1
|
Lingua G, Chaves AG, Aguilar JJ, Martinez F, Gomez TI, Rucci KA, Torres LE, Ancín-Azpilicueta C, Esparza I, Jiménez-Moreno N, Contigiani M, Nuñez Montoya S, Konigheim BS. Antiviral Potential and Chemical Composition of Wild Baccharis crispa Spreng. Populations (Asteraceae) from Córdoba, Argentina: Perspective on Population Variability. PLANTS (BASEL, SWITZERLAND) 2024; 13:3077. [PMID: 39519995 PMCID: PMC11548641 DOI: 10.3390/plants13213077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Medicinal plants have been explored worldwide as potential alternatives for the prevention and treatment of different diseases, including viral infections. Baccharis crispa Spreng. (Asteraceae) is a native medicinal species widely used in South America. Given the influence of genetic and environmental factors on secondary metabolites biosynthesis and accumulation, this study aimed to evaluate the in vitro antiviral activity of four wild populations of B. crispa from Córdoba, Argentina, and assess the variability in their bioactivity and chemical composition. The cytotoxicity of chloroform, ethanol, and aqueous extracts from aerial parts was evaluated by the neutral red uptake method. Antiviral and virucidal activity against herpes simplex virus type 1 (HSV-1) and chikungunya virus (CHIKV) were assessed via plaque-forming unit (PFU) reduction assay. Phytochemical analyses of the extracts were conducted using HPLC-ESI- MS/MS. The Puesto Pedernera population showed the strongest antiviral activity, with inhibition rates of 82% for CHIKV and 79% against HSV-1, as well as potent virucidal effects, reducing PFU formation by up to 5 logarithms for both viruses. Remarkably, ethanol extract exhibited the least toxicity and strongest inhibitory activity. Villa del Parque population was inactive. We identified 38 secondary metabolites, predominantly phenolic acids (12) and flavonoids (18), in varying proportions. Delphinidin and delphinidin-3-glucoside are described for the first time in the species. Differences in phytochemical profiles were observed among extract types and populations. Key phenolic compounds showed moderate positive correlations with the evaluated bioactivities, emphasizing the complexity of phytochemical properties and interactions. These results highlight the therapeutic potential of B. crispa extracts against viral infections and underscore the importance of considering the geographical source of plant material in bioactivity evaluations.
Collapse
Affiliation(s)
- Giuliana Lingua
- Instituto de Virología “Dr. J. M. Vanella”-Argentina, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo S/N, Ciudad Universitaria, Córdoba X5000HUA, Argentina; (G.L.); (J.J.A.); (F.M.); (K.A.R.); (M.C.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Cuidad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Ana Guadalupe Chaves
- Cátedra de Genética, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Av. Valparaíso S/N Ciudad Universitaria, Córdoba X5000HUA, Argentina; (A.G.C.); (L.E.T.)
| | - Juan Javier Aguilar
- Instituto de Virología “Dr. J. M. Vanella”-Argentina, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo S/N, Ciudad Universitaria, Córdoba X5000HUA, Argentina; (G.L.); (J.J.A.); (F.M.); (K.A.R.); (M.C.)
| | - Florencia Martinez
- Instituto de Virología “Dr. J. M. Vanella”-Argentina, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo S/N, Ciudad Universitaria, Córdoba X5000HUA, Argentina; (G.L.); (J.J.A.); (F.M.); (K.A.R.); (M.C.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Cuidad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Tomás Isaac Gomez
- Dpto. de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Edificio de Ciencias 2, Ciudad Universitaria, Córdoba X5000HUA, Argentina; (T.I.G.); (S.N.M.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA-CONICET), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Kevin Alen Rucci
- Instituto de Virología “Dr. J. M. Vanella”-Argentina, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo S/N, Ciudad Universitaria, Córdoba X5000HUA, Argentina; (G.L.); (J.J.A.); (F.M.); (K.A.R.); (M.C.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Cuidad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Lorena E. Torres
- Cátedra de Genética, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Av. Valparaíso S/N Ciudad Universitaria, Córdoba X5000HUA, Argentina; (A.G.C.); (L.E.T.)
| | - Carmen Ancín-Azpilicueta
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain; (C.A.-A.); (I.E.); (N.J.-M.)
- Institute for Advanced Materials (INAMAT2), Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Irene Esparza
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain; (C.A.-A.); (I.E.); (N.J.-M.)
- Institute for Advanced Materials (INAMAT2), Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Nerea Jiménez-Moreno
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain; (C.A.-A.); (I.E.); (N.J.-M.)
- Institute for Advanced Materials (INAMAT2), Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Marta Contigiani
- Instituto de Virología “Dr. J. M. Vanella”-Argentina, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo S/N, Ciudad Universitaria, Córdoba X5000HUA, Argentina; (G.L.); (J.J.A.); (F.M.); (K.A.R.); (M.C.)
| | - Susana Nuñez Montoya
- Dpto. de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Edificio de Ciencias 2, Ciudad Universitaria, Córdoba X5000HUA, Argentina; (T.I.G.); (S.N.M.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA-CONICET), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Brenda S. Konigheim
- Instituto de Virología “Dr. J. M. Vanella”-Argentina, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo S/N, Ciudad Universitaria, Córdoba X5000HUA, Argentina; (G.L.); (J.J.A.); (F.M.); (K.A.R.); (M.C.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Cuidad Autónoma de Buenos Aires C1425FQB, Argentina
| |
Collapse
|
2
|
Monoclonal Antibodies and Flaviviruses: a Possible Option? mBio 2022; 13:e0082422. [PMID: 35575500 PMCID: PMC9239274 DOI: 10.1128/mbio.00824-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
M. P. Doyle, J. R. Genualdi, A. L. Bailey, N. Kose, et al. (mBio 13:e00512-22, 2022, https://doi.org/10.1128/mBio.00512-22), report on the cloning of a panel of fully human monoclonal antibodies (mAbs) directed against yellow fever virus (YFV). In particular, mAb YFV-136 is endowed with interesting cross-YFV substrain-neutralizing features. The importance of YFV-136 and other mAbs with similar characteristics is related not necessarily only to their possible future use in the clinic but also to their role in a better understanding of the biology of YFV (as well as of other flaviviruses) for the development of effective therapeutic and prophylactic strategies. The emergence and reemergence of different flaviviruses worldwide in the last decades certainly make this a compelling clinical priority.
Collapse
|
3
|
Tang F, Lu Y, Ge Y, Shang J, Zhu X. Infusion of chimeric antigen receptor T cells against dual targets of CD19 and B-cell maturation antigen for the treatment of refractory multiple myeloma. J Int Med Res 2020; 48:300060519893496. [PMID: 31939323 PMCID: PMC7114292 DOI: 10.1177/0300060519893496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
Objective To investigate the safety and efficacy of chimeric antigen receptor T (CAR-T) cell infusion in patients with refractory multiple myeloma (MM). Methods Sixteen patients diagnosed with refractory MM were included in this study. Patients received initial infusions of T-derived CD19/B-cell maturation antigen (BCMA) CAR-T cells with 100% CD19, followed by second infusions with 40% BCMA and third infusions with 60% BCMA. The total doses were 0.5–1 × 107/kg CD19 and 1.2 − 6.2 × 107/kg BCMA. Patients were monitored after infusion. Levels of interleukin (IL)-2, IL-6, IL-10, tumor necrosis factor-α, and C-reactive protein were determined by enzyme-linked immunosorbent assay. Results Cytokine release syndrome (CRS) was observed in all 16 patients. Thirteen patients with CRS stage II−IV had persistent hyperthermia from 5−14 days after infusion, while most patients developed hyperthermia from 1 day after infusion and their temperatures returned to normal within 2−10 days. Levels of all factors were significantly elevated 2 days after infusion, peaked at 5 days, and then gradually decreased to normal levels. All inflammatory factors showed normal levels by 10 days after infusion. Conclusion Body temperature and levels of inflammatory factors all increased dramatically after infusion of CD19/BCMA CAR-T cells, but recovered to normal levels after appropriate treatment and nursing.
Collapse
Affiliation(s)
- Fang Tang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yin Lu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongqin Ge
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingjing Shang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaming Zhu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Baykov IK, Matveev AL, Emelianova LA, Kaverina GB, Tkachev SE, Tikunova NV. The effect of differences in the third domain of the glycoprotein E of tick-borne encephalitis virus of the Far Eastern, Siberian and European subtypes on the binding of recombinant D3 proteins with a chimeric antibody. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Currently, a therapeutic drug based on recombinant antibodies for the prevention and treatment of tick-borne encephalitis virus (TBEV) is developed in ICBFM SB RAS, and the chimeric antibody ch14D5 is considered as one of the key components of this drug. It was previously shown that this antibody is directed to the domain D3 of the glycoprotein E of TBEV. It was previously shown that this antibody is able to protect mice from the European subtype of TBEV, strain “Absettarov”, and the presence of virus-neutralizing activity against the Far Eastern subtype of TBEV, strain 205 was also shown for this antibody. However, it remains unclear whether this antibody exhibits selectivity for different subtypes of TBEV. The aim of this study was to investigate the effect of amino acid sequence differences of recombinant D3 domains derived from the glycoprotein E of TBEV of the Far Eastern, Siberian and European subtypes on the binding of the protective antibody ch14D5 to these proteins. Using Western blot analysis and surface plasmon resonance, it was shown that ch14D5 antibody has the highest affinity (KD= 1.7±0.5 nM) for the D3 domain of the TBEV of the “Sofjin-Ru” strain belonging to the Far Eastern subtype of the virus. At the same time, the affinity of ch14D5 antibody for similar D3 proteins derived from “Zausaev”, “1528-99” and “Absettarov” strains of the Siberian and European subtypes of TBEV was noticeably lower (KD= 25±4, 300±50, 250±50 nM, respectively). In addition, information about the spatial arrangement of amino acid residues that are different for the studied recombinant proteins indicates that the epitope recognized by the ch14D5 antibody is in close proximity to the lateral ridge of D3 domain of E glycoprotein.
Collapse
Affiliation(s)
- I. K. Baykov
- Institute of Сhemical Biology аnd Fundamental Medicine, SB RAS
| | - A. L. Matveev
- Institute of Сhemical Biology аnd Fundamental Medicine, SB RAS; Novosibirsk State University
| | - L. A. Emelianova
- Institute of Сhemical Biology аnd Fundamental Medicine, SB RAS; Novosibirsk State University
| | - G. B. Kaverina
- Institute of Сhemical Biology аnd Fundamental Medicine, SB RAS
| | - S. E. Tkachev
- Institute of Сhemical Biology аnd Fundamental Medicine, SB RAS
| | - N. V. Tikunova
- Institute of Сhemical Biology аnd Fundamental Medicine, SB RAS; Novosibirsk State University
| |
Collapse
|
5
|
Ojha CR, Rodriguez M, Lapierre J, Muthu Karuppan MK, Branscome H, Kashanchi F, El-Hage N. Complementary Mechanisms Potentially Involved in the Pathology of Zika Virus. Front Immunol 2018; 9:2340. [PMID: 30374352 PMCID: PMC6196287 DOI: 10.3389/fimmu.2018.02340] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022] Open
Abstract
Zika virus (ZIKV) has emerged as a global health threat due to its neuro-teratogenic effect and wide range of transmission routes. Most recently, ZIKV infection has been linked with both autoimmune disorders in adults and neurodevelopmental disorders in newborns. Researchers are exploring potential cellular and molecular mechanisms underlying the neuro-teratogenicity and related consequences by using various in vitro cell culture methods and in vivo animal models. Though some of the putative viral entry receptors have been identified for ZIKV entry into the target cells, the exact mechanism of ZIKV entry or induced pathology are still not clear. Some of the important host cellular pathways including the toll-like receptor (TLR), autophagy, apoptosis and unfolded protein response (UPR) pathways are considered potential mechanism(s) for ZIKV induced neuroinflammation and for neurodevelopmental disorders. Since there is still a dire need for efficient treatment and vaccine to prevent ZIKV mediated disorders, a better understanding of the interaction between virus and host cellular pathways could pave the way for development of targeted therapeutic intervention. In this review, we are focusing on the recent advances and current knowledge regarding the interaction of ZIKV with abovementioned pathways so as to provide basic understanding to execute further research that could aid in the development of novel therapeutic strategy.
Collapse
Affiliation(s)
- Chet Raj Ojha
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Myosotys Rodriguez
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Jessica Lapierre
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Mohan Kumar Muthu Karuppan
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
6
|
Abstract
Despite being discovered approximately 70 years ago, Zika virus (ZIKV) has received little attention, until the occurrence of alarming epidemics in the Pacific Islands and Latin America between 2013 and 2016. These series of outbreaks resulted in crippling neurological complications in adults, and congenital deformities in new-borns. The dire outcomes marked ZIKV as a re-emerging pathogen of public health concern. Over a period of two years, extensive studies have been conducted to understand different aspects of ZIKV from pathogen biology to infection, including the immune response during virus-host interplay in established animal models, as well as potential therapeutics against ZIKV infection. The vast diversity of novel findings has added value to ZIKV research, and a strategic consolidation is crucial to encompass the latest advances and developments, as well as missing pieces of the puzzle. This review thus aims to provide a concise yet extensive update on current ZIKV studies.
Collapse
Affiliation(s)
- Cheryl Yi-Pin Lee
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Infection and Global Health, University of Liverpool, UK.
| |
Collapse
|
7
|
Wahid B, Ali A, Rafique S, Idrees M. Current status of therapeutic and vaccine approaches against Zika virus. Eur J Intern Med 2017; 44:12-18. [PMID: 28797534 DOI: 10.1016/j.ejim.2017.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/05/2017] [Accepted: 08/03/2017] [Indexed: 11/30/2022]
Abstract
Zika virus (ZIKV) is a global threat because it is spreading at an alarming rate because of its wider range of transmission routes. The neuroteratogenic nature of ZIKV infection is posing serious threats to unborn lives therefore, it is necessary to develop an ideal ZIKV prophylactic or therapeutic agent urgently. Researchers are having tough time finding a treatment for ZIKV in part because of serious consequences of vaccines and drugs to unborn lives and pregnant women. However, in vitro and in vivo evaluation of therapeutic efficacy of DNA vaccine, recombinant subunit vaccine, and ZIKV purified inactivated vaccine offers hope for human protection. Large number of food and drug administration (FDA) approved drugs as wells as compounds with anti-ZIKV activity offer valuable opportunity to control the massive bio-burden of this catastrophic epidemic. Some evidences suggest that immunotherapeutics might prove to be winning strategy in pregnant females. Here, we review the recent advances and current knowledge regarding therapeutic interventions against ZIKV infection. This article will provide baseline data and roadmap to prosecute further research for the development of novel therapeutic strategy to curb the explosive rise in ZIKV.
Collapse
Affiliation(s)
- Braira Wahid
- Centre for Applied Molecular Biology (CAMB), 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Amjad Ali
- Centre for Applied Molecular Biology (CAMB), 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| | - Shazia Rafique
- Center of Excellence in Molecular Biology (CEMB), 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| | - Muhammad Idrees
- Centre for Applied Molecular Biology (CAMB), 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan; Vice Chancellor Hazara University Mansehra, Pakistan.
| |
Collapse
|
8
|
Pelegrin M, Naranjo-Gomez M, Piechaczyk M. Antiviral Monoclonal Antibodies: Can They Be More Than Simple Neutralizing Agents? Trends Microbiol 2016; 23:653-665. [PMID: 26433697 PMCID: PMC7127033 DOI: 10.1016/j.tim.2015.07.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/06/2015] [Accepted: 07/15/2015] [Indexed: 12/12/2022]
Abstract
Monoclonal antibodies (mAbs) are increasingly being considered as agents to fight severe viral diseases. So far, they have essentially been selected and used on the basis of their virus-neutralizing activity and/or cell-killing activity to blunt viral propagation via direct mechanisms. There is, however, accumulating evidence that they can also induce long-lasting protective antiviral immunity by recruiting the endogenous immune system of infected individuals during the period of immunotherapy. Exploiting this property may revolutionize antiviral mAb-based immunotherapies, with benefits for both patients and healthcare systems. Antiviral monoclonal antibodies (mAbs) are promising, high-added-value biotherapeutics. During recent years, the number of antiviral mAbs developed against both acute and chronic viruses has grown exponentially, some of them being currently tested in clinical trials. Antiviral mAbs can be used to blunt viral propagation through direct effects. They can also engage the host's immune system, leading to the induction of long-lasting protective vaccine-like effects. The assessment of mechanisms at play in the induction of vaccine-like effects by antiviral mAbs will help in improving antiviral treatments. Exploiting this effect will translate into therapeutic benefit for patients. The benefit will also help healthcare systems through the reduction of treatment costs.
Collapse
Affiliation(s)
- Mireia Pelegrin
- Equipe Labellisée par la Ligue contre le Cancer - Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France.
| | - Mar Naranjo-Gomez
- Equipe Labellisée par la Ligue contre le Cancer - Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Marc Piechaczyk
- Equipe Labellisée par la Ligue contre le Cancer - Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
9
|
Malone RW, Homan J, Callahan MV, Glasspool-Malone J, Damodaran L, Schneider ADB, Zimler R, Talton J, Cobb RR, Ruzic I, Smith-Gagen J, Janies D, Wilson J. Zika Virus: Medical Countermeasure Development Challenges. PLoS Negl Trop Dis 2016; 10:e0004530. [PMID: 26934531 PMCID: PMC4774925 DOI: 10.1371/journal.pntd.0004530] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Reports of high rates of primary microcephaly and Guillain-Barré syndrome associated with Zika virus infection in French Polynesia and Brazil have raised concerns that the virus circulating in these regions is a rapidly developing neuropathic, teratogenic, emerging infectious public health threat. There are no licensed medical countermeasures (vaccines, therapies or preventive drugs) available for Zika virus infection and disease. The Pan American Health Organization (PAHO) predicts that Zika virus will continue to spread and eventually reach all countries and territories in the Americas with endemic Aedes mosquitoes. This paper reviews the status of the Zika virus outbreak, including medical countermeasure options, with a focus on how the epidemiology, insect vectors, neuropathology, virology and immunology inform options and strategies available for medical countermeasure development and deployment. METHODS Multiple information sources were employed to support the review. These included publically available literature, patents, official communications, English and Lusophone lay press. Online surveys were distributed to physicians in the US, Mexico and Argentina and responses analyzed. Computational epitope analysis as well as infectious disease outbreak modeling and forecasting were implemented. Field observations in Brazil were compiled and interviews conducted with public health officials.
Collapse
Affiliation(s)
- Robert W. Malone
- RW Malone MD LLC, Scottsville, Virginia, United States of America
- Class of 2016, Harvard Medical School Global Clinical Scholars Research Training Program, Boston, Massachusetts, United States of America
| | - Jane Homan
- ioGenetics, Madison, Wisconsin, United States of America
| | - Michael V. Callahan
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jill Glasspool-Malone
- RW Malone MD LLC, Scottsville, Virginia, United States of America
- Class of 2016, Harvard Medical School Global Clinical Scholars Research Training Program, Boston, Massachusetts, United States of America
| | - Lambodhar Damodaran
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Adriano De Bernardi Schneider
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Rebecca Zimler
- University of Florida, Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Vero Beach, Florida, United States of America
| | - James Talton
- Nanotherapeutics, NANO-ADM Advanced Development and Manufacturing Center, Alachua, Florida, United States of America
| | - Ronald R. Cobb
- Nanotherapeutics, NANO-ADM Advanced Development and Manufacturing Center, Alachua, Florida, United States of America
| | - Ivan Ruzic
- Analytical Outcomes, Washington Crossing, Pennsylvania, United States of America
| | - Julie Smith-Gagen
- School of Community Health Sciences, University of Nevada, Reno, Nevada, United States of America
| | - Daniel Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - James Wilson
- Nevada Center for Infectious Disease Forecasting, University of Nevada, Reno, Nevada, United States of America
| | | |
Collapse
|
10
|
Jacobsen KH, Aguirre AA, Bailey CL, Baranova AV, Crooks AT, Croitoru A, Delamater PL, Gupta J, Kehn-Hall K, Narayanan A, Pierobon M, Rowan KE, Schwebach JR, Seshaiyer P, Sklarew DM, Stefanidis A, Agouris P. Lessons from the Ebola Outbreak: Action Items for Emerging Infectious Disease Preparedness and Response. ECOHEALTH 2016; 13:200-212. [PMID: 26915507 PMCID: PMC7087787 DOI: 10.1007/s10393-016-1100-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/30/2015] [Accepted: 01/06/2016] [Indexed: 05/29/2023]
Abstract
As the Ebola outbreak in West Africa wanes, it is time for the international scientific community to reflect on how to improve the detection of and coordinated response to future epidemics. Our interdisciplinary team identified key lessons learned from the Ebola outbreak that can be clustered into three areas: environmental conditions related to early warning systems, host characteristics related to public health, and agent issues that can be addressed through the laboratory sciences. In particular, we need to increase zoonotic surveillance activities, implement more effective ecological health interventions, expand prediction modeling, support medical and public health systems in order to improve local and international responses to epidemics, improve risk communication, better understand the role of social media in outbreak awareness and response, produce better diagnostic tools, create better therapeutic medications, and design better vaccines. This list highlights research priorities and policy actions the global community can take now to be better prepared for future emerging infectious disease outbreaks that threaten global public health and security.
Collapse
Affiliation(s)
- Kathryn H Jacobsen
- Department of Global and Community Health, College of Health and Human Services, George Mason University, 4400 University Drive 5B7, Fairfax, VA, 22030, USA.
| | - A Alonso Aguirre
- Department of Environmental Science and Policy, College of Science, George Mason University, Fairfax, VA, USA
| | - Charles L Bailey
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, College of Science, George Mason University, Manassas, VA, USA
| | - Ancha V Baranova
- Department of Environmental Science and Policy, College of Science, George Mason University, Fairfax, VA, USA
- Center for the Study of Chronic Metabolic Diseases, School of Systems Biology, College of Science, George Mason University, Manassas, VA, USA
| | - Andrew T Crooks
- Department of Computational and Data Sciences, College of Science, George Mason University, Fairfax, VA, USA
| | - Arie Croitoru
- Department of Geography and Geoinformation Science, College of Science, George Mason University, Fairfax, VA, USA
| | - Paul L Delamater
- Department of Geography and Geoinformation Science, College of Science, George Mason University, Fairfax, VA, USA
| | - Jhumka Gupta
- Department of Global and Community Health, College of Health and Human Services, George Mason University, 4400 University Drive 5B7, Fairfax, VA, 22030, USA
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, College of Science, George Mason University, Manassas, VA, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, College of Science, George Mason University, Manassas, VA, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, College of Science, George Mason University, Manassas, VA, USA
| | - Katherine E Rowan
- Department of Communication, College of Humanities and Social Sciences, George Mason University, Fairfax, VA, USA
| | - J Reid Schwebach
- Department of Biology, College of Science, George Mason University, Fairfax, VA, USA
| | - Padmanabhan Seshaiyer
- Department of Mathematical Sciences, College of Science, George Mason University, Fairfax, VA, USA
| | - Dann M Sklarew
- Department of Environmental Science and Policy, College of Science, George Mason University, Fairfax, VA, USA
| | - Anthony Stefanidis
- Department of Geography and Geoinformation Science, College of Science, George Mason University, Fairfax, VA, USA
| | - Peggy Agouris
- Department of Geography and Geoinformation Science, College of Science, George Mason University, Fairfax, VA, USA
| |
Collapse
|
11
|
Mammalian cell culture process for monoclonal antibody production: nonlinear modelling and parameter estimation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:598721. [PMID: 25685797 PMCID: PMC4313526 DOI: 10.1155/2015/598721] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 12/05/2014] [Accepted: 12/07/2014] [Indexed: 11/17/2022]
Abstract
Monoclonal antibodies (mAbs) are at present one of the fastest growing products of pharmaceutical industry, with widespread applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed. The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO) algorithm. The proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but is generic for this class of bioprocesses. The presented case study shows that the proposed parameter estimation technique provides a more accurate simulation of the experimentally observed process behaviour than reported in previous studies.
Collapse
|
12
|
Kelesidis T, Mastoris I, Metsini A, Tsiodras S. How to approach and treat viral infections in ICU patients. BMC Infect Dis 2014; 14:321. [PMID: 25431007 PMCID: PMC4289200 DOI: 10.1186/1471-2334-14-321] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/11/2014] [Indexed: 12/21/2022] Open
Abstract
Patients with severe viral infections are often hospitalized in intensive care units (ICUs) and recent studies underline the frequency of viral detection in ICU patients. Viral infections in the ICU often involve the respiratory or the central nervous system and can cause significant morbidity and mortality especially in immunocompromised patients. The mainstay of therapy of viral infections is supportive care and antiviral therapy when available. Increased understanding of the molecular mechanisms of viral infection has provided great potential for the discovery of new antiviral agents that target viral proteins or host proteins that regulate immunity and are involved in the viral life cycle. These novel treatments need to be further validated in animal and human randomized controlled studies.
Collapse
Affiliation(s)
| | | | | | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens School of Medicine, 1 Rimini Street, GR-12462 Haidari, Athens, Greece.
| |
Collapse
|
13
|
Wisskirchen K, Lucifora J, Michler T, Protzer U. New pharmacological strategies to fight enveloped viruses. Trends Pharmacol Sci 2014; 35:470-8. [PMID: 25108320 PMCID: PMC7112871 DOI: 10.1016/j.tips.2014.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 02/07/2023]
Abstract
Many emerging or known, chronic viral diseases are caused by enveloped viruses. The review discusses research driven development of antivirals that became recently available or are in clinical evaluation. The main focus is on antiviral strategies with a broader therapeutic range, and on novel immune based therapeutics. Broad-spectrum antivirals will help to react faster to newly emerging viral diseases. Targeting immune cells against infected cells can restore immune responses in chronic infections.
Enveloped viruses pose an important health threat because most of the persistent and many emerging viruses are enveloped. In particular, newly emerging viruses create a need to develop broad-spectrum antivirals, which usually are obtained by targeting host cell factors. Persistent viruses have developed efficient strategies to escape host immune control, and treatment options are limited. Targeting host cell factors essential for virus persistence, or immune-based therapies provide alternative approaches. In this review, we therefore focus on recent developments to generate antivirals targeting host cell factors or immune-based therapeutic approaches to fight infections with enveloped viruses.
Collapse
Affiliation(s)
- Karin Wisskirchen
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstrasse 30, 81675 Munich, Germany
| | - Julie Lucifora
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstrasse 30, 81675 Munich, Germany; German Center for Infection Research (DZIF), Munich site, Munich, Germany
| | - Thomas Michler
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstrasse 30, 81675 Munich, Germany; German Center for Infection Research (DZIF), Munich site, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstrasse 30, 81675 Munich, Germany; German Center for Infection Research (DZIF), Munich site, Munich, Germany.
| |
Collapse
|
14
|
Cao J, Sun W, Gong F, Liu W. Charge profiling and stability testing of biosimilar by capillary isoelectric focusing. Electrophoresis 2014; 35:1461-8. [DOI: 10.1002/elps.201300471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 02/02/2023]
Affiliation(s)
- Junzi Cao
- School of Pharmacy; Yantai University; Yantai P. R. China
| | - Wen Sun
- State Key Laboratory of Long-acting and Targeting Drug Delivery System; Luye Pharma Group Ltd; Yantai P. R. China
| | - Feifei Gong
- School of Pharmacy; Yantai University; Yantai P. R. China
| | - Wanhui Liu
- School of Pharmacy; Yantai University; Yantai P. R. China
- State Key Laboratory of Long-acting and Targeting Drug Delivery System; Luye Pharma Group Ltd; Yantai P. R. China
| |
Collapse
|