1
|
Gayathiri E, Prakash P, Ahamed M, Pandiaraj S, Venkidasamy B, Dayalan H, Thangaraj P, Selvam K, Chaudhari SY, Govindasamy R, Thiruvengadam M. Multitargeted pharmacokinetics, molecular docking and network pharmacology-based identification of effective phytocompounds from Sauropus androgynus (L.) Merr for inflammation and cancer treatment. J Biomol Struct Dyn 2024; 42:7883-7896. [PMID: 37534448 DOI: 10.1080/07391102.2023.2243335] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
According to worldwide health data, cancer, and inflammatory illnesses are on the rise and are among the most common causes of death. Across the world, these types of health problems are now considered top priorities for government health organizations. Hence, this study aimed to investigate medicinal plants' potential for treating cancer and inflammatory disorders. This network pharmacology analysis aims to learn more about the potential targets and mechanisms of action for the bioactive ingredients in Sauropus androgynus (L.) Merr L. The compound-target network and protein-protein interaction analysis were built using the STRING database. Using Network Analyst, Gene Ontology, and Kyoto Encyclopaedia of Genes and Genomes, pathway enrichment was performed on the hub genes. 1-hexadecanol was shown to inhibit drug-metabolizing enzymes in a pharmacokinetic investigation. Those samples of 1-hexadecanol were found to be 1-hexadecanol (BBB 0.783), GI High, Pgp Substrate Yes, CYP2C19 Inhibitor Yes, CYP2D6 Yes, and HI -89.803. The intermolecular binding energies for 1-hexadecanol (4-DRI, -8.2 kcal/mol) are evaluated. These results from a study on S. androgynus used molecular docking and network pharmacology to gain insight into the prime target genes and potential mechanisms identified for AKT1, mTOR, AR, PPID, FKBP5, and NR3C1. The PI3K-Akt signalling pathway has become an important regulatory node in various pathological processes requiring coordinated actions. Stability and favourable conformations have been resolved by considering nonbonding interactions such as electrostatic and hydrogen bonds in MD simulations of the perfect molecules using the Desmond package. Thus, using an appropriate platform of network pharmacology, molecular docking, and in vitro experiments, this study provides for the first time a clearer knowledge of the anti-cancer and anti-inflammatory molecular bioactivities of S. androgynus. Further in vitro and in vivo confirmations are strongly needed to determine the efficacy and therapeutic effects of 1-hexadecanol in the biological process.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai, India
| | | | - Maqusood Ahamed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, Riyadh, Saudi Arabia
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Haripriya Dayalan
- Department of Biotechnology, Rajalakshmi Engineering College (Affiliated to Anna University), Thandalam, Chennai, India
| | - Pratheep Thangaraj
- Department of Biotechnology, Rathinam College of Arts and Science, Coimbatore, India
| | | | - Somdatta Y Chaudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Nigdi, India
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, South Korea
| |
Collapse
|
2
|
Negrean OR, Farcas AC, Nemes SA, Cic DE, Socaci SA. Recent advances and insights into the bioactive properties and applications of Rosa canina L. and its by-products. Heliyon 2024; 10:e30816. [PMID: 38765085 PMCID: PMC11101839 DOI: 10.1016/j.heliyon.2024.e30816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024] Open
Abstract
Rosa canina L., commonly known as rosehip, is of notable scientific interest for its applications in nutrition, cosmetics, and pharmaceuticals. This review article highlights its health-promoting properties, including antioxidant, anti-inflammatory, hepatoprotective, and anticarcinogenic effects, attributed to its rich content of phenolic acids, carotenoids, tocopherols, and vitamins. With growing interest in sustainable practices, rosehip by-products are increasingly valorized. For instance, cold-pressed rosehip seed oil is a valuable source of polyunsaturated fatty acids, while incorporating rosehip pomace into snacks enhances their nutritional profile, positioning them as potential functional foods and dietary supplements. This article aims to provide a comprehensive overview of advancements in utilizing rosehip and its by-products, emphasizing their role in enriching food and pharmaceutical products with nutritional and functional bioactivities.
Collapse
Affiliation(s)
- Oana-Raluca Negrean
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Anca Corina Farcas
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Silvia Amalia Nemes
- Life Science Institute, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Diana-Elena Cic
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Sonia Ancuta Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Aqsa, Ali S, Summer M, Yousaf S, Nazakat L, Noor S. Pharmacological and immunomodulatory modes of action of medically important phytochemicals against arthritis: A molecular insight. Mol Biol Rep 2024; 51:448. [PMID: 38536526 DOI: 10.1007/s11033-024-09386-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 08/04/2024]
Abstract
Arthritis is a common illness that affects joints and it may result in inflammation and pain. Even though arthritis usually affects older people, it can also affect children, adults, and both genders. Numerous arthritic mouse models have been developed but the CIA model of rheumatoid arthritis (RA) has received the most attention. With the use of steroids, DMARDs, and NSAIDs, therapy objectives such as reduced disease incidence and better pain management are achieved. Long-term usage of these therapeutic approaches may have negative side effects. Herbal medications are the source of several medicinal substances. Studies have explored the potential benefits of medicinal plants in treating RA. These benefits include up-regulating antioxidant potential, inhibiting cartilage degradation, down-regulating inflammatory cytokines such as NF-kB, IL-6, and TNF-α, and suppressing oxidative stress. In this review, we systematically discuss the role of traditional medicinal plants in rheumatoid arthritis (RA) disease treatment. The role of different medicinal plants such as Curcuma longa, Syzygium aromaticum, Zingiber officinale and Withania somnifera, against arthritis is discussed in this review.
Collapse
Affiliation(s)
- Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Saima Yousaf
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, 54470, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
4
|
A Comprehensive Review with Future Prospects on the Medicinal Properties and Biological Activities of Curcuma caesia Roxb. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:7006565. [PMID: 36704214 PMCID: PMC9873438 DOI: 10.1155/2023/7006565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 01/19/2023]
Abstract
Plants are the primary source of the food chain and are rich in nutrients and biochemical compounds that mainly give beneficial effects to humans as well as other living organisms. Curcuma caesia Roxb. is a family member of Zingiberaceae commonly known as black turmeric. The leaves and rhizomes of this plant are extensively used in Ayurvedic medicine and as traditional remedies for various ailments. The aromatic rhizomes and leaves are due to the presence of essential oils reported as camphor, ar-turmerone, (Z)-β-ocimene, ar-curcumene, 1,8-cineole, β-elemene, borneol, bornyl acetate, tropolone, ledol, β-elemenone, and α-bulnesene. Previous research studies have revealed most of the biological activities of C. caesia, such as antioxidant, antimicrobial, and anti-inflammatory properties, which are due to the presence of various bioactive components. The diverse chemical composition contained in this plant contributes to various biological activities, which may be beneficial for the health, food, and cosmetic industries. The purpose of this review was to summarise updated research on the in vitro and in vivo activities of C. caesia as well as the current clinical investigations. A compilation of the latest findings regarding the potential activities of C. caesia and mechanisms related to its health benefits is discussed and reviewed. This valuable information is the key that can be used for the development of drugs, functional food ingredients, and food products.
Collapse
|
5
|
Fahmy HA, Farag MA. Ongoing and potential novel trends of pomegranate fruit peel; a comprehensive review of its health benefits and future perspectives as nutraceutical. J Food Biochem 2021; 46:e14024. [PMID: 34923641 DOI: 10.1111/jfbc.14024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/13/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022]
Abstract
Pomegranate is an ancient shrub, globally distributed nowadays. It has been used in the middle east as a medicinal food and traditional medicine for thousands of years. Pomegranate peel (PP) constitutes about 50% of the total fruit, however, it has been previously regarded as a waste. Recent research points to PP as a rich source of phenolics (e.g., ellagitannins, flavonoids, and anthocyanins), polysaccharides, in addition to its biotransformed metabolites viz. urolithins making it a valuable waste with promising pharmacological actions. Compared to the pulp and the juice, PP exhibited stronger antioxidant and antimicrobial activities. Besides, it inhibited inflammation in several conditions, including colitis, arthritis, hepatitis, contact dermatitis, and lung inflammation. Moreover, it displayed anti-osteoporosis, anti-hyperglycemic, antidiabetic, antihypertensive, vasculoprotective, hepatoprotective, neuroprotective, and immunomodulatory effects. Additionally, it was effective as a prebiotic and in obesity control, besides it promoted wound healing. Furthermore, PP demonstrated anticancer effects against different cancer types, for example, colon, liver, thyroid, uterine, breast, bladder, prostate, leukemia, and osteosarcoma. Despite PP safety, it may interfere with the metabolism of other drugs because it inhibits cytochromes (CYP) changing their bioavailability, effectiveness, and toxicity. PP biowaste valorization not only avoids against its environmental and economic burden but can also provide a promising platform to produce novel or improved nutraceuticals. This study provides a comprehensive overview of PP biological activities with the reported action mechanisms related to its phytochemicals and further biotransformed metabolites inside the body. Future research prospects to unravel the merits of such waste and optimize its use are discussed. PRACTICAL APPLICATION: Pomegranate is widely distributed throughout the world. Although its peel was previously considered a waste, recent research regards it as a rich source of bioactive compounds with promising biological activities. Its recycling not only overcomes the bio-waste problems, but also provides a source of valuable compounds with several health benefits. In recent years, PP has been demonstrated to exhibit excellent pharmacological bioactivities, for example, antioxidant, anti-inflammatory, antimicrobial, antiosteoporosis, antihyperlipidemic, and anticancer activities. Its health-promoting power is mostly attributed to the phenolic and polysaccharide content, in addition to its amazing biotransformed metabolites. The underlying action mechanisms of such pharmacological activities are discussed and related to its chemical content. This review presents the latest research progress on the role of PP in the prevention and treatment of various chronic diseases, and its protective health effects for future research to be used in nutraceuticals.
Collapse
Affiliation(s)
- Heba A Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology & Information, Cairo, Egypt
| | - Mohamed A Farag
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt.,Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
6
|
Tazeze H, Mequanente S, Nigussie D, Legesse B, Makonnen E, Mengie T. Investigation of Wound Healing and Anti-Inflammatory Activities of Leaf Gel of Aloe trigonantha L.C. Leach in Rats. J Inflamm Res 2021; 14:5567-5580. [PMID: 34737605 PMCID: PMC8560176 DOI: 10.2147/jir.s339289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Traditionally Aloe trigonantha leaf is used for the treatment of different diseases. However, there were no in vivo studies which prove its claimed use for wound healing and anti-inflammatory activity. Therefore, the present study aimed at evaluating the in vivo wound healing and anti-inflammatory effects of the leaf gel of the plant in rats. METHODS The leaf gel powder of the Aloe trigonantha was prepared after the gel gets lyophilized. It was evaluated for wound healing activity topically by incorporating it in a simple ointment base at a concentration of 5% (w/w) and 10% (w/w). Excision and incision models were used for wound healing activity in rats. For the excision wound model, wound contraction and period of epithelialization were evaluated, while wound tensile strength was evaluated using an incision wound model. A Xylene-induced ear edema model and cotton pellet-induced granuloma model were used for anti-inflammatory study. The leaf gel powder of Aloe trigonantha was given orally at a dose of 100, 200, and 400 mg/kg in both models of anti-inflammatory studies. An anti-inflammatory effect was measured by reduction of ear edema weight and reduction of wet exudate and dry granuloma weight in both of xylene-induced ear edema and cotton pellet-induced granuloma models, respectively. RESULTS Treatment of wounds with ointment containing 5% and 10% (w/w) of the gel exhibited a significantly increased wound contraction rate, shorter epithelialization time, and higher skin breaking strength (p<0.05) compared to controls. Aloe trigonantha leaf gel powder also produced dose-dependent significant reductions (p<0.05) of inflammation compared to control in both models. CONCLUSION Data obtained from this study collectively indicated that Aloe trigonantha is a potential wound-healing and anti-inflammatory agent in rat models of wound and inflammation which provides evidence for the traditional claim.
Collapse
Affiliation(s)
- Haile Tazeze
- Department of Pharmacy, Kidus Petros TB Specialized Hospital, Addis Ababa, Ethiopia
| | - Solomon Mequanente
- Department of Pharmacology & Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Belete Legesse
- Center for Innovative Drug Development & Therapeutics Trial in Africa (CDT-Africa), College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eyasu Makonnen
- Department of Pharmacology & Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
- Center for Innovative Drug Development & Therapeutics Trial in Africa (CDT-Africa), College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Teklie Mengie
- Department of Pharmacy, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
7
|
Wang S, Li Y, Li W, Zhang K, Yuan Z, Cai Y, Xu K, Zhou J, Du Z. Curcuma oil ameliorates benign prostatic hyperplasia through suppression of the nuclear factor-kappa B signaling pathway in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:113703. [PMID: 33340599 PMCID: PMC9586842 DOI: 10.1016/j.jep.2020.113703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 05/05/2023]
Abstract
ETHNO PHARMACOLOGICAL RELEVANCE Curcuma longa L is traditionally used as an anti-inflammatory remedy in Chinese traditional medicine. Curcuma oil (CO), a lipophilic fraction from Curcuma longa L. has been reported to have anti-proliferative, anti-inflammatory and anti-oxidant activities. However, CO has never been investigated for its possible therapeutic effects on benign prostatic hyperplasia (BPH). AIMS OF THE STUDY The study is thus to determine the therapeutic effects of curcuma oil on BPH and also the possible mechanism (s) of action. MATERIALS &METHODS A BPH-1 cell line and Sprague Dawley (SD) rats were used to establish BPH models in vitro and in vivo, respectively. Rats were treated by CO (2.4, 7.2 mg/kg/i.g.) and finasteride (5 mg/kg/i.g.), respectively. Histological changes were examined by hematoxylin and eosin (H&E) staining. Protein expression was analyzed for 5α-reductase (5AR), dihydrotestosterone (DHT), interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α by ELISA. Ki-67, Caspase-8,-9 and -3 expressions were evaluated via immunohistochemistry (IHC). RESULTS CO effectively induced apoptosis in BPH-1 cells. BPH was successfully established by administration of testosterone propionate (TP) in rats, which upregulated both 5α-reductase expression and DHT production. Importantly, TP establishment significantly stimulated the phosphorylation of p65, one subunit of NF-κB, thus led to activation of the NF-κB signaling pathway in prostatic tissues of rats. In turn, the activation of NF-κB pathway induced concomitant upregulation of proinflammatory factors IL-1β, IL-6, TNF-α, and COX-2 and significant increase of the Bcl2/Bax expression ratio for enhanced cell survival, contributing to the initiation and progression of BPH in rats. Notably, CO therapy significantly decreased prostate weight and hyperplasia in BPH-induced animals. Also CO was found to suppress the expression of 5α-reductase and thus the production of DHT, which is essential for the amelioration of BPH. More importantly, CO was shown to suppress the activation of NF-κB pathway through decreasing the expression of phosphorylated p65 and consequently reduced the inflammatory responses and cell survival in prostatic tissues, leading to the inhibition of BPH development in rats. CONCLUSION Curcuma oil is very effective for ameliorating BPH in rats. The underlying mechanisms involve in reduced inflammatory responses and cell survival through suppression of the NF-κB signaling pathway by CO in prostatic tissues.
Collapse
Affiliation(s)
- Shanshan Wang
- School of Biomedical and Phamaceutical Sciences, Gunagdong University of Technology, Guangzhou, 511400, China
| | - Yun Li
- R&D Centre, Infinitus (China) Company Ltd, Guangzhou, China
| | - Wenzhi Li
- R&D Centre, Infinitus (China) Company Ltd, Guangzhou, China
| | - Kun Zhang
- School of Biomedical and Phamaceutical Sciences, Gunagdong University of Technology, Guangzhou, 511400, China
| | - Zhengqiang Yuan
- School of Biomedical and Phamaceutical Sciences, Gunagdong University of Technology, Guangzhou, 511400, China
| | - Yina Cai
- School of Biomedical and Phamaceutical Sciences, Gunagdong University of Technology, Guangzhou, 511400, China
| | - Kuncheng Xu
- School of Biomedical and Phamaceutical Sciences, Gunagdong University of Technology, Guangzhou, 511400, China
| | - Jinrong Zhou
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| | - Zhiyun Du
- School of Biomedical and Phamaceutical Sciences, Gunagdong University of Technology, Guangzhou, 511400, China; Conney Allan Biotechnology Company Ltd, Guangzhou, 510095, China.
| |
Collapse
|
8
|
Apios Americana Medicus: A potential staple food candidate with versatile bioactivities. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Memarzia A, Khazdair MR, Behrouz S, Gholamnezhad Z, Jafarnezhad M, Saadat S, Boskabady MH. Experimental and clinical reports on anti-inflammatory, antioxidant, and immunomodulatory effects of Curcuma longa and curcumin, an updated and comprehensive review. Biofactors 2021; 47:311-350. [PMID: 33606322 DOI: 10.1002/biof.1716] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
Curcuma longa (C. longa) or turmeric is a plant with a long history of use in traditional medicine, especially for treating inflammatory conditions C. longa and its main constituent, curcumin (CUR), showed various pharmacological effects such as antioxidant and anti-microbial properties. The updated knowledge of anti-inflammatory, antioxidant, and immunomodulatory effects of C. longa and CUR is provided in this review article. Pharmacological effects of C. longa, and CUR, including anti-inflammatory, antioxidant, and immunomodulatory properties, were searched using various databases and appropriate keywords until September 2020. Various studies showed anti-inflammatory effects of C. longa and CUR, including decreased white blood cell, neutrophil, and eosinophil numbers, and its protective effects on serum levels of inflammatory mediators such as phospholipase A2 and total protein in different inflammatory disorders. The antioxidant effects of C. longa and CUR were also reported in several studies. The plant extracts and CUR decreased malondialdehyde and nitric oxide levels but increased thiol, superoxide dismutase, and catalase levels in oxidative stress conditions. Treatment with C. longa and CUR also improved immunoglobulin E (Ig)E, pro-inflammatory cytokine interleukin 4 (IL)-4, transforming growth factor-beta, IL-17, interferon-gamma levels, and type 1/type 2 helper cells (Th1)/(Th2) ratio in conditions with disturbance in the immune system. Therefore C. longa and CUR showed anti-inflammatory, antioxidant, and immunomodulatory effects, indicating a potential therapeutic effect of the plant and its constituent, CUR, for treating of inflammatory, oxidative, and immune dysregulation disorders.
Collapse
Affiliation(s)
- Arghavan Memarzia
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad R Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Sepideh Behrouz
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholamnezhad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Jafarnezhad
- Department of Anesthesia, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Saeideh Saadat
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad H Boskabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Duangyod T, Rujanapan N, Champakam S, Charoensup R. Anti-inflammatory activity and chemical constituents of red limestone. J Adv Pharm Technol Res 2021; 12:185-189. [PMID: 34159152 PMCID: PMC8177145 DOI: 10.4103/japtr.japtr_55_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/17/2021] [Accepted: 03/12/2021] [Indexed: 11/20/2022] Open
Abstract
Red limestone is a mixture of turmeric (Curcuma longa L.) powder and limestone which is made from burning shells at high temperature. The yellow mixture turns to red color or deep orange because of the reaction between turmeric and calcium carbonate in limestone. Red limestone is traditionally used to treat many diseases such as abscess, cut wound and insect bite. The purpose of this study was to investigate anti-inflammatory activity and chemical constituents of red limestone. The chemical analysis of red limestone extract by liquid chromatography with tandem mass spectrometry revealed that red limestone consisted of alpha-turmerone and curcumanolide B as major components. These compounds were related with the chemical constituents in C. longa extract which is a main ingredient of red limestone. However, curcuminoids were not detected in red limestone extract. Cytotoxicity of red limestone extract was investigated. Macrophage cell lines (RAW 264.7) and human keratinocyte cell lines (HaCaT cells) were investigated cell viability using MTT assay. Red limestone extract was nontoxic to normal cells such as macrophage cells and human keratinocyte cells. Moreover, the inflammatory activity was detected nitric oxide (NO) secretion in RAW 264.7 cells. The result showed that the extracts inhibited NO in dose-dependent manner and IC50 was found to be 102.42 μg/ml. It suggested that red limestone extract had a potential for anti-inflammatory activity.
Collapse
Affiliation(s)
- Thidarat Duangyod
- Department of Applied Thai Traditional Medicine, School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand.,Medicinal Plants Innovation Center of Mae Fah Luang University, Mae Fah Luang University, Chiang Rai, Thailand
| | - Narawadee Rujanapan
- Medicinal Plants Innovation Center of Mae Fah Luang University, Mae Fah Luang University, Chiang Rai, Thailand
| | - Sorraya Champakam
- Department of Applied Thai Traditional Medicine, School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand.,Medicinal Plants Innovation Center of Mae Fah Luang University, Mae Fah Luang University, Chiang Rai, Thailand
| | - Rawiwan Charoensup
- Department of Applied Thai Traditional Medicine, School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand.,Medicinal Plants Innovation Center of Mae Fah Luang University, Mae Fah Luang University, Chiang Rai, Thailand
| |
Collapse
|
11
|
Gouthamchandra K, Sudeep HV, Chandrappa S, Raj A, Naveen P, Shyamaprasad K. Efficacy of a Standardized Turmeric Extract Comprised of 70% Bisdemothoxy-Curcumin (REVERC3) Against LPS-Induced Inflammation in RAW264.7 Cells and Carrageenan-Induced Paw Edema. J Inflamm Res 2021; 14:859-868. [PMID: 33737826 PMCID: PMC7966389 DOI: 10.2147/jir.s291293] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/29/2021] [Indexed: 11/23/2022] Open
Abstract
Objective It is well known that regular turmeric extract with 95% curcuminoid is comprised of curcumin (70.07%), desmethoxycurcumin (20.28%), and bisdemethoxycurcumin (BDMC) (3.63%). In the current study for the first time, we have enriched about 3% of bisdemethoxycurcumin (BDMC) to 70% as well as named it as REVERC3 and compared anti-inflammatory activity with regular turmeric extract using in vitro and in vivo models of inflammation. Methods To reveal the potential anti-inflammatory mechanism of action, we investigated nitric oxide (NO) scavenging, xanthine oxidase, and lipoxygenase inhibitory activity, further determined the level of pro-inflammatory cytokines, such as interleukin 6 (IL-6), tumor necrosis factor (TNF-α) and major inflammatory mediators like cyclooxygenase (COX-2) and inducible nitric oxide synthase (iNOS), inhibition in lipopolysaccharide (LPS) induced inflammation in RAW macrophage cells. In the other hand, a carrageenan-stimulated inflammatory rat model was carried out. Results Our study findings exhibited a significant anti-inflammatory activity of REVERC3 together with nitric oxide (NO), xanthine oxidase, and lipoxygenase inhibition. Further, we attenuated the levels of cyclooxygenase (COX-2), inducible nitric oxide synthase (iNOS), interleukin (IL-6) and tumor necrosis factor (TNF-α) expressions in the LPS-elicited RAW macrophage cells. REVERC3 showed a potential anti-inflammatory activity by inhibiting carrageenan induced paw edema after 4 hr at the dose of 100mg/kg body weight. Conclusion Thus, our findings collectively indicated that the REVERC3 could efficiently inhibit inflammation compared to regular turmeric extract. Since bisdemethoxycurcumin is a stable molecule it could be effectively used in the applications of health care and the nutraceutical industry, indeed which deserves further investigations.
Collapse
Affiliation(s)
- Kuluvar Gouthamchandra
- Department of Biomedicinal Research, R&D Centre for Excellence, Vidya Herbs Pvt. Ltd, Bangalore, Karnataka, 560105, India
| | - Heggar Venkataramana Sudeep
- Department of Biomedicinal Research, R&D Centre for Excellence, Vidya Herbs Pvt. Ltd, Bangalore, Karnataka, 560105, India
| | - Siddappa Chandrappa
- Department of Phytochemistry, R&D Centre for Excellence, Vidya Herbs Pvt. Ltd, Bangalore, Karnataka, 560105, India
| | - Amrith Raj
- Department of Biomedicinal Research, R&D Centre for Excellence, Vidya Herbs Pvt. Ltd, Bangalore, Karnataka, 560105, India
| | - Puttaswamy Naveen
- Department of Analytical Development Research, R&D Centre for Excellence, Vidya Herbs Pvt. Ltd, Bangalore, Karnataka, 560105, India
| | - Kodimule Shyamaprasad
- Department of Biomedicinal Research, R&D Centre for Excellence, Vidya Herbs Pvt. Ltd, Bangalore, Karnataka, 560105, India
| |
Collapse
|
12
|
Rahaman MM, Rakib A, Mitra S, Tareq AM, Emran TB, Shahid-Ud-Daula AFM, Amin MN, Simal-Gandara J. The Genus Curcuma and Inflammation: Overview of the Pharmacological Perspectives. PLANTS (BASEL, SWITZERLAND) 2020; 10:E63. [PMID: 33396698 PMCID: PMC7824061 DOI: 10.3390/plants10010063] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/20/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022]
Abstract
The Curcuma genus has been extensively used for therapeutic purposes in traditional or folk medicine worldwide, including for its anti-inflammatory activity. Curcuma spp.'s active constituents, such as alkaloids, flavonoids, and terpenoids, can act on various targets in the signaling pathway, restrain pro-inflammatory enzymes, lower the production of inflammatory cytokines and chemokines, and reduce oxidative stress, which subsequently suppresses inflammatory processes. Preclinical and clinical studies have reported the predominant anti-inflammatory activity of several Curcuma species. This review provides an overview of the anti-inflammatory effects of different extracts, preparations, and bioactive components in this genus. This analysis may provide a scientific basis for developing new and alternative methods for the isolation of a single entity from this genus to attenuate inflammatory conditions. The Curcuma genus is waiting for researchers interested in developing safe and efficient anti-inflammatory agents for further investigation.
Collapse
Affiliation(s)
- Md. Moshiur Rahaman
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Ahmed Rakib
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1100, Bangladesh;
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | | | - Mohammad Nurul Amin
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka 1230, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo–Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
13
|
Ibáñez MD, Blázquez MA. Curcuma longa L. Rhizome Essential Oil from Extraction to Its Agri-Food Applications. A Review. PLANTS (BASEL, SWITZERLAND) 2020; 10:E44. [PMID: 33379197 PMCID: PMC7823572 DOI: 10.3390/plants10010044] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022]
Abstract
Curcuma longa L. rhizome essential oil is a valuable product in pharmaceutical industry due to its wide beneficial health effects. Novel applications in the agri-food industry where more sustainable extraction processes are required currently and safer substances are claimed for the consumer are being investigated. This review provides information regarding the conventional and recent extraction methods of C. longa rhizome oil, their characteristics and suitability to be applied at the industrial scale. In addition, variations in the chemical composition of C. longa rhizome and leaf essential oils regarding intrinsic and extrinsic factors and extraction methods are also analysed in order to select the most proper to obtain the most efficient activity. Finally, the potential applications of C. longa rhizome oil in the agri-food industry, such as antimicrobial, weedicide and a food preservative agent, are included. Regarding the data, C. longa rhizome essential oil may play a special role in the agri-food industry; however, further research to determine the application threshold so as not to damage crops or affect the organoleptic properties of food products, as well as efficient encapsulation techniques, are necessary for its implementation in global agriculture.
Collapse
Affiliation(s)
| | - María Amparo Blázquez
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Avd. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain;
| |
Collapse
|
14
|
The effect of curcumin ointment on knee pain in older adults with osteoarthritis: a randomized placebo trial. BMC Complement Med Ther 2020; 20:305. [PMID: 33032585 PMCID: PMC7545864 DOI: 10.1186/s12906-020-03105-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 10/05/2020] [Indexed: 12/29/2022] Open
Abstract
Background Some studies have shown the effect of oral administration of curcumin on knee pain. However, limited studies are available on the effect of topical curcumin. This study aimed to investigate the effect of curcumin ointment on knee pain in older adults with osteoarthritis. Methods This double-blind randomized placebo trial was conducted on 72 older adults with knee pain associated with osteoarthritis. The subjects were randomly assigned into an intervention and a placebo group to apply either curcumin 5% ointment or Vaseline ointment twice daily for 6 weeks. Using a Visual Analog Scale, the severity of knee pain was measured at the beginning of the study, at the end of the fourth and sixth week. Data were analyzed using descriptive and inferential methods. Results The mean baseline knee pain intensity was not significantly different between the two groups (P = 0.15). The mean pain intensity was significantly lower in the intervention group than in the placebo group at the third measurement (P = 0.02). The repeated-measures analysis showed that over time, the curcumin significantly decreased the mean pain intensity in the intervention group (P = 0.001). The mixed model showed an absolute difference of 1.133 (i.e. 11.33 mm) score which signifies a medium effect size and that the patient in the intervention group achieved the minimal clinically important difference. Conclusion Topical administration of curcumin 5% ointment can significantly reduce knee pain in older adults with knee osteoarthritis. Curcumin ointment can be used as an alternative treatment in older adults with knee pain associated with osteoarthritis. Trial registration Retrospectively registered in the Iranian Registry of Clinical Trials (IRCT) (IRCT20100403003618N6, 2019-03-08), https://en.irct.ir/trial/37155
Collapse
|
15
|
Oladele JO, Ajayi EI, Oyeleke OM, Oladele OT, Olowookere BD, Adeniyi BM, Oyewole OI, Oladiji AT. A systematic review on COVID-19 pandemic with special emphasis on curative potentials of Nigeria based medicinal plants. Heliyon 2020; 6:e04897. [PMID: 32929412 PMCID: PMC7480258 DOI: 10.1016/j.heliyon.2020.e04897] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
Despite the frightening mortality rate associated with COVID-19, there is no known approved drug to effectively combat the pandemic. COVID-19 clinical manifestations include fever, fatigue, cough, shortness of breath, and other complications. At present, there is no known effective treatment or vaccine that can mitigate/inhibit SARS-CoV-2. Available clinical intervention for COVID-19 is only palliative and limited to support. Thus, there is an exigent need for effective and non-invasive treatment. This article evaluates the possible mechanism of actions of SARS-CoV-2 and present Nigeria based medicinal plants which have pharmacological and biological activities that can mitigate the hallmarks of the pathogenesis of COVID-19. SARS-CoV-2 mode of actions includes hyper-inflammation characterized by a severe and fatal hyper-cytokinaemia with multi-organ failure; immunosuppression; reduction of angiotensin-converting enzyme 2 (ACE2) to enhance pulmonary vascular permeability causing damage to the alveoli; and further activated by open reading frame (ORF)3a, ORF3b, and ORF7a via c-Jun N- terminal kinase (JNK) pathway which induces lung damage. These mechanisms of action of SARS-CoV-2 can be mitigated by a combination therapy of medicinal herbs based on their pharmacological activities. Since the clinical manifestations of COVID-19 are multifactorial with co-morbidities, we strongly recommend the use of combined therapy such that two or more herbs with specific therapeutic actions are administered to combat the mediators of the disease.
Collapse
Affiliation(s)
- Johnson O. Oladele
- Biochemistry Unit, Department of Chemical Sciences, Kings University, Ode-Omu, Osun State, Nigeria
| | - Ebenezer I. Ajayi
- Membrane Biophysics and Nanotechnology Laboratories, Mercedes and Martin Ferreyra Institute of Medicine, IMMF-INIMEC-CONICET-UNC, Cordoba, Argentina
- Diabesity Complications & Other Neglected Infectious Diseases Group, Department of Biochemistry, Osun State University, Osogbo, Nigeria
| | - Oyedotun M. Oyeleke
- Biochemistry Unit, Department of Chemical Sciences, Kings University, Ode-Omu, Osun State, Nigeria
| | - Oluwaseun T. Oladele
- Phytomedicine and Molecular Toxicology Research Laboratories, Department of Biochemistry, Osun State University, Osogbo, Nigeria
| | - Boyede D. Olowookere
- Biochemistry Unit, Department of Chemical Sciences, Kings University, Ode-Omu, Osun State, Nigeria
| | - Boluwaji M. Adeniyi
- Centre of Excellence for Food Technology and Research -Benue State University, Nigerian Stored Products Research Institute, Ibadan, Nigeria
| | - Olu I. Oyewole
- Phytomedicine and Molecular Toxicology Research Laboratories, Department of Biochemistry, Osun State University, Osogbo, Nigeria
| | | |
Collapse
|
16
|
Shahzad F, Anderson D, Najafzadeh M. The Antiviral, Anti-Inflammatory Effects of Natural Medicinal Herbs and Mushrooms and SARS-CoV-2 Infection. Nutrients 2020; 12:E2573. [PMID: 32854262 PMCID: PMC7551890 DOI: 10.3390/nu12092573] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
The 2019 novel coronavirus, SARS-CoV-2, producing the disease COVID-19 is a pathogenic virus that targets mostly the human respiratory system and also other organs. SARS-CoV-2 is a new strain that has not been previously identified in humans, however there have been previous outbreaks of different versions of the beta coronavirus including severe acute respiratory syndrome (SARS-CoV1) from 2002 to 2003 and the most recent Middle East respiratory syndrome (MERS-CoV) which was first identified in 2012. All of the above have been recognised as major pathogens that are a great threat to public health and global economies. Currently, no specific treatment for SARS-CoV-2 infection has been identified; however, certain drugs have shown apparent efficacy in viral inhibition of the disease. Natural substances such as herbs and mushrooms have previously demonstrated both great antiviral and anti-inflammatory activity. Thus, the possibilities of natural substances as effective treatments against COVID-19 may seem promising. One of the potential candidates against the SARS-CoV-2 virus may be Inonotus obliquus (IO), also known as chaga mushroom. IO commonly grows in Asia, Europe and North America and is widely used as a raw material in various medical conditions. In this review, we have evaluated the most effective herbs and mushrooms, in terms of the antiviral and anti-inflammatory effects which have been assessed in laboratory conditions.
Collapse
Affiliation(s)
| | | | - Mojgan Najafzadeh
- School of Life Sciences, University of Bradford, Bradford BD7 1DP, UK; (F.S.); (D.A.)
| |
Collapse
|
17
|
Abstract
Untreated hypertension is a major cause for a wide array of diseases affecting cardiovascular system. Oxidative stress has been implicated in the development of hypertension. The impairment between the balance of antioxidants and pro-oxidants contributes to the elevation of blood pressure. Over generation of free radicals produces a decreased bioavailability of nitric oxide. Eventually, this will cause a rise in total peripheral resistance and lead to endothelial dysfunction. Noticeable symptoms are usually experienced when hypertension enters the advanced stage with lifelong health complications. Hypertensive patients are required to take medications for indefinite period of time to prevent further deterioration. Many of these therapeutic agents are costly and associated with unwanted side effects. Curcuma longa (CL) or turmeric is one of the alternative herbs which confers medicinal properties. This review aims to summarise the effects of CL and its active constituents on blood pressure derived from preclinical and clinical published articles. Studies documented that CL and its active constituents could reduce blood pressure. These were achieved by antioxidant, anti-inflammatory activity, calcium (II) ion concentration interference, β2-adrenergic receptor activation, and renin-angiotensin system inhibition. There is a prospect for CL in the management of hypertension. However, limited researches of CL have been conducted on human. Thus, more well-planned studies should be carried out to ascertain its effectiveness.
Collapse
Affiliation(s)
- Xin-Fang Leong
- Centre for Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Effect of Essential Oils from Ginger ( Zingiber officinale) and Turmeric ( Curcuma longa) Rhizomes on Some Inflammatory Biomarkers in Cadmium Induced Neurotoxicity in Rats. J Toxicol 2018; 2018:4109491. [PMID: 30402094 PMCID: PMC6196928 DOI: 10.1155/2018/4109491] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/13/2018] [Indexed: 01/08/2023] Open
Abstract
Studies have revealed that anti-inflammatory agents could provide beneficial effect in lowering the incidence/progression of neurological diseases. Hence, this study sought to investigate the effect of essential oils from Nigeria ginger and turmeric rhizomes on some cytokines in cadmium induced neurotoxicity. The result revealed that essential oil from ginger and turmeric rhizomes exerts anti-inflammatory effect by preventing alterations of some cytokines/inflammatory biomarkers (IL-6, IL-10 and TNF-Alpha) levels and inhibits both hippocampus and prefrontal cortex acetylcholinesterase (AChE) and adenosine deaminase (ADA) activities (important enzymes relevant in the management/prevention of neurodegenerative diseases) in Cd treated rats. In conclusion, essential oil from ginger and turmeric rhizomes exerts anti-inflammatory properties in Cd induced neurotoxicity. The observed effect could be due to the volatile compounds as revealed by GC-MS analysis.
Collapse
|
19
|
NM J, Joseph A, Maliakel B, IM K. Dietary addition of a standardized extract of turmeric (TurmaFEED TM) improves growth performance and carcass quality of broilers. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2018; 60:8. [PMID: 29854411 PMCID: PMC5971416 DOI: 10.1186/s40781-018-0167-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/05/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Indiscriminate use of antibiotics in livestock and poultry farming has caused emergence of new pathogenic strains. The situation has warrented the development of safe and alternative growth promoters and immunity enhancers in livestock. Herbal additives in animal and bird feed is a centuries-old practice. Thus, the present study investigated the efficacy of a standardized formulation of lipophilic turmeric extract containing curcumin and turmerones, (TF-36), as a natural growth promoter poultry feed additive. METHODS The study was designed on 180 one-day old chicks, assigned into three groups. Control group (T0) kept on basal diet and supplemented groups T0.5 and T1 fed with 0.5% and 1% TF-36 fortified basal diet for 42 days. Each dietary group consisted of six replicates of ten birds. Body weight, food intake, food conversion ratio, skin colour, blood biochemical analysis and antioxidant status of serum were investigated. RESULTS Body weight improved significantly in T1 with a 10% decrease in FCR as compared to the control. TF-36 supplementation in T1 enhanced the antioxidant enzyme activity significantly (p < 0.05) with a decrease (p < 0.05) in lipid peroxidation. It also caused a slight yellow skin pigmentation without any change in meat color, indicating the bioavailability of curcumin from TF-36. However, no significant change in the concentration of serum creatinine, total protein and liver enzyme activities were observed, indicating the safety. CONCLUSION In summary, we concluded that TF-36 can be a natural feed additive to improve growth performance in poultry, probably due to the better antioxidant activity and antimicrobial effects contributed by the better bioavailability of curcuminoids and turmerones. Besides, curcuminoids and turmerones were also known to be gastroprotective and anti-inflammatory agents.
Collapse
Affiliation(s)
- Johannah NM
- R&D Centre, AKAY Flavours & Aromatics Pvt. Ltd, Malayidamthuruthu P.O., Cochin, Kerala 683561 India
| | - Ashil Joseph
- R&D Centre, AKAY Flavours & Aromatics Pvt. Ltd, Malayidamthuruthu P.O., Cochin, Kerala 683561 India
| | - Balu Maliakel
- R&D Centre, AKAY Flavours & Aromatics Pvt. Ltd, Malayidamthuruthu P.O., Cochin, Kerala 683561 India
| | - Krishnakumar IM
- R&D Centre, AKAY Flavours & Aromatics Pvt. Ltd, Malayidamthuruthu P.O., Cochin, Kerala 683561 India
| |
Collapse
|
20
|
Akinyemi AJ, Faboya OL, Paul AA, Olayide I, Faboya OA, Oluwasola TA. Nephroprotective Effect of Essential Oils from Ginger (Zingiber officinale) and Turmeric (Curcuma longa) Rhizomes against Cadmium-induced Nephrotoxicity in Rats. J Oleo Sci 2018; 67:1339-1345. [PMID: 30305562 DOI: 10.5650/jos.ess18115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Several studies have shown that cadmium (Cd) induces nephrotoxicity and many plant foods phytochemicals have been found useful but their possible mechanism of action still remains unexplored. Hence, this study aimed to investigate the nephroprotective effect of essential oils from Nigeria ginger and turmeric rhizomes in cadmium-treated rats by examining their effect on renal function biomarkers (creatinine, urea and BUN), inflammatory cytokines (IL-6, IL-10 and TNF-Alpha) and renal adenosine deaminase (ADA) activity. The result revealed that essential oils from ginger and turmeric rhizomes exert anti-inflammatory effect by preventing alterations of renal function markers and cytokines (IL-6, IL-10 and TNF-Alpha) levels in Cd-treated rats. In addition, the essential oils inhibited renal ADA activity in Cdtreated rats. In conclusion, inhibition of ADA activity and modulation of inflammatory cytokines could be suggested as the possible mechanism of action by which essential oils from ginger and turmeric rhizomes exert their nephroprotective activities.
Collapse
Affiliation(s)
| | | | | | - Israel Olayide
- Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University
| | | | | |
Collapse
|
21
|
Dash S, Ray M, Parida R, Achary KG, Nayak S, Singh S. Edible plant-derived essential oils synergistically enhance the Th1, Th2 and anti-inflammatory cytokines in neonatal cord blood monocytic cell line. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1376039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Swagatika Dash
- Centre for Biotechnology, Siksha ‘O’ Anusandhan University, Bhubaneswar, Odisha, India
| | - Monalisa Ray
- Centre for Biotechnology, Siksha ‘O’ Anusandhan University, Bhubaneswar, Odisha, India
| | - Reena Parida
- Centre for Biotechnology, Siksha ‘O’ Anusandhan University, Bhubaneswar, Odisha, India
| | | | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha ‘O’ Anusandhan University, Bhubaneswar, Odisha, India
| | - Shikha Singh
- Centre for Biotechnology, Siksha ‘O’ Anusandhan University, Bhubaneswar, Odisha, India
| |
Collapse
|
22
|
Rana M, Maurya P, Reddy SS, Singh V, Ahmad H, Dwivedi AK, Dikshit M, Barthwal MK. A Standardized Chemically Modified Curcuma longa Extract Modulates IRAK-MAPK Signaling in Inflammation and Potentiates Cytotoxicity. Front Pharmacol 2016; 7:223. [PMID: 27504095 PMCID: PMC4959270 DOI: 10.3389/fphar.2016.00223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/11/2016] [Indexed: 11/13/2022] Open
Abstract
The TLR/IL-1R pathway is a critical signaling module that is misregulated in pathologies like inflammation and cancer. Extracts from turmeric (Curcuma longa L.) enriched in curcumin and carbonyls like turmerones have been shown to exert potent anti-inflammatory effects. The present study evaluated the anti-inflammatory activity, cytotoxic effect and the underlying mechanism of a novel chemically modified, non-carbonyl compound enriched Curcuma longa L. (C. longa) extract (CMCE). CMCE (1 or 10 μg/mL; 14 h) significantly decreased LPS (50-100 ng/mL) induced TNF-α and IL-1β production in THP-1 cells, human, and mouse whole blood as measured by ELISA. LPS-induced IRAK1, MAPK activation, TLR4 expression, TLR4-MyD88 interaction, and IκBα degradation were significantly reduced in CMCE pre-treated THP-1 cells as assessed by Western blotting. CMCE (30, 100, and 300 mg/kg; 10 days p.o.) pre-treated and LPS (10 mg/kg) challenged Swiss mice exhibited attenuated plasma TNF-α, IL-1β, nitrite, aortic iNOS expression, and vascular dysfunction. In a PI permeability assay, cell lines derived from acute myeloid leukemia were most sensitive to the cytotoxic effects of CMCE. Analysis of Sub-G1 phase, Annexin V-PI positivity, loss of mitochondrial membrane potential, increased caspase-3, and PARP-1 activation confirmed CMCE induced apoptosis in HL-60 cells. IRAK inhibition also sensitized HL-60 cells to CMCE induced cytotoxicity. The present study defines the mechanism underlying the action of CMCE and suggests a therapeutic potential for its use in sepsis and leukemia.
Collapse
Affiliation(s)
- Minakshi Rana
- Pharmacology Division, Council of Scientific and Industrial Research - Central Drug Research Institute Lucknow, India
| | - Preeti Maurya
- Pharmacology Division, Council of Scientific and Industrial Research - Central Drug Research Institute Lucknow, India
| | - Sukka S Reddy
- Pharmacology Division, Council of Scientific and Industrial Research - Central Drug Research Institute Lucknow, India
| | - Vishal Singh
- Pharmacology Division, Council of Scientific and Industrial Research - Central Drug Research Institute Lucknow, India
| | - Hafsa Ahmad
- Division of Pharmaceutics, Council of Scientific and Industrial Research - Central Drug Research Institute Lucknow, India
| | - Anil K Dwivedi
- Division of Pharmaceutics, Council of Scientific and Industrial Research - Central Drug Research Institute Lucknow, India
| | - Madhu Dikshit
- Pharmacology Division, Council of Scientific and Industrial Research - Central Drug Research Institute Lucknow, India
| | - Manoj K Barthwal
- Pharmacology Division, Council of Scientific and Industrial Research - Central Drug Research Institute Lucknow, India
| |
Collapse
|
23
|
Review of Anti-Inflammatory Herbal Medicines. Adv Pharmacol Sci 2016; 2016:9130979. [PMID: 27247570 PMCID: PMC4877453 DOI: 10.1155/2016/9130979] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 01/19/2023] Open
Abstract
Medicinal plants and their secondary metabolites are progressively used in the treatment of diseases as a complementary medicine. Inflammation is a pathologic condition that includes a wide range of diseases such as rheumatic and immune-mediated conditions, diabetes, cardiovascular accident, and etcetera. We introduce some herbs which their anti-inflammatory effects have been evaluated in clinical and experimental studies. Curcuma longa, Zingiber officinale, Rosmarinus officinalis, Borago officinalis, evening primrose, and Devil's claw are some of the introduced medicinal herbs in this review. Since the treatment of inflammation is not a one-dimensional remedy, this review tries to reach a multidimensional therapeutic approach to inflammation with the help of herbal medicine and modification in lifestyle.
Collapse
|
24
|
Kwon Y. Association of curry consumption with blood lipids and glucose levels. Nutr Res Pract 2016; 10:212-20. [PMID: 27087906 PMCID: PMC4819133 DOI: 10.4162/nrp.2016.10.2.212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/07/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/OBJECTIVES Curcumin, an active ingredient in turmeric, is highly consumed in South Asia. However, curry that contains turmeric as its main spice might be the major source of curcumin in most other countries. Although curcumin consumption is not as high in these countries as South Asia, the regular consumption of curcumin may provide a significant health-beneficial effect. This study evaluated whether the moderate consumption of curry can affect blood glucose and lipid levels that become dysregulated with age. SUBJECTS/METHODS This study used data obtained from the Korea National Health and Nutrition Examination Survey, conducted from 2012 to 2013, to assess curry consumption frequency as well as blood glucose and blood lipid levels. The levels of blood glucose and lipids were subdivided by age, sex, and body mass index, and compared according to the curry consumption level. The estimates in each subgroup were further adjusted for potential confounding factors, including the diagnosis of diseases, physical activity, and smoking. RESULTS After adjusting for the above confounding factors, the blood glucose and triglyceride levels were significantly lower in the moderate curry consumption group compared to the low curry consumption group, both in older (> 45) male and younger (30 to 44) female overweight individuals who have high blood glucose and triglyceride levels. CONCLUSIONS These results suggest that curcumin consumption, in an ordinary diet, can have health-beneficial effects, including being helpful in maintaining blood glucose and triglyceride levels that become dysregulated with age. The results should be further confirmed in future studies.
Collapse
Affiliation(s)
- Youngjoo Kwon
- Department of Food Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
25
|
Novel anti-angiogenic effects of aromatic-turmerone, essential oil isolated from spice turmeric. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
26
|
Sreekeesoon DP, Mahomoodally MF. Ethnopharmacological analysis of medicinal plants and animals used in the treatment and management of pain in Mauritius. JOURNAL OF ETHNOPHARMACOLOGY 2014; 157:181-200. [PMID: 25261690 DOI: 10.1016/j.jep.2014.09.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/17/2014] [Accepted: 09/17/2014] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pain is a multi-faceted and multi-factorial condition which is challenging to manage and treat. Conventional therapies such as analgesics, Non-steroidal anti-inflammatory drugs (NSAIDs), and corticosteroids amongst others have been successful to some extent in its management and treatment. Nonetheless, such therapies tend to be accompanied by undesirable effects and have a limited therapeutic range. Consequently, there is a pressing need to probe for novel analgesic and anti-nociceptive drugs from traditional medicines (TM). This study was designed to record, document and analyze herbal and animal-based therapies used for the management and treatment of pain in the tropical of Mauritius. MATERIALS AND METHODS Data was collected via face-to-face interviews with TM users (n=332) and practitioners (n=20). Seven quantitative ethnopharmacological indexes, namely family use value (FUV), use value (UV), informant agreement ratio (IAR), relative frequency of citation (RFC), fidelity level (FL), relative importance (RI) and ethnobotanicity index (EI) were calculated. RESULTS A total of 79 plant species distributed within 40 families and 20 polyherbal preparations was recorded. Interestingly, 6 indigenous/endemic plants have been reported for the first time to be in common use for pain management and treatment in Mauritius. The most significant biologically important plant family was Xanthorrhoeaceae with highest FUV. The species which ranked highest according to its UV was Morinda citrifolia L. Morinda citrifolia L. and Ricinus communis L. also scored the highest RFC. The IAR values for the disease categories were high (0.95-0.97). Based on EI, plants species which are known to be useful in TM accounted for 11.5% of the total flora in Mauritius. Coix lacryma-jobi L. (FL=100%) had highest FL for lower back ache. Morinda citrifolia L. scored highest on most of the quantitative indices calculated including RI, which is endorsed by extensive documentation on its versatility and particularly its anti-nociceptive properties. Seven animal species were recorded to be in common use. CONCLUSION The present ethnopharmacological study revealed a panoply of TM to be in common use for pain management and treatment in Mauritius. This study has documented for the first time medicinal plants and animal species with potential analgesic and/or anti-nociceptive properties. This study has therefore provided important baseline primary data for the discovery of new lead molecules for drug development geared towards pain management and treatment.
Collapse
Affiliation(s)
- D Priyamka Sreekeesoon
- Department of Health Sciences, Faculty of Science, University of Mauritius, 230 Réduit, Mauritius
| | - M Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Science, University of Mauritius, 230 Réduit, Mauritius.
| |
Collapse
|
27
|
Kwon Y. Estimation of curcumin intake in Korea based on the Korea National Health and Nutrition Examination Survey (2008-2012). Nutr Res Pract 2014; 8:589-94. [PMID: 25324941 PMCID: PMC4198974 DOI: 10.4162/nrp.2014.8.5.589] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/11/2014] [Accepted: 06/04/2014] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND/OBJECTIVES Turmeric and its active component curcumin have received considerable attention due to their many recognized biological activities. Turmeric has been commonly used in food preparation and herbal remedies in South Asia, leading to a high consumption rate of curcumin in this region. However, the amount of curcumin in the Korean diet has not yet been estimated, where turmeric is not a common ingredient. SUBJECTS/METHODS This study utilized the combined data sets obtained from the Korea National Health and Nutrition Examination Survey conducted from 2008 to 2012 in order to estimate the curcumin intake in the Korean diet. The mean intake of curcumin was estimated from the amount of curcumin-containing foods (curry powder and ready-made curry) consumed using reported curcumin content in commercial turmeric and curry powders. RESULTS Only 0.06% of Koreans responded that they consumed foods containing curcumin in a given day, and 40% of them were younger than 20 years of age. Curcumin-containing foods were largely prepared at home (72.9%) and a significant proportion (20.4%, nearly twice that of all other foods) was consumed as school and workplace meals. The estimated mean turmeric intake was about 0.47 g/day corresponding to 2.7-14.8 mg curcumin, while the average curry powder consumption was about 16.4 g, which gave rise to curcumin intake in the range of 8.2-95.0 mg among individuals who consumed curcumin. The difference in estimated curcumin intake by using the curcumin content in curry powder and turmeric may reflect that curry powder manufactured in Korea might contain higher amounts of other ingredients such as flour, and an estimation based on the curcumin content in the turmeric might be more acceptable. CONCLUSIONS Thus, the amount of curcumin that can be obtained from the Korean diet in a day is 2.7-14.8 mg, corresponding to nearly one fourth of the daily curcumin intake in South Asia, although curcumin is rarely consumed in Korea.
Collapse
Affiliation(s)
- Youngjoo Kwon
- Department of Food Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| |
Collapse
|