1
|
Moghadasi M, Taherimoghaddam M, Babaeenezhad E, Birjandi M, Kaviani M, Moradi Sarabi M. MicroRNA-34a and promoter methylation contribute to peroxisome proliferator-activated receptor gamma gene expression in patients with type 2 diabetes. Diabetes Metab Syndr 2024; 18:103156. [PMID: 39522431 DOI: 10.1016/j.dsx.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
AIMS This study aimed to investigate the roles of DNA methylation and miR-34a in the regulation of peroxisome proliferator-activated receptor gamma (PPARγ) in patients with type 2 diabetes (T2D). METHODS We investigated the methylation status of four regions of the PPARγ promoter and PPARγ expression in a panel of 84 T2D patients using methylation-specific PCR (MSP) and RT-qPCR, respectively. Moreover, we quantified DNA methyltransferases (DNMTs) expression and global DNA methylation levels by RT-qPCR and ELISA, respectively. We measured the expression levels of miR-34a and protein expression of PPARγ by stem-loop RT-qPCR and ELISA, respectively. RESULTS We found significant DNA hypermethylation in the R2 and R3 regions of the PPARγ promoter in people with diabetes. Functionally, this was associated with a significant reduction in PPARγ expression. In addition, we observed a significant increase in 5-methylcytosine levels in people with diabetes. A marked increase in circulating miR-34a in the early stages of T2D (up to 10 years) and a significant decrease in circulating miR-34a with increasing diabetes duration from 10 years after the onset of diabetes. Interestingly, upregulation of DNA methyltransferases 1 (DNMT1), DNMT3A, and DNMT3B was observed in people with diabetes, and the average expression of DNMTs was negatively correlated with circulating miR-34a levels. In contrast, the serum protein level of PPARγ, a direct target of miR-34a, increased considerably with diabetes duration and showed a negative correlation with circulating miR-34a, cholesterol, triglyceride, and low-density lipoprotein. CONCLUSION PPARγ promoter hypermethylation and miR-34a upregulation are associated with T2D pathogenesis through PPARγ dysregulation.
Collapse
Affiliation(s)
- Mona Moghadasi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mozhgan Taherimoghaddam
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Esmaeel Babaeenezhad
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mehdi Birjandi
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Biostatistics and Epidemiology, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mozhgan Kaviani
- Department of Internal Medicine, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mostafa Moradi Sarabi
- Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran; Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
2
|
Mustafa A, Shabbir M, Badshah Y, Khan K, Abid F, Trembley JH, Afsar T, Almajwal A, Razak S. Genetic polymorphism in untranslated regions of PRKCZ influences mRNA structure, stability and binding sites. BMC Cancer 2024; 24:1147. [PMID: 39272077 PMCID: PMC11401371 DOI: 10.1186/s12885-024-12900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Variations in untranslated regions (UTR) alter regulatory pathways impacting phenotype, disease onset, and course of disease. Protein kinase C Zeta (PRKCZ), a serine-threonine kinase, is implicated in cardiovascular, neurological and oncological disorders. Due to limited research on PRKCZ, this study aimed to investigate the impact of UTR genetic variants' on binding sites for transcription factors and miRNA. RNA secondary structure, eQTLs, and variation tolerance analysis were also part of the study. METHODS The data related to PRKCZ gene variants was downloaded from the Ensembl genome browser, COSMIC and gnomAD. The RegulomeDB database was used to assess the functional impact of 5' UTR and 3'UTR variants. The analysis of the transcription binding sites (TFBS) was done through the Alibaba tool, and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) was employed to identify pathways associated with PRKCZ. To predict the effect of variants on microRNA binding sites, PolymiRTS was utilized for 3' UTR variants, and the SNPinfo tool was used for 5' UTR variants. RESULTS The results obtained indicated that a total of 24 variants present in the 3' UTR and 25 variants present in the 5' UTR were most detrimental. TFBS analysis revealed that 5' UTR variants added YY1, repressor, and Oct1, whereas 3' UTR variants added AP-2alpha, AhR, Da, GR, and USF binding sites. The study predicted TFs that influenced PRKCZ expression. RNA secondary structure analysis showed that eight 5' UTR and six 3' UTR altered the RNA structure by either removal or addition of the stem-loop. The microRNA binding site analysis highlighted that seven 3' UTR and one 5' UTR variant altered the conserved site and also created new binding sites. eQTLs analysis showed that one variant was associated with PRKCZ expression in the lung and thyroid. The variation tolerance analysis revealed that PRKCZ was an intolerant gene. CONCLUSION This study laid the groundwork for future studies aimed at targeting PRKCZ as a therapeutic target.
Collapse
Affiliation(s)
- Aneela Mustafa
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Maria Shabbir
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan.
| | - Yasmin Badshah
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | | | - Fizzah Abid
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Janeen H Trembley
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Nadiger N, Veed JK, Chinya Nataraj P, Mukhopadhyay A. DNA methylation and type 2 diabetes: a systematic review. Clin Epigenetics 2024; 16:67. [PMID: 38755631 PMCID: PMC11100087 DOI: 10.1186/s13148-024-01670-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE DNA methylation influences gene expression and function in the pathophysiology of type 2 diabetes mellitus (T2DM). Mapping of T2DM-associated DNA methylation could aid early detection and/or therapeutic treatment options for diabetics. DESIGN A systematic literature search for associations between T2DM and DNA methylation was performed. Prospero registration ID: CRD42020140436. METHODS PubMed and ScienceDirect databases were searched (till October 19, 2023). Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and New Castle Ottawa scale were used for reporting the selection and quality of the studies, respectively. RESULT Thirty-two articles were selected. Four of 130 differentially methylated genes in blood, adipose, liver or pancreatic islets (TXNIP, ABCG1, PPARGC1A, PTPRN2) were reported in > 1 study. TXNIP was hypomethylated in diabetic blood across ethnicities. Gene enrichment analysis of the differentially methylated genes highlighted relevant disease pathways (T2DM, type 1 diabetes and adipocytokine signaling). Three prospective studies reported association of methylation in IGFBP2, MSI2, FTO, TXNIP, SREBF1, PHOSPHO1, SOCS3 and ABCG1 in blood at baseline with incident T2DM/hyperglycemia. Sex-specific differential methylation was reported only for HOOK2 in visceral adipose tissue (female diabetics: hypermethylated, male diabetics: hypomethylated). Gene expression was inversely associated with methylation status in 8 studies, in genes including ABCG1 (blood), S100A4 (adipose tissue), PER2 (pancreatic islets), PDGFA (liver) and PPARGC1A (skeletal muscle). CONCLUSION This review summarizes available evidence for using DNA methylation patterns to unravel T2DM pathophysiology. Further validation studies in diverse populations will set the stage for utilizing this knowledge for identifying early diagnostic markers and novel druggable pathways.
Collapse
Affiliation(s)
- Nikhil Nadiger
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
- Division of Nutrition, St. John's Research Institute, St. John's Medical College, St Johns National Academy of Health Sciences, Sarjapura Road, Koramangala, Bangalore, 560034, India
| | - Jyothisha Kana Veed
- Division of Nutrition, St. John's Research Institute, St. John's Medical College, St Johns National Academy of Health Sciences, Sarjapura Road, Koramangala, Bangalore, 560034, India
| | - Priyanka Chinya Nataraj
- Division of Nutrition, St. John's Research Institute, St. John's Medical College, St Johns National Academy of Health Sciences, Sarjapura Road, Koramangala, Bangalore, 560034, India
- Vedantu, Bangalore, India
| | - Arpita Mukhopadhyay
- Division of Nutrition, St. John's Research Institute, St. John's Medical College, St Johns National Academy of Health Sciences, Sarjapura Road, Koramangala, Bangalore, 560034, India.
| |
Collapse
|
4
|
Mas-Parés B, Xargay-Torrent S, Carreras-Badosa G, Gómez-Vilarrubla A, Niubó-Pallàs M, Tibau J, Reixach J, Prats-Puig A, de Zegher F, Ibañez L, Bassols J, López-Bermejo A. Gestational Caloric Restriction Alters Adipose Tissue Methylome and Offspring's Metabolic Profile in a Swine Model. Int J Mol Sci 2024; 25:1128. [PMID: 38256201 PMCID: PMC10816194 DOI: 10.3390/ijms25021128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Limited nutrient supply to the fetus results in physiologic and metabolic adaptations that have unfavorable consequences in the offspring. In a swine animal model, we aimed to study the effects of gestational caloric restriction and early postnatal metformin administration on offspring's adipose tissue epigenetics and their association with morphometric and metabolic variables. Sows were either underfed (30% restriction of total food) or kept under standard diet during gestation, and piglets were randomly assigned at birth to receive metformin (n = 16 per group) or vehicle treatment (n = 16 per group) throughout lactation. DNA methylation and gene expression were assessed in the retroperitoneal adipose tissue of piglets at weaning. Results showed that gestational caloric restriction had a negative effect on the metabolic profile of the piglets, increased the expression of inflammatory markers in the adipose tissue, and changed the methylation of several genes related to metabolism. Metformin treatment resulted in positive changes in the adipocyte morphology and regulated the methylation of several genes related to atherosclerosis, insulin, and fatty acids signaling pathways. The methylation and gene expression of the differentially methylated FASN, SLC5A10, COL5A1, and PRKCZ genes in adipose tissue associated with the metabolic profile in the piglets born to underfed sows. In conclusion, our swine model showed that caloric restriction during pregnancy was associated with impaired inflammatory and DNA methylation markers in the offspring's adipose tissue that could predispose the offspring to later metabolic abnormalities. Early metformin administration could modulate the size of adipocytes and the DNA methylation changes.
Collapse
Affiliation(s)
- Berta Mas-Parés
- Obesity and Cardiovascular Risk in Pediatrics, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain; (B.M.-P.); (A.L.-B.)
| | - Sílvia Xargay-Torrent
- Obesity and Cardiovascular Risk in Pediatrics, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain; (B.M.-P.); (A.L.-B.)
| | - Gemma Carreras-Badosa
- Obesity and Cardiovascular Risk in Pediatrics, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain; (B.M.-P.); (A.L.-B.)
| | - Ariadna Gómez-Vilarrubla
- Materno-Fetal Metabolic Research, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
| | - Maria Niubó-Pallàs
- Materno-Fetal Metabolic Research, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
| | - Joan Tibau
- Benestar Animal, Institut de Recerca i Tecnología Agroalimentàries (IRTA), 17121 Monells, Spain;
| | | | - Anna Prats-Puig
- Department of Physical Therapy, EUSES, University of Girona, 17190 Salt, Spain;
| | - Francis de Zegher
- Department of Development and Regeneration, University of Leuven, 3000 Leuven, Belgium
| | - Lourdes Ibañez
- Endocrinology, Fundació Sant Joan de Déu, University of Barcelona, 08950 Esplugues de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Judit Bassols
- Materno-Fetal Metabolic Research, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
| | - Abel López-Bermejo
- Obesity and Cardiovascular Risk in Pediatrics, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain; (B.M.-P.); (A.L.-B.)
- Pediatrics, Hospital Dr. Josep Trueta, 17007 Girona, Spain
- Department of Medical Sciences, University of Girona, 17820 Girona, Spain
| |
Collapse
|
5
|
Singh S, Sarma DK, Verma V, Nagpal R, Kumar M. Unveiling the future of metabolic medicine: omics technologies driving personalized solutions for precision treatment of metabolic disorders. Biochem Biophys Res Commun 2023; 682:1-20. [PMID: 37788525 DOI: 10.1016/j.bbrc.2023.09.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Metabolic disorders are increasingly prevalent worldwide, leading to high rates of morbidity and mortality. The variety of metabolic illnesses can be addressed through personalized medicine. The goal of personalized medicine is to give doctors the ability to anticipate the best course of treatment for patients with metabolic problems. By analyzing a patient's metabolomic, proteomic, genetic profile, and clinical data, physicians can identify relevant diagnostic, and predictive biomarkers and develop treatment plans and therapy for acute and chronic metabolic diseases. To achieve this goal, real-time modeling of clinical data and multiple omics is essential to pinpoint underlying biological mechanisms, risk factors, and possibly useful data to promote early diagnosis and prevention of complex diseases. Incorporating cutting-edge technologies like artificial intelligence and machine learning is crucial for consolidating diverse forms of data, examining multiple variables, establishing databases of clinical indicators to aid decision-making, and formulating ethical protocols to address concerns. This review article aims to explore the potential of personalized medicine utilizing omics approaches for the treatment of metabolic disorders. It focuses on the recent advancements in genomics, epigenomics, proteomics, metabolomics, and nutrigenomics, emphasizing their role in revolutionizing personalized medicine.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Manoj Kumar
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India.
| |
Collapse
|
6
|
Wang HF, Jiang J, Wu JS, Zhang M, Pang X, Dai L, Tang YL, Liang XH. Hypermethylation of PRKCZ Regulated by E6 Inhibits Invasion and EMT via Cdc42 in HPV-Related Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14174151. [PMID: 36077689 PMCID: PMC9454700 DOI: 10.3390/cancers14174151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 12/09/2022] Open
Abstract
Purpose: To study the role of target genes with aberrant DNA methylation in HPV+ HNSCC. Methods: A HumanMethylation450 BeadChip array (Illumina) was used to identify differentially methylated genes. CCK-8, flow cytometry, wound healing, and cell invasion assays were conducted to analyze the biological roles of PRKCZ. Western blot, qRT-PCR, immunohistochemistry, and animal studies were performed to explore the mechanisms underlying the functions of PRKCZ. Results: We selected PRKCZ, which is associated with HPV infection, as our target gene. PRKCZ was hypermethylated in HPV+ HNSCC patients, and PRKCZ methylation status was negatively related to the pathological grading of HNSCC patients. Silencing PRKCZ inhibited the malignant capacity of HPV+ HNSCC cells. Mechanistically, HPV might promote DNMT1 expression via E6 to increase PRKCZ methylation. Cdc42 was required for the PRKCZ-mediated mechanism of action, contributing to the occurrence of epithelial-mesenchymal transition (EMT) in HPV+ HNSCC cells. In addition, blocking PRKCZ delayed tumor growth in HPV16-E6/E7 transgenic mice. Cdc42 expression was decreased, whereas E-cadherin levels increased. Conclusion: We suggest that PRKCZ hypermethylation induces EMT via Cdc42 to act as a potent tumor promoter in HPV+ HNSCC.
Collapse
Affiliation(s)
- Hao-Fan Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jian Jiang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jia-Shun Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Pang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Dai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (Y.-L.T.); (X.-H.L.)
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (Y.-L.T.); (X.-H.L.)
| |
Collapse
|
7
|
Tijjani A, Salim B, da Silva MVB, Eltahir HA, Musa TH, Marshall K, Hanotte O, Musa HH. Genomic signatures for drylands adaptation at gene-rich regions in African zebu cattle. Genomics 2022; 114:110423. [PMID: 35803449 PMCID: PMC9388378 DOI: 10.1016/j.ygeno.2022.110423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022]
Abstract
Background Indigenous Sudanese cattle are mainly indicine/zebu (humped) type. They thrive in the harshest dryland environments characterised by high temperatures, long seasonal dry periods, nutritional shortages, and vector disease challenges. Here, we sequenced 60 indigenous Sudanese cattle from six indigenous breeds and analysed the data using three genomic scan approaches to unravel cattle adaptation to the African dryland region. Results We identified a set of gene-rich selective sweep regions, detected mostly on chromosomes 5, 7 and 19, shared across African and Gir zebu. These include genes involved in immune response, body size and conformation, and heat stress response. We also identified selective sweep regions unique to Sudanese zebu. Of these, a 250 kb selective sweep on chromosome 16 spans seven genes, including PLCH2, PEX10, PRKCZ, and SKI, which are involved in alternative adaptive metabolic strategies of insulin signalling, glucose homeostasis, and fat metabolism. Conclusions Our results suggest that environmental adaptation may involve recent and ancient selection at gene-rich regions, which might be under a common regulatory genetic control, in zebu cattle. Sudanese cattle thrive in the harshest environments of the African drylands. Bos indicus shared selected genes are involved in immune response, conformation, and heat stress response. Sudanese zebu-specific sweep includes genes involved in alternative adaptive metabolic strategies of insulin signalling, glucose homeostasis, and fat metabolism. Environmental adaptation in zebu cattle may involve recent and ancient selection at gene-rich regions, which might be under a common regulatory genetic control.
Collapse
Affiliation(s)
- Abdulfatai Tijjani
- International Livestock Research Institute (ILRI), PO 5689, Addis Ababa, Ethiopia; Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Ethiopia, PO Box 5689, Addis Ababa, Ethiopia; Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, United Kingdom.
| | - Bashir Salim
- Faculty of Veterinary Medicine, University of Khartoum, Sudan
| | | | | | - Taha H Musa
- Biomedical Research Institute, Darfur College, Sudan
| | - Karen Marshall
- International Livestock Research Institute (ILRI), PO Box 30709, Nairobi 00100, Kenya; Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), PO 5689, Addis Ababa, Ethiopia; Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Ethiopia, PO Box 5689, Addis Ababa, Ethiopia; Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, United Kingdom.
| | - Hassan H Musa
- Institute of Molecular Biology, University of Nyala, Sudan; Faculty of Medical Laboratory Sciences, University of Khartoum, Sudan.
| |
Collapse
|
8
|
Poursafa P, Kamali Z, Fraszczyk E, Boezen HM, Vaez A, Snieder H. DNA methylation: a potential mediator between air pollution and metabolic syndrome. Clin Epigenetics 2022; 14:82. [PMID: 35773726 PMCID: PMC9245491 DOI: 10.1186/s13148-022-01301-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/01/2022] [Indexed: 01/19/2023] Open
Abstract
Given the global increase in air pollution and its crucial role in human health, as well as the steep rise in prevalence of metabolic syndrome (MetS), a better understanding of the underlying mechanisms by which environmental pollution may influence MetS is imperative. Exposure to air pollution is known to impact DNA methylation, which in turn may affect human health. This paper comprehensively reviews the evidence for the hypothesis that the effect of air pollution on the MetS is mediated by DNA methylation in blood. First, we present a summary of the impact of air pollution on metabolic dysregulation, including the components of MetS, i.e., disorders in blood glucose, lipid profile, blood pressure, and obesity. Then, we provide evidence on the relation between air pollution and endothelial dysfunction as one possible mechanism underlying the relation between air pollution and MetS. Subsequently, we review the evidence that air pollution (PM, ozone, NO2 and PAHs) influences DNA methylation. Finally, we summarize association studies between DNA methylation and MetS. Integration of current evidence supports our hypothesis that methylation may partly mediate the effect of air pollution on MetS.
Collapse
Affiliation(s)
- Parinaz Poursafa
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Zoha Kamali
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Eliza Fraszczyk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - H Marike Boezen
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ahmad Vaez
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
9
|
Zhang S, Zhang J, Zhang Q, Liang Y, Du Y, Wang G. Identification of Prognostic Biomarkers for Bladder Cancer Based on DNA Methylation Profile. Front Cell Dev Biol 2022; 9:817086. [PMID: 35174173 PMCID: PMC8841402 DOI: 10.3389/fcell.2021.817086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Background: DNA methylation is an important epigenetic modification, which plays an important role in regulating gene expression at the transcriptional level. In tumor research, it has been found that the change of DNA methylation leads to the abnormality of gene structure and function, which can provide early warning for tumorigenesis. Our study aims to explore the relationship between the occurrence and development of tumor and the level of DNA methylation. Moreover, this study will provide a set of prognostic biomarkers, which can more accurately predict the survival and health of patients after treatment. Methods: Datasets of bladder cancer patients and control samples were collected from TCGA database, differential analysis was employed to obtain genes with differential DNA methylation levels between tumor samples and normal samples. Then the protein-protein interaction network was constructed, and the potential tumor markers were further obtained by extracting Hub genes from subnet. Cox proportional hazard regression model and survival analysis were used to construct the prognostic model and screen out the prognostic markers of bladder cancer, so as to provide reference for tumor prognosis monitoring and improvement of treatment plan. Results: In this study, we found that DNA methylation was indeed related with the occurrence of bladder cancer. Genes with differential DNA methylation could serve as potential biomarkers for bladder cancer. Through univariate and multivariate Cox proportional hazard regression analysis, we concluded that FASLG and PRKCZ can be used as prognostic biomarkers for bladder cancer. Patients can be classified into high or low risk group by using this two-gene prognostic model. By detecting the methylation status of these genes, we can evaluate the survival of patients. Conclusion: The analysis in our study indicates that the methylation status of tumor-related genes can be used as prognostic biomarkers of bladder cancer.
Collapse
Affiliation(s)
- Shumei Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Jingyu Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qichao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yingjian Liang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Youwen Du
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Guohua Wang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
- *Correspondence: Guohua Wang,
| |
Collapse
|
10
|
Padilla-Martinez F, Wojciechowska G, Szczerbinski L, Kretowski A. Circulating Nucleic Acid-Based Biomarkers of Type 2 Diabetes. Int J Mol Sci 2021; 23:ijms23010295. [PMID: 35008723 PMCID: PMC8745431 DOI: 10.3390/ijms23010295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 11/23/2022] Open
Abstract
Type 2 diabetes (T2D) is a deficiency in how the body regulates glucose. Uncontrolled T2D will result in chronic high blood sugar levels, eventually resulting in T2D complications. These complications, such as kidney, eye, and nerve damage, are even harder to treat. Identifying individuals at high risk of developing T2D and its complications is essential for early prevention and treatment. Numerous studies have been done to identify biomarkers for T2D diagnosis and prognosis. This review focuses on recent T2D biomarker studies based on circulating nucleic acids using different omics technologies: genomics, transcriptomics, and epigenomics. Omics studies have profiled biomarker candidates from blood, urine, and other non-invasive samples. Despite methodological differences, several candidate biomarkers were reported for the risk and diagnosis of T2D, the prognosis of T2D complications, and pharmacodynamics of T2D treatments. Future studies should be done to validate the findings in larger samples and blood-based biomarkers in non-invasive samples to support the realization of precision medicine for T2D.
Collapse
Affiliation(s)
- Felipe Padilla-Martinez
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
| | - Gladys Wojciechowska
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Correspondence:
| | - Lukasz Szczerbinski
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15276 Białystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15276 Białystok, Poland
| |
Collapse
|
11
|
Zhou S, Zhang J, Xu J, Zhang F, Li P, He Y, Wu J, Wang C, Wang X, Zhang W, Ning K, Pan Y, Liu T, Zhao J, Yin L, Zhang R, Gao F, Zhao J, Dong L. An epigenome-wide DNA methylation study of patients with COVID-19. Ann Hum Genet 2021; 85:221-234. [PMID: 34185889 PMCID: PMC8441705 DOI: 10.1111/ahg.12440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/05/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023]
Abstract
In the early 2000s, emerging SARS‐CoV‐2, which is highly pathogenic, posed a great threat to public health. During COVID‐19, epigenetic regulation is deemed to be an important part of the pathophysiology and illness severity. Using the Illumina Infinium Methylation EPIC BeadChip (850 K), we investigated genome‐wide differences in DNA methylation between healthy subjects and COVID‐19 patients with different disease severities. We conducted a combined analysis and selected 35 “marker” genes that could indicate a SARS‐CoV‐2 infection, including 12 (ATHL1, CHN2, CHST15, CPLX2, CRHR2, DCAKD, GNAI2, HECW1, HYAL1, MIR510, PDE11A, and SMG6) situated in the promoter region. The functions and pathways of differentially methylated genes were enriched in biological processes, signal transduction, and the immune system. In the “Severe versus Mild” group, differentially methylated genes, after eliminating duplicates, were used for PPI analyses. The four hub genes (GNG7, GNAS, PRKCZ, and PRKAG2) that had the highest degree of nodes were identified and among them, GNG7 and GNAS genes expressions were also downregulated in the severe group in sequencing results. Above all, the results suggest that GNG7 and GNAS may play a non‐ignorable role in the progression of COVID‐19. In conclusion, the identified key genes and related pathways in the current study can be used to study the molecular mechanisms of COVID‐19 and may provide possibilities for specific treatments.
Collapse
Affiliation(s)
- Shengyu Zhou
- Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Nursing Department, School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jintao Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiawei Xu
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fayan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Li
- Blood Center of Shandong Province, Jinan, China
| | - Yujie He
- Institute of Virology, Shandong Center for Diseases Prevention and Control, Jinan, China
| | - Julong Wu
- Institute of Virology, Shandong Center for Diseases Prevention and Control, Jinan, China
| | - Chunting Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, China
| | - Wei Zhang
- Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kang Ning
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Pan
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tian Liu
- Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiping Zhao
- Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lixia Yin
- Department of Respiratory Medicine, Dezhou People's Hospital, Dezhou, China
| | - Rumin Zhang
- Department of Critical Care Medicine, Zibo Central Hospital, Zibo, China
| | - Feng Gao
- Department of Infectious Disease, Linyi People's Hospital, Linyi, China
| | - Jintong Zhao
- Department of Critical Care Medicine, Zibo Central Hospital, Zibo, China
| | - Liang Dong
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, China
| |
Collapse
|
12
|
Awamleh Z, Butcher DT, Hanley A, Retnakaran R, Haertle L, Haaf T, Hamilton J, Weksberg R. Exposure to Gestational Diabetes Mellitus (GDM) alters DNA methylation in placenta and fetal cord blood. Diabetes Res Clin Pract 2021; 174:108690. [PMID: 33549677 DOI: 10.1016/j.diabres.2021.108690] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Fetal exposure to maternal GDM increases offspring risk for adult-onset metabolic syndromes. Epigenetic modifications such as DNA methylation are modulators for fetal metabolic programming and susceptibility to adult-onset disease. This study investigates genome-wide DNA methylation in GDM exposed cord blood and placenta. METHODS Oral glucose tolerance testing between 24 and 28 weeks of pregnancy was used to determine severity of glucose intolerance. We measured DNA methylation (DNAm) using the Illumina Infinium 450 K array in 42 fetal cord blood and 36 placenta samples. RESULTS We identified 662 and 99 CpG sites in GDM placenta and cord blood, respectively at p-value <0.01 and a methylation difference >5% after adjustment for confounders. Annotated sites for AHRR and PTPRN2 were common to cord blood and placenta. Adding published GDM cord blood DNAm data we segregated patients based on treatment (Diet Only vs. +Insulin) and identified altered CpG sites to be unique to each GDM treatment group. CONCLUSION Consistency in findings with other studies provides evidence for the role of DNAm in placental and fetal responses to hyperglycemia. However, segregating DNAm analysis of GDM samples based on treatment may help delineate whether observed DNAm alterations are reflective of adaptive responses or treatment effects in utero.
Collapse
Affiliation(s)
- Zain Awamleh
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Darci T Butcher
- Head of Molecular Genomics, Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anthony Hanley
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Endocrinology, University of Toronto, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Ravi Retnakaran
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Endocrinology, University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Larissa Haertle
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany; Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Jill Hamilton
- Division of Endocrinology, University of Toronto, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.
| | - Rosanna Weksberg
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada; Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, School of Graduate Studies, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
El Bitar F, Al Sudairy N, Qadi N, Al Rajeh S, Alghamdi F, Al Amari H, Al Dawsari G, Alsubaie S, Al Sudairi M, Abdulaziz S, Al Tassan N. A Comprehensive Analysis of Unique and Recurrent Copy Number Variations in Alzheimer's Disease and its Related Disorders. Curr Alzheimer Res 2020; 17:926-938. [PMID: 33256577 DOI: 10.2174/1567205017666201130111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/20/2020] [Accepted: 10/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Copy number variations (CNVs) play an important role in the genetic etiology of various neurological disorders, including Alzheimer's disease (AD). Type 2 diabetes mellitus (T2DM) and major depressive disorder (MDD) were shown to have share mechanisms and signaling pathways with AD. OBJECTIVE We aimed to assess CNVs regions that may harbor genes contributing to AD, T2DM, and MDD in 67 Saudi familial and sporadic AD patients, with no alterations in the known genes of AD and genotyped previously for APOE. METHODS DNA was analyzed using the CytoScan-HD array. Two layers of filtering criteria were applied. All the identified CNVs were checked in the Database of Genomic Variants (DGV). RESULTS A total of 1086 CNVs (565 gains and 521 losses) were identified in our study. We found 73 CNVs harboring genes that may be associated with AD, T2DM or MDD. Nineteen CNVs were novel. Most importantly, 42 CNVs were unique in our studied cohort existing only in one patient. Two large gains on chromosomes 1 and 13 harbored genes implicated in the studied disorders. We identified CNVs in genes that encode proteins involved in the metabolism of amyloid-β peptide (AGRN, APBA2, CR1, CR2, IGF2R, KIAA0125, MBP, RER1, RTN4R, VDR and WISPI) or Tau proteins (CACNAIC, CELF2, DUSP22, HTRA1 and SLC2A14). CONCLUSION The present work provided information on the presence of CNVs related to AD, T2DM, and MDD in Saudi Alzheimer's patients.
Collapse
Affiliation(s)
- Fadia El Bitar
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nourah Al Sudairy
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Najeeb Qadi
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Fatimah Alghamdi
- Institute of Biology and Environmental Research, National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hala Al Amari
- Institute of Biology and Environmental Research, National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Ghadeer Al Dawsari
- Institute of Biology and Environmental Research, National Center for Genomics Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sahar Alsubaie
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mishael Al Sudairi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sara Abdulaziz
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nada Al Tassan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Ahmed SAH, Ansari SA, Mensah-Brown EPK, Emerald BS. The role of DNA methylation in the pathogenesis of type 2 diabetes mellitus. Clin Epigenetics 2020; 12:104. [PMID: 32653024 PMCID: PMC7353744 DOI: 10.1186/s13148-020-00896-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic condition characterised by β cell dysfunction and persistent hyperglycaemia. The disorder can be due to the absence of adequate pancreatic insulin production or a weak cellular response to insulin signalling. Among the three types of DM, namely, type 1 DM (T1DM), type 2 DM (T2DM), and gestational DM (GDM); T2DM accounts for almost 90% of diabetes cases worldwide. Epigenetic traits are stably heritable phenotypes that result from certain changes that affect gene function without altering the gene sequence. While epigenetic traits are considered reversible modifications, they can be inherited mitotically and meiotically. In addition, epigenetic traits can randomly arise in response to environmental factors or certain genetic mutations or lesions, such as those affecting the enzymes that catalyse the epigenetic modification. In this review, we focus on the role of DNA methylation, a type of epigenetic modification, in the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Sanabil Ali Hassan Ahmed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| | - Eric P K Mensah-Brown
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
15
|
Mohana Devi S, Mahalaxmi I, Kaavya J, Chinnkulandhai V, Balachandar V. Does epigenetics have a role in age related macular degeneration and diabetic retinopathy? Genes Dis 2020; 8:279-286. [PMID: 33997175 PMCID: PMC8093576 DOI: 10.1016/j.gendis.2020.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
Epigenetic mechanisms play an important part in the regulation of gene expression and these alterations may induce long-term changes in gene function and metabolism. They have received extensive attention in bridging the gap between environmental exposures and disease development via their influence on gene expression. DNA methylation is the earliest discovered epigenetic alteration. In this review, we try to examine the role of DNA methylation and histone modification in Age related macular degeneration (AMD) and Diabetic Retinopathy (DR), its vascular complications and recent progress. Given the complex nature of AMD and DR, it is crucial to improve therapeutics which will greatly enhance the quality of life and reduce the burden for millions of patients living with these potentially blinding conditions.
Collapse
Affiliation(s)
- S Mohana Devi
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, 41/18, College Road, Chennai, 600006, India
| | - I Mahalaxmi
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Avinashilingam University for Women, Coimbatore, Tamil Nadu, 641046, India
| | - J Kaavya
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Avinashilingam University for Women, Coimbatore, Tamil Nadu, 641046, India
| | - V Chinnkulandhai
- Department of Biochemistry, Dr.N.G.P Arts and Science College, Coimbatore, Tamil Nadu, 641046, India
| | - V Balachandar
- Human Molecular Genetics and Stem Cells Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| |
Collapse
|
16
|
Juvinao-Quintero DL, Hivert MF, Sharp GC, Relton CL, Elliott HR. DNA Methylation and Type 2 Diabetes: the Use of Mendelian Randomization to Assess Causality. CURRENT GENETIC MEDICINE REPORTS 2019; 7:191-207. [PMID: 32274260 PMCID: PMC7145450 DOI: 10.1007/s40142-019-00176-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of Review This review summarises recent advances in the field of epigenetics in order to understand the aetiology of type 2 diabetes (T2D). Recent Findings DNA methylation at a number of loci has been shown to be robustly associated with T2D, including TXNIP, ABCG1, CPT1A, and SREBF1. However, due to the cross-sectional nature of many epidemiological studies and predominant analysis in samples derived from blood rather than disease relevant tissues, inferring causality is difficult. We therefore outline the use of Mendelian randomisation (MR) as one method able to assess causality in epigenetic studies of T2D. Summary Epidemiological studies have been fruitful in identifying epigenetic markers of T2D. Triangulation of evidence including utilisation of MR is essential to delineate causal from non-causal biomarkers of disease. Understanding the causality of epigenetic markers in T2D more fully will aid prioritisation of CpG sites as early biomarkers to detect disease or in drug development to target epigenetic mechanisms in order to treat patients.
Collapse
Affiliation(s)
- Diana L Juvinao-Quintero
- MRC Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, USA
| | - Gemma C Sharp
- MRC Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Bristol NIHR Biomedical Research Centre, Bristol, UK
| | - Hannah R Elliott
- MRC Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| |
Collapse
|
17
|
LogLoss-BERAF: An ensemble-based machine learning model for constructing highly accurate diagnostic sets of methylation sites accounting for heterogeneity in prostate cancer. PLoS One 2018; 13:e0204371. [PMID: 30388122 PMCID: PMC6214495 DOI: 10.1371/journal.pone.0204371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/06/2018] [Indexed: 12/23/2022] Open
Abstract
Although modern methods of whole genome DNA methylation analysis have a wide range of applications, they are not suitable for clinical diagnostics due to their high cost and complexity and due to the large amount of sample DNA required for the analysis. Therefore, it is crucial to be able to identify a relatively small number of methylation sites that provide high precision and sensitivity for the diagnosis of pathological states. We propose an algorithm for constructing limited subsamples from high-dimensional data to form diagnostic panels. We have developed a tool that utilizes different methods of selection to find an optimal, minimum necessary combination of factors using cross-entropy loss metrics (LogLoss) to identify a subset of methylation sites. We show that the algorithm can work effectively with different genome methylation patterns using ensemble-based machine learning methods. Algorithm efficiency, precision and robustness were evaluated using five genome-wide DNA methylation datasets (totaling 626 samples), and each dataset was classified into tumor and non-tumor samples. The algorithm produced an AUC of 0.97 (95% CI: 0.94-0.99, 9 sites) for prostate adenocarcinoma and an AUC of 1.0 (from 2 to 6 sites) for urothelial bladder carcinoma, two types of kidney carcinoma and colorectal carcinoma. For prostate adenocarcinoma we showed that identified differential variability methylation patterns distinguish cluster of samples with higher recurrence rate (hazard ratio for recurrence = 0.48, 95% CI: 0.05-0.92; log-rank test, p-value < 0.03). We also identified several clusters of correlated interchangeable methylation sites that can be used for the elaboration of biological interpretation of the resulting models and for further selection of the sites most suitable for designing diagnostic panels. LogLoss-BERAF is implemented as a standalone python code and open-source code is freely available from https://github.com/bioinformatics-IBCH/logloss-beraf along with the models described in this article.
Collapse
|
18
|
La Sala L, Micheloni S, De Nigris V, Prattichizzo F, Ceriello A. Novel insights into the regulation of miRNA transcriptional control: implications for T2D and related complications. Acta Diabetol 2018; 55:989-998. [PMID: 29732466 DOI: 10.1007/s00592-018-1149-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/21/2018] [Indexed: 12/19/2022]
Abstract
In recent years, epigenetics has emerged as an important form of biological regulation involving chromatin control of gene expression. The mechanisms of this fine-tuned regulation are susceptible to changes forced by environmental stimuli and nutritional factors and may be potentially reversible. Dysregulation of epigenetic processes has important consequences for the pathogenesis of complex and multifactorial diseases such as type 2 diabetes (T2D) and vascular complications. Along with DNA methylation (DNA-me), histone modifications and RNA-based mechanisms as the major epigenetic controllers, small non-coding RNAs known as microRNAs (miRNAs) have their own important implications for the pathogenesis of diabetes. There is increasing evidence supporting the role of miRNAs in modulating gene expression, cumulatively contributing to epigenetic gene silencing by acting either on the methylation status of the cells or in alternative roles. Although significant progress has been made in the characterization of miRNA functions, most miRNA promoters have not yet been characterized, and the transcriptional regulation of miRNAs remains elusive. The present work is centred on the new biological insights pertaining to the epigenetics-miRNA regulatory axis, focusing on the development of T2D and cardiovascular complications, and the ability of these mechanisms to interact in a network of DNA-me regulation. The genomic organization of inter- and intragenic miRNA genes is discussed, and the mutual connections between pre-mRNA splicing and miRNA biogenesis are summarized, along with the discovery of novel miRNA transcriptional regulation sites.
Collapse
Affiliation(s)
- Lucia La Sala
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, MI, Italy.
| | - Stefano Micheloni
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, MI, Italy
| | - Valeria De Nigris
- Institut d'Investigación Biomédiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Hospital Clinic, Barcelona, Spain
| | - Francesco Prattichizzo
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, MI, Italy
| | - Antonio Ceriello
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, MI, Italy
- Institut d'Investigación Biomédiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Hospital Clinic, Barcelona, Spain
| |
Collapse
|
19
|
Hjort L, Martino D, Grunnet LG, Naeem H, Maksimovic J, Olsson AH, Zhang C, Ling C, Olsen SF, Saffery R, Vaag AA. Gestational diabetes and maternal obesity are associated with epigenome-wide methylation changes in children. JCI Insight 2018; 3:122572. [PMID: 30185669 DOI: 10.1172/jci.insight.122572] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
Offspring of women with gestational diabetes mellitus (GDM) are at increased risk of developing metabolic disease, potentially mediated by epigenetic mechanisms. We recruited 608 GDM and 626 control offspring from the Danish National Birth Cohort, aged between 9 and 16 years. DNA methylation profiles were measured in peripheral blood of 93 GDM offspring and 95 controls using the Illumina HumanMethylation450 BeadChip. Pyrosequencing was performed for validation/replication of putative GDM-associated, differentially methylated CpGs in additional 905 offspring (462 GDM, 444 control offspring). We identified 76 differentially methylated CpGs in GDM offspring compared with controls in the discovery cohort (FDR, P < 0.05). Adjusting for offspring BMI did not affect the association between methylation levels and GDM status for any of the 76 CpGs. Most of these epigenetic changes were due to confounding by maternal prepregnancy BMI; however, 13 methylation changes were independently associated with maternal GDM. Three prepregnancy BMI-associated CpGs (cg00992687 and cg09452568 of ESM1 and cg14328641 of MS4A3) were validated in the replication cohort, while cg09109411 (PDE6A) was found to be associated with GDM status. The identified methylation changes may reflect developmental programming of organ disease mechanisms and/or may serve as disease biomarkers.
Collapse
Affiliation(s)
- Line Hjort
- Department of Endocrinology (Diabetes and Metabolism), Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,The Danish Diabetes Academy, Odense, Denmark
| | - David Martino
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Pediatrics, Melbourne University, Melbourne, Victoria, Australia
| | - Louise Groth Grunnet
- Department of Endocrinology (Diabetes and Metabolism), Rigshospitalet, Copenhagen, Denmark.,The Danish Diabetes Academy, Odense, Denmark
| | - Haroon Naeem
- Bioinformatics Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Monash Bioinformatics Platform, Monash University, Clayton, Victoria, Australia.,Department of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - Jovana Maksimovic
- Department of Pediatrics, Melbourne University, Melbourne, Victoria, Australia.,Bioinformatics Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Anders Henrik Olsson
- Department of Endocrinology (Diabetes and Metabolism), Rigshospitalet, Copenhagen, Denmark
| | - Cuilin Zhang
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, Maryland, USA
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, CRC, Scania University Hospital, Malmö, Sweden
| | | | - Richard Saffery
- Department of Pediatrics, Melbourne University, Melbourne, Victoria, Australia.,Cancer and Disease Epigenetics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Allan Arthur Vaag
- Department of Endocrinology (Diabetes and Metabolism), Rigshospitalet, Copenhagen, Denmark.,Cardiovascular and Metabolic Disease (CVMD) Translational Medicine Unit, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
20
|
Global and gene-specific DNA methylation in adult type 2 diabetic individuals: a protocol for a systematic review. Syst Rev 2018; 7:46. [PMID: 29544537 PMCID: PMC5856358 DOI: 10.1186/s13643-018-0708-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 02/28/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND DNA methylation (global and gene-specific) has been reported as an epigenetic mechanism that could be involved in the pathogenesis of type 2 diabetes mellitus (T2DM). Furthermore, epigenetic therapy has been suggested as a future possibility for T2DM treatment. Epigenetic changes illustrate the environmental link of the disease. Since some of the epigenetic modifications can be reversed, they could be used as potential therapeutic targets. The aim of the systematic review will be to synthesise the available evidence pertaining to the link between DNA methylation and T2DM. The systematic review will evaluate characteristics of reported studies such as the source of DNA used, methods of quantifying DNA methylation and the participants' demographics (age, gender, race and adiposity). We will conduct a narrative synthesis of data, and if there are an adequate number of sufficiently homogenous studies, we will consider performing a meta-analysis. The review will evaluate if the levels of DNA methylation are a possible risk factor for T2DM. Furthermore, we will assess whether DNA methylation is a plausible biomarker and therapeutic target for the treatment and management of T2DM. METHODS This systematic review protocol will be reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) 2015 statement. An extensive search for original research articles, published since inception, was performed on major databases such as Embase, MEDLINE and Cochrane Library. The search strategy will include a combination of key words and MeSH words. Literature that is available in English and studies in other languages that can be translated into English will be used. Data extraction will be done in duplicate, and two authors will independently screen for eligible studies using pre-defined criteria. The Cochrane Risk of Bias Assessment Tool and Joanna Briggs Institute (JBI) Critical Appraisal tools will be used to assess the risk of bias. The Grading of Recommendations, Assessment, Development and Evaluation assessment tool will be used to assess the overall quality of extracted data. DISCUSSION This systematic review will evaluate published literature, assessing the link between DNA methylation and T2DM. Our findings could help guide future research evaluating epigenetic changes in T2DM and direct future therapeutic interventions.
Collapse
|
21
|
Willmer T, Johnson R, Louw J, Pheiffer C. Blood-Based DNA Methylation Biomarkers for Type 2 Diabetes: Potential for Clinical Applications. Front Endocrinol (Lausanne) 2018; 9:744. [PMID: 30564199 PMCID: PMC6288427 DOI: 10.3389/fendo.2018.00744] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes (T2D) is a leading cause of death and disability worldwide. It is a chronic metabolic disorder that develops due to an interplay of genetic, lifestyle, and environmental factors. The biological onset of the disease occurs long before clinical symptoms develop, thus the search for early diagnostic and prognostic biomarkers, which could facilitate intervention strategies to prevent or delay disease progression, has increased considerably in recent years. Epigenetic modifications represent important links between genetic, environmental and lifestyle cues and increasing evidence implicate altered epigenetic marks such as DNA methylation, the most characterized and widely studied epigenetic mechanism, in the pathogenesis of T2D. This review provides an update of the current status of DNA methylation as a biomarker for T2D. Four databases, Scopus, Pubmed, Cochrane Central, and Google Scholar were searched for studies investigating DNA methylation in blood. Thirty-seven studies were identified, and are summarized with respect to population characteristics, biological source, and method of DNA methylation quantification (global, candidate gene or genome-wide). We highlight that differential methylation of the TCF7L2, KCNQ1, ABCG1, TXNIP, PHOSPHO1, SREBF1, SLC30A8, and FTO genes in blood are reproducibly associated with T2D in different population groups. These genes should be prioritized and replicated in longitudinal studies across more populations in future studies. Finally, we discuss the limitations faced by DNA methylation studies, which include including interpatient variability, cellular heterogeneity, and lack of accounting for study confounders. These limitations and challenges must be overcome before the implementation of blood-based DNA methylation biomarkers into a clinical setting. We emphasize the need for longitudinal prospective studies to support the robustness of the current findings of this review.
Collapse
Affiliation(s)
- Tarryn Willmer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- *Correspondence: Tarryn Willmer
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
22
|
van Otterdijk SD, Binder AM, Szarc vel Szic K, Schwald J, Michels KB. DNA methylation of candidate genes in peripheral blood from patients with type 2 diabetes or the metabolic syndrome. PLoS One 2017; 12:e0180955. [PMID: 28727822 PMCID: PMC5519053 DOI: 10.1371/journal.pone.0180955] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/23/2017] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The prevalence of type 2 diabetes (T2D) and the metabolic syndrome (MetS) is increasing and several studies suggested an involvement of DNA methylation in the development of these metabolic diseases. This study was designed to investigate if differential DNA methylation in blood can function as a biomarker for T2D and/or MetS. METHODS Pyrosequencing analyses were performed for the candidate genes KCNJ11, PPARγ, PDK4, KCNQ1, SCD1, PDX1, FTO and PEG3 in peripheral blood leukocytes (PBLs) from 25 patients diagnosed with only T2D, 9 patients diagnosed with T2D and MetS and 11 control subjects without any metabolic disorders. RESULTS No significant differences in gene-specific methylation between patients and controls were observed, although a trend towards significance was observed for PEG3. Differential methylation was observed between the groups in 4 out of the 42 single CpG loci located in the promoters regions of the genes FTO, KCNJ11, PPARγ and PDK4. A trend towards a positive correlation was observed for PEG3 methylation with HDL cholesterol levels. DISCUSSION Altered levels of DNA methylation in PBLs of specific loci might serve as a biomarker for T2D or MetS, although further investigation is required.
Collapse
Affiliation(s)
- Sanne D. van Otterdijk
- Institute for Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexandra M. Binder
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States of America
| | - Katarzyna Szarc vel Szic
- Institute for Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Schwald
- Institute for Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
| | - Karin B. Michels
- Institute for Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States of America
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
23
|
Mishra M, Kowluru RA. Epigenetic Modification of Mitochondrial DNA in the Development of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2015; 56:5133-42. [PMID: 26241401 DOI: 10.1167/iovs.15-16937] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Retinal mitochondria are dysfunctional in diabetes, and mitochondrial DNA (mtDNA) is damaged and its transcription is compromised. Our aim was to investigate the role of mtDNA methylation in the development of diabetic retinopathy. METHODS Effect of high glucose (20 mM) on mtDNA methylation was analyzed in retinal endothelial cells by methylation-specific PCR and by quantifying 5-methylcytosine (5mC). Dnmt1 binding at the D-loop and Cytb regions of mtDNA was analyzed by chromatin immunoprecipitation. The role of mtDNA methylation in transcription and cell death was confirmed by quantifying transcripts of mtDNA-encoded genes (Cytb, ND6, and CoxII) and apoptosis, using cells transfected with Dnmt1-small interfering RNA (siRNA), or incubated with a Dnmt inhibitor. The key parameters were validated in the retinal microvasculature from human donors with diabetic retinopathy. RESULTS High glucose increased mtDNA methylation, and methylation was significantly higher at the D-loop than at the Cytb and CoxII regions. Mitochondrial accumulation of Dnmt1 and its binding at the D-loop were also significantly increased. Inhibition of Dnmt by its siRNA or pharmacologic inhibitor ameliorated glucose-induced increase in 5mC levels and cell apoptosis. Retinal microvasculature from human donors with diabetic retinopathy presented similar increase in D-loop methylation and decrease in mtDNA transcription. CONCLUSIONS Hypermethylation of mtDNA in diabetes impairs its transcription, resulting in dysfunctional mitochondria and accelerated capillary cell apoptosis. Regulation of mtDNA methylation has potential to restore mitochondrial homeostasis and inhibit/retard the development of diabetic retinopathy.
Collapse
|
24
|
Mansego ML, Milagro FI, Zulet MÁ, Moreno-Aliaga MJ, Martínez JA. Differential DNA Methylation in Relation to Age and Health Risks of Obesity. Int J Mol Sci 2015. [PMID: 26213922 PMCID: PMC4581172 DOI: 10.3390/ijms160816816] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to evaluate whether genome-wide levels of DNA methylation are associated with age and the health risks of obesity (HRO); defined according to BMI categories as "Low HRO" (overweight and class 1 obesity) versus "High HRO" (class 2 and class 3 obesity). Anthropometric measurements were assessed in a subsample of 48 volunteers from the Metabolic Syndrome Reduction in Navarra (RESMENA) study and 24 women from another independent study, Effects of Lipoic Acid and Eicosapentaenoic Acid in Human Obesity (OBEPALIP study). In the pooled population; the methylation levels of 55 CpG sites were significantly associated with age after Benjamini-Hochberg correction. In addition, DNA methylation of three CpG sites located in ELOVL2; HOXC4 and PI4KB were further negatively associated with their mRNA levels. Although no differentially methylated CpG sites were identified in relation to HRO after multiple testing correction; several nominally significant CpG sites were identified in genes related to insulin signaling; energy and lipid metabolism. Moreover, statistically significant associations between BMI or mRNA levels and two HRO-related CpG sites located in GPR133 and ITGB5 are reported. As a conclusion, these findings from two Spanish cohorts add knowledge about the important role of DNA methylation in the age-related regulation of gene expression. In addition; a relevant influence of age on DNA methylation in white blood cells was found, as well as, on a trend level, novel associations between DNA methylation and obesity.
Collapse
Affiliation(s)
- María Luisa Mansego
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Institute of Health Carlos III, Madrid, Spain and Department of Nutrition, Food Science and Physiology, Nutrition Research Center, University of Navarra, Pamplona 31008, Spain.
| | - Fermín I Milagro
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Institute of Health Carlos III, Madrid, Spain and Department of Nutrition, Food Science and Physiology, Nutrition Research Center, University of Navarra, Pamplona 31008, Spain.
| | - María Ángeles Zulet
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Institute of Health Carlos III, Madrid, Spain and Department of Nutrition, Food Science and Physiology, Nutrition Research Center, University of Navarra, Pamplona 31008, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona 31008, Spain.
| | - María J Moreno-Aliaga
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Institute of Health Carlos III, Madrid, Spain and Department of Nutrition, Food Science and Physiology, Nutrition Research Center, University of Navarra, Pamplona 31008, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona 31008, Spain.
| | - José Alfredo Martínez
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Institute of Health Carlos III, Madrid, Spain and Department of Nutrition, Food Science and Physiology, Nutrition Research Center, University of Navarra, Pamplona 31008, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona 31008, Spain.
| |
Collapse
|
25
|
Aslibekyan S, Dashti HS, Tanaka T, Sha J, Ferrucci L, Zhi D, Bandinelli S, Borecki IB, Absher DM, Arnett DK, Ordovas JM. PRKCZ methylation is associated with sunlight exposure in a North American but not a Mediterranean population. Chronobiol Int 2014; 31:1034-40. [PMID: 25075435 DOI: 10.3109/07420528.2014.944266] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sunlight exposure has been shown to alter DNA methylation patterns across several human cell-types, including T-lymphocytes. Since epigenetic changes establish gene expression profiles, changes in DNA methylation induced by sunlight exposure warrant investigation. The purpose of this study was to assess the effects of sunlight exposure on CD4+ T-cell methylation patterns on an epigenome-wide scale in a North American population of European origin (n=991). In addition, we investigated the genetic contribution to epigenetic variation (methylQTL). We used linear regression to test the associations between methylation scores at 461,281 cytosine-phosphate-guanine (CpG) sites and sunlight exposure, followed by a genome-wide association analysis (methylQTL) to test for associations between methylation at the top CpG locus and common genetic variants, assuming an additive genetic model. We observed an epigenome-wide significant association between sunlight exposure and methylation status at cg26930596 (p=9.2×10(-8)), a CpG site located in protein kinase C zeta (PRKCZ), a gene previously shown to be entrained by light. MethylQTL analysis resulted in significant associations between cg26930596 and two intergenic single nucleotide polymorphisms on chromosome 3, rs4574216 (p=1.5×10(-10)) and rs4405858 (p=1.9×10(-9)). These common genetic variants reside downstream of WWTR1, a transcriptional co-activator of PRKCZ. Associations observed in the North American population, however, did not replicate in an independent Mediterranean cohort. Our preliminary results support the role of sunlight exposure in epigenetic processes, and lay the groundwork for future studies of the molecular link between sunlight and physiologic processes such as tumorigenesis and metabolism.
Collapse
Affiliation(s)
- Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham , Birmingham, AL , USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|