1
|
Fonseca AP, Pizzol CD, Vanzo AC, da Silva GH, Facchini G, Pinheiro ALTA, Eberlin S, Maia Campos PMBG. Antiaging effects of a skin care formulation containing nanoencapsulated antioxidants: A clinical, in vitro, and ex vivo study. J Cosmet Dermatol 2024; 23:510-524. [PMID: 37658653 DOI: 10.1111/jocd.15976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/07/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND The development of effective cosmetic products for the reduction of the signs of skin aging is a complex process which requires an optimized combination of ingredients and specialized systems to deliver the actives to the skin layers. AIM To evaluate the tolerance and antiaging clinical efficacy of a cosmetic formulation containing a blend of nanoencapsulated antioxidants: ascorbyl palmitate, resveratrol, tocopherol, caffeine, carnosine, and niacinamide. METHODS Clinical efficacy was determined by subjective and instrumental analyses of collagen synthesis by fluorescence spectroscopy, by three-dimensional imaging analysis of suborbital edema, and by analysis of skin hydration and sebum content by biophysical techniques-Corneometer® and Sebumeter®. RESULTS The studied formulation was safe and effective for the improvement of skin appearance by increasing collagen synthesis and skin moisturizing and by reducing facial blemishes, swelling, and oiliness. A preclinical exploratory approach using an experimental model of human cell and skin cultures agreed with the observed antiaging effects, identifying mechanisms related to the containment of oxidative stress, reduction of melanin production, increased synthesis of type I procollagen, and regulation of the epidermal cohesion protein filaggrin. CONCLUSIONS The skin benefits obtained resulted from the combination of the ingredients in the formulation and the nanoencapsulation-based delivery system, which favors the solubility, safety, efficacy, and bioavailability of the preparation to the skin.
Collapse
|
2
|
Ghosh S, Hazra J, Pal K, Nelson VK, Pal M. Prostate cancer: Therapeutic prospect with herbal medicine. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100034. [PMID: 34909665 PMCID: PMC8663990 DOI: 10.1016/j.crphar.2021.100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is a major cause of morbidity and mortality in men worldwide. A geographic variation on the burden of the disease suggested that the environment, genetic makeup, lifestyle, and food habits modulate one's susceptibility to the disease. Although it has been generally thought to be an older age disease, and awareness and timely execution of screening programs have managed to contain the disease in the older population over the last decades, the incidence is still increasing in the population younger than 50. Existing treatment is efficient for PCa that is localized and responsive to androgen. However, the androgen resistant and metastatic PCa are challenging to treat. Conventional radiation and chemotherapies are associated with severe side effects in addition to being exorbitantly expensive. Many isolated phytochemicals and extracts of plants used in traditional medicine are known for their safety and diverse healing properties, including many with varying levels of anti-PCa activities. Many of the phytochemicals discussed here, as shown by many laboratories, inhibit tumor cell growth and proliferation by interfering with the components in the pathways responsible for the enhanced proliferation, metabolism, angiogenesis, invasion, and metastasis in the prostate cells while upregulating the mechanisms of cell death and cell cycle arrest. Notably, many of these agents simultaneously target multiple cellular pathways. We analyzed the available literature and provided an update on this issue in this review article.
Collapse
Affiliation(s)
- Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Joyita Hazra
- Department of Biotechnology, Indian Institute of Technology Madras, Tamil Nadu, India
| | | | - Vinod K. Nelson
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Andhra Pradesh, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
3
|
Roulier B, Pérès B, Haudecoeur R. Advances in the Design of Genuine Human Tyrosinase Inhibitors for Targeting Melanogenesis and Related Pigmentations. J Med Chem 2020; 63:13428-13443. [PMID: 32787103 DOI: 10.1021/acs.jmedchem.0c00994] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human tyrosinase (hsTYR) is the key enzyme ensuring the conversion of l-tyrosine to dopaquinone, thereby initiating melanin synthesis, i.e., melanogenesis. Although the protein has long been familiar, knowledge about its three-dimensional structure and efficient overexpression protocols emerged only recently. Consequently, for decades medicinal chemistry studies aiming at developing skin depigmenting agents relied almost exclusively on biological assays performed using mushroom tyrosinase (abTYR), producing a plethoric literature, often of little useful purpose. Indeed, several recent reports have pointed out spectacular differences in terms of interaction patterns and inhibition values between hsTYR and abTYR, including for widely used standard tyrosinase inhibitors. In this review, we summarize the last developments regarding the potential role of hsTYR in human pathologies, the advances in recombinant expression systems and structural data retrieving, and the pioneer generation of true hsTYR inhibitors. Finally, we present suggestions for the design of future inhibitors of this highly attractive target in pharmacology and dermocosmetics.
Collapse
Affiliation(s)
- Brayan Roulier
- Département de Pharmacochimie Moléculaire (DPM), UMR 5063, Université Grenoble Alpes, 38041 Grenoble, France
| | - Basile Pérès
- Département de Pharmacochimie Moléculaire (DPM), UMR 5063, Université Grenoble Alpes, 38041 Grenoble, France
| | - Romain Haudecoeur
- Département de Pharmacochimie Moléculaire (DPM), UMR 5063, Université Grenoble Alpes, 38041 Grenoble, France
| |
Collapse
|
4
|
The First Human Clinical Trial on the Skin Depigmentation Efficacy of Glycinamide Hydrochloride. Biomedicines 2020; 8:biomedicines8080257. [PMID: 32751779 PMCID: PMC7460399 DOI: 10.3390/biomedicines8080257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
A previous study identified certain low molecular anti-melanogenic peptides that share a common sequence with α-melanocyte stimulating hormone (MSH) and end with a glycinamide moiety. Glycinamide itself also showed anti-melanogenic activity in cell-based assays, but neither glycine nor acetyl glycinamide were active, which indicated a special structure and activity relationship. The aim of this study was to examine the skin depigmentation efficacy of glycinamide hydrochloride in human subjects. The primary skin irritation potential of glycinamide hydrochloride was evaluated by patch testing in 30 human subjects. The skin depigmentation efficacy of glycinamide hydrochloride was evaluated in a double-blinded clinical test in 21 human subjects. The test product and a control product were applied to designated sites on the right or left side of the face twice daily for eight weeks. Skin color parameters, i.e., the melanin index, the L* value (representing skin lightness), a* value (redness), and b* value (yellowness) were measured using instruments. The individual topology angle (ITAo, representing skin color) was calculated from L* and b values. The degree of skin pigmentation was visually assessed by two testers. The primary skin irritation test showed that a solution containing glycinamide hydrochloride up to 10% did not induce any adverse skin responses. In the efficacy test, the test product significantly reduced the melanin index, and increased L* value and ITAo after two weeks of application relative to the baseline value at the start of the test. It also significantly lowered the degree of pigmentation after 6 weeks of application, relative to the baseline value. Differences in the melanin index, L* value, ITAo and the degree of pigmentation between the test and control groups became statistically significant after six weeks or eight weeks of application. No signs of skin irritation were observed during the efficacy test. The present study suggests that glycinamide hydrochloride has great potential to be used in the control of skin hyperpigmentation.
Collapse
|
5
|
Song H, Hwang YJ, Ha JW, Boo YC. Screening of an Epigenetic Drug Library Identifies 4-((hydroxyamino)carbonyl)- N-(2-hydroxyethyl)- N-Phenyl-Benzeneacetamide that Reduces Melanin Synthesis by Inhibiting Tyrosinase Activity Independently of Epigenetic Mechanisms. Int J Mol Sci 2020; 21:ijms21134589. [PMID: 32605171 PMCID: PMC7370187 DOI: 10.3390/ijms21134589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to identify novel antimelanogenic drugs from an epigenetic screening library containing various modulators targeting DNA methyltransferases, histone deacetylases, and other related enzymes/proteins. Of 141 drugs tested, K8 (4-((hydroxyamino)carbonyl)-N-(2-hydroxyethyl)-N-phenyl-benzeneacetamide; HPOB) was found to effectively inhibit the α-melanocyte-stimulating hormone (α-MSH)-induced melanin synthesis in B16-F10 murine melanoma cells without accompanying cytotoxicity. Additional experiments showed that K8 did not significantly reduce the mRNA and protein level of tyrosinase (TYR) or microphthalmia-associated transcription factor (MITF) in cells, but it potently inhibited the catalytic activity TYR in vitro (IC50, 1.1-1.5 µM) as compared to β-arbutin (IC50, 500-700 µM) or kojic acid (IC50, 63 µM). K8 showed copper chelating activity similar to kojic acid. Therefore, these data suggest that K8 inhibits cellular melanin synthesis not by downregulation of TYR protein expression through an epigenetic mechanism, but by direct inhibition of TYR catalytic activity through copper chelation. Metal chelating activity of K8 is not surprising because it is known to inhibit histone deacetylase (HDAC) 6 through zinc chelation. This study identified K8 as a potent inhibitor of cellular melanin synthesis, which may be useful for the treatment of hyperpigmentation disorders.
Collapse
Affiliation(s)
- Hyerim Song
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.S.); (Y.J.H.); (J.W.H.)
- Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| | - Yun Jeong Hwang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.S.); (Y.J.H.); (J.W.H.)
- Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| | - Jae Won Ha
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.S.); (Y.J.H.); (J.W.H.)
- Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| | - Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.S.); (Y.J.H.); (J.W.H.)
- Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-4946
| |
Collapse
|
6
|
Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem 2019; 34:279-309. [PMID: 30734608 PMCID: PMC6327992 DOI: 10.1080/14756366.2018.1545767] [Citation(s) in RCA: 545] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Tyrosinase is a multi-copper enzyme which is widely distributed in different organisms and plays an important role in the melanogenesis and enzymatic browning. Therefore, its inhibitors can be attractive in cosmetics and medicinal industries as depigmentation agents and also in food and agriculture industries as antibrowning compounds. For this purpose, many natural, semi-synthetic and synthetic inhibitors have been developed by different screening methods to date. This review has focused on the tyrosinase inhibitors discovered from all sources and biochemically characterised in the last four decades.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Asieh Bahrami
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | | | - J. Munoz-Munoz
- Group of Microbiology, Department of Applied Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, UK
| | - F. Garcia-Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - F. Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Human Skin Lightening Efficacy of Resveratrol and Its Analogs: From in Vitro Studies to Cosmetic Applications. Antioxidants (Basel) 2019; 8:antiox8090332. [PMID: 31443469 PMCID: PMC6770230 DOI: 10.3390/antiox8090332] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
Antioxidants are deemed useful in controlling oxidative stress associated with extrinsic skin aging and pigmentation disorders. Resveratrol is a polyphenol compound found in many edible plants such as Vitis vinifera, and its inhibitory effects on the catalytic activity, gene expression, and posttranslational modifications of tyrosinase, a key enzyme in the melanin biosynthetic pathway, provide a mechanistic basis for its antimelanogenic effects seen in melanocytic cells, three-dimensionally reconstituted skin models, and in vivo animal models. As a potent antioxidant and a modulator of nuclear factor erythroid 2-related factor 2 (Nrf2), and sirtuin 1, resveratrol can also regulate multiple signaling pathways associated with inflammation and premature aging. Recent clinical studies have supported the efficacy of resveratrol and its analogs, such as resveratryl triacetate (RTA) and resveratryl triglycolate (RTG), in human skin lightening and antiaging. These findings suggest that resveratrol and its analogs are potentially useful as skin lightening and antiaging agents in cosmetics.
Collapse
|
8
|
Boo YC. p-Coumaric Acid as An Active Ingredient in Cosmetics: A Review Focusing on its Antimelanogenic Effects. Antioxidants (Basel) 2019; 8:E275. [PMID: 31382682 PMCID: PMC6720745 DOI: 10.3390/antiox8080275] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022] Open
Abstract
Controlling unwanted hyperpigmentation is a major challenge in dermatology and cosmetology, and safe and efficacious antimelanogenic agents are deemed useful for this purpose. p-Coumaric acid is a natural metabolite contained in many edible plants, and its antioxidant activities in reducing oxidative stress and inflammatory reactions have been demonstrated in various experimental models. p-Coumaric acid has the optimal structure to be a competitive inhibitor of tyrosinase that catalyzes key reactions in the melanin biosynthetic pathway. Experimental evidence supports this notion as it was found to be a more potent inhibitor of tyrosinase, especially toward human enzymes, than other well-known tyrosinase inhibitors such as arbutin and kojic acid. p-Coumaric acid inhibited melanin synthesis in murine melanoma cells, human epidermal melanocytes, and reconstituted three-dimensional human skin models. Ex-vivo skin permeation experiments and in-vivo efficacy tests for p-coumaric acid confirmed its efficient transdermal delivery and functional efficacy in reducing erythema development and skin pigmentation due to ultraviolet radiation exposure. Human studies further supported its effectiveness in hypopigmentation and depigmentation. These findings suggest that p-coumaric acid has good potential to be used as a skin-lightening active ingredient in cosmetics. Future studies are needed to extensively examine its safety and efficacy and to develop an optimized cosmetic formulation for the best performance in skin lightening.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea.
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea.
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea.
| |
Collapse
|
9
|
Lee SW, Kim JH, Song H, Seok JK, Hong SS, Boo YC. Luteolin 7-Sulfate Attenuates Melanin Synthesis through Inhibition of CREB- and MITF-Mediated Tyrosinase Expression. Antioxidants (Basel) 2019; 8:antiox8040087. [PMID: 30987288 PMCID: PMC6523068 DOI: 10.3390/antiox8040087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 01/01/2023] Open
Abstract
Antioxidants with antimelanogenic activity are potentially useful for the attenuation of skin hyperpigmentation disorders. In a previous study, luteolin 7-sulfate isolated from Phyllospadix iwatensis Makino, a marine plant, was shown to inhibit cellular melanin synthesis. The aim of the present study was to examine its action mechanism, focusing on the regulation of tyrosinase (TYR) expression in cells. Cell-based assay was undertaken using murine melanoma B16-F10 cells and primary human epidermal melanocytes (HEMs). Luteolin 7-sulfate showed lower toxicity compared to luteolin in B16-F10 cells. At the non-toxic concentration ranges, luteolin 7-sulfate attenuated melanin synthesis, stimulated by α-melanocyte-stimulating hormone or forskolin. Luteolin 7-sulfate attenuated forskolin-induced microphthalmia-associated transcription factor (MITF) and TYR expressions at the mRNA and protein levels in B16-F10 cells. It also attenuated the phosphorylation of cAMP-responsive element binding protein (CREB) stimulated by forskolin. Luteolin 7-sulfate also attenuated melanin synthesis in primary HEMs. This study demonstrates that luteolin 7-sulfate attenuates TYR gene expression through the intervention of a CREB- and MITF-mediated signaling pathway, leading to the decreased melanin synthesis.
Collapse
Affiliation(s)
- Seok Won Lee
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea.
| | - Jae Heon Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea.
| | - Hyerim Song
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea.
| | - Jin Kyung Seok
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea.
| | - Seong Su Hong
- Bio-Center, Gyeonggido Business & Science Accelerator (GBSA), Suwon 16229, Korea.
| | - Yong Chool Boo
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea.
| |
Collapse
|
10
|
ZOKAEI S, FARHUD DD, KEYKHAEI M, ZARIF YEGANEH M, RAHIMI H, MORAVVEJ H. Cultured Epidermal Melanocyte Transplantation in Vitiligo: A Review Article. IRANIAN JOURNAL OF PUBLIC HEALTH 2019; 48:388-399. [PMID: 31223565 PMCID: PMC6570809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The color of the skin is highly heritable but can be influenced by the environments and endocrine factors. Many other factors, sometimes destructive, are also involved in the formation of skin color, which sometimes affects pigmentation patterns. Vitiligo is an autoimmune hypopigmentation painless disorder with appearance of white patches and psychological effects on patients. It is a disease in which melanocytes of the skin are destroyed in certain areas; therefore depigmentation appears. METHODS We studied more than 60 articles. Several therapeutic methods have been used to return the color of skin in vitiligo. These methods include non-invasive treatment and surgical techniques. Among all these therapies, cell transplantation is an advanced procedure in regenerative medicine. Extraction of melanocytes from normal skin and then their cultivation in the laboratory provides a large number of these cells, the transplanting of which to depigmentation areas stimulates the site to irreversibly produce melanin. RESULTS The transplantation methods of these cells have been evolved over many years and the methods of producing blister have been changed to the injection of these cells to the target sites. CONCLUSION In this review, autologous cultured melanocyte transplantation has been considered to be the most viable, safe, and effective method in the history of vitiligo treatments.
Collapse
Affiliation(s)
- Shaghayegh ZOKAEI
- School of Advanced Medical Sciences, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Dariush D. FARHUD
- School of Public Health, Tehran University of Medical Sciences, Tehran, Iran, Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran,Corresponding Author:
| | - Mohammad KEYKHAEI
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan ZARIF YEGANEH
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hoda RAHIMI
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh MORAVVEJ
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Arcopilus aureus, a Resveratrol-Producing Endophyte from Vitis vinifera. Appl Biochem Biotechnol 2018; 186:476-495. [DOI: 10.1007/s12010-018-2755-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/03/2018] [Indexed: 02/02/2023]
|
12
|
Ferro S, Deri B, Germanò MP, Gitto R, Ielo L, Buemi MR, Certo G, Vittorio S, Rapisarda A, Pazy Y, Fishman A, De Luca L. Targeting Tyrosinase: Development and Structural Insights of Novel Inhibitors Bearing Arylpiperidine and Arylpiperazine Fragments. J Med Chem 2018; 61:3908-3917. [DOI: 10.1021/acs.jmedchem.7b01745] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Stefania Ferro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali (CHIBIOFARAM), Polo Universitario SS. Annunziata, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| | - Batel Deri
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Maria Paola Germanò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali (CHIBIOFARAM), Polo Universitario SS. Annunziata, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| | - Rosaria Gitto
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali (CHIBIOFARAM), Polo Universitario SS. Annunziata, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| | - Laura Ielo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali (CHIBIOFARAM), Polo Universitario SS. Annunziata, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| | - Maria Rosa Buemi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali (CHIBIOFARAM), Polo Universitario SS. Annunziata, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| | - Giovanna Certo
- Fondazione Prof. Antonio Imbesi, Piazza Pugliatti 1, 98100 Messina, Italy
| | - Serena Vittorio
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali (CHIBIOFARAM), Polo Universitario SS. Annunziata, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
- Fondazione Prof. Antonio Imbesi, Piazza Pugliatti 1, 98100 Messina, Italy
| | - Antonio Rapisarda
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali (CHIBIOFARAM), Polo Universitario SS. Annunziata, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| | - Yael Pazy
- Technion Center for Structural Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Laura De Luca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali (CHIBIOFARAM), Polo Universitario SS. Annunziata, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| |
Collapse
|
13
|
|
14
|
Kinetics of Tyrosinase Inhibitory Activity Using Vitis vinifera Leaf Extracts. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5232680. [PMID: 28660210 PMCID: PMC5474274 DOI: 10.1155/2017/5232680] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/13/2017] [Accepted: 04/30/2017] [Indexed: 11/17/2022]
Abstract
Natural medical plant is considered as a good source of tyrosinase inhibitors. Red vine leaf extract (RVLE) can be applied to a wide variety of medical disciplines, such as treatments for chronic venous insufficiency over many decades. This study investigated the tyrosinase inhibitory activity of RVLE containing gallic acid, chlorogenic acid, epicatechin, rutin, and resveratrol which are effective for skin hyperpigmentation. The five components contents are 1.03, 0.2, 18.55, 6.45, and 0.48 mg/g for gallic acid, chlorogenic acid, epicatechin, rutin, and resveratrol. The kinetic study showed the tyrosinase inhibitory of RVLE via a competitive reaction mechanism. RVLE solution has an IC50 (the half inhibitory concentration) value of 3.84 mg/mL for tyrosinase inhibition, that is, an effective tyrosinase inhibitory activity, and can be used as a whitening agent for cosmetic formulations in the future.
Collapse
|
15
|
Abstract
Polyphenols are a widely used class of compounds in dermatology. While phenol itself, the most basic member of the phenol family, is chemically synthesized, most polyphenolic compounds are found in plants and form part of their defense mechanism against decomposition. Polyphenolic compounds, which include phenolic acids, flavonoids, stilbenes, and lignans, play an integral role in preventing the attack on plants by bacteria and fungi, as well as serving as cross-links in plant polymers. There is also mounting evidence that polyphenolic compounds play an important role in human health as well. One of the most important benefits, which puts them in the spotlight of current studies, is their antitumor profile. Some of these polyphenolic compounds have already presented promising results in either in vitro or in vivo studies for non-melanoma skin cancer and melanoma. These compounds act on several biomolecular pathways including cell division cycle arrest, autophagy, and apoptosis. Indeed, such natural compounds may be of potential for both preventive and therapeutic fields of cancer. This review evaluates the existing scientific literature in order to provide support for new research opportunities using polyphenolic compounds in oncodermatology.
Collapse
Affiliation(s)
- Adilson Costa
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Michael Yi Bonner
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA, 30322, USA.
| |
Collapse
|
16
|
Kwak JY, Seok JK, Suh HJ, Choi YH, Hong SS, Kim DS, Boo YC. Antimelanogenic effects of luteolin 7-sulfate isolated from Phyllospadix iwatensis Makino. Br J Dermatol 2016; 175:501-11. [PMID: 26914711 DOI: 10.1111/bjd.14496] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Abnormal deposition of melanin may cause an aesthetic skin problem; therefore, the control of unwanted excessive melanin synthesis is the major goal of cosmetic research. OBJECTIVES To identify novel tyrosinase (TYR) inhibitors from marine plants and examine their cellular antimelanogenic effects. METHODS The extracts of 50 marine plants endemic to Korea were screened against human TYR. Active constituents were then isolated from the selected plant extracts that showed potential and their chemical structures elucidated. Furthermore, their antimelanogenic effects were examined using murine melanoma B16/F10 cells and human epidermal melanocytes (HEM). RESULTS Among the tested extracts, that of Phyllospadix iwatensis Makino exhibited the strongest human TYR inhibitory activity. The active constituents were purified from the butanol fraction of the P. iwatensis extract and identified as hispidulin 7-sulfate and luteolin 7-sulfate. Luteolin 7-sulfate inhibited human TYR more strongly than hispidulin 7-sulfate, luteolin, hispidulin and arbutin. Furthermore, luteolin 7-sulfate showed lower cytotoxicity than luteolin in both B16/F10 cells and HEM. Luteolin 7-sulfate attenuated cellular melanin synthesis more effectively in B16/F10 cells and HEM stimulated by α-melanocyte-stimulating hormone and l-tyrosine than arbutin. CONCLUSIONS This study demonstrates that luteolin 7-sulfate isolated from P. iwatensis is a human TYR inhibitor with advantageous antimelanogenic properties, and would be useful for development as a therapeutic agent for the control of unwanted skin pigmentation.
Collapse
Affiliation(s)
- J Y Kwak
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu, 41944, Korea
| | - J K Seok
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu, 41944, Korea
| | - H-J Suh
- Gyeongbuk Natural Color Industry Institute, 181, Cheonmun-ro, Yeongcheon-si, Gyeongsangbuk-do, 38896, Korea
| | - Y-H Choi
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, 147, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Korea
| | - S S Hong
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, 147, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Korea
| | - D S Kim
- Korea Marine Ecology Institute, 60, Centum jungang-ro, Haeundae-gu, Busan, 48059, Korea
| | - Y C Boo
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu, 41944, Korea. .,Ruby Crown Co., Ltd, Kyungpook National University Business Incubation Center, 80, Daehak-ro, Buk-gu, Daegu, 41566, Korea.
| |
Collapse
|
17
|
Lee TH, Seo JO, Do MH, Ji E, Baek SH, Kim SY. Resveratrol-Enriched Rice Down-Regulates Melanin Synthesis in UVB-Induced Guinea Pigs Epidermal Skin Tissue. Biomol Ther (Seoul) 2014; 22:431-7. [PMID: 25414774 PMCID: PMC4201217 DOI: 10.4062/biomolther.2014.098] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 11/05/2022] Open
Abstract
Synthetic compounds that are used in the clinic to regulate skin hyperpigmentation, such as arbutin, hydroquinone, and kojic acid, are only moderately effective. But, their use is limited by side effects. As part of an effort to overcome the limitations, we developed resveratrol-enriched rice (RR) using genetic engineering technique. Each of resveratrol and rice has been reported to produce anti-melanogenic effects. Therefore, we hypothesized that RR would show more anti-melanogenic effects than those of resveratrol or rice alone. Anti-melanogenic effect of RR was done by using melan-a mouse melanocytes. The depigmenting efficacy was then observed following topical application of the RR to UVB-stimulated hyperpigmented dorsal skin of guinea pigs. Treatment with RR extract resulted a 21.4 ± 0.7% decrease in tyrosinase expression at melan-a cells. Colorimetric analysis showed a significantly lower depigmenting value by day 9 following treatment with RR in UVB-irradiated guinea pigs the dorsal skin (p<0.01), indicating that RR produced a depigmentation effect. By staining with Fontana-Masson stain, we found that the RR-treated group had more effect histopathologically in epidermal melanin production than resveratrol or rice alone-treated group. RR was associated with reduction in the levels of microphthalmia-associated transcription factor (MITF), and downregulation of tyrosinase and tyrosinase-related protein (TRP-2) expression, leading to inhibit epidermal melanin production by western blot analysis. This study suggests that the resveratrol-enriched rice may be a promising candidate in regulating skin pigmentation with UVB exposure.
Collapse
Affiliation(s)
- Taek Hwan Lee
- College of Pharmacy, Yonsei University, Incheon 406-840
| | - Jae Ok Seo
- College of Pharmacy, Gachon University, Incheon 406-799
| | - Moon Ho Do
- College of Pharmacy, Gachon University, Incheon 406-799
| | - Eunhee Ji
- College of Pharmacy, Gachon University, Incheon 406-799
| | - So-Hyeon Baek
- National Institute of Crop Science, Rural Development Administration, Iksan 570-080
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon 406-799 ; Gachon Medical Research Institute, Gil Medical Center, Inchon 405-760 ; Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 406-799, Republic of Korea
| |
Collapse
|