1
|
Nelson HA, Mullins NA, Abell AN. MAP3K4 signaling regulates HDAC6 and TRAF4 coexpression and stabilization in trophoblast stem cells. J Biol Chem 2024; 301:108116. [PMID: 39710325 DOI: 10.1016/j.jbc.2024.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/15/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024] Open
Abstract
Mitogen-activated protein kinase kinase kinase 4 (MAP3K4) promotes fetal and placental growth and development, with MAP3K4 kinase inactivation resulting in placental insufficiency and fetal growth restriction. MAP3K4 promotes key signaling pathways including JNK, p38, and PI3K/Akt, leading to activation of CREB-binding protein. MAP3K4 kinase inactivation results in loss of these pathways and gain of histone deacetylase 6 (HDAC6) expression and activity. Tumor necrosis factor receptor-associated factor 4 (TRAF4) binds MAP3K4 and promotes MAP3K4 activation of downstream pathways in the embryo; however, the role of TRAF4 and its association with MAP3K4 in the placenta is unknown. Our analyses of murine placenta single-cell RNA-Seq data showed that Traf4 is coexpressed with Map3k4 in trophoblast stem (TS) cells and labyrinth progenitors, whereas Hdac6 expression is higher in differentiated trophoblasts. We demonstrate that, like HDAC6, TRAF4 expression is increased in MAP3K4 kinase-inactive TS (TSKI) cells and upon inhibition of MAP3K4-dependent pathways in WT TS cells. Moreover, Hdac6 shRNA knockdown in TSKI cells reduces TRAF4 protein expression. We found that HDAC6 forms a protein complex with TRAF4 in TS cells and promotes TRAF4 expression in the absence of HDAC6 deacetylase activity. Finally, we examine the relationships among MAP3K4, TRAF4, and HDAC6 in the developing placenta, finding a previously unknown switch in the coexpression of Traf4 with Map3k4 versus Traf4 with Hdac6 during differentiation of the placental labyrinth. Together, our findings identify previously unknown mechanisms of MAP3K4 and HDAC6 coregulation of TRAF4 in TS cells and highlight these MAP3K4, TRAF4, and HDAC6 associations during placental development.
Collapse
Affiliation(s)
- Hannah A Nelson
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, USA
| | - Nathan A Mullins
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, USA
| | - Amy N Abell
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, USA.
| |
Collapse
|
2
|
Li M, Gan C, Zhang R, Wang J, Wang Y, Zhu W, Liu L, Shang J, Zhao Q. TRAF5 regulates intestinal mucosal Th1/Th17 cell immune responses via Runx1 in colitis mice. Immunology 2023; 170:495-509. [PMID: 37575027 DOI: 10.1111/imm.13685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal inflammatory disease associated with CD4+ Th1 and Th17 cell immune responses. Tumour necrosis factor-associated factor 5 (TRAF5) deficiency has been shown to aggravate DSS-induced colitis. However, the potential role of TRAF5 in regulating CD4+ T cell immune responses in the pathogenesis of IBD remains unclear. TRAF5-/- CD4+ CD45RBhigh T cells and WT CD4+ CD45RBhigh T cells were transferred to Rag2-/- mice via intravenous (i.v.) tail injection, respectively, to establish a chronic colitis model. Adeno-associated virus (AAV)-mediated gene knockout technique was used to knock out runt-associated transcription factor 1 (Runx1) expression in vivo. Specific cytokines of Th1 and Th17 cells were detected by quantitative RT-PCR, immunohistochemistry, ELISA, and flow cytometry. In T-cell transfer colitis mice, the Rag2-/- mice reconstituted with TRAF5-/- CD4+ CD45RBhigh T cells showed more severe intestinal inflammation than the WT control group, which was characterised by increased expression of INF-γ, TNF-α, IL-17a. Furthermore, we found that the INF-γ+ CD4+ , IL17a+ CD4+ , and INF-γ+ IL17a+ CD4+ T cells in the intestinal mucosa of Rag2-/- mice reconstituted with TRAF5-/- CD4+ CD45RBhigh T cells were significantly higher than those of the WT control group by flow cytometry. Mechanistically, knockout Runx1 inhibited the differentiation of TRAF5-/- CD4+ T cells into Th1 and Th17 cells in the intestinal mucosa of T-cell transfer colitis mice. TRAF5 regulates Th1 and Th17 cell differentiation and immune response through Runx1 to participate in the pathogenesis of colitis. Thus targeting TRAF5 in CD4+ T cells may be a novel treatment for IBD.
Collapse
Affiliation(s)
- Mengting Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Caiqin Gan
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Runan Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jiahui Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Youwei Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Weining Zhu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jian Shang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
3
|
Li J, Wang C, Xiao W, Chen Y, Tu J, Wan F, Deng K, Li H. TRAF Family Member 4 Promotes Cardiac Hypertrophy Through the Activation of the AKT Pathway. J Am Heart Assoc 2023; 12:e028185. [PMID: 37642020 PMCID: PMC10547335 DOI: 10.1161/jaha.122.028185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/03/2023] [Indexed: 08/31/2023]
Abstract
Background Pathological cardiac hypertrophy is a major cause of heart failure morbidity. The complex mechanism of intermolecular interactions underlying the pathogenesis of cardiac hypertrophy has led to a lack of development and application of therapeutic methods. Methods and Results Our study provides the first evidence that TRAF4, a member of the tumor necrosis factor receptor-associated factor (TRAF) family, acts as a promoter of cardiac hypertrophy. Here, Western blotting assays demonstrated that TRAF4 is upregulated in cardiac hypertrophy. Additionally, TRAF4 deletion inhibits the development of cardiac hypertrophy in a mouse model after transverse aortic constriction surgery, whereas its overexpression promotes phenylephrine stimulation-induced cardiomyocyte hypertrophy in primary neonatal rat cardiomyocytes. Mechanistically, RNA-seq analysis revealed that TRAF4 promoted the activation of the protein kinase B pathway during cardiac hypertrophy. Moreover, we found that inhibition of protein kinase B phosphorylation rescued the aggravated cardiomyocyte hypertrophic phenotypes caused by TRAF4 overexpression in phenylephrine-treated neonatal rat cardiomyocytes, suggesting that TRAF4 may regulate cardiac hypertrophy in a protein kinase B-dependent manner. Conclusions Our results revealed the regulatory function of TRAF4 in cardiac hypertrophy, which may provide new insights into developing therapeutic and preventive targets for this disease.
Collapse
Affiliation(s)
- Jian Li
- Department of Thoracic and Cardiovascular SurgeryHuanggang Central Hospital of Yangtze UniversityHuanggangChina
| | - Chang‐Quan Wang
- Department of NeurologyHuanggang Central Hospital of Yangtze UniversityHuanggangChina
| | - Wen‐Chang Xiao
- Department of Cardiovascular SurgeryHuanggang Central Hospital of Yangtze UniversityHuanggangChina
- Huanggang Institute of Translational MedicineHuanggangChina
| | - Yun Chen
- Clinical Trial CentersHuanggang Central Hospital of Yangtze UniversityHuanggangChina
| | - Jun Tu
- Huanggang Institute of Translational MedicineHuanggangChina
| | - Feng Wan
- Department of NeurologyHuanggang Central Hospital of Yangtze UniversityHuanggangChina
- Huanggang Institute of Translational MedicineHuanggangChina
| | - Ke‐Qiong Deng
- Huanggang Institute of Translational MedicineHuanggangChina
- Department of CardiologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Huo‐Ping Li
- Department of CardiologyHuanggang Central Hospital of Yangtze UniversityHuanggangChina
| |
Collapse
|
4
|
Vos S, Aaron R, Weng M, Daw J, Rodriguez-Rivera E, Subauste CS. CD40 Upregulation in the Retina of Patients With Diabetic Retinopathy: Association With TRAF2/TRAF6 Upregulation and Inflammatory Molecule Expression. Invest Ophthalmol Vis Sci 2023; 64:17. [PMID: 37294707 PMCID: PMC10259673 DOI: 10.1167/iovs.64.7.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/16/2023] [Indexed: 06/11/2023] Open
Abstract
Purpose CD40 is upregulated in the retinas of diabetic mice, drives pro-inflammatory molecule expression, and promotes diabetic retinopathy. The role of CD40 in diabetic retinopathy in humans is unknown. Upregulation of CD40 and its downstream signaling molecules TNF receptor associated factors (TRAFs) is a key feature of CD40-driven inflammatory disorders. We examined the expression of CD40, TRAF2, and TRAF6 as well as pro-inflammatory molecules in retinas from patients with diabetic retinopathy. Methods Posterior poles from patients with diabetic retinopathy and non-diabetic controls were stained with antibodies against von Willebrand factor (labels endothelial cells), cellular retinaldehyde-binding protein (CRALBP), or vimentin (both label Müller cells) plus antibodies against CD40, TRAF2, TRAF6, ICAM-1, CCL2, TNF-α, and/or phospho-Tyr783 phospholipase Cγ1 (PLCγ1). Sections were analyzed by confocal microscopy. Results CD40 expression was increased in endothelial and Müller cells from patients with diabetic retinopathy. CD40 was co-expressed with ICAM-1 in endothelial cells and with CCL2 in Müller cells. TNF-α was detected in retinal cells from these patients, but these cells lacked endothelial/Müller cell markers. CD40 in Müller cells from patients with diabetic retinopathy co-expressed activated phospholipase Cγ1, a molecule that induces TNF-α expression in myeloid cells in mice. CD40 upregulation in endothelial cells and Müller cells from patients with diabetic retinopathy was accompanied by TRAF2 and TRAF6 upregulation. Conclusions CD40, TRAF2, and TRAF6 are upregulated in patients with diabetic retinopathy. CD40 associates with expression of pro-inflammatory molecules. These findings suggest that CD40-TRAF signaling may promote pro-inflammatory responses in the retinas of patients with diabetic retinopathy.
Collapse
Affiliation(s)
- Sarah Vos
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Rachel Aaron
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Matthew Weng
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Jad Daw
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Emmanuel Rodriguez-Rivera
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Carlos S. Subauste
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
5
|
Zou M, Zeng QS, Nie J, Yang JH, Luo ZY, Gan HT. The Role of E3 Ubiquitin Ligases and Deubiquitinases in Inflammatory Bowel Disease: Friend or Foe? Front Immunol 2021; 12:769167. [PMID: 34956195 PMCID: PMC8692584 DOI: 10.3389/fimmu.2021.769167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease (IBD), which include Crohn’s disease (CD) and ulcerative colitis (UC), exhibits a complex multifactorial pathogenesis involving genetic susceptibility, imbalance of gut microbiota, mucosal immune disorder and environmental factors. Recent studies reported associations between ubiquitination and deubiquitination and the occurrence and development of inflammatory bowel disease. Ubiquitination modification, one of the most important types of post-translational modifications, is a multi-step enzymatic process involved in the regulation of various physiological processes of cells, including cell cycle progression, cell differentiation, apoptosis, and innate and adaptive immune responses. Alterations in ubiquitination and deubiquitination can lead to various diseases, including IBD. Here, we review the role of E3 ubiquitin ligases and deubiquitinases (DUBs) and their mediated ubiquitination and deubiquitination modifications in the pathogenesis of IBD. We highlight the importance of this type of posttranslational modification in the development of inflammation, and provide guidance for the future development of targeted therapeutics in IBD.
Collapse
Affiliation(s)
- Min Zou
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qi-Shan Zeng
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Nie
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Hui Yang
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen-Yi Luo
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Hua-Tian Gan
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Zhao S, Zhu L, Feng W, Zhang L, Chen DD, Hu YC, Shen H. MicroRNA-602 prevents the development of inflammatory bowel diseases in a microbiota-dependent manner. Exp Ther Med 2021; 22:1373. [PMID: 34659519 PMCID: PMC8515559 DOI: 10.3892/etm.2021.10808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/10/2020] [Indexed: 11/29/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic disorders occurring in the intestinal tract. Previous studies demonstrated that genetics and microbiota play critical roles in the pathogenesis of IBD. Discoveries of genes that may regulate the homeostasis of gut microbiota and pathogenesis of IBD have the potential to provide new therapeutic targets for IBD treatment. The results suggested that the expression level of microRNA (miR)-602 is negatively related to the development of IBD, and that miR-602 overexpression in mice may prevent inflammation and intestinal barrier injuries in dextran sulfate sodium (DSS)-induced IBD mice. It was also found that the microbiota is important for miR-602-mediated prevention of IBD, as the inhibitory effect of miR-602 was lost when the microbiota was depleted using antibiotics. Furthermore, co-housing or adoptive transfer of microbiota from miR-602 could attenuate the pathogenesis of IBD. In addition, it was demonstrated that miR-602 could target tumor necrosis factor receptor-associated factor 6 (TRAF6) in intestinal epithelial cells. Collectively, the present results suggest that miR-602 plays a protective role in DSS-induced IBD by targeting TRAF6 in a microbiota-dependent manner.
Collapse
Affiliation(s)
- Song Zhao
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Lei Zhu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Wan Feng
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Lu Zhang
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Dan-Dan Chen
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yu-Cui Hu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Hong Shen
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
7
|
Park HH. Structural feature of TRAFs, their related human diseases and therapeutic intervention. Arch Pharm Res 2021; 44:475-486. [PMID: 33970438 DOI: 10.1007/s12272-021-01330-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/04/2021] [Indexed: 12/22/2022]
Abstract
Several studies have been conducted over the years to unravel the structural information on the receptors that bind to tumor necrosis factor receptor-associated factor (TRAF) and the driving forces for the TRAF/receptor complex. In addition, studies have also been performed to highlight the influence of TRAF malfunctioning and mutations on the development of human disease. However, a holistic study that systematically summarizes the available information and the existing clinical trends towards development of the TRAF-targeting drugs has not been conducted to date. Herein, I reviewed existing research that focused on the structural information of various receptors recognized by the different members of the TRAF family. I also reviewed studies on the different human diseases that occur due to TRAF malfunctioning or mutations as well as the clinical trials undertaken to treat TRAF-associated diseases.
Collapse
Affiliation(s)
- Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea. .,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
8
|
Choo J, Heo G, Pothoulakis C, Im E. Posttranslational modifications as therapeutic targets for intestinal disorders. Pharmacol Res 2021; 165:105412. [PMID: 33412276 DOI: 10.1016/j.phrs.2020.105412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023]
Abstract
A variety of biological processes are regulated by posttranslational modifications. Posttranslational modifications including phosphorylation, ubiquitination, glycosylation, and proteolytic cleavage, control diverse physiological functions in the gastrointestinal tract. Therefore, a better understanding of their implications in intestinal diseases, including inflammatory bowel disease, irritable bowel syndrome, celiac disease, and colorectal cancer would provide a basis for the identification of novel biomarkers as well as attractive therapeutic targets. Posttranslational modifications can be common denominators, as well as distinct biomarkers, characterizing pathological differences of various intestinal diseases. This review provides experimental evidence that identifies changes in posttranslational modifications from patient samples, primary cells, or cell lines in intestinal disorders, and a summary of carefully selected information on the use of pharmacological modulators of protein modifications as therapeutic options.
Collapse
Affiliation(s)
- Jieun Choo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Gwangbeom Heo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Charalabos Pothoulakis
- Section of Inflammatory Bowel Disease & Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
9
|
Zhou W, Lin D, Zhong Z, Ye Q. Roles of TRAFs in Ischemia-Reperfusion Injury. Front Cell Dev Biol 2020; 8:586487. [PMID: 33224951 PMCID: PMC7674171 DOI: 10.3389/fcell.2020.586487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins are a family of signaling molecules that function downstream of multiple receptor signaling pathways, and they play a pivotal role in the regulation of intracellular biological progresses. These TRAF-dependent signaling pathways and physiological functions have been involved in the occurrence and progression of ischemia-reperfusion injury (IRI), which is a common pathophysiological process that occurs in a wide variety of clinical events, including ischemic shock, organ transplantation, and thrombolytic therapy, resulting in a poor prognosis and high mortality. IRI occurs in multiple organs, including liver, kidney, heart, lung, brain, intestine, and retina. In recent years, mounting compelling evidence has confirmed that the genetic alterations of TRAFs can cause subversive phenotype changes during IRI of those organs. In this review, based on current knowledge, we summarized and analyzed the regulatory effect of TRAFs on the IRI of various organs, providing clear direction and a firm theoretical basis for the development of treatment strategies to manipulate TRAF proteins or TRAF-dependent signaling pathways in IRI-related diseases.
Collapse
Affiliation(s)
- Wei Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Danni Lin
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.,The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.,The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| |
Collapse
|
10
|
Wang Q, Zhang T, Chang X, Lim DY, Wang K, Bai R, Wang T, Ryu J, Chen H, Yao K, Ma WY, Boardman LA, Bode AM, Dong Z. ARC Is a Critical Protector against Inflammatory Bowel Disease (IBD) and IBD-Associated Colorectal Tumorigenesis. Cancer Res 2020; 80:4158-4171. [PMID: 32816906 DOI: 10.1158/0008-5472.can-20-0469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/25/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022]
Abstract
The key functional molecules involved in inflammatory bowel disease (IBD) and IBD-induced colorectal tumorigenesis remain unclear. In this study, we found that the apoptosis repressor with caspase recruitment domain (ARC) protein plays critical roles in IBD. ARC-deficient mice exhibited substantially higher susceptibility to dextran sulfate sodium (DSS)-induced IBD compared with wild-type mice. The inflammatory burden induced in ARC-deficient conditions was inversely correlated with CCL5 and CXCL5 levels in immune cells, especially CD4-positive T cells. Pathologically, ARC expression in immune cells was significantly decreased in clinical biopsy specimens from patients with IBD compared with normal subjects. In addition, ARC levels inversely correlated with CCL5 and CXCL5 levels in human biopsy specimens. ARC interacted with TNF receptor associated factor (TRAF) 6, regulating ubiquitination of TRAF6, which was associated with NF-κB signaling. Importantly, we identified a novel ubiquitination site at lysine 461, which was critical in the function of ARC in IBD. ARC played a critical role in IBD and IBD-associated colon cancer in a bone marrow transplantation model and azoxymethane/DSS-induced colitis cancer mouse models. Overall, these findings reveal that ARC is critically involved in the maintenance of intestinal homeostasis and protection against IBD through its ubiquitination of TRAF6 and subsequent modulation of NF-κB activation in T cells. SIGNIFICANCE: This study uncovers a crucial role of ARC in the immune system and IBD, giving rise to a novel strategy for IBD and IBD-associated colon cancer therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Xiaoyu Chang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Do Young Lim
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Keke Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ruihua Bai
- The Hormel Institute, University of Minnesota, Austin, Minnesota
- The Henan Tumor Hospital, Zhengzhou, Henan, China
| | - Ting Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Joohyun Ryu
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ke Yao
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Wei-Ya Ma
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Lisa A Boardman
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota.
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Valmiki S, Ahuja V, Puri N, Paul J. miR-125b and miR-223 Contribute to Inflammation by Targeting the Key Molecules of NFκB Pathway. Front Med (Lausanne) 2020; 6:313. [PMID: 32039213 PMCID: PMC6990118 DOI: 10.3389/fmed.2019.00313] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
The contribution of miRNA in the pathogenesis of ulcerative colitis (UC) has emerged in the past few decades. Differential miRNA expression has been demonstrated in UC patients, and their ability to target the genes involved in inflammatory pathway has also been explored in recent years. miR-125b and miR-223 have been demonstrated to get upregulated within the colonic mucosa of UC patients. Here, we explored the biological relevance of miR-125b and miR-223 altered expression during UC by identifying the potential gene targets for miR-125b and miR-223. TRAF6 and A20, the signaling molecules involved in the NFκB pathway, were identified as target genes for miR-125b while IKKα was identified as a gene target for miR-223. The colonic mucosal samples from UC patients exhibited a significant rise in miR-125b and miR-223 expression while a subsequent downregulation was observed in the expression of TRAF6, A20, and IKKα. This negative correlation between miRNAs and their respective target genes was validated by co-transfecting miR-125b and miR-223 in HT29 cells. Co-transfection with miR-125b resulted in a marked decline in the expression of TRAF6 and A20, while the miR-223 co-transfected cells exhibited lower IKKα expression levels. Additionally, co-transfection with miR-125b or miR-223 in HT29 cells caused higher p65 and pro-inflammatory cytokines (IL-8 and IL-1β) expression upon LPS stimulation. From our findings, we highlight the possible contribution of miR-125b and miR-223 in regulating the inflammatory response during UC by negatively regulating the expression of TRAF6, A20, and IKKα. Therefore, we conclude that these two miRNAs could be considered as potential candidates for developing promising biomarkers for screening and diagnosis of UC.
Collapse
Affiliation(s)
- Swati Valmiki
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jaishree Paul
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
12
|
Qiao YQ, Cai CW, Shen J, Zheng Q, Ran ZH. Circular RNA expression alterations in colon tissues of Crohn's disease patients. Mol Med Rep 2019; 19:4500-4506. [PMID: 30896837 DOI: 10.3892/mmr.2019.10070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 02/18/2019] [Indexed: 12/26/2022] Open
Abstract
Genetic factors are crucial in the development of Crohn's disease (CD). Circular RNAs (circRNAs) are known to function as microRNA (miRNA) sponges and regulate a number of signalling pathways via circRNA‑miRNA interactions. As competing endogenous RNAs, the functions of circRNAs in CD should be investigated. In the present study, colon biopsy tissues were collected from ileocolon (L3)‑active CD patients and healthy controls. circRNA microarrays were performed with colon tissues from 3 CD patients and 3 controls. Subsequently, the candidate circRNAs were verified via reverse transcription‑quantitative polymerase chain reaction using colon tissues from a further 10 CD patients and 10 controls. Targeted miRNAs, genes and pathways of candidate circRNAs were predicted and analysed. Arraystar circRNA microarrays demonstrated that there were 163 upregulated circRNAs targeting 435 miRNAs and 55 downregulated circRNAs targeting 207 miRNAs (fold‑change >2 and P<0.01) in CD patients. As a candidate circRNA, hsa‑circRNA‑102685 was observed to putatively target hsa‑miR‑146b‑5p, hsa‑miR‑182‑5p and hsa‑miR‑146a‑5p. Furthermore, Kyoto Encyclopaedia of Genes and Genomes pathway analysis predicted that hsa‑circRNA‑102685 potentially participated in apoptosis, and in the Toll‑like receptor and p53 signalling pathways. Overall, the current study suggested that circRNA alterations serve an important role in the pathogenesis of CD. circRNAs, such as hsa‑circRNA‑102685, are involved in certain important signalling pathways of CD, and may be novel targets for diagnosis or treatment in this disease.
Collapse
Affiliation(s)
- Yu Qi Qiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Centre, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China
| | - Chen Wen Cai
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Centre, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Centre, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China
| | - Qing Zheng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Centre, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China
| | - Zhi Hua Ran
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Centre, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China
| |
Collapse
|
13
|
Lalani AI, Zhu S, Gokhale S, Jin J, Xie P. TRAF molecules in inflammation and inflammatory diseases. ACTA ACUST UNITED AC 2017. [PMID: 29527458 DOI: 10.1007/s40495-017-0117-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose of Review This review presents an overview of the current knowledge of TRAF molecules in inflammation with an emphasis on available human evidence and direct in vivo evidence of mouse models that demonstrate the contribution of TRAF molecules in the pathogenesis of inflammatory diseases. Recent Findings The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of cytoplasmic proteins was initially identified as signaling adaptors that bind directly to the intracellular domains of receptors of the TNF-R superfamily. It is now appreciated that TRAF molecules are widely employed in signaling by a variety of adaptive and innate immune receptors as well as cytokine receptors. TRAF-dependent signaling pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or interferon-regulatory factors (IRFs). Most of these signaling pathways have been linked to inflammation, and therefore TRAF molecules were expected to regulate inflammation and inflammatory responses since their discovery in 1990s. However, direct in vivo evidence of TRAFs in inflammation and especially in inflammatory diseases had been lacking for many years, partly due to the difficulty imposed by early lethality of TRAF2-/-, TRAF3-/-, and TRAF6-/- mice. With the creation of conditional knockout and lineage-specific transgenic mice of different TRAF molecules, our understanding about TRAFs in inflammation and inflammatory responses has rapidly advanced during the past decade. Summary Increasing evidence indicates that TRAF molecules are versatile and indispensable regulators of inflammation and inflammatory responses and that aberrant expression or function of TRAFs contributes to the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Almin I Lalani
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Department of Pharmacology, Anhui Medical University, Meishan Road 81st, Shushan District, Hefei, Anhui province, China
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Member, Rutgers Cancer Institute of New Jersey
| |
Collapse
|
14
|
Lutz C, Weder B, Hünerwadel A, Fagagnini S, Lang B, Beerenwinkel N, Rossel JB, Rogler G, Misselwitz B, Hausmann M. Myeloid differentiation primary response gene (MyD) 88 signalling is not essential for intestinal fibrosis development. Sci Rep 2017; 7:17678. [PMID: 29247242 PMCID: PMC5732165 DOI: 10.1038/s41598-017-17755-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/29/2017] [Indexed: 01/15/2023] Open
Abstract
Dysregulation of the immune response to microbiota is associated with inflammatory bowel disease (IBD), which can trigger intestinal fibrosis. MyD88 is a key component of microbiota signalling but its influence on intestinal fibrosis has not been clarified. Small bowel resections from donor-mice were transplanted subcutaneously into the neck of recipients C57BL/6 B6-MyD88tm1 Aki (MyD88-/-) and C57BL/6-Tg(UBC-green fluorescence protein (GFP))30Scha/J (GFP-Tg). Grafts were explanted up to 21 days after transplantation. Collagen layer thickness was determined using Sirius Red stained slides. In the mouse model of fibrosis collagen deposition and transforming growth factor-beta 1 (TGF-β1) expression was equal in MyD88+/+ and MyD88-/-, indicating that MyD88 was not essential for fibrogenesis. Matrix metalloproteinase (Mmp)9 expression was significantly decreased in grafts transplanted into MyD88-/- recipients compared to MyD88+/+ recipients (0.2 ± 0.1 vs. 153.0 ± 23.1, respectively, p < 0.05), similarly recruitment of neutrophils was significantly reduced (16.3 ± 4.5 vs. 25.4 ± 3.1, respectively, p < 0.05). Development of intestinal fibrosis appears to be independent of MyD88 signalling indicating a minor role of bacterial wall compounds in the process which is in contrast to published concepts and theories. Development of fibrosis appears to be uncoupled from acute inflammation.
Collapse
Affiliation(s)
- C Lutz
- Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland
| | - B Weder
- Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland
| | - A Hünerwadel
- Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland
| | - S Fagagnini
- Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland
| | - B Lang
- Department of Biosystems Sciences and Engineering, ETH Zurich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - N Beerenwinkel
- Department of Biosystems Sciences and Engineering, ETH Zurich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - J B Rossel
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - G Rogler
- Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland
| | - B Misselwitz
- Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland
| | - M Hausmann
- Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland.
| |
Collapse
|
15
|
Guo A, Tan Y, Liu C, Zheng X. MST-4 and TRAF-6 expression in the peripheral blood mononuclear cells of patients with Graves' disease and its significance. BMC Endocr Disord 2017; 17:11. [PMID: 28219358 PMCID: PMC5322792 DOI: 10.1186/s12902-017-0161-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/15/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND MST-4 and TRAF-6 are involved in the regulation of inflammatory and immune responses. However, whether they participate in the pathogenesis of Graves' disease (GD) has not yet been reported. Therefore, the purpose of this study was to investigate the expression of MST-4 and TRAF-6 in the peripheral blood of patients with GD to understand their role in the pathogenesis of GD. METHODS Thirty newly diagnosed GD patients, 24 GD patients in remission (eGD) and 30 normal controls (NC) were recruited. Thyroid function and autoantibody levels were determined using a chemiluminescence immunoassay. Peripheral blood mononuclear cells (PBMCs) were extracted, and MST-4 and TRAF-6 mRNA and protein levels were determined using real-time PCR and Western blotting, respectively. RESULTS 1. Thyroid function in the GD group was significantly different from that in the eGD and NC groups (P < 0.05); however, there was no difference in thyroid function between the eGD group and the NC group (P > 0.05). The autoantibody levels in the NC group were significantly different from those in the GD and eGD groups (P < 0.05); however, the difference in the levels between the GD group and eGD group was not statistically significant (P > 0.05). 2. The MST-4 and TRAF-6 mRNA and protein levels in the GD group were significantly lower than those in the NC group (P < 0.05); however, there were no differences in mRNA and protein levels between the GD group and the eGD group or between the eGD group and the NC group (P > 0.05). 3. The correlation between the MST-4 and TRAF-6 mRNA and protein levels was not significant. However, there was a significant correlation between the TRAF-6 mRNA and TPO Ab levels in the eGD group and between the TRAF-6 mRNA and TR Ab levels in the NC group. CONCLUSION The MST-4 and TRAF-6 mRNA and protein levels were lower in the GD group than in the NC group, suggesting that MST-4 and TRAF-6 may be important in the pathogenesis of GD. Whether MST-4 influences the innate immune response through TRAF-6 and thus regulates the imbalance in downstream effector T cells requires further study. Investigating the expression of MST-4 and TRAF-6 in GD can provide a new perspective and targets for further study of the upstream mechanism responsible for effector T cell imbalance.
Collapse
Affiliation(s)
- Ai Guo
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Street, Yuzhong District, Chongqing, 400016, China
| | - Yan Tan
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Street, Yuzhong District, Chongqing, 400016, China
| | - Chun Liu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Street, Yuzhong District, Chongqing, 400016, China.
| | - Xiaoya Zheng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Street, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
16
|
Hamidzadeh K, Christensen SM, Dalby E, Chandrasekaran P, Mosser DM. Macrophages and the Recovery from Acute and Chronic Inflammation. Annu Rev Physiol 2017; 79:567-592. [PMID: 27959619 PMCID: PMC5912892 DOI: 10.1146/annurev-physiol-022516-034348] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, researchers have devoted much attention to the diverse roles of macrophages and their contributions to tissue development, wound healing, and angiogenesis. What should not be lost in the discussions regarding the diverse biology of these cells is that when perturbed, macrophages are the primary contributors to potentially pathological inflammatory processes. Macrophages stand poised to rapidly produce large amounts of inflammatory cytokines in response to danger signals. The production of these cytokines can initiate a cascade of inflammatory mediator release that can lead to wholesale tissue destruction. The destructive inflammatory capability of macrophages is amplified by exposure to exogenous interferon-γ, which prolongs and heightens inflammatory responses. In simple terms, macrophages can thus be viewed as incendiary devices with hair triggers waiting to detonate. We have begun to ask questions about how these cells can be regulated to mitigate the collateral destruction associated with macrophage activation.
Collapse
Affiliation(s)
- Kajal Hamidzadeh
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland 20742;
| | - Stephen M Christensen
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland 20742;
| | - Elizabeth Dalby
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland 20742;
| | - Prabha Chandrasekaran
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland 20742;
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland 20742;
| |
Collapse
|
17
|
Li JJ, Luo J, Lu JN, Liang XN, Luo YH, Liu YR, Yang J, Ding H, Qin GH, Yang LH, Dang YW, Yang H, Chen G. Relationship between TRAF6 and deterioration of HCC: an immunohistochemical and in vitro study. Cancer Cell Int 2016; 16:76. [PMID: 27708550 PMCID: PMC5041287 DOI: 10.1186/s12935-016-0352-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/23/2016] [Indexed: 12/14/2022] Open
Abstract
Objective To explore the relationship between tumor necrosis factor receptor-associated factor 6 (TRAF6) and the clinicopathological features in HCC as well as its biological function. Methods Totally, 412 liver tissues were collected, including 171 hepatocellular carcinoma (HCC) and their corresponding non-tumor tissues, 37 cirrhosis and 33 normal liver tissues. The expression of TRAF6 was assessed by immunohistochemistry. Then, analysis of the correlations between TRAF6 expression and clinicopathological parameters in HCC was conducted. Furtherer, in vitro experiments on HepG2 and Hep3B cells were performed to validate the biological function of TRAF6 on HCC cells. TRAF6 siRNA was transfected into HepG2 and Hep3B cell lines and TRAF6 expression was evaluated with RT-qPCR and western blot. The assays of cell viability, proliferation, apoptosis and caspase-3/7 activity were carried out to investigate the effects of TRAF6 on HCC cells with RNA interference. Cell viability was assessed with Cell Titer-Blue kit. Cell proliferation was tested with MTS kit. Cell apoptosis was checked through morphologic detection with fluorescence microscope, as well as caspase-3/7 activity was measured with fluorogenic substrate detection. Results The positive expression rate of TRAF6 protein was 49.7 % in HCC, significantly higher than that of normal liver (12.1 %), cirrhosis (21.6 %) and adjacent non-cancerous tissues (36.3 %, all P < 0.05). Upregulated TRAF6 was detected in groups with metastasis (Z = −2.058, P = 0.04) and with low micro-vessel density (MVD) expression (Z = −2.813, P = 0.005). Spearman correlation analysis further showed that the expression of TRAF6 was positively correlated with distant metastasis (r = 0.158, P = 0.039) and negatively associated with MVD (r = −0.249, P = 0.004). Besides, knock-down of TRAF6 mRNA in HCC cell lines HepG2 and Hep3B both resulted in cell viability and proliferation inhibition, also cell apoptosis induction and caspase-3/7 activity activation. Conclusions TRAF6 may contribute to metastasis and deterioration of the HCC via influencing cell growth and apoptosis. Thus, TRAF6 might become a predictive and therapeutic biomarker for HCC.
Collapse
Affiliation(s)
- Jian-Jun Li
- Department of General Surgery, Western Branch, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| | - Jie Luo
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| | - Jing-Ning Lu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| | - Xiao-Na Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| | - Yi-Huan Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| | - Yong-Ru Liu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| | - Hua Ding
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| | - Gui-Hui Qin
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| | - Li-Hua Yang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| | - Hong Yang
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| |
Collapse
|
18
|
Yao W, Wang X, Cai Q, Gao S, Wang J, Zhang P. TRAF4 enhances osteosarcoma cell proliferation and invasion by Akt signaling pathway. Oncol Res 2015; 22:21-28. [PMID: 25700355 PMCID: PMC7592778 DOI: 10.3727/096504014x14077751730351] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
TRAF4, or tumor necrosis factor receptor-associated factor 4, is overexpressed in several cancers, suggesting a specific role in cancer progression. However, its functions in osteosarcoma are unclear. This study aimed to explore the expression of TRAF4 in osteosarcoma tissues and cells, the correlation of TRAF4 to clinical pathology of osteosarcoma, as well as the role and mechanism of TRAF4 in osteosarcoma metastasis. The protein expression levels of TRAF4 in osteosarcoma tissues and three osteosarcoma cell lines, MG-63, HOS, and U2OS, were assessed. Constructed TRAF4 overexpression vectors and established TRAF4 overexpression of the U2OS cell line. Cell proliferation, cell invasion, protein levels, and TRAF4 phosphorylations were assessed following TRAF4 transfection, as well as the effects of TRAF4 siRNA on cell proliferation and invasion. The results show that TRAF4 protein levels in osteosarcoma tissues were significantly higher than that in normal bone tissues. Importantly, an obvious upregulation of TRAF4 was found in carcinoma tissues from patients with lung metastasis compared with patients without lung metastasis. Consistently, a similar increase in TRAF4 mRNA and protein was also demonstrated in the osteosarcoma cell lines MG-63, HOS, and U2OS compared to normal bone cells, hFOB1.19. When TRAF4 was overexpressed in U2OS cells, cell proliferation was significantly enhanced, accompanied by an increase in Ki67 expression and colony formation. Compared with the control and vector-treated groups, TRAF4 transfection increased the invasion potential of U2OS cells (p < 0.05). Interestingly, TRAF4 transfection significantly enhanced the phosphorylation of Akt. After blocking Akt with its specific siRNA, TRAF4-induced cell proliferation and invasion were dramatically attenuated. In summary, our findings demonstrated that TRAF4 enhances osteosarcoma cell proliferation and invasion partially by the Akt pathway. This work suggests that TRAF4 might be an important target in osteosarcoma.
Collapse
Affiliation(s)
- Weitao Yao
- Department of Bone and Soft Tumor, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouChina
| | - Xin Wang
- Department of Bone and Soft Tumor, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouChina
| | - Qiqing Cai
- Department of Bone and Soft Tumor, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouChina
| | - Songtao Gao
- Department of Bone and Soft Tumor, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouChina
| | - Jiaqiang Wang
- Department of Bone and Soft Tumor, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouChina
| | - Peng Zhang
- Department of Bone and Soft Tumor, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouChina
| |
Collapse
|