1
|
Jiang T, Dong Y, Zhu W, Wu T, Chen L, Cao Y, Yu X, Peng Y, Wang L, Xiao Y, Zhong T. Underlying mechanisms and molecular targets of genistein in the management of type 2 diabetes mellitus and related complications. Crit Rev Food Sci Nutr 2024; 64:11543-11555. [PMID: 37497995 DOI: 10.1080/10408398.2023.2240886] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease caused by a complex interaction of genetic and environmental factors and is characterized by persistent hyperglycemia. Long-term hyperglycemia can cause macrovascular and microvascular damage, and compromise the heart, brain, kidney, peripheral nerves, eyes and other organs, leading to serious complications. Genistein, a phytoestrogen derived from soybean, is known for its various biological activities and therapeutic properties. Recent studies found that genistein not only has hypoglycemic activity but can also decrease insulin resistance. In addition, genistein has particular activity in the prevention and treatment of diabetic complications, such as nephropathy, cardiovascular disease, osteoarthrosis, encephalopathy and retinopathy. Therefore, the purpose of this review is to summarize the latest medical research and progress of genistein in DM and related complications and highlights its potential molecular mechanisms and therapeutic targets. Meanwhile, evidence is provided for the development and application of genistein as a potential drug or functional food in the prevention and treatment of diabetes and its related complications.
Collapse
Affiliation(s)
- Tao Jiang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| | - Yuhe Dong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Wanying Zhu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Tong Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Linyan Chen
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Yuantong Cao
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| |
Collapse
|
2
|
Bhattacharjee B, Chakrovorty A, Biswas M, Samadder A, Nandi S. To Explore the Putative Molecular Targets of Diabetic Nephropathy and their Inhibition Utilizing Potential Phytocompounds. Curr Med Chem 2024; 31:3752-3790. [PMID: 37211853 DOI: 10.2174/0929867330666230519112312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND This review critically addresses the putative molecular targets of Diabetic Nephropathy (DN) and screens effective phytocompounds that can be therapeutically beneficial, and highlights their mechanistic modalities of action. INTRODUCTION DN has become one of the most prevalent complications of clinical hyperglycemia, with individual-specific variations in the disease spectrum that leads to fatal consequences. Diverse etiologies involving oxidative and nitrosative stress, activation of polyol pathway, inflammasome formation, Extracellular Matrix (ECM) modifications, fibrosis, and change in dynamics of podocyte functional and mesangial cell proliferation adds up to the clinical complexity of DN. Current synthetic therapeutics lacks target-specific approach, and is associated with the development of inevitable residual toxicity and drug resistance. Phytocompounds provides a vast diversity of novel compounds that can become an alternative therapeutic approach to combat the DN. METHODS Relevant publications were searched and screened from research databases like GOOGLE SCHOLAR, PUBMED and SCISEARCH. Out of 4895 publications, the most relevant publications were selected and included in this article. RESULT This study critically reviews over 60 most promising phytochemical and provides with their molecular targets, that can be of pharmacological significance in context to current treatment and concomitant research in DN. CONCLUSION This review highlights those most promising phytocompounds that have the potential of becoming new safer naturally-sourced therapeutic candidates and demands further attention at clinical level.
Collapse
Affiliation(s)
- Banani Bhattacharjee
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Arnob Chakrovorty
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, India
| | - Maharaj Biswas
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| |
Collapse
|
3
|
Shirvanian K, Vali R, Farkhondeh T, Abderam A, Aschner M, Samarghandian S. Genistein Effects on Various Human Disorders Mediated via Nrf2 Signaling. Curr Mol Med 2024; 24:40-50. [PMID: 36443970 DOI: 10.2174/1566524023666221128162753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
Genistein is a flavonoid, mostly found in soybean extract and is widely used for its antioxidant and anti-inflammatory activities. Genistein can interact with estrogen receptors due to its structural similarities to estrogen. It also inhibits protein tyrosine kinases and affects a variety of intracellular signal transductions. Genistein attenuates oxidative stress via diverse cellular mechanisms. However, nuclear factor (erythroidderived 2)-like 2 (Nrf2), the main antioxidant regulator, potentiates genistein's antioxidant effects and reduces cell damage. Nrf2 includes of seven domains and controls the expression of the phase II antioxidant enzymes to decrease oxidative stress. In this review, we address findings related to Nrf2 signaling pathways in the context of genistein's effects on diverse human diseases.
Collapse
Affiliation(s)
- Kasra Shirvanian
- School of Biology, College of science, University of Tehran, Tehran, Iran
| | - Reyhaneh Vali
- Department of Biology, Faculty of Modern Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Abderam
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209 1300 Morris Park Avenue, Bronx, New York, USA
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
4
|
Ruiz de la Bastida A, Langa S, Peirotén Á, Fernández-Gonzalez R, Sánchez-Jiménez A, Maroto Oltra M, Luis Arqués J, Gutierrez-Adan A, María Landete J. Effect of fermented soy beverage in aged female mice model. Food Res Int 2023; 169:112745. [DOI: 10.1016/j.foodres.2023.112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 04/08/2023]
|
5
|
Putra IMWA, Fakhrudin N, Nurrochmad A, Wahyuono S. A Review of Medicinal Plants with Renoprotective Activity in Diabetic Nephropathy Animal Models. Life (Basel) 2023; 13:560. [PMID: 36836916 PMCID: PMC9963806 DOI: 10.3390/life13020560] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Diabetic nephropathy (DN), also recognized as diabetic kidney disease, is a kidney malfunction caused by diabetes mellitus. A possible contributing factor to the onset of DN is hyperglycemia. Poorly regulated hyperglycemia can damage blood vessel clusters in the kidneys, leading to kidney damage. Its treatment is difficult and expensive because its causes are extremely complex and poorly understood. Extracts from medicinal plants can be an alternative treatment for DN. The bioactive content in medicinal plants inhibits the progression of DN. This work explores the renoprotective activity and possible mechanisms of various medicinal plant extracts administered to diabetic animal models. Research articles published from 2011 to 2022 were gathered from several databases including PubMed, Scopus, ProQuest, and ScienceDirect to ensure up-to-date findings. Results showed that medicinal plant extracts ameliorated the progression of DN via the reduction in oxidative stress and suppression of inflammation, advanced glycation end-product formation, cell apoptosis, and tissue injury-related protein expression.
Collapse
Affiliation(s)
- I Made Wisnu Adhi Putra
- Department of Biology, University of Dhyana Pura, Badung 80351, Indonesia
- Doctorate Program of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nanang Fakhrudin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Arief Nurrochmad
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Subagus Wahyuono
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
6
|
Wang Y, Yuan H, Wang Y. Treatment of Diabetes Nephropathy in Mice by Germinating Seeds of Euryale ferox through Improving Oxidative Stress. Foods 2023; 12:foods12040767. [PMID: 36832842 PMCID: PMC9957029 DOI: 10.3390/foods12040767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Diabetes can cause severe kidney disease. Euryale ferox seeds (Gordon Euryale) have known antioxidant, hypoglycemic, and renal protection effects. Methanol extracts of Gordon Euryale were produced from ungerminated and germinated seeds. The effect of germination on polyphenol and flavonoid content was investigated by Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Three doses of ungerminated seed extract (EKE) and germinated seed extract (GEKE) were administered to diabetic mice by gavage to explore the treatment-dependent improvement of oxidative stress, metabolic disorder, and kidney disease. Seed germination led to a 1.7 times increase in total phenol content in the extract, and the flavonoid content was increased by 1.9 times. Germination greatly increased the contents of 29 polyphenols and 1 terpenoid. At the same dose, GEKE more strongly improved hyperglycemia, abnormal lipid metabolism, and renal tissue lesions (as confirmed by histology) in the diabetic mice than EKE did. In diabetic mice receiving treatment, kidney microalbunminuria (ALB), blood urea nitrogen (BUN), serum creatinine (Scr), malondialdehyde (MDA), and glutathione (GSH) were all decreased, while activity of catalase (CAT), superoxide dismutase (SOD), and serum total antioxidant capacity (T-AOC) were increased. Both EKE and GEKE can improve diabetes and kidney disease by improving hyperglycemia, oxidative stress, and kidney physiological indicators and regulating the Keap1/Nrf2/HO-1 and AMPK/mTOR pathways. However, in both pathways, GEKE is more effective. The purpose of this study was to explore the effects of GEKE and EKE treatment on antioxidant defense and metabolic capacity of diabetic animals. Germination provides a suitable strategy to improve the medicinal value of these natural plant-based products.
Collapse
|
7
|
Agarawal K, Anant Kulkarni Y, Wairkar S. Nanoformulations of flavonoids for diabetes and microvascular diabetic complications. Drug Deliv Transl Res 2023; 13:18-36. [PMID: 35637334 DOI: 10.1007/s13346-022-01174-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
Diabetes is a chronic metabolic disease characterized by an excess of glucose in the blood. If the constant sugar level is not managed correctly in diabetic patients, it may lead to microvascular complications such as diabetic retinopathy, neuropathy, and nephropathy. There are several synthetic drugs for the management of diabetes; however, these drugs produce immense adverse effects in long-term use. Flavonoids are naturally occurring substances categorized in various classes. They are known for their diverse pharmacological actions, and one of them is prominent antihyperglycemic action and their activities in diabetic complications. In the last few decades, many research studies emphasized the potential of flavonoids in diabetes management. Nevertheless, most flavonoids are insoluble in water and cannot produce desired therapeutic action when administered in conventional dosage forms. To overcome this issue, flavonoids were formulated into different nanoformulations to enhance solubility, absorption, and therapeutic efficacy. This review article focuses on flavonoid nanoformulations and in vitro and in vivo studies reported to overcome diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Kopal Agarawal
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Yogesh Anant Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
8
|
Effects of Genistein on Common Kidney Diseases. Nutrients 2022; 14:nu14183768. [PMID: 36145144 PMCID: PMC9506319 DOI: 10.3390/nu14183768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/16/2022] Open
Abstract
Genistein is a naturally occurring phytoestrogen (soy or soybean products) that is classified as an isoflavone, and its structure is similar to that of endogenous estrogens; therefore, genistein can exert an estrogen-like effect via estrogen receptors. Additionally, genistein is a tyrosine kinase inhibitor, which enables it to block abnormal cell growth and proliferation signals through the inhibition of tyrosine kinase. Genistein is also an angiogenesis inhibitor and an antioxidant. Genistein has effects on kidney cells, some of the kidney’s physiological functions, and a variety of kidney diseases. First, genistein exerts a protective effect on normal cells by reducing the inflammatory response, inhibiting apoptosis, inhibiting oxidative stress, inhibiting remodeling, etc., but after cell injury, the protective effect of genistein decreases or even has the opposite effect. Second, genistein can regulate renin intake to maintain blood pressure balance, regulate calcium uptake to regulate Ca2+ and Pi balances, and reduce vasodilation to promote diuresis. Third, genistein has beneficial effects on a variety of kidney diseases (including acute kidney disease, kidney cancer, and different chronic kidney diseases), such as reducing symptoms, delaying disease progression, and improving prognosis. Therefore, this paper reviews animal and human studies on the protective effects of genistein on the kidney in vivo and in vitro to provide a reference for clinical research in the future.
Collapse
|
9
|
Jain R, Bolch C, Al-Nakkash L, Sweazea KL. Systematic Review of the Impact of Genistein on Diabetes Related Outcomes. Am J Physiol Regul Integr Comp Physiol 2022; 323:R279-R288. [PMID: 35816719 DOI: 10.1152/ajpregu.00236.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes is the 8th leading cause of death in the world and the prevalence is rising in low-income countries. Cardiovascular diseases are the leading cause of death worldwide, especially for individuals with diabetes. While medications exist to treat symptoms of diabetes, lack of availability and high costs may deter their use by individuals with low incomes as well as those in low-income nations. Therefore, this systematic review was performed to determine whether genistein, a phytoestrogen found in soy products, could provide therapeutic benefits for individuals with diabetes. We searched PubMed and SCOPUS using the terms 'genistein', 'diabetes', and 'glucose' and identified 33 peer-reviewed articles that met our inclusion criteria. In general, preclinical studies demonstrated that genistein decreases body weight and circulating glucose and triglycerides concentrations while increasing insulin levels and insulin sensitivity. Genistein also delayed the onset of type 1 and type 2 diabetes. In contrast, clinical studies utilizing genistein generally reported no significant relationship between genistein and body mass, circulating glucose, A1C concentrations, or onset of type 1 diabetes. However, genistein was found to improve insulin sensitivity and serum triglyceride concentrations and delayed the onset of type 2 diabetes. In summary, preclinical and clinical studies suggest that genistein may help delay the onset of type 2 diabetes and improve several symptoms associated with the disease. Although additional research is required to confirm these findings, the results highlighted in this review provide some evidence that genistein may offer a natural approach to mitigating some of the complications associated with diabetes.
Collapse
Affiliation(s)
- Rijul Jain
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Charlotte Bolch
- Office of Research and Sponsored Programs and College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| | - Layla Al-Nakkash
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
10
|
Molecular Mechanistic Pathways Targeted by Natural Antioxidants in the Prevention and Treatment of Chronic Kidney Disease. Antioxidants (Basel) 2021; 11:antiox11010015. [PMID: 35052518 PMCID: PMC8772744 DOI: 10.3390/antiox11010015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic kidney disease (CKD) is the progressive loss of renal function and the leading cause of end-stage renal disease (ESRD). Despite optimal therapy, many patients progress to ESRD and require dialysis or transplantation. The pathogenesis of CKD involves inflammation, kidney fibrosis, and blunted renal cellular antioxidant capacity. In this review, we have focused on in vitro and in vivo experimental and clinical studies undertaken to investigate the mechanistic pathways by which these compounds exert their effects against the progression of CKD, particularly diabetic nephropathy and kidney fibrosis. The accumulated and collected data from preclinical and clinical studies revealed that these plants/bioactive compounds could activate autophagy, increase mitochondrial bioenergetics and prevent mitochondrial dysfunction, act as modulators of signaling pathways involved in inflammation, oxidative stress, and renal fibrosis. The main pathways targeted by these compounds include the canonical nuclear factor kappa B (NF-κB), canonical transforming growth factor-beta (TGF-β), autophagy, and Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid factor 2-related factor 2 (Nrf2)/antioxidant response element (ARE). This review presented an updated overview of the potential benefits of these antioxidants and new strategies to treat or reduce CKD progression, although the limitations related to the traditional formulation, lack of standardization, side effects, and safety.
Collapse
|
11
|
Wei-Yun B, Cailin Z. Genistein ameliorates hyperuricemia-associated nephropathy in hyperuricemic mice. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1996540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Bi Wei-Yun
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Department of Clinical Skills Training Center, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhu Cailin
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
12
|
Zamani-Garmsiri F, Emamgholipour S, Rahmani Fard S, Ghasempour G, Jahangard Ahvazi R, Meshkani R. Polyphenols: Potential anti-inflammatory agents for treatment of metabolic disorders. Phytother Res 2021; 36:415-432. [PMID: 34825416 DOI: 10.1002/ptr.7329] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 12/31/2022]
Abstract
Ample evidence highlights the potential benefits of polyphenols in health status especially in obesity-related metabolic disorders such as insulin resistance, type 2 diabetes, and cardiovascular diseases. Mechanistically, due to the key role of "Metainflammation" in the pathomechanism of metabolic disorders, recently much focus has been placed on the properties of polyphenols in obesity-related morbidities. This narrative review summarizes the current knowledge on the role of polyphenols, including genistein, chlorogenic acid, ellagic acid, caffeic acid, and silymarin in inflammatory responses pertinent to metabolic disorders and discusses the implications of this evidence for future directions. This review provides evidence that the aforementioned polyphenols benefit health status in metabolic disorders via direct and indirect regulation of a variety of target proteins involved in inflammatory signaling pathways. However, due to limitations of the in vitro and in vivo studies and also the lack of long-term human clinical trials studies, further high-quality investigations are required to firmly establish the clinical efficacy of the polyphenols for the prevention and management of metabolic disorders.
Collapse
Affiliation(s)
- Fahimeh Zamani-Garmsiri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Rahmani Fard
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Antimicrobial Resistance Research Center, Institute of immunology and infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Ghasem Ghasempour
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Jahangard Ahvazi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Nazari-Khanamiri F, Ghasemnejad-Berenji M. Cellular and molecular mechanisms of genistein in prevention and treatment of diseases: An overview. J Food Biochem 2021; 45:e13972. [PMID: 34664285 DOI: 10.1111/jfbc.13972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023]
Abstract
Genistein is the simplest secondary metabolite in soybeans and belongs to a group of compounds called isoflavones. It is a phytoestrogen and it makes up more than 60% of soy isoflavones. Studies have shown the anti-inflammatory, anti-apoptotic, and anti-angiogenic effects of genistein in addition to its modulatory effects on steroidal hormone receptors. In this review, we discuss the pharmacologic and therapeutic effects of genistein on various diseases. PRACTICAL APPLICATIONS: In this review, we have discussed the therapeutic effects of genistein as the main constituent of soybeans on health conditions. Its antioxidant, anti-inflammatory, anti-apoptotic and, anti-angiogenic effects need more attention. The pharmacological properties of genistein make this natural isoflavone a potential treatment for various diseases such as postmenopausal symptoms, cancer, bone, brain, and heart diseases. Special emphasis should be given to it, resulting in using it in clinical as a safe, potent, and bioactive molecule.
Collapse
Affiliation(s)
| | - Morteza Ghasemnejad-Berenji
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
14
|
Makena W, Iliya AI, Hambolu JO, Timbuak JA, Umana UE, Dibal NI. Genistein and Momordica charantia L. prevent oxidative stress and upregulate proglucagon and insulin receptor mRNA in diabetic rats. Appl Physiol Nutr Metab 2021; 47:1-10. [PMID: 34432988 DOI: 10.1139/apnm-2021-0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type 2 diabetes occurs as a result of insulin resistance and dysfunction in insulin signaling. Controlling hyperglycemia and activation of insulin signaling are important in the management of type 2 diabetes. This study aimed to evaluate the effect of genistein and Momordica charantia L. fruit (MCF) on oxidative stress, markers of inflammation, and their role in proglucagon and insulin receptor messenger RNA (mRNA) expression by real-time PCR in diabetic rats. Thirty-five albino rats were divided into 7 groups (n = 5). Group I (non-diabetic) and group II (diabetic control) were treated with distilled water, and groups III and IV received 250 mg/kg and 500 mg/kg lyophilized MCF, respectively. Groups V and VI received 10 mg/kg and 20 mg/kg genistein, respectively, while group VII received 500 mg/kg metformin. The administration lasted for 28 days. MCF and genistein significantly reduced interleukin (IL)-1β and tumor necrosis factor alpha (TNF-α) levels, which were elevated in the serum of diabetic rats. Treatment with MCF and genistein significantly increased the expression of proglucagon mRNA in the small intestine and insulin receptor mRNA in the liver of diabetic rats. In conclusion, MCF and genistein ameliorate type 2 diabetes complications by preventing the loss of insulin-positive cells, inhibiting IL-1β and TNF-α, and upregulating proglucagon and insulin receptor mRNA expression. Novelty: MCF and genistein have an inhibitory effect on diabetic induced IL-1β and TNF-α production. MCF and genistein upregulate proglucagon and insulin receptor mRNA expression.
Collapse
Affiliation(s)
- Wusa Makena
- Department of Human Anatomy, University of Maiduguri, Maiduguri, Borno State, Nigeria
- Department of Human Anatomy, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | | | | | - James Abrak Timbuak
- Department of Human Anatomy, Yusuf Maitama Sule University, Kano, Kano State, Nigeria
| | - Uduak Emmanuel Umana
- Department of Human Anatomy, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Nathan Isaac Dibal
- Department of Human Anatomy, University of Maiduguri, Maiduguri, Borno State, Nigeria
| |
Collapse
|
15
|
Hu Q, Qu C, Xiao X, Zhang W, Jiang Y, Wu Z, Song D, Peng X, Ma X, Zhao Y. Flavonoids on diabetic nephropathy: advances and therapeutic opportunities. Chin Med 2021; 16:74. [PMID: 34364389 PMCID: PMC8349014 DOI: 10.1186/s13020-021-00485-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
With the advances in biomedical technologies, natural products have attracted substantial public attention in the area of drug discovery. Flavonoids are a class of active natural products with a wide range of pharmacological effects that are used for the treatment of several diseases, in particular chronic metabolic diseases. Diabetic nephropathy is a complication of diabetes with a particularly complicated pathological mechanism that affects at least 30% of diabetic patients and represents a great burden on public health. A large number of studies have shown that flavonoids can alleviate diabetic nephropathy. This review systematically summarizes the use of common flavonoids for the treatment of diabetic nephropathy. We found that flavonoids play a therapeutic role in diabetic nephropathy mainly by regulating oxidative stress and inflammation. Nrf-2/GSH, ROS production, HO-1, TGF-β1 and AGEs/RAGE are involved in the process of oxidative stress regulation. Quercetin, apigenin, baicalin, luteolin, hesperidin, genistein, proanthocyanidin and eriodictyol were found to be capable of alleviating oxidative stress related to the aforementioned factors. Regarding inflammatory responses, IL-1, IL-6β, TNF-α, SIRT1, NF-κB, and TGF-β1/smad are thought to be essential. Quercetin, kaempferol, myricetin, rutin, genistein, proanthocyanidin and eriodictyol were confirmed to influence the above targets. As a result, flavonoids promote podocyte autophagy and inhibit the overactivity of RAAS by suppressing the upstream oxidative stress and inflammatory pathways, ultimately alleviating DN. The above results indicate that flavonoids are promising drugs for the treatment of diabetic nephropathy. However, due to deficiencies in the effect of flavonoids on metabolic processes and their lack of structural stability in the body, further research is required to address these issues. ![]()
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Caiyan Qu
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dan Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xi Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - YanLing Zhao
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
16
|
Pan L, Ding W, Li J, Gan K, Shen Y, Xu J, Zheng M. Aldehyde dehydrogenase 2 alleviates monosodium iodoacetate-induced oxidative stress, inflammation and apoptosis in chondrocytes via inhibiting aquaporin 4 expression. Biomed Eng Online 2021; 20:80. [PMID: 34362382 PMCID: PMC8349086 DOI: 10.1186/s12938-021-00917-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) is a common cause of disability among the elderly. We aimed to explore the effects of aldehyde dehydrogenase (ALDH) 2 on the progression of KOA and identifying the potential mechanisms. METHODS First, ALDH2 expression in knee joint effusion of patients with KOA and the levels of oxidative stress-related markers were determined. After ALDH2 overexpression in monosodium iodoacetate (MIA)-treated SW1353 cells, cell viability was tested with CCK-8 assay. Subsequently, oxidative stress and inflammation-associated factors were measured. Meanwhile, cell apoptosis was assessed with TUNEL staining and expression of apoptosis-related proteins was detected by western blotting. To analyze the mechanism of ALDH2 in KOA, aquaporin 4 (AQP4) expression was determined using western blotting following ALDH2-upregulation. Subsequently, AQP4 was overexpressed to evaluate the changing of oxidative stress, inflammation and apoptosis in SW1353 cells exposed to MIA with ALDH2 overexpression. RESULTS Results indicated that knee joint effusion with higher ALDH2 expression displayed lower oxidative stress. In addition, significantly upregulated ALDH2 expression was observed in MIA-treated SW1353 cells. ALDH2 overexpression oxidative stress, inflammation and apoptosis in SW1353 cells exposed to MIA. Moreover, MIA-triggered elevated expression of AQP4, which was reduced by ALDH2 overexpression. By contrast, AQP4-upregulation abrogated the inhibitory effects of ALDH2 on oxidative stress, inflammation and apoptosis in MIA-induced SW1353 cells. CONCLUSIONS ALDH2 inactivates the expression of AQP4, by which mechanism the MIA-induced oxidative stress, inflammation and apoptosis injuries were alleviated, which provides a novel insight for understanding the mechanism of KOA and a promising target for the treatment of this disease.
Collapse
Affiliation(s)
- Lingxiao Pan
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, No. 1111 Jiangnan Road, Ningbo, 315400, Zhejiang, China
| | - Wei Ding
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, No. 1111 Jiangnan Road, Ningbo, 315400, Zhejiang, China
| | - Jie Li
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, No. 1111 Jiangnan Road, Ningbo, 315400, Zhejiang, China
| | - Kaifeng Gan
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, No. 1111 Jiangnan Road, Ningbo, 315400, Zhejiang, China
| | - Yandong Shen
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, No. 1111 Jiangnan Road, Ningbo, 315400, Zhejiang, China
| | - Junxiang Xu
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, No. 1111 Jiangnan Road, Ningbo, 315400, Zhejiang, China
| | - Minzhe Zheng
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, No. 1111 Jiangnan Road, Ningbo, 315400, Zhejiang, China.
| |
Collapse
|
17
|
Current Perspectives on the Beneficial Effects of Soybean Isoflavones and Their Metabolites for Humans. Antioxidants (Basel) 2021; 10:antiox10071064. [PMID: 34209224 PMCID: PMC8301030 DOI: 10.3390/antiox10071064] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Soybeans are rich in proteins and lipids and have become a staple part of the human diet. Besides their nutritional excellence, they have also been shown to contain various functional components, including isoflavones, and have consequently received increasing attention as a functional food item. Isoflavones are structurally similar to 17-β-estradiol and bind to estrogen receptors (ERα and ERβ). The estrogenic activity of isoflavones ranges from a hundredth to a thousandth of that of estrogen itself. Isoflavones play a role in regulating the effects of estrogen in the human body, depending on the situation. Thus, when estrogen is insufficient, isoflavones perform the functions of estrogen, and when estrogen is excessive, isoflavones block the estrogen receptors to which estrogen binds, thus acting as an estrogen antagonist. In particular, estrogen antagonistic activity is important in the breast, endometrium, and prostate, and such antagonistic activity suppresses cancer occurrence. Genistein, an isoflavone, has cancer-suppressing effects on estrogen receptor-positive (ER+) cancers, including breast cancer. It suppresses the function of enzymes such as tyrosine protein kinase, mitogen-activated kinase, and DNA polymerase II, thus inhibiting cell proliferation and inducing apoptosis. Genistein is the most biologically active and potent isoflavone candidate for cancer prevention. Furthermore, among the various physiological functions of isoflavones, they are best known for their antioxidant activities. S-Equol, a metabolite of genistein and daidzein, has strong antioxidative effects; however, the ability to metabolize daidzein into S-equol varies based on racial and individual differences. The antioxidant activity of isoflavones may be effective in preventing dementia by inhibiting the phosphorylation of Alzheimer's-related tau proteins. Genistein also reduces allergic responses by limiting the expression of mast cell IgE receptors, which are involved in allergic responses. In addition, they have been known to prevent and treat various diseases, including cardiovascular diseases, metabolic syndromes, osteoporosis, diabetes, brain-related diseases, high blood pressure, hyperlipidemia, obesity, and inflammation. Further, it also has positive effects on menstrual irregularity in non-menopausal women and relieving menopausal symptoms in middle-aged women. Recently, soybean consumption has shown steep increasing trend in Western countries where the intake was previously only 1/20-1/50 of that in Asian countries. In this review, I have dealt with the latest research trends that have shown substantial interest in the biological efficacy of isoflavones in humans and plants, and their related mechanisms.
Collapse
|
18
|
The Role of Isoflavones in Type 2 Diabetes Prevention and Treatment-A Narrative Review. Int J Mol Sci 2020; 22:ijms22010218. [PMID: 33379327 PMCID: PMC7795922 DOI: 10.3390/ijms22010218] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 02/07/2023] Open
Abstract
Given the growing number of type 2 diabetic individuals and the substantial social and financial costs associated with diabetes management, every effort should be made to improve its prevention and treatment methods. There is an ongoing search for natural dietary compounds that could be used for this purpose. This narrative review focuses on the therapeutic potential of isoflavones in diabetes prevention and treatment. This review summarizes (i) the molecular mechanisms of isoflavones action that are critical to their anti-diabetic properties; (ii) preclinical (in vitro and in vivo) studies evaluating the influence of isoflavones on the function of key organs involved in the pathogenesis of diabetes; and (iii) epidemiological studies and clinical trials that assessed the effectiveness of isoflavones in the prevention and treatment of type 2 diabetes in humans. Apart from discussing the effects of isoflavones on the function of organs “classically” associated with the pathogenesis of diabetes (pancreas, liver, muscles, and adipose tissue), the impact of these compounds on other organs that contribute to the glucose homeostasis (gastrointestinal tract, kidneys, and brain) is also reviewed.
Collapse
|
19
|
Makena W, Hambolu JO, Timbuak JA, Umana UE, Iliya AI, Dibal NI. Mormodica charantia L. fruit and Genistein ameliorates type 2 diabetes in rats by preventing lipid accumulation, insulin resistance and enhancing beta cell function. J Diabetes Metab Disord 2020; 19:1303-1310. [PMID: 33553029 PMCID: PMC7843820 DOI: 10.1007/s40200-020-00648-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The present study was aimed at evaluating the role of Momordica charantia L. fruit and Genistein on beta cell, insulin resistance/sensitivity and lipid profile in type 2 diabetic rats. METHODS Thirty-five (35) albino rats were divided into seven (7) groups of 5 rats each comprising of five (5) non-diabetic and thirty (30) diabetic rats. Groups 1 and 2 served as the normal control and diabetic control groups respectively and received distill water, groups 3 and 4 received Mormodica charantia L. at 250 mg/kg and 500 mg/kg respectively. Groups 5 and 6 received Genistein at 10 mg/kg and 20 mg/kg respectively while group 7 received Metformin at 500 mg/kg the experiment lasted for four weeks. All the rats were euthanized at the end of the fourth week. RESULTS Lipid profile, glucose and insulin levels were determined from the analysis of serum parameters and the histology of the pancreas. A significant reduction (p < 0.05) in blood glucose levels was noticed in rats that received Momordica charantia L. (MC) and genistein when compared with diabetic control rats. A significant decrease (p < 0.05) in cholesterol, triglyceride, low density lipoprotein (LDL) and very low density lipoprotein (VLDL) levels were also noted in rats that received MC and Genistein when compared with the diabetic control rats. MC and Genistein significantly increased (P < 0.05) serum insulin level compared to the diabetic control rats. MC and Genistein significantly decreased (p < 0.05) homeostatic model assessment-insulin resistance (HOMA-IR) level compared with the diabetic control group. Pancreas of rats that received MC and Genistein showed regenerating beta-cells. CONCLUSION Momordica charantia L. fruit and Genistein were able to enhance beta cell function and prevent lipid accumulation and insulin resistance in type 2 diabetic rats.
Collapse
Affiliation(s)
- Wusa Makena
- Department of Human Anatomy, Ahmadu Bello University, Zaria, Kaduna State Nigeria
- Department of Human Anatomy, University of Maiduguri, Maiduguri, Borno State Nigeria
| | - Joseph O. Hambolu
- Department of Veterinary Anatomy, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | - James A. Timbuak
- Department of Human Anatomy, Yusuf Maitama Sule University, Kano, Kano State Nigeria
| | - Uduak E. Umana
- Department of Human Anatomy, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | - Abdullahi I. Iliya
- Department of Human Anatomy, Federal University Dutse, Dutse, Jigawa State Nigeria
| | - Nathan I. Dibal
- Department of Human Anatomy, University of Maiduguri, Maiduguri, Borno State Nigeria
| |
Collapse
|
20
|
NFKB1 gene rs28362491 ins/del variation is associated with higher susceptibility to myocardial infarction in a Chinese Han population. Sci Rep 2020; 10:19518. [PMID: 33177541 PMCID: PMC7658993 DOI: 10.1038/s41598-020-72877-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Myocardial infarction (MI), the leading cause of mortality and disability worldwide, is a disease in which multiple environmental and genetic factors are involved. Recently, researches suggested that insertion/deletion (ins/del) variation of NFKB1 gene rs28362491 is a functional polymorphism. In the present study, we aimed to explore the relation between variation of NFKB1 gene rs28362491 and MI by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 359 MI patients and 1085 control participants. Gensini score was used to evaluate the degree of coronary artery stenosis in MI patients. The plasma levels of interleukin-6 (IL-6), IL-8, malonaldehyde (MDA) and superoxide dismutase (SOD) were randomly measured by ELISA both in MI patients and control participants. We found that the detected frequencies of D allele (41.2% vs. 36.4%, P = 0.021) and DD genotype (17.5% vs. 12.0%, P = 0.022) were significantly higher in MI patients than in control participants. Compared with II or ID genotype carriers, the Gensini score in MI patients with DD genotype was 32-43% higher (both P < 0.001). Moreover, DD genotype carries had more diseased coronary arteries (P = 0.001 vs. II or ID genotype). Of note, IL-6 levels in MI patients carrying DD genotype were significantly higher than that in control participants and other genotype carriers in MI patients (both P < 0.05). In conclusion, NFKB1 gene rs28362491 DD genotype was associated with a higher risk of MI and more severe coronary artery lesion, which also had a potential influence on the level of inflammatory cytokine IL-6.
Collapse
|
21
|
Xi XJ, Chen SH, Mi H. Aldh2 gene reduces oxidative stress in the bladder by regulating the NF-κB pathway in a mouse model of ketamine-induced cystitis. Exp Ther Med 2020; 20:111. [PMID: 33005240 PMCID: PMC7523278 DOI: 10.3892/etm.2020.9239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
Aldehyde dehydrogenase 2 (aldh2) serves an important role in the development of organ injury. Therefore, the present study investigated the effects of aldh2 on the oxidative stress response in a mouse model of ketamine-induced cystitis (KIC). A total of 60 8-week-old male Institute of Cancer Research wild-type (WT) mice and 45 aldh2 knock-out (KO) mice were randomized to receive low-dose ketamine (30 mg/kg), high-dose ketamine (60 mg/kg) or normal saline (controls). At 4, 8 and 12 weeks post-injection, bladder tissues were harvested and used to investigate the protective mechanisms of aldh2 on bladder function. The results demonstrated that aldh2 KO mice exhibited significant weight loss following chronic ketamine injection compared with that in WT mice. Furthermore, ketamine treatment increased the urination rate (P<0.05), pathological score (P<0.05), levels of the oxidative stress product malondialdehyde (P<0.05) in addition to reducing the expression of the anti-oxidative stress enzyme superoxide dismutase (P<0.05) and glutathione-SH (P<0.05). Oxidative stress in aldh2 KO mice was also found to significantly enhance the expression of proteins associated with the NF-κB signaling pathway, which promoted the expression of inducible nitric oxide synthase (P<0.05) and cyclooxygenase-2 (P<0.05) further. Finally, aldh2 KO mice demonstrated higher severity of fibrosis in the submucosal and muscular layers of the bladder. In conclusion, the present study suggests that aldh2 serves a protective role in preventing inflammation and fibrosis in KIC.
Collapse
Affiliation(s)
- Xiao Jian Xi
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shao Hua Chen
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hua Mi
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
22
|
Ayinde KS, Olaoba OT, Ibrahim B, Lei D, Lu Q, Yin X, Adelusi TI. AMPK allostery: A therapeutic target for the management/treatment of diabetic nephropathy. Life Sci 2020; 261:118455. [PMID: 32956662 DOI: 10.1016/j.lfs.2020.118455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
Diabetic nephropathy (DN) is a chronic complication of diabetes mellitus (DM) with approximately 30-40% of patients with DM developing nephropathy, and it is the leading cause of end-stage renal diseases and diabetic morbidity. The pathogenesis of DN is primarily associated with irregularities in the metabolism of glucose and lipid leading to hyperglycemia-induced oxidative stress, which has been a major target together with blood pressure regulation in the control of DN progression. However, the regulation of 5' adenosine monophosphate-activated protein kinase (AMPK), a highly conserved protein kinase for maintaining energy balance and cellular growth and repair has been implicated in the development of DM and its complications. Therefore, targeting AMPK pathway has been explored as a therapeutic strategy for the treatment of diabetes and its complication, although most of the mechanisms have not been fully elucidated. In this review, we discuss the structure of AMPK relevant to understanding its allosteric regulation and its role in the pathogenesis and progression of DN. We also identify therapeutic agents that modulate AMPK and its downstream targets with their specific mechanisms of action in the treatment of DN.
Collapse
Affiliation(s)
| | - Olamide Tosin Olaoba
- Laboratory of Functional and Structural Biochemistry, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
| | - Boyenle Ibrahim
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Du Lei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Temitope Isaac Adelusi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
23
|
Xie F, Dong J, Zhu Y, Wang K, Liu X, Chen D, Meng Q. HIF1a Inhibitor Rescues Acute-on-Chronic Liver Failure. Ann Hepatol 2020; 18:757-764. [PMID: 31402229 DOI: 10.1016/j.aohep.2019.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/01/2019] [Accepted: 03/06/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION AND OBJECTIVES Hypoxia-inducible factor-1α is critically involved in the pathogenesis of liver diseases. Its inhibitor genistein attenuated D-galactosamine (D-GalN)-induced liver damage. However, the role of genistein in acute-on-chronic liver failure (ACLF) is unclear. The influence of genistein on reactive oxygen species (ROS) and hepatocyte functions were evaluated in a rat model of ACLF. MATERIAL AND METHODS Genistein [20mg/ (kg. day)]/coenzyme Q10 [10mg/ (kg. day)]/lipoic acid [20mg/ (kg. day)] was administered via the intra-gastric route daily for 6 weeks as co-treatment to the rats in the experimental groups. Then, 100μg/kg LPS combined with 0.5g/kg D-GalN was injected intraperitoneally to attack the rats. RESULTS Genistein significantly attenuated LPS/D-GalN-induced ACLF, characterized by ameliorated gross appearance and microscopic histopathology of liver, reduced AST level in serum, whereas increased levels of ATP, ADP/O, and respiratory control ratio (RCR) in mitochondria. Genistein suppressed necrosis and ROS production. CONCLUSION These results suggested that genistein could protect against ACLF through inhibiting cellular ROS production and necrosis, improving RCR, and decreasing permeability transition pores in mitochondrial, which was similar as mitochondrial protective agent coenzyme Q10.
Collapse
Affiliation(s)
- Fang Xie
- Beijing You an Hospital, Capital Medical University, Beijing, China; Beijing Institute of Hepatology, Beijing, P.R. China
| | - Jinling Dong
- Beijing You an Hospital, Capital Medical University, Beijing, China
| | - Yueke Zhu
- Beijing You an Hospital, Capital Medical University, Beijing, China
| | - Kefei Wang
- Beijing You an Hospital, Capital Medical University, Beijing, China
| | - Xuemei Liu
- Beijing You an Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing You an Hospital, Capital Medical University, Beijing, China; Beijing Institute of Hepatology, Beijing, P.R. China
| | - Qinghua Meng
- Beijing You an Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
24
|
Jheng HF, Hayashi K, Matsumura Y, Kawada T, Seno S, Matsuda H, Inoue K, Nomura W, Takahashi H, Goto T. Anti-Inflammatory and Antioxidative Properties of Isoflavones Provide Renal Protective Effects Distinct from Those of Dietary Soy Proteins against Diabetic Nephropathy. Mol Nutr Food Res 2020; 64:e2000015. [PMID: 32281228 DOI: 10.1002/mnfr.202000015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/25/2020] [Indexed: 01/29/2023]
Abstract
SCOPE Dietary soy reportedly protects from diabetic nephropathy (DN), but its active components and mechanism of action remain unknown. METHODS AND RESULTS In this study, KKAy mice are fed three types of diet: Dietary soy isoflavones with soy protein (Soy-IP) diet, reduced isoflavones soy protein (RisoP), and oral administration of isoflavones aglycones (IsoAgc). Albuminuria and glycosuria are decreased only in the soy-IP group. The risoP group show reduced expansion of mesangial matrix and renal fibrosis, the IsoAgc group show renal anti-fibrotic and anti-inflammatory effects; however, these renal pathological changes are repressed in the soy-IP group, suggesting the distinct protective roles of soy protein or isoflavones in DN. The isoflavone genistein has a better inhibitory effect on the inflammatory response and cellular interactions in both mouse tubular cells and macrophages when exposed to high glucose and albumin (HGA). Genistein also represses HGA-induced activator protein 1 activation and reactive oxidases stress generation, accompanied by reduced NADPH oxidase (NOX) gene expression. Finally, diabetic mice show a decrease in lipid peroxidation levels in both plasma and urine, along with lower NOXs gene expression. CONCLUSION The data elucidate the detailed mechanism by which isoflavones inhibit renal inflammation and provide a potential practical adjunct therapy to restrict DN progression.
Collapse
Affiliation(s)
- Huei-Fen Jheng
- Division of Food Science and Biotechnology, Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Kanako Hayashi
- Division of Food Science and Biotechnology, Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Yasuki Matsumura
- Division of Agronomy and Horticultural Science, Laboratory of Quality Analysis and Assessment, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, 565-0871, Japan
| | - Hideo Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, 565-0871, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Wataru Nomura
- Division of Food Science and Biotechnology, Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Haruya Takahashi
- Division of Food Science and Biotechnology, Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| |
Collapse
|
25
|
Robles-Aguilar AA, Grunert O, Hernandez-Sanabria E, Mysara M, Meers E, Boon N, Jablonowski ND. Effect of Applying Struvite and Organic N as Recovered Fertilizers on the Rhizosphere Dynamics and Cultivation of Lupine ( Lupinus angustifolius). FRONTIERS IN PLANT SCIENCE 2020; 11:572741. [PMID: 33329631 PMCID: PMC7717983 DOI: 10.3389/fpls.2020.572741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/19/2020] [Indexed: 05/11/2023]
Abstract
Intensive agriculture and horticulture heavily rely on the input of fertilizers to sustain food (and feed) production. However, high carbon footprint and pollution are associated with the mining processes of P and K, and the artificial nitrogen fixation for the production of synthetic fertilizers. Organic fertilizers or recovered nutrients from different waste sources can be used to reduce the environmental impact of fertilizers. We tested two recovered nutrients with slow-release patterns as promising alternatives for synthetic fertilizers: struvite and a commercially available organic fertilizer. Using these fertilizers as a nitrogen source, we conducted a rhizotron experiment to test their effect on plant performance and nutrient recovery in lupine plants. Plant performance was not affected by the fertilizer applied; however, N recovery was higher from the organic fertilizer than from struvite. As root architecture is fundamental for plant productivity, variations in root structure and length as a result of soil nutrient availability driven by plant-bacteria interactions were compared showing also no differences between fertilizers. However, fertilized plants were considerably different in the root length and morphology compared with the no fertilized plants. Since the microbial community influences plant nitrogen availability, we characterized the root-associated microbial community structure and functionality. Analyses revealed that the fertilizer applied had a significant impact on the associations and functionality of the bacteria inhabiting the growing medium used. The type of fertilizer significantly influenced the interindividual dissimilarities in the most abundant genera between treatments. This means that different plant species have a distinct effect on modulating the associated microbial community, but in the case of lupine, the fertilizer had a bigger effect than the plant itself. These novel insights on interactions between recovered fertilizers, plant, and associated microbes can contribute to developing sustainable crop production systems.
Collapse
Affiliation(s)
- Ana A. Robles-Aguilar
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Jülich, Germany
| | - Oliver Grunert
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
- Greenyard Horticulture, Ghent, Belgium
| | - Emma Hernandez-Sanabria
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
- Laboratory of Molecular Bacteriology, VIB – KU Leuven Center for Microbiology, Rega Institute, Leuven, Belgium
| | - Mohamed Mysara
- Unit of Microbiology, Belgian Nuclear Research Center, StudieCentrum voor Kernenergie⋅Centre d’étude de l’Energie Nucléaire (SCK⋅CEN), Mol, Belgium
- Department of Bioscience Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Erik Meers
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
- *Correspondence: Nico Boon,
| | - Nicolai D. Jablonowski
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Jülich, Germany
- Nicolai D. Jablonowski,
| |
Collapse
|
26
|
The Effects of Genistein on Renal Oxidative Stress and Inflammation of Ovariectomized Rats. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.57149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
27
|
Carbonel AAF, Vieira MC, Simões RS, Lima PDA, Fuchs LFP, Girão ERC, Cicivizzo GP, Sasso GRS, de Moraes LOC, Soares Junior JM, Baracat EC, Simões MJ, Girão MJBC. Isoflavones improve collagen I and glycosaminoglycans and prevent bone loss in type 1 diabetic rats. Climacteric 2019; 23:75-83. [DOI: 10.1080/13697137.2019.1627314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- A. A. F. Carbonel
- Department of Morphology and Genetics, Paulista School of Medicine/Federal University of São Paulo – EPM/UNIFESP, São Paulo, Brazil
| | - M. C. Vieira
- Department of Gynecology, Paulista School of Medicine/Federal University of São Paulo – EPM/UNIFESP, São Paulo, Brazil
| | - R. S. Simões
- Department of Obstetrics and Gynecology, Medicine Faculty of University of São Paulo – FMUSP, São Paulo, Brazil
| | - P. D. A. Lima
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - L. F. P. Fuchs
- Department of Gynecology, Paulista School of Medicine/Federal University of São Paulo – EPM/UNIFESP, São Paulo, Brazil
| | - E. R. C. Girão
- Department of Gynecology, Paulista School of Medicine/Federal University of São Paulo – EPM/UNIFESP, São Paulo, Brazil
| | - G. P. Cicivizzo
- Department of Morphology and Genetics, Paulista School of Medicine/Federal University of São Paulo – EPM/UNIFESP, São Paulo, Brazil
| | - G. R. S. Sasso
- Department of Gynecology, Paulista School of Medicine/Federal University of São Paulo – EPM/UNIFESP, São Paulo, Brazil
| | - L. O. Carvalho de Moraes
- Department of Morphology and Genetics, Paulista School of Medicine/Federal University of São Paulo – EPM/UNIFESP, São Paulo, Brazil
| | - J. M. Soares Junior
- Department of Obstetrics and Gynecology, Medicine Faculty of University of São Paulo – FMUSP, São Paulo, Brazil
| | - E. C. Baracat
- Department of Obstetrics and Gynecology, Medicine Faculty of University of São Paulo – FMUSP, São Paulo, Brazil
| | - M. J. Simões
- Department of Morphology and Genetics, Paulista School of Medicine/Federal University of São Paulo – EPM/UNIFESP, São Paulo, Brazil
| | - M. J. B. C. Girão
- Department of Gynecology, Paulista School of Medicine/Federal University of São Paulo – EPM/UNIFESP, São Paulo, Brazil
| |
Collapse
|
28
|
Weng L, Zhang F, Wang R, Ma W, Song Y. A review on protective role of genistein against oxidative stress in diabetes and related complications. Chem Biol Interact 2019; 310:108665. [PMID: 31125535 DOI: 10.1016/j.cbi.2019.05.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus (DM) is metabolism related problems that share the phenotype of hyperglycemia, which is triggered by a complicated interaction of hereditary and environmental elements. It is the main reason for end-stage renal disease (ESRD), amputations of the traumatic lower extremity, and grown-up visual impairment. It additionally inclines to neurodegenerative and cardiovascular sicknesses. With an expanding rate around the world, DM may be the main motive of morbidity and mortality within the foreseeable future. The objective of treatment for DM is to inhibit mortality and difficulties through normalizing blood glucose stage. Genistein, a naturally available soy isoflavone, is accounted for to have various medical advantages credited to numerous natural capacities. In the course of recent years, various examinations have shown that genistein has hostile to diabetic impacts, specifically, direct consequences for β-cell expansion, glucose-triggered insulin discharge, and safety towards apoptosis, unbiased of its functions as an estrogen receptor agonist, cancer prevention agent, or tyrosine kinase inhibitor. The present evaluation emphases on the promising molecular and biochemical paths associated with DM complications and, specifically, the multi-target method of genistein in diminishing diabetic neuropathy, nephropathy, and retinopathy.
Collapse
Affiliation(s)
- Lihong Weng
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Fengying Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Rui Wang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Wei Ma
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Yingshi Song
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China.
| |
Collapse
|
29
|
Wang Y, Li Y, Zhang T, Chi Y, Liu M, Liu Y. Genistein and Myd88 Activate Autophagy in High Glucose-Induced Renal Podocytes In Vitro. Med Sci Monit 2018; 24:4823-4831. [PMID: 29999001 PMCID: PMC6069420 DOI: 10.12659/msm.910868] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Renal podocyte damage plays a crucial role in the development of diabetic nephropathy. Genistein is derived from a leguminous plant, and MyD88 and TRIF are adaptor molecules in the Toll-like receptor (TLR) signaling pathway, which may play a role in autophagy. In this study, we utilized an in vitro high glucose (HG)-treated podocyte model to investigate the effects and underlying mechanisms of Genistein and MyD88 or TRIF siRNA induced autophagy and renal protection. MATERIAL AND METHODS An immortalized mouse podocyte cell line was treated with HG, Genistein, chloroquine, and/or transfected with specific Myd88 and TRIF siRNAs. The formation of autophagosomes and related autophagic vacuoles were monitored by transmission electron microscopy. The expression of autophagy-related factors and podocyte structure and functional markers, including LC3, p62, p-mTOR, synaptopodin, and nephrin, were measured by Western blot, and LC3 and p-mTOR expression were also assessed by immunofluorescence. RESULTS We showed that HG transiently (after 6-h exposure) induced expression of the autophagy activation marker LC3-II in podocytes. Genistein treatment induced autophagy in both normal and HG-treated podocytes through inactivating mTOR signaling. Moreover, Genistein protected podocytes against chloroquine in HG-cultured conditions in vitro by maintaining the level of autophagy-related proteins. In addition, MyD88 siRNA downregulated expression of autophagy-related proteins, whereas Genistein treatment reversed these effects. CONCLUSIONS This study demonstrated that Genistein-induced autophagy could be a potential treatment strategy for glomerular diseases.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Nephrology, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Ying Li
- Department of Nephrology, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Tao Zhang
- Department of Nephrology, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Yanqing Chi
- Department of Nephrology, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Maodong Liu
- Department of Nephrology, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Ying Liu
- Department of Science and Education, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China (mainland)
| |
Collapse
|
30
|
Rockwood S, Broderick TL, Al-Nakkash L. Feeding Obese Diabetic Mice a Genistein Diet Induces Thermogenic and Metabolic Change. J Med Food 2018; 21:332-339. [PMID: 29261006 DOI: 10.1089/jmf.2017.0084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Obesity is associated with elevated plasma levels of glucocorticoids and reduced levels of thyroid hormones, both known to effect food intake and energy expenditure. Furthermore, tissue specific glucocorticoid metabolism is altered in obesity, increasing insulin resistance and cardiometabolic risk. The goal of this study was to examine whether these metabolic disturbances can be prevented with the isoflavone genistein in the ob/ob mouse, a model that resembles the phenotype in human obesity. Male ob/ob mice, aged 5 weeks, were fed either a genistein-rich diet (600 mg/kg) or a genistein-free diet for 4 weeks. ob/ob mice weighed 70% more than lean controls. While there was no effect of genistein on body weight, food consumption during weeks 3 and 4 was significantly increased in genistein-fed mice. This was associated with increases in body temperature and plasma levels of triiodothyronine (T3), suggesting a thermogenic effect. The hypercorticosteronism observed in the ob/ob mouse was reduced with genistein treatment. This effect was accompanied by a decrease in protein expression of renal 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) without changes in hepatic 11β-HSD1. Our results suggest that a diet containing genistein can have beneficial effects on energy expenditure, T3 production, and corticosterone status in the ob/ob mouse model of obesity.
Collapse
Affiliation(s)
- Schuyler Rockwood
- 1 Department of Biomedical Sciences, College of Health Sciences, Midwestern University , Arizona, USA
| | - Tom L Broderick
- 2 Department of Physiology, Midwestern University , Glendale, Arizona, USA
- 3 Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, Midwestern University , Glendale, Arizona, USA
| | - Layla Al-Nakkash
- 2 Department of Physiology, Midwestern University , Glendale, Arizona, USA
| |
Collapse
|
31
|
Faria WCS, Giordani MA, da Silva Arcas A, Cavenaghi DFLC, de Oliveira AP, Dos Santos JF, Barros WM. Novel soybean-based high protein bar rich in isoflavones improves insulin sensitivity in diabetic Wistar rats. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:21-32. [PMID: 29358792 DOI: 10.1007/s13197-017-2753-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/13/2017] [Accepted: 07/07/2017] [Indexed: 01/23/2023]
Abstract
This study assessed the effect of whey protein substitution with isolated soy protein in protein bar (PB) formulations at 25% (PB2), 50% (PB3), or 75% (PB1) weight/weight on the proximate and mineral composition, sensory, and antidiabetic properties. Sensory evaluation was conducted within diabetic (DB) and non-diabetic (NDB) consumers by preference ranking and acceptance test. The formulations were analysed in terms of moisture, ash, protein, lipid, carbohydrates, fibers and mineral content. The consumers did not distinguish the formulations by preference ranking test. However, the acceptability test showed a rating of 9 most frequent for PB1 (36.30%), followed by PB2 and PB3 (both 34.09%), among DB consumers. The PB1 and PB3 showed higher content of total, soluble and insoluble fibers and, PB 2 presented higher carbohydrate content. Potassium, sodium and calcium showed the highest mineral content in the formulations. PB3 was assessed for glycaemic and lipidemic control in diabetics and non-diabetics female Wistar rats, for this 20% of PB was added in the ration consumed ad libitum, besides, the rats received 100 mg/kg b. w. by gavage daily. The treatment did not reduce significantly fasting glucose, lipid profile, or peripheral glucose disposal in DB or NDB rats. However, it significantly improved insulin tolerance test values in diabetic rats. The results suggest that the formulations showed good acceptance and potentially ameliorate insulin resistance both in control group and in animal model of type II diabetes.
Collapse
Affiliation(s)
- Wanessa Costa Silva Faria
- 1Food Science and Technology Post-Graduate Program, Federal Institute of Education, Science and Technology of Mato Grosso (IFMT), Cuiabá Campus - Bela Vista, Av. Juliano da Costa Marques s/n, Bela Vista, Cuiabá, MT 78050-560 Brazil
| | - Morenna Alana Giordani
- 2Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Avenida Alexandre Ferronato, 1200, Setor Industrial, Sinop, MT 78557-267 Brazil
| | - Ariadny da Silva Arcas
- 3Food Engineering Program, Federal Institute of Education, Science and Technology of Mato Grosso (IFMT), Cuiabá Campus - Bela Vista, Av. Juliano da Costa Marques s/n, Bela Vista, Cuiabá, MT 78050-560 Brazil
| | - Daniela Fernanda Lima Carvalho Cavenaghi
- 1Food Science and Technology Post-Graduate Program, Federal Institute of Education, Science and Technology of Mato Grosso (IFMT), Cuiabá Campus - Bela Vista, Av. Juliano da Costa Marques s/n, Bela Vista, Cuiabá, MT 78050-560 Brazil
| | - Adriana Paiva de Oliveira
- 1Food Science and Technology Post-Graduate Program, Federal Institute of Education, Science and Technology of Mato Grosso (IFMT), Cuiabá Campus - Bela Vista, Av. Juliano da Costa Marques s/n, Bela Vista, Cuiabá, MT 78050-560 Brazil
| | - Jacqueline Fiuza Dos Santos
- 4Food Science and Technology Program, Department of Food and Nutrition, Federal University of Mato Grosso (UFMT), Cuiabá Campus. Av. Fernando Correa da Costa 2367, Boa Esperança, Cuiabá, MT 78060-900 Brazil
| | - Wander Miguel Barros
- 1Food Science and Technology Post-Graduate Program, Federal Institute of Education, Science and Technology of Mato Grosso (IFMT), Cuiabá Campus - Bela Vista, Av. Juliano da Costa Marques s/n, Bela Vista, Cuiabá, MT 78050-560 Brazil
| |
Collapse
|
32
|
Azarkish F, Hashemi K, Talebi A, Kamalinejad M, Soltani N, Pouladian N. Effect of the Administration of Solanum nigrum Fruit on Prevention of Diabetic Nephropathy in Streptozotocin-induced Diabetic Rats. Pharmacognosy Res 2017; 9:325-332. [PMID: 29263625 PMCID: PMC5717784 DOI: 10.4103/pr.pr_47_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Our previous study showed antidiabetic effect of aqueous extract of Solanum nigrum Linn fruit (SNE). Objective This study was designed to explore the antidiabetic and nephroprotective effects of SNE in diabetic rats. Materials and Methods Animals were divided into nine groups to undergo two experiment protocols: Two groups served as nondiabetic controls (NDCs), while the other groups had diabetes induced with a single injection of streptozotocin. SNE-treated diabetic (D-SNE) and SNE-treated controls (NDC-SNE) received 1 g/L of SNE added to the drinking water and insulin-treated diabetic (D-I) for 8 weeks. Furthermore, there were four groups (D-SNE, NDC-SNE, D-I, D) in the second protocol to examine diabetic nephropathy (DN) for 16 weeks. Blood urea nitrogen (BUN), creatinine (Cr) magnesium, nitric oxide (NO), and malondialdehyde (MDA) levels were measured. Both kidneys were isolated to measure MDA, NO levels, and renal damage. Results SNE could decrease blood glucose level in diabetic rats. In addition, SNE was more effective than insulin in controlling blood glucose. SNE could decrease BUN, Cr levels, and kidney weight and damage after 8 and 16 weeks of administration. Plasma and kidney levels of NO and MDA also decreased. Conclusion Our results support the hypothesis that SNE could play a role in the management of diabetes and the prevention of DN. SUMMARY The aqueous extract of Solanum nigrum Linn fruit (SNE) (1 g/L via drinking water) was studied on streptozotocin-induced diabetic rats to prevent diabetic nephropathy (DN). The results suggest that SNE in addition to the management of diabetes could have a beneficial effect on the prevention of DN. Abbreviations Used: SNE: Extract of Solanum nigrum Linn fruit, NDCs: Nondiabetic controls, STZ: Streptozotocin, D-SNE: SNE-treated diabetic, NDC-SNE: SNE-treated controls, D-I: Insulin-treated diabetic, BUN: Blood urea nitrogen, Cr: Creatinine, Mg: Magnesium, NO: Nitric oxide, MDA: Malondialdehyde, DN: Diabetic nephropathy, BW: Body weight, FBG: Fed blood glucose, KW: Kidney weight, TBA: Thiobarbituric acid, IPGTT: Intraperitoneal glucose tolerance test, AUC: Aria under the curve, GFR: Glomerular filtration rate.
Collapse
Affiliation(s)
- Fariba Azarkish
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kobra Hashemi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ardashir Talebi
- Department of Pathology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kamalinejad
- Department of Pharmacognosy, Faculty of Pharmacy, Shahid Bahashti University of Medical Sciences, Tehran, Iran
| | - Nepton Soltani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nima Pouladian
- English language Department, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
33
|
Daghigh F, Alihemmati A, Karimi P, Habibi P, Ahmadiasl N. Genistein preserves the lungs of ovariectomized diabetic rats: addition to apoptotic and inflammatory markers in the lung. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:1312-1317. [PMID: 29238465 PMCID: PMC5722990 DOI: 10.22038/ijbms.2017.9599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective(s): The role of isoflavones in pulmonary structure and function during menopause is not well studied. Moreover, the important role of estrogen in the physiological function of respiratory system has been revealed. Genistein, as an isoflavone, mimics estrogenic in diabetic and ovariectomized rats. Here, we hypothesized that genistein would reverse changes in the protein expression levels related to estrogen deficiency in the lung of ovariectomized diabetic rats. Materials and Methods: Wistar female rats were assigned to four experimental groups (n=10 in each group): sham, rats underwent laparotomy without removing the ovaries; OVX, rats that underwent ovariectomy; OVX.D, rats underwent bilateral ovariectomy and were fed a high-fat diet (HFD); OVX.D.G, ovariectomized diabetic rats with genistein administration (1 mg/kg /day). After ovariectomy, rats continued to feed HFD for a 4-week period. After 4 weeks of HFD feeding, a single dose of 30 mg/kg of streptozotocin was administered in the diabetic group. Genistein was administered for eight weeks. At the end of the experiment, lung tissue was removed and Western blotting technique and hematoxylin-eosin staining were used for evaluation of the lung. Results: Treatment with genistein significantly decreased inflammatory and apoptotic biomarkers in the ovariectomized diabetic rats compared to non-treated animals (P<0.05). Also, genistein exerted a protective effect in the lung architecture. Conclusion: Genistein partly reversed ovariectomy-induced changes in apoptotic and inflammatory biomarkers in the lung. Our data suggest that genistein treatment as a natural replacement therapy may prevent the estrogen deficiency effects in the lung of diabetic menopausal women.
Collapse
Affiliation(s)
- Faeze Daghigh
- Tuberculosis and Lung Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Department of Histology & Embryology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Habibi
- Department of Physiology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Naser Ahmadiasl
- Tuberculosis and Lung Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Yang R, Jia Q, Liu XF, Ma SF. Effect of genistein on myocardial fibrosis in diabetic rats and its mechanism. Mol Med Rep 2017; 17:2929-2936. [PMID: 29257312 PMCID: PMC5783512 DOI: 10.3892/mmr.2017.8268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/06/2017] [Indexed: 01/25/2023] Open
Abstract
The aim of the present study was to investigate the effects of genistein (GEN) on myocardial fibrosis in type 1 diabetic rats and explore the underlying mechanisms. Rats were divided into 4 groups: Normal control (N), diabetic control (D), low-dose GEN treatment (L) and high-dose GEN treatment (H) groups. Following 8 weeks, the ventricular hemodynamic parameters, fasting blood glucose (FBG), heart-weight to body-weight ratio (HW/BW), myocardial hydroxyproline (Hyp) content, serum creatine kinase MB isozyme (CK-MB), lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) levels were measured. The histomorphology and ultrastructure of the heart were observed. The protein expression of myocardial transforming growth factor-β1 (TGF-β1), mothers against decapentaplegic homolog (Smad)-3, phosphorylated (p)-Smad3, Smad4, collagen-I and collagen-III were estimated. Compared with the N group, while the cardiac function was decreased, the levels of FBG, HW/BW, Hyp content, CK-MB, LDH, TNF-α, IL-1β and IL-6 were increased in the D group. The myocardial histomorphological alterations and ultrastructure were damaged, and the protein expression of myocardial TGF-β1, Smad3, p-Smad3, Smad4, collagen-I and collagen-III were increased in the D group. Compared with the D group, there were no differences in the ventricular hemodynamic parameters, FBG and p-Smad3 expression in the L group, while HW/BW, Hyp content, CK-MB, LDH, TNF-α, IL-1β and IL-6 levels were decreased. The myocardial histomorphological damage was alleviated and the protein expression of TGF-β1, Smad3, Smad4, collagen-I and collagen-III was decreased in the L group. Compared with L group, excluding FBG, the aforementioned indices were improved in the H group. In conclusion, GEN can attenuate myocardial fibrosis in type 1 diabetic rats, and the underlying mechanisms may be associated with the reduction of CK-MB and LDH leakage, inhibition of the inflammatory reaction, and suppression of the TGF-β1/Smad3 signaling pathway to regulate collagen expression.
Collapse
Affiliation(s)
- Rui Yang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Qiang Jia
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xiao-Fen Liu
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Shan-Feng Ma
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
35
|
Tidke PS, Patil CR. Nrf2 activator corosolic acid meliorates alloxan induced diabetic nephropathy in mice. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
36
|
Ahmed S, Mundhe N, Borgohain M, Chowdhury L, Kwatra M, Bolshette N, Ahmed A, Lahkar M. Diosmin Modulates the NF-kB Signal Transduction Pathways and Downregulation of Various Oxidative Stress Markers in Alloxan-Induced Diabetic Nephropathy. Inflammation 2017; 39:1783-97. [PMID: 27492452 DOI: 10.1007/s10753-016-0413-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Hyperglycaemia-mediated oxidative stress plays an imperative role in the progression of diabetic nephropathy. NF-kB is an important transcription factor in eukaryotes which regulates a diverse array of cellular process, including inflammation, immunological response, apoptosis, growth and development. Increased expression of NF-kB plays a vital role in the pathogenesis of many inflammatory diseases including diabetic nephropathy. Hence, the present study was designed to explore the nephroprotective nature of diosmin by assessing the various biochemical parameters, markers of oxidative stress and proinflammatory cytokine levels in alloxan-induced diabetic Wistar rats. Type 2 diabetes was induced in Wistar rats by single intraperitoneal injection of alloxan (120 mg/kg body weight). Seventy-two hours after the conformation of diabetes (blood glucose level ≥ 250 mg/dl), the rats were segregated into four groups, each group having six animals. Diabetic rats were treated with diosmin at a dose of 50 mg and 100 mg/kg body weight respectively. After the 28th day of treatment, rats were sacrificed, blood serum, plasma and kidney tissue were collected for various biochemical analysis. Inflammatory cytokine levels were measured through ELISA kit. Diosmin treatment produces significant reduction in the blood glucose and plasma insulin level and increases the body weight when compared with diabetic rats. Elevated level of malondialdehyde (MDA) and decrease levels of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and nitric oxide (NO) were significantly restored after 28 days of diosmin treatment. Diosmin treatment group also restores the normal architecture of the kidney tissue which was confirmed by histopathological examination. Moreover, oral administration of diosmin shows a significant normalization in the level of NF-kB, proving its pivotal role in maintaining renal function. The above ameliorative effects were more pronounced with diosmin at a dose of 100 mg/kg body weight. The above results permit us to conclude that treatment with diosmin halts hyperglycaemia-mediated oxidative stress and decline in pro-inflammatory cytokines and thus has beneficial anti-diabetic activity.
Collapse
Affiliation(s)
- Sahabuddin Ahmed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Bhangagarh, Guwahati, Assam, 781032, India.
| | - Nitin Mundhe
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Bhangagarh, Guwahati, Assam, 781032, India
| | - Manash Borgohain
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Bhangagarh, Guwahati, Assam, 781032, India
| | - Liakat Chowdhury
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Bhangagarh, Guwahati, Assam, 781032, India
| | - Mohit Kwatra
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Bhangagarh, Guwahati, Assam, 781032, India
| | - Nityanand Bolshette
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, 781032, India
| | - Anwaruddin Ahmed
- Department of Pathology, Rajarajeswari Medical College and Hospital, Bangalore, Karnataka, 560074, India
| | - Mangala Lahkar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Bhangagarh, Guwahati, Assam, 781032, India.,Department of Pharmacology, Gauhati Medical College, Guwahati, Assam, 781032, India
| |
Collapse
|
37
|
Jheng HF, Hirotsuka M, Goto T, Shibata M, Matsumura Y, Kawada T. Dietary low-fat soy milk powder retards diabetic nephropathy progression via inhibition of renal fibrosis and renal inflammation. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201600461] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/08/2016] [Accepted: 10/09/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Huei-Fen Jheng
- Division of Agronomy and Horticultural Science; Laboratory of Soybean Renaissance; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| | - Motohiko Hirotsuka
- Division of Agronomy and Horticultural Science; Laboratory of Soybean Renaissance; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology; Laboratory of Molecular Function of Food; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| | - Masayuki Shibata
- Division of Agronomy and Horticultural Science; Laboratory of Soybean Renaissance; Graduate School of Agriculture; Kyoto University; Kyoto Japan
- R&D Division for Future Creation; Fuji Oil Holdings INC; Osaka Japan
| | - Yasuki Matsumura
- Division of Agronomy and Horticultural Science; Laboratory of Quality Analysis and Assessment; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology; Laboratory of Molecular Function of Food; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| |
Collapse
|
38
|
Eo H, Lee HJ, Lim Y. Ameliorative effect of dietary genistein on diabetes induced hyper-inflammation and oxidative stress during early stage of wound healing in alloxan induced diabetic mice. Biochem Biophys Res Commun 2016; 478:1021-7. [PMID: 27431618 DOI: 10.1016/j.bbrc.2016.07.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
Abstract
Among the diabetic complications, diabetic foot ulcer due to delayed wound healing is one of the most significant clinical problems. Early inflammatory stage is important for better prognosis during wound healing. Thus, regulation of inflammatory response during early stage of wound healing is main target for complete cutaneous recovery. This study investigated the role of genistein supplementation in inflammation and oxidative stress, which are related to NLRP3 inflammasome, NFκB and Nrf2 activation, during cutaneous wound healing in alloxan-induced diabetic mice. Mice with diabetes with fasting blood glucose (FBG) levels > 250 mg/dl were fed diets with AIN-93G rodent diet containing 0%, 0.025% (LG) or 0.1% (HG) genistein. After 2 weeks of genistein supplementation, excisional wounds were made by biopsy punches (4 mm). Genistein supplementation improved fasting glucose levels and wound closure rate. Moreover, genistein supplementation restored NLRP3 inflammasome (NLRP3, ASC and caspase-1) at the basal level and ameliorated both inflammation (TNFα, iNOS, COX2 and NFκB) and antioxidant defense system (Nrf2, HO-1, GPx, and catalase) during early stage of wound healing in diabetic mice. Taken together, genistein supplementation would be a potential therapeutic nutrient in prevention and treatment of delayed wound healing by modulation of inflammation and oxidative stress during inflammatory stage.
Collapse
Affiliation(s)
- Hyeyoon Eo
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Hea-Ji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
39
|
Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab (Lond) 2015; 12:60. [PMID: 26705405 PMCID: PMC4690284 DOI: 10.1186/s12986-015-0057-7] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022] Open
Abstract
Background Natural food products have been used for combating human diseases for thousands of years. Naturally occurring flavonoids including flavones, flavonols, flavanones, flavonols, isoflavones and anthocyanidins have been proposed as effective supplements for management and prevention of diabetes and its long-term complications based on in vitro and animal models. Aim To summarize the roles of dietary flavonoids in diabetes management and their molecular mechanisms. Findings Tremendous studies have found that flavonoids originated from foods could improve glucose metabolism, lipid profile, regulating the hormones and enzymes in human body, further protecting human being from diseases like obesity, diabetes and their complications. Conclusion In the current review, we summarize recent progress in understanding the biological action, mechanism and therapeutic potential of the dietary flavonoids and its subsequent clinical outcomes in the field of drug discovery in management of diabetes mellitus.
Collapse
Affiliation(s)
- Ramachandran Vinayagam
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, 28, Jinfeng Road, Tangjiawan, Zhuhai, Guangdong 519085 China
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, 28, Jinfeng Road, Tangjiawan, Zhuhai, Guangdong 519085 China
| |
Collapse
|
40
|
Shin H, Eo H, Lim Y. Similarities and differences between alpha-tocopherol and gamma-tocopherol in amelioration of inflammation, oxidative stress and pre-fibrosis in hyperglycemia induced acute kidney inflammation. Nutr Res Pract 2015; 10:33-41. [PMID: 26865914 PMCID: PMC4742309 DOI: 10.4162/nrp.2016.10.1.33] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/19/2015] [Accepted: 10/22/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND/OBJECTIVES Diabetes mellitus (DM) is a major chronic disease which increases global health problems. Diabetes-induced renal damage is associated with inflammation and fibrosis. Alpha (AT) and gamma-tocopherols (GT) have shown antioxidant and anti-inflammatory effects in inflammation-mediated injuries. The primary aim of this study was to investigate effects of AT and GT supplementations on hyperglycemia induced acute kidney inflammation in alloxan induced diabetic mice with different levels of fasting blood glucose (FBG). MATERIALS/METHODS Diabetes was induced by injection of alloxan monohydrate (150 mg/kg, i.p) in ICR mice (5.5-week-old, male) and mice were subdivided according to their FBG levels and treated with different diets for 2 weeks; CON: non-diabetic mice, m-DMC: diabetic control mice with mild FBG levels (250 mg/dl ≤ FBG ≤ 450 mg/dl), m-AT: m-DM mice fed AT supplementation (35 mg/kg diet), m-GT: m-DM mice with GT supplementation (35 mg/kg diet), s-DMC: diabetic control mice with severe FBG levels (450 mg/dl < FBG), s-AT: s-DM mice with AT supplementation, s-GT: s-DM mice with GT supplementation. RESULTS Both AT and GT supplementations showed similar beneficial effects on NFκB associated inflammatory response (phosphorylated inhibitory kappa B-α, interleukin-1β, C-reactive protein, monocyte chemotactic protein-1) and pre-fibrosis (tumor growth factor β-1 and protein kinase C-II) as well as an antioxidant emzyme, heme oxygenase-1 (HO-1) in diabetic mice. On the other hands, AT and GT showed different beneficial effects on kidney weight, FBG, and oxidative stress associated makers (malondialdehyde, glutathione peroxidase, and catalase) except HO-1. In particular, GT significantly preserved kidney weight in m-DM and improved FBG levels in s-DM and malondialdehyde and catalase in m- and s-DM, while AT significantly attenuated FBG levels in m-DM and improved glutathione peroxidase in m- and s-DM. CONCLUSIONS The results suggest that AT and GT with similarities and differences would be considered as beneficial nutrients to modulate hyperglycemia induced acute renal inflammation. Further research with careful approach is needed to confirm beneficial effects of tocopherols in diabetes with different FBG levels for clinical applications.
Collapse
Affiliation(s)
- Hanna Shin
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedaero, Dongdaemun-gu, Seoul 02447, Korea
| | - Hyeyoon Eo
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedaero, Dongdaemun-gu, Seoul 02447, Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedaero, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
41
|
Abstract
IN BRIEF For the goals of reducing diabetic kidney disease (DKD) onset and progression, approaches to nutritional therapy are a subject of much debate. This article discusses selected nutrients that have a role in affecting DKD outcomes and introduces application of newer, individualized concepts for healthful eating, as supported by clinical evidence relevant to patients with DKD. Selected aspects of management of advanced DKD are also reviewed.
Collapse
|
42
|
El-Kordy EA, Alshahrani AM. Effect of genistein, a natural soy isoflavone, on pancreatic β-cells of streptozotocin-induced diabetic rats: Histological and immunohistochemical study. J Microsc Ultrastruct 2015; 3:108-119. [PMID: 30023190 PMCID: PMC6014279 DOI: 10.1016/j.jmau.2015.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/11/2015] [Accepted: 03/21/2015] [Indexed: 11/20/2022] Open
Abstract
Diabetes mellitus is one of the oldest disorders that is rapidly emerging as a global health problem. Soy genistein is a legume that has numerous health benefits. This work aimed to study the effect of different doses of genistein on histological, immunohistochemical and morphometrical changes in β-cells of streptozotocin (STZ)-induced diabetic rats and to correlate these effects with plasma glucose and insulin levels. Fifty adult male rats were divided into five equal groups. Group I served as a control. Group II received genistein. Group III comprised STZ-induced diabetic rats. Group IV diabetic animals treated with low dosage genistein. Group V diabetic animals treated with high dosage genistein. Genistein was given for 4 weeks after STZ injection. Rats were sacrificed and pancreatic specimens were taken for light and electron microscopic examination. Blood samples were collected for detection of serum glucose and insulin levels. After diabetic induction, the islets appeared shrunken with cytoplasmic vacuolation of their cells and negative insulin immunoreaction. Ultrastructurally, β-cells showed darkly stained nuclei with marked loss of granules. Morphometrically, significant loss of β-cells was detected. The serum insulin level was decreased with elevation in the serum glucose. High-dose but not low-dose genistein improved the morphology of islets with increased insulin immunoreaction. Genistein also significantly decreased β-cells loss and improved glucose and insulin levels. In conclusion, genistein has a protective effect on pancreatic β-cells damage, possesses the ability to regenerate β-cells and improves serum levels of insulin and glucose in STZ-induced diabetic rats in a dosage-dependent manner.
Collapse
Affiliation(s)
- Eman Ali El-Kordy
- Histology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- Basic Medical Sciences Department, Faculty of Medicine, Shaqra University, Shaqra, Saudi Arabia
| | | |
Collapse
|
43
|
Wang J, Qin F, Deng A, Yao L. Different localization and expression of protein kinase C-beta in kidney cortex of diabetic nephropathy mice and its role in telmisartan treatment. Am J Transl Res 2015; 7:1116-1125. [PMID: 26279755 PMCID: PMC4532744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
AIM This study aims to investigate the localization and expression of protein kinase C-beta I and beta II in kidney cortex of diabetic nephropathy mice and their roles in telmisartan treatment. METHODS 18 mice were randomly divided into three groups: normal group, diabetic nephropathy group and telmisartan-treated group. The localization and expression of protein kinase C-beta I and beta II were measured with confocal immunofluorescence laser scanning microscopy, immunohistochemistry and western blotting. The expression of transforming growth factor-beta 1 and vascular endothelial growth factor in glomeruli was detected by immunohistochemistry. RESULTS Compared to the normal mice, the expression and localization of protein kinase C-beta I and beta II are differed in diabetic nephropathy mice, with increased expression of protein kinase C-beta I but decreased level of protein kinase C-beta II. Meanwhile, the expression of transforming growth factor-beta 1 and vascular endothelial growth factor showed increase in the glomeruli of diabetic nephropathy, compared to the controls. Also, protein kinase C-beta I exhibited a positive correlation to transforming growth factor-beta 1 (r = 0.649, P = 0.030), but no correlation to vascular endothelial growth factor (r = 0.387, P = 0.079). Telmisartan treatment exercised significant beneficial role in diabetic nephropathy, which is associated with protein kinase C-beta I, but not beta II. CONCLUSIONS The expression and localization of protein kinase C-beta I and beta II differ in the diabetic nephropathy, and such difference is associated with the pathogeneses of diabetic nephropathy.
Collapse
Affiliation(s)
- Jianqing Wang
- Department of Nephrology, The Second Affiliated Hospital Zhejiang UniversityHangzhou 310009, Zhejiang, China
| | - Fu Qin
- Department of Orthopedics, First People’s Hostipal Of Yuhang DistrictHangzhou 311100, Zhejiang, China
| | - Anguo Deng
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong university of Science and TechnologyWuhan 430030, China
| | - Lijun Yao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong university of Science and TechnologyWuhan 430030, China
| |
Collapse
|
44
|
Quiroga B, Arroyo D, de Arriba G. Present and future in the treatment of diabetic kidney disease. J Diabetes Res 2015; 2015:801348. [PMID: 25945357 PMCID: PMC4405221 DOI: 10.1155/2015/801348] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 12/21/2022] Open
Abstract
Diabetic kidney disease is the leading cause of end-stage renal disease. Albuminuria is recognized as the most important prognostic factor for chronic kidney disease progression. For this reason, blockade of renin-angiotensin system remains the main recommended strategy, with either angiotensin converting enzyme inhibitors or angiotensin II receptor blockers. However, other antiproteinuric treatments have begun to be studied, such as direct renin inhibitors or aldosterone blockers. Beyond antiproteinuric treatments, other drugs such as pentoxifylline or bardoxolone have yielded conflicting results. Finally, alternative pathogenic pathways are being explored, and emerging therapies including antifibrotic agents, endothelin receptor antagonists, or transcription factors show promising results. The aim of this review is to explain the advances in newer agents to treat diabetic kidney disease, along with the background of the renin-angiotensin system blockade.
Collapse
Affiliation(s)
- Borja Quiroga
- Nephrology Unit, Hospital Universitario de Guadalajara, Spain
| | - David Arroyo
- Nephrology Unit, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Gabriel de Arriba
- Nephrology Unit, Hospital Universitario de Guadalajara, Spain
- Medicine and Medicine Specialities Department, Universidad de Alcalá (UAH), Madrid, Spain
| |
Collapse
|
45
|
Natural Flavonoids as Potential Herbal Medication for the Treatment of Diabetes Mellitus and its Complications. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Diabetes mellitus, together with its various complications, is becoming a serious threat to human health. Natural products are secondary metabolites widely distributed in plants, having a broad range of biological activities. The development of antidiabetic medication from natural products, especially those originating from plants with a traceable folk-usage history in treating diabetes, is receiving more attention. Many studies highlighted not only the benefits of natural flavonoids with hypoglycemic effects, but also their importance in the management of diabetic complications. This review describes selected natural flavonoids that have been validated for their hypoglycemic properties, together with their mechanisms of action. Also discussed are their activities in the treatment of diabetic complications demonstrated via laboratory diabetic animal models, in vitro and clinical trials using human subjects. Published papers from 2000 to date on flavonoids and diabetes were covered through accessing Web of Science and multiple databases for biomedical sciences. The major potential benefits of natural flavonoids discussed in this review clearly suggest that these substances are lead compounds with sufficient structural diversity of great importance in the antidiabetic drug developing process.
Collapse
|
46
|
Guo TL, Wang Y, Xiong T, Ling X, Zheng J. Genistein modulation of streptozotocin diabetes in male B6C3F1 mice can be induced by diet. Toxicol Appl Pharmacol 2014; 280:455-66. [PMID: 25178718 PMCID: PMC4253540 DOI: 10.1016/j.taap.2014.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 12/16/2022]
Abstract
Diet and phytoestrogens affect the development and progression of diabetes. The objective of the present study was to determine if oral exposure to phytoestrogen genistein (GE) by gavage changed blood glucose levels (BGL) through immunomodulation in streptozotocin (STZ)-induced diabetic male B6C3F1 mice fed with three different diets. These three diets were: NTP-2000 diet (NTP), soy- and alfalfa-free 5K96 diet (SOF) and high fat diet (HFD) with 60% of kcal from fat, primarily rendered fat of swine. The dosing regimen for STZ consisted of three 100mg/kg doses (i.p.): the first dose was administered at approximately 2weeks following the initiation of daily GE (20mg/kg) gavage, and the second dose was on day 19 following the first dose, and the third dose was on day 57 following the first dose. In mice on the NTP diet, GE treatment decreased BGL with statistical significances observed on days 33 and 82 following the first STZ injection. In mice fed the HFD diet, GE treatment produced a significant decrease and a significant increase in BGL on days 15 and 89 following the first STZ injection, respectively. In mice fed the SOF diet, GE treatment had no significant effects on BGL. Although GE treatment affected phenotypic distributions of both splenocytes (T cells, B cells, natural killer cells and neutrophils) and thymocytes (CD4/CD8 and CD44/CD25), and their mitochondrial transmembrane potential and generation of reactive oxygen species, indicators of cell death (possibly apoptosis), GE modulation of neutrophils was more consistent with its diabetogenic or anti-diabetic potentials. The differential effects of GE on BGL in male B6C3F1 mice fed with three different diets with varied phytoestrogen contents suggest that the estrogenic properties of this compound may contribute to its modulation of diabetes.
Collapse
Affiliation(s)
- Tai L Guo
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7382, USA.
| | - Yunbiao Wang
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7382, USA; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Tao Xiong
- College of Animal Science, Yangtze University, Jingzhou City, Hubei Province 434025, China
| | - Xiao Ling
- Institute for Food and Drug Control of Shandong Province, Jinan City, Shandong 250012, China
| | - Jianfeng Zheng
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| |
Collapse
|
47
|
Yang T, Li X, Zhu W, Chen C, Sun Z, Tan Z, Kang J. Alteration of antioxidant enzymes and associated genes induced by grape seed extracts in the primary muscle cells of goats in vitro. PLoS One 2014; 9:e107670. [PMID: 25238394 PMCID: PMC4169554 DOI: 10.1371/journal.pone.0107670] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/22/2014] [Indexed: 11/20/2022] Open
Abstract
This study was conducted to investigate how the activity and expression of certain paramount antioxidant enzymes respond to grape seed extract (GSE) addition in primary muscle cells of goats. Gluteal primary muscle cells (PMCs) isolated from a 3-week old goat were cultivated as an unstressed cell model, or they were exposed to 100 µM H2O2 to establish a H2O2-stimulated cell model. The activities of catalase (CAT), superoxide dismutases (SOD) and glutathione peroxidases (GPx) in combination with other relevant antioxidant indexes [i.e., reduced glutathione (GSH) and total antioxidant capacity (TAOC)] in response to GSE addition were tested in the unstressed and H2O2-stimulated cell models, and the relative mRNA levels of the CAT, GuZu-SOD, and GPx-1 genes were measured by qPCR. In unstressed PMCs, GSE addition at the dose of 10 µg/ml strikingly attenuated the expression levels of CAT and CuZn-SOD as well as the corresponding enzyme activities. By contrast, in cells pretreated with 100 µM H2O2, the expression and activity levels of these two antioxidant enzymes were enhanced by GSE addition at 10 µg/ml. GSE addition promoted GPx activity in both unstressed and stressed PMCs, while the expression of the GPx 1 gene displayed partial divergence with GPx activity, which was mitigated by GSE addition at 10 µg/ml in unstressed PMCs. GSH remained comparatively stable except for GSE addition to H2O2-stimulated PMCs at 60 µg/ml, in which a dramatic depletion of GSH occurred. Moreover, GSE addition enhanced TAOC in unstressed (but not H2O2-stimulated) PMCs. GSE addition exerted a bidirectional modulating effect on the mRNA levels and activities of CAT and SOD in unstressed and stressed PMCs at a moderate dose, and it only exhibited a unidirectional effect on the promotion of GPx activity, reflecting its potential to improve antioxidant protection in ruminants.
Collapse
Affiliation(s)
- Tan Yang
- Key Laboratory for Bio-Feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P.R. China
| | - Xiaomin Li
- Key Laboratory for Bio-Feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - Wang Zhu
- Key Laboratory for Bio-Feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - Cheng Chen
- Key Laboratory for Bio-Feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - Zhihong Sun
- Key Laboratory for Bio-Feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
- * E-mail: (ZS); (ZT)
| | - Zhiliang Tan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P.R. China
- * E-mail: (ZS); (ZT)
| | - Jinghe Kang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P.R. China
| |
Collapse
|
48
|
Parvizi MR, Parviz M, Tavangar SM, Soltani N, Kadkhodaee M, Seifi B, Azizi Y, Keshavarz M. Protective effect of magnesium on renal function in STZ-induced diabetic rats. J Diabetes Metab Disord 2014; 13:84. [PMID: 25197628 PMCID: PMC4156611 DOI: 10.1186/s40200-014-0084-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/23/2014] [Indexed: 12/22/2022]
Abstract
Background Diabetic nephropathy is a serious complication of T1D (type one diabetes mellitus). Persistent hyperglycemia and subsequent hypomagnesemia is believed to develop kidney damage by activation of oxidative stress. We conducted this study to investigate the renoprotective effect of magnesium sulfate (MgSO4) on renal histopathology and oxidative stress in diabetic rats. Methods The study included 70 male rats. The animals were divided into seven groups: control (CRL), control receiving MgSO4 (CRL + Mg1 & CRL + Mg8), diabetic (DM1 & DM8) and diabetic receiving MgSO4 (DM + Mg1 & DM + Mg8). Rats were given 20 mg/kg (i.p) Streptozocin (STZ) for 5 consecutive days in (MLD) multiple low doses to induce T1D. At day 10 treatment groups were received MgSO4 (10 g/l) in drinking water, for 1 or 8 weeks. The blood glucose, BUN and creatinine levels were measured. Renal tissue levels of malondialdehyde (MDA) were measured by thiobarbituric acid (TBA) method to evaluate the oxidative stress. Renal histopathology was done using H & E staining method. Results Treatment with MgSO4 significantly decreased the blood glucose in DM + Mg1 and DM + Mg8 groups as compared with DM1 and DM8. Magnesium treatment also decreased serum BUN and tissue level of MDA significantly in both short and long term treatment. The body weight loss and kidney weight to body weight ratio was improved by MgSO4. Histological results showed there were no differences between DM and DM + Mg groups. Conclusion Our findings showed that diabetic nephropathy is associated with high blood glucose level and oxidative stress (significant increase in MDA level). The renal dysfunction and oxidative stress can be improved by magnesium sulfate administration. It is suggested that protection against development of diabetic nephropathy by MgSO4 treatment involves changes in the blood glucose and oxidative stress.
Collapse
Affiliation(s)
- Mohammad Reza Parvizi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Parviz
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nepton Soltani
- Department of Physiology, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Azizi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoor Keshavarz
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
The active role of leguminous plant components in type 2 diabetes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:293961. [PMID: 24738003 PMCID: PMC3967837 DOI: 10.1155/2014/293961] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/19/2014] [Accepted: 01/20/2014] [Indexed: 01/24/2023]
Abstract
Diabetes appears to be one of the most frequent noncommunicable diseases in the world. A permanent growth in the incidence of diabetes can be observed and according to the International Diabetes Federation (IDF) the year 2030 will mark the increase in the number of diabetics to 439 mln worldwide. Type 2 diabetes accounts for about 90% of all diabetes incidence. Nutrition model modification not only features the basic element in type 2 diabetes treatment but also constitutes the fundamental factor influencing a morbidity rate decrease. Leguminous plants are a key factor in the diabetic diet; plants such as pulses or soybeans are nutritious products valued highly in nutrition. These legumes are high in the content of wholesome protein and contain large amounts of soluble alimentary fiber fractions, polyunsaturated fatty acids, vitamins and minerals, and bioactive substances with antioxidant, anti-inflammatory, and anticancer activity. They are distinguished by the high amount of bioactive compounds that may interfere with the metabolism of glucose. The most significant bioactive compounds displaying antidiabetic activity in leguminous plants are as follows: genistein and daidzein, alpha-amylase inhibitors, and alpha-glucosidase inhibitors. In vitro research using leguminous plant extracts has confirmed their antidiabetic properties. Leguminous plants should be employed in the promotion of healthy lifestyles in terms of functional food.
Collapse
|
50
|
Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal inflammation. PLoS One 2013; 8:e82275. [PMID: 24349242 PMCID: PMC3857822 DOI: 10.1371/journal.pone.0082275] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/01/2013] [Indexed: 12/21/2022] Open
Abstract
Background Lipotoxicity is a key feature of the pathogenesis of diabetic kidney disease, and is attributed to excessive lipid accumulation (hyperlipidemia). Increasing evidence suggests that fibroblast growth factor (FGF)21 has a crucial role in lipid metabolism under diabetic conditions. Objective The present study investigated whether FGF21 can prevent hyperlipidemia- or diabetes-induced renal damage, and if so, the possible mechanism. Methods Mice were injected with free fatty acids (FFAs, 10 mg/10 g body weight) or streptozotocin (150 mg/kg) to establish a lipotoxic model or type 1 diabetic model, respectively. Simultaneously the mice were treated with FGF21 (100 µg/kg) for 10 or 80 days. The kidney weight-to-tibia length ratio and renal function were assessed. Systematic and renal lipid levels were detected by ELISA and Oil Red O staining. Renal apoptosis was examined by TUNEL assay. Inflammation, oxidative stress, and fibrosis were assessed by Western blot. Results Acute FFA administration and chronic diabetes were associated with lower kidney-to-tibia length ratio, higher lipid levels, severe renal apoptosis and renal dysfunction. Obvious inflammation, oxidative stress and fibrosis also observed in the kidney of both mice models. Deletion of the fgf21 gene further enhanced the above pathological changes, which were significantly prevented by administration of exogenous FGF21. Conclusion These results suggest that FFA administration and diabetes induced renal damage, which was further enhanced in FGF21 knock-out mice. Administration of FGF21 significantly prevented both FFA- and diabetes-induced renal damage partially by decreasing renal lipid accumulation and suppressing inflammation, oxidative stress, and fibrosis.
Collapse
|