from the intestine into the bloodstream, exacerbating the severity of Covid-19 and cytokine storms.
Collapse
Affiliation(s)
- Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Academy of Medical Sciences of the I.R. of Iran, Tehran, Iran
| | - Seyed Asghar Havaei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding author. 14359-44711, Tehran, Iran
| |
Collapse
|
37
|
Guru A, Manjunathan T, Sudhakaran G, Juliet A, Gopinath P, Arockiaraj J. 6-Gingerdione Reduces Apoptotic Conditions in HepG2 Cells and Inhibits Inflammatory Cytokine Gene Expression in Alcoholic Liver Injured Zebrafish Larvae. Chem Biodivers 2023; 20:e202200959. [PMID: 36574474 DOI: 10.1002/cbdv.202200959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022]
Abstract
Antioxidant natural products and their analogs especially phenolic compounds, exhibit diverse biological properties, including anti-inflammatory, antioxidant, and anticancer activities. Ginger which is widely used worldwide for various beneficial effects also contains several phenolic antioxidants, and 6-gingerol is one of the natural products studied extensively. However, the molecular mechanism of synthetically synthesized 6-gingerdione (compound 1) from 6-gingerol was not known. In this study, compound 1 and methylated 6-gingerdione (compound 2) were obtained semi synthetically from 6-gingerol. Compound 1 and 2 are subjected to SwissADME prediction. Then the protective effect of compound 1 was analyzed in 2 % EtOH induced HepG2 cells and zebrafish larvae. Hydroxyl and nitric oxide scavenging assays reveal that compound 1 showed more antioxidant activity than compound 2 at 50 μM. Moreover, compound 1 exhibited good anti-inflammatory activity via lipoxygenase inhibition and proteinase inhibition. Apoptosis and oxidative stress in HepG2 cells were induced by 2 % EtOH and treated with compound 1. Compound 1 significantly inhibited the EtOH induced nitric oxide production, apoptosis, and ROS generation in HepG2 cells. Encouraged by the in-vitro antioxidant and anti-inflammatory activities, compound 1 was then investigated for its protective effect in 2 % EtOH induced ALD zebrafish larva. Compound 1 protected the zebrafish larvae from liver injury by suppressing inflammatory (COX-2, TNF-α, and IL-1β) and lipogenic genes (C/EBP-α, SREBP1, and IL-1β) while upregulating the antioxidant gene. Our findings indicate that compound 1 synthesized from 6-gingerol ameliorated liver injury that likely, contributes to its potential antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Ajay Guru
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India
| | - Tamilvelan Manjunathan
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Annie Juliet
- Foundation for Aquaculture Innovations and Technology Transfer (FAITT), Thoraipakkam, Chennai 600 097, Tamil Nadu, India
| | - Pushparathinam Gopinath
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India
| |
Collapse
|
38
|
Han J, Lee C, Hur J, Jung Y. Current Therapeutic Options and Potential of Mesenchymal Stem Cell Therapy for Alcoholic Liver Disease. Cells 2022; 12:cells12010022. [PMID: 36611816 PMCID: PMC9818513 DOI: 10.3390/cells12010022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Alcoholic liver disease (ALD) is a globally prevalent chronic liver disease caused by chronic or binge consumption of alcohol. The therapeutic efficiency of current therapies for ALD is limited, and there is no FDA-approved therapy for ALD at present. Various strategies targeting pathogenic events in the progression of ALD are being investigated in preclinical and clinical trials. Recently, mesenchymal stem cells (MSCs) have emerged as a promising candidate for ALD treatment and have been tested in several clinical trials. MSC-released factors have captured attention, as they have the same therapeutic function as MSCs. Herein, we focus on current therapeutic options, recently proposed strategies, and their limitations in ALD treatment. Also, we review the therapeutic effects of MSCs and those of MSC-related secretory factors on ALD. Although accumulating evidence suggests the therapeutic potential of MSCs and related factors in ALD, the mechanisms underlying their actions in ALD have not been well studied. Further investigations of the detailed mechanisms underlying the therapeutic role of MSCs in ALD are required to expand MSC therapies to clinical applications. This review provides information on current or possible treatments for ALD and contributes to our understanding of the development of effective and safe treatments for ALD.
Collapse
Affiliation(s)
- Jinsol Han
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
| | - Chanbin Lee
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
- Institute of Systems Biology, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
| | - Jin Hur
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
- Correspondence: (J.H.); (Y.J.); Tel.: +82-51-510-8074 (J.H.); +82-51-510-2262 (Y.J.)
| | - Youngmi Jung
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
- Correspondence: (J.H.); (Y.J.); Tel.: +82-51-510-8074 (J.H.); +82-51-510-2262 (Y.J.)
| |
Collapse
|
39
|
Algburi AF, Dursun I, Garip Ustaoglu S. The investigation of the effects of postnatal alcohol exposure on molecular content and antioxidant capacity of mice liver tissue. Life Sci 2022; 310:121102. [DOI: 10.1016/j.lfs.2022.121102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
|
40
|
Afarin R, Behdarvand T, Shakerian E, Salehipour Bavarsad S, Rashidi M. Exosomes of Whartons' jelly mesenchymal stem cell reduce the NOX genes in TGF-β-induced hepatic fibrosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1498-1503. [PMID: 36544529 PMCID: PMC9742568 DOI: 10.22038/ijbms.2022.66802.14649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/17/2022] [Accepted: 10/23/2022] [Indexed: 12/24/2022]
Abstract
Objectives Activated cells which are called star-shaped cells, are some of the key factors in the development of liver fibrosis. Activation of NADPH oxidase (NOX) is associated with increased HSCs activity and progression of hepatic fibrosis. In this study, the effects of human exosomes derived from WJ-MSCs on NOX1, NOX2, and NOX4 gene expression in TGF-β-induced hepatic fibrosis were investigated. Materials and Methods LX2 cell line was treated with 2 ng/ml TGF-β for 24 hr, in order to induce liver fibrosis after starvation. In the next step, the cells were treated with several concentrations of the exosomes derived from WJ-MSCs (10, 20, 30, 40, and 50 μg/ml). Finally, Smad3C phosphorylated protein expression level and NOX1, NOX2, and NOX4 gene expression levels were measured. Results The results demonstrated that the level of NOX1, NOX2, and NOX4 mRNA expressions decreased significantly during 24 hrs at concentrations of 40 and 50 μg/ml of WJ-MSCs exosomes in TGF-β-induced-HSCs. The p-Smad3C proteins were significantly decreased (fold change: 1.83, P-value<0.05) after exposure to WJ-MSC-derived exosomes. Conclusion Treatment with exosomes prevents further activation of HSCs by inhibiting the level of Smad3C phosphorylation. The experimental data of our study suggested that in liver fibrosis, the protection of HSCs activation against TGF-β by inhibiting the NOX pathway via human exosomes of WJ-MSCs is extremely important. It needs further research as a treatment method.
Collapse
Affiliation(s)
- Reza Afarin
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tahereh Behdarvand
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Shakerian
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samaneh Salehipour Bavarsad
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rashidi
- Department of Clinical Biochemistry, Faculty of Medicine, Jundishapour University of Medical Sciences, Ahvaz, Iran,Corresponding author: Mojtaba Rashidi. Department of Clinical Biochemistry, Faculty of Medicine, Jundishapour University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
41
|
Sharma R, Jadhav M, Choudhary N, Kumar A, Rauf A, Gundamaraju R, AlAsmari AF, Ali N, Singla RK, Sharma R, Shen B. Deciphering the impact and mechanism of Trikatu, a spices-based formulation on alcoholic liver disease employing network pharmacology analysis and in vivo validation. Front Nutr 2022; 9:1063118. [PMID: 36466417 PMCID: PMC9709420 DOI: 10.3389/fnut.2022.1063118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Trikatu Churna (TC) comprising Zingiber officinale rhizome, Piper longum, and Piper nigrum fruit, is effective in treating liver diseases and has high nutraceutical values. However, the efficacy of TC in treating alcoholic liver disease (ALD) and its mechanism remain largely unknown. This study evaluated the hepatoprotective effects of different doses of TC as well as to identify the bioactive components and determine their mechanism of action against ethanol-induced ALD. A compound-target network analysis model of TC was established to identify its potential bioactive compounds and pathways that might regulate its hepatoprotective effects. Further, in-vivo studies were performed to validate the potential of TC (200 mg/kg and 400 mg/kg b.w.) in the treatment and management of ALD. The study revealed that both the dosages of TC demonstrate significant (p > 0.0001) hepatoprotective effects by improving body weight, total bilirubin, serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), serum alkaline phosphate (ALP), total cholesterol, total protein, globulin, albumin, and liver morphology. The High-performance thin-layer chromatography (HPTLC) fingerprinting of TC showed the presence of piperine. Network pharmacology identifies the role of TC in regulating various signaling processes including Advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE), Hypoxia-inducible factors (HIF-1), Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-Kappa B), and Phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling to exert its anti-inflammatory, antioxidant and anti-apoptotic role in managing ALD. Based on the bioinformatics analysis, some of the key targets of TC were found to be Prostaglandin-Endoperoxide Synthase 2 (PTGS2) or Cyclooxygenase-2 (COX-2), Sirtuin 1 (SRT1), and caspase-3. These effects may serve as a novel therapeutic option for the treatment of ALD. These preclinical validation studies for the ethnopharmacological potential of TC in ALD treatment further paved the way for researchers to perform next-level translational and clinical studies. Further, in-depth experimental studies for the validation of these bioinformatics-based results will give a clearer picture of mechanisms.
Collapse
Affiliation(s)
- Ruchi Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh, India
| | - Mangala Jadhav
- Department of Rasa Shastra and Bhaishajya Kalpana, R. A. Podar Ayurvedic Medical College, Mumbai, India
| | - Neha Choudhary
- Centre for Computational Biology and Bioinformatics, Central University of Himachal Pradesh, Dharamsala, Himachal Pradesh, India
| | - Arun Kumar
- Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), New Delhi, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Pakistan
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh, India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Hussain Y, Singh J, Raza W, Meena A, Rajak S, Sinha RA, Luqman S. Purpurin ameliorates alcohol-induced hepatotoxicity by reducing ROS generation and promoting Nrf2 expression. Life Sci 2022; 309:120964. [PMID: 36115584 DOI: 10.1016/j.lfs.2022.120964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION AND AIM Purpurin, a naturally occurring anthraquinone isolated from the roots of Rubia cordifolia, exhibits anti-cancer, anti-genotoxic, anti-microbial, neuromodulatory and photodynamic activity. However, purpurin's in vivo and in vitro antioxidant mechanism remains unexplored. The present study explores the anti-oxidative mechanism of purpurin under the influence of alcohol using in vivo and in vitro test systems. METHODS Mice hepatocytes and alcohol-induced liver toxicity model were used to evaluate the effect of purpurin. The non-enzymatic and enzymatic oxidative stress markers were estimated by the colorimetric method. The reactive oxygen species (ROS) were quantified in mitochondria and cells using flow cytometer. Real-time PCR and western blotting were used to quantify cytochrome 450 subtype 2E1 (CYP2E1) and Nrf2 expression in the liver tissue of mice. In silico studies were performed through receptor-ligand binding interaction. KEY FINDINGS Purpurin effectively reduced total cellular and mitochondrial ROS in primary hepatocytes and WRL-68 cells. It prevented alcohol-induced ROS-dependent biochemical and cellular insults observed by analysing the serum glutamic pyruvic transaminase (SGPT), glutamic-oxaloacetic transaminase (SGOT) levels and CYP2E1 expression in liver tissue of alcohol-administered mice. Moreover, it also restored the activity of antioxidant enzymes. Its antioxidant effect was established by glutathione and ROS-dependent mechanisms using buthionine sulfoximine and N-acetyl cysteine. Along with alcohol, purpurin up-regulated Nrf2 expression in hepatocytes. SIGNIFICANCE This work confirmed the ameliorative effect of purpurin for alcohol-induced hepatotoxicity by drabbing free radicals and curbing oxidative stress via activation of antioxidant signalling pathways.
Collapse
Affiliation(s)
- Yusuf Hussain
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Jyoti Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Jawaharlal Nehru University, New Delhi 110067, India
| | - Waseem Raza
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Jawaharlal Nehru University, New Delhi 110067, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
43
|
Li Piani L, Chiaffarino F, Cipriani S, Viganò P, Somigliana E, Parazzini F. A systematic review and meta-analysis on alcohol consumption and risk of endometriosis: an update from 2012. Sci Rep 2022; 12:19122. [PMID: 36352037 PMCID: PMC9645754 DOI: 10.1038/s41598-022-21173-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022] Open
Abstract
Endometriosis is a complex and chronic disease, whose multifactorial nature has encouraged a deep investigation on the role of lifestyle factors. A strong association between alcohol intake and endometriosis risk has already been shown. We aimed to confirm this association, considering the updated literature. 23 eligible studies were identified through comprehensive literature search of PubMed and EMBASE (May 2012-October 2021). A borderline statistical significance was found comparing any alcohol consumption with no consumption (unadjusted OR 1.14; 95% CI: 0.99-1.31, p = 0.06), in contrast with a previous meta-analysis. However, we confirmed the significant association between moderate alcohol intake and endometriosis (unadjusted OR 1.22, 95% CI: 1.03-1.45, p = 0.02), also performing a sensitivity analysis (unadjusted OR 1.27, 95% CI: 1.04-1.54). Our partly divergent evidence reflects the tough challenge of isolating the impact of specific factors on the natural history of multifactorial diseases. Indeed, on one hand alcohol could be adopted by patients as a self-management therapy and on the other, it could favor the disease, promoting positive feedback with inflammatory mediators and oxidative stress. Our study encourages further investigation on the role of modifiable lifestyle factors and highlights the opportunity to adopt them to prevent or at least limit endometriosis progression.
Collapse
Affiliation(s)
- Letizia Li Piani
- grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy ,grid.414818.00000 0004 1757 8749Infertility Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via M. Fanti, 6, 20122 Milan, Italy
| | - Francesca Chiaffarino
- grid.414818.00000 0004 1757 8749Gynecology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Sonia Cipriani
- grid.414818.00000 0004 1757 8749Gynecology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Paola Viganò
- grid.414818.00000 0004 1757 8749Infertility Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via M. Fanti, 6, 20122 Milan, Italy
| | - Edgardo Somigliana
- grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy ,grid.414818.00000 0004 1757 8749Infertility Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via M. Fanti, 6, 20122 Milan, Italy
| | - Fabio Parazzini
- grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
44
|
Hu XW, Li XM, Wang AM, Fu YM, Zhang FJ, Zeng F, Cao LP, Long H, Xiong YH, Xu J, Li J. Caffeine alleviates acute liver injury by inducing the expression of NEDD4L and deceasing GRP78 level via ubiquitination. Inflamm Res 2022; 71:1213-1227. [PMID: 35802146 DOI: 10.1007/s00011-022-01603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2022] [Accepted: 06/15/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Acute liver injury is liver cell injury that occurs rapidly in a short period of time. Caffeine has been shown to maintain hepatoprotective effect with an unclear mechanism. Endoplasmic reticulum stress (ERS) has significant effects in acute liver injury. Induction of GRP78 is a hallmark of ERS. Whether or not caffeine's function is related to GRP78 remains to be explored. METHODS Acute liver injury model was established by LPS-treated L02 cells and in vivo administration of LPS/D-Gal in mice. Caffeine was pre-treated in L02 cells or mice. Gene levels was determined by real-time PCR and western blot. Cell viability was tested by CCK-8 assay and cell apoptosis was tested by flow cytometry. The interaction of GRP78 and NEDD4L was determined by Pull-down and co-immunoprecipitation (Co-IP) assay. The ubiquitination by NEDD4L on GRP78 was validated by in vitro ubiquitination assay. RESULTS Caffeine protected liver cells against acute injury induced cell apoptosis and ERS both in vitro and in vivo. Suppression of GRP78 could block the LPS-induced cell apoptosis and ERS. NEDD4L was found to interact with GRP78 and ubiquitinate its lysine of 324 site directly. Caffeine treatment induced the expression of NEDD4L, resulting in the ubiquitination and inhibition of GRP78. CONCLUSION Caffeine mitigated the acute liver injury by stimulating NEDD4L expression, which inhibited GRP78 expression via ubiquitination at its K324 site. Low dose of caffeine could be a promising therapeutic treatment for acute liver injury.
Collapse
Affiliation(s)
- Xing-Wang Hu
- Department of Emergency, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Xiang-Min Li
- Department of Infectious Diseases/Hunan Provincial Key Laboratory of Viral Hepatitis, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Ai-Min Wang
- Department of Infectious Diseases/Hunan Provincial Key Laboratory of Viral Hepatitis, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Yong-Ming Fu
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Fang-Jie Zhang
- Department of Infectious Diseases/Hunan Provincial Key Laboratory of Viral Hepatitis, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Feng Zeng
- Department of Infectious Diseases/Hunan Provincial Key Laboratory of Viral Hepatitis, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Li-Ping Cao
- Department of Infectious Diseases/Hunan Provincial Key Laboratory of Viral Hepatitis, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Hui Long
- Department of Infectious Diseases/Hunan Provincial Key Laboratory of Viral Hepatitis, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Ying-Hui Xiong
- Department of Emergency, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Ji Xu
- Department of Infectious Diseases/Hunan Provincial Key Laboratory of Viral Hepatitis, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Jia Li
- Department of Infectious Diseases/Hunan Provincial Key Laboratory of Viral Hepatitis, Xiangya Hospital Central South University, Changsha, 410008, Hunan Province, People's Republic of China.
| |
Collapse
|
45
|
Blood Cell Responses Following Heavy Alcohol Consumption Coincide with Changes in Acute Phase Reactants of Inflammation, Indices of Hemolysis and Immune Responses to Ethanol Metabolites. Int J Mol Sci 2022; 23:ijms232112738. [PMID: 36361528 PMCID: PMC9656529 DOI: 10.3390/ijms232112738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Aberrations in blood cells are common among heavy alcohol drinkers. In order to shed further light on such responses, we compared blood cell status with markers of hemolysis, mediators of inflammation and immune responses to ethanol metabolites in alcohol-dependent patients at the time of admission for detoxification and after abstinence. Blood cell counts, indices of hemolysis (LDH, haptoglobin, bilirubin), calprotectin (a marker of neutrophil activation), suPAR, CD163, pro- and anti-inflammatory cytokines and autoantibodies against protein adducts with acetaldehyde, the first metabolite of ethanol, were measured from alcohol-dependent patients (73 men, 26 women, mean age 43.8 ± 10.4 years) at baseline and after 8 ± 1 days of abstinence. The assessments also included information on the quantities of alcohol drinking and assays for biomarkers of alcohol consumption (CDT), liver function (AST, ALT, ALP, GGT) and acute phase reactants of inflammation. At baseline, the patients showed elevated values of CDT and biomarkers of liver status, which decreased significantly during abstinence. A significant decrease also occurred in LDH, bilirubin, CD163 and IgA and IgM antibodies against acetaldehyde adducts, whereas a significant increase was noted in blood leukocytes, platelets, MCV and suPAR levels. The changes in blood leukocytes correlated with those in serum calprotectin (p < 0.001), haptoglobin (p < 0.001), IL-6 (p < 0.02) and suPAR (p < 0.02). The changes in MCV correlated with those in LDH (p < 0.02), MCH (p < 0.01), bilirubin (p < 0.001) and anti-adduct IgG (p < 0.01). The data indicates that ethanol-induced changes in blood leukocytes are related with acute phase reactants of inflammation and release of neutrophil calprotectin. The studies also highlight the role of hemolysis and immune responses to ethanol metabolites underlying erythrocyte abnormalities in alcohol abusers.
Collapse
|
46
|
Zhu Q, Zhuo H, Yang L, Ouyang H, Chen J, Liu B, Huang H. A Peptide HEPFYGNEGALR from Apostichopus japonicus Alleviates Acute Alcoholic Liver Injury by Enhancing Antioxidant Response in Male C57BL/6J Mice. Molecules 2022; 27:molecules27185839. [PMID: 36144575 PMCID: PMC9503860 DOI: 10.3390/molecules27185839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 12/08/2022] Open
Abstract
Liver-related disease caused by alcohol is a frequent disorder of the hepatic tract. Heavy consumption of alcohol in a short period causes oxidative damage to the liver. Sea cucumber is abundant in nutrients and its various extracts have been studied for antioxidant properties. One peptide was isolated and identified from Apostichopus japonicus in our recent study. We investigated the benefits of the peptide in a model of acute ethanol-induced male C57BL/6J mice. Dietary intake of the peptide could attenuate hepatomegaly, hepatitis and the accumulation of lipid droplets, and increase antioxidant enzyme activities in mice with acute alcoholic liver injury. The results indicated that a 20 mg/kg peptide supplement could activate the Nrf2/HO-1 pathway and block the nuclear translocation of NF-κB to alleviate oxidative stress and inflammation. In addition, the preventive effects of peptide supplementation may be related to autophagy. This study suggests that dietary supplementation with a sea cucumber-derived peptide is one of the potential candidates to alleviate acute alcoholic liver injury.
Collapse
Affiliation(s)
- Qiliang Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huiling Zhuo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lamei Yang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haohong Ouyang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jun Chen
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (B.L.); (H.H.); Tel.: +86-135-8058-5585 (B.L.); +86-135-7090-8699 (H.H.)
| | - Hongliang Huang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (B.L.); (H.H.); Tel.: +86-135-8058-5585 (B.L.); +86-135-7090-8699 (H.H.)
| |
Collapse
|
47
|
Morin-VitaminE-β-CyclodextrinInclusionComplexLoadedChitosanNanoparticles (M-Vit.E-CD-CSNPs) Ameliorate Arsenic-Induced Hepatotoxicityina Murine Model. Molecules 2022; 27:molecules27185819. [PMID: 36144555 PMCID: PMC9504860 DOI: 10.3390/molecules27185819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
Abstract
The special features of cyclodextrins (CDs), hydrophilic outer surfaces and hydrophobic inner surfaces, allow for development of inclusion complexes. The two bioactive strong antioxidant hepatoprotective compounds, Morin and vitamin E, are water insoluble. The present study aimed to prepare Morin-vitamin E-β-cyclodextrin inclusion complex loaded chitosan nanoparticles (M-Vit.E-CD-CS NPs) and to examine their hepatoprotective efficacy against arsenic-induced toxicity in a murine model. The NPs were characterized by FTIR, DLS, NMR, DSC, XRD, AFM, and a TEM study. The NPs were spherical in shape, 178 ± 1.5 nm in size with a polydispersity index (PDI) value of 0.18 and a zeta potential value of −22.4 ± 0.31 mV, with >50% encapsulation and drug loading efficacy. Mice were exposed to arsenic via drinking water, followed by treatment without or with the NPs on every alternate day up to 30 days by oral gavaging. Administration of NPs inhibited the arsenic-induced elevation of liver function markers, inflammatory and proapoptotic factors, reactive oxygen species (ROS) production, alteration in the level of blood parameters and antioxidant factors, and liver damage, which was measured by different biochemical assays, ELISA, Western blot, and histological study. Organ distribution of nanoparticles was measured by HPLC. M-Vit.E-CD-CS NPs showing potent hepatoprotective activity may be therapeutically beneficial.
Collapse
|
48
|
Khosravi-Farsani S, Zaminy A, Kazemi S, Hashemzadeh-Chaleshtori M. Mesenchymal stem cells versus their conditioned medium in the treatment of ischemia/reperfusion injury: Evaluation of efficacy and hepatic specific gene expression in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:799-807. [PMID: 36033951 PMCID: PMC9392563 DOI: 10.22038/ijbms.2022.62642.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/02/2022] [Accepted: 06/26/2022] [Indexed: 11/05/2022]
Abstract
Objectives The mechanisms underlying the beneficial effects of MSCs on hepatic I/R injury are still poorly described, especially the changes in hepatocyte gene expression. In this study, the effect of bone marrow-derived mesenchymal stem cells (BMSCs) and adipose tissue-derived mesenchymal stem cells (AMSCs) and their conditioned medium on hepatocyte gene expression resulted by I/R shock were investigated. Materials and Methods Liver ischemia models were induced by clamping in experimental groups. Experimental groups received MSCs or conditioned medium treatments and the control group received Dulbecco's Modified Eagle Medium (DMEM). During 1, 24 hr, and 1 week after treatment, the serum levels of alanine aminotransferase (ALT), aspartate transaminase (AST) and lactate dehydrogenase (LDH) enzymes and tissue catalase activity (CAT) were measured. Gene expression of a number of hepatocyte-specific genes (Alb, Afp, and Ck8) and Icam-1 which is upregulated under inflammatory conditions were also evaluated in 5, 24 hr, and 1-week intervals after I/R insult. Results In this study, liver enzymes showed a much more shift in the control group than treated groups and it was more noticeable 5 hr post-treatment. Moreover, gene expression pattern of the control group underwent changes after I/R injury. However, treated groups gene expression analysis met a steady trend after I/R insult. Conclusion Our finding shows that stem cell treatment has better curative effects than conditioned medium. BMSCs, AMSCs or BMSC and AMSC-derived bioactive molecules injection have potential to be considered as a therapeutic approach for treating acute liver injury.
Collapse
Affiliation(s)
- Somayeh Khosravi-Farsani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran, Department of Anatomical Sciences, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arash Zaminy
- Burn and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Sedigheh Kazemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Hashemzadeh-Chaleshtori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran,Corresponding author: Morteza Hashemzadeh-Chaleshtori. Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran. Tel: +98-38-33331471;
| |
Collapse
|
49
|
Park SH, Lee YS, Sim J, Seo S, Seo W. Alcoholic liver disease: a new insight into the pathogenesis of liver disease. Arch Pharm Res 2022; 45:447-459. [PMID: 35761115 DOI: 10.1007/s12272-022-01392-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2021] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
Excessive alcohol consumption contributes to a broad clinical spectrum of liver diseases, from simple steatosis to end-stage hepatocellular carcinoma. The liver is the primary organ that metabolizes ingested alcohol and is exquisitely sensitive to alcohol intake. Alcohol metabolism is classified into two pathways: oxidative and non-oxidative alcohol metabolism. Both oxidative and non-oxidative alcohol metabolisms and their metabolites have toxic consequences for multiple organs, including the liver, adipose tissue, intestine, and pancreas. Although many studies have focused on the effects of oxidative alcohol metabolites on liver damage, the importance of non-oxidative alcohol metabolites in cellular damage has also been discovered. Furthermore, extrahepatic alcohol effects are crucial for providing additional information necessary for the progression of alcoholic liver disease. Therefore, studying the effects of alcohol-producing metabolites and interorgan crosstalk between the liver and peripheral organs that express ethanol-metabolizing enzymes will facilitate a comprehensive understanding of the pathogenesis of alcoholic liver disease. This review focuses on alcohol-metabolite-associated hepatotoxicity due to oxidative and non-oxidative alcohol metabolites and the role of interorgan crosstalk in alcoholic liver disease pathogenesis.
Collapse
Affiliation(s)
- Seol Hee Park
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University Medical Center, Seoul, Republic of Korea
| | - Jaemin Sim
- Lab of Hepatotoxicity, College of Pharmacy, Ewha Womans University, #52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03765, Republic of Korea
| | - Seonkyung Seo
- Lab of Hepatotoxicity, College of Pharmacy, Ewha Womans University, #52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03765, Republic of Korea
| | - Wonhyo Seo
- Lab of Hepatotoxicity, College of Pharmacy, Ewha Womans University, #52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03765, Republic of Korea.
| |
Collapse
|
50
|
Mondal S, Das S, Mahapatra PK, Saha KD. Morin encapsulated chitosan nanoparticles (MCNPs) ameliorate arsenic induced liver damage through improvement of the antioxidant system and prevention of apoptosis and inflammation in mice. NANOSCALE ADVANCES 2022; 4:2857-2872. [PMID: 36132010 PMCID: PMC9419452 DOI: 10.1039/d2na00167e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/17/2022] [Accepted: 04/30/2022] [Indexed: 05/31/2023]
Abstract
Chronic exposure to arsenic over a period of time induces toxicity, primarily in the liver but gradually in all systems of the body. Morin hydrate (MH; 2',3,4',5,7-pentahydroxyflavone), a potent flavonoid abundantly present in plants of the Moraceae family, is thought to be a major bioactive compound that may be used to prevent a wide range of disease pathologies including hepatotoxicity. Therapeutic applications of morin (MOR) are however seriously constrained because of its insolubility, poor bioavailability, high metabolism and rapid elimination from the human body. Nanoformulation of MOR is a possible solution to these problems. In the present study we investigated the effectiveness of morin encapsulated chitosan nanoparticles (MCNPs) against arsenic induced liver damage in mice. MNCPs with an average diameter of 124.5 nm, a zeta potential of +16.2 mV and an encapsulation efficiency of 78% were prepared. Co-treatment of MOR and MCNPs by oral gavage on alternate days reduced the serum levels of AST, ALT, and ALP that were elevated in arsenic treated mice. The efficiency of MCNPs was found to be nearly 4 times higher than that of free MOR. Haematological and serum biochemical parameters including lipid profiles altered by arsenic were normalized following MCNP treatment. Arsenic deposition was lowered in the presence of MCNPs. Administration of MCNPs markedly inhibited ROS generation and elevated MDA levels in arsenic exposed mice. The level of hepatic antioxidant factors such as nuclear Nrf2 (Nrf2), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), GSH peroxidase (GPx), glutathione-S-transferase (GST), heme oxygenase-1 (HO-1), and NADPH quinone oxidoreductase 1(NQO1) were markedly enhanced in the arsenic + MCNP group. Treatment by MCNPs prevented the arsenic induced damage of tissue histology. Also, MCNPs suppressed the arsenic induced pro- and anti-apoptotic parameters and attenuated the level of inflammatory mediators. Our data suggest that MCNPs are good hepatoprotective agents compared to free morin against arsenic induced toxicity and the protective effect results from its strong antioxidant, antiapoptotic and anti-inflammatory properties.
Collapse
Affiliation(s)
- Sanchaita Mondal
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology 4, Raja S.C. Mullick Road Kolkata-700032 West Bengal India
- Department of Chemistry, Jadavpur University 188, Raja S.C. Mullick Road Kolkata-700032 West Bengal India
| | - Sujata Das
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology 4, Raja S.C. Mullick Road Kolkata-700032 West Bengal India
| | - Pradip Kumar Mahapatra
- Department of Chemistry, Jadavpur University 188, Raja S.C. Mullick Road Kolkata-700032 West Bengal India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology 4, Raja S.C. Mullick Road Kolkata-700032 West Bengal India
| |
Collapse
|