1
|
Jin X, Dong W, Chang K, Yan Y. Research on the signaling pathways related to the intervention of traditional Chinese medicine in Parkinson's disease:A literature review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117850. [PMID: 38331124 DOI: 10.1016/j.jep.2024.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is the most common progressive neurodegenerative disorder affecting more than 10 million people worldwide and is characterized by the progressive loss of Daergic (DA) neurons in the substantia nigra pars compacta. It has been reported that signaling pathways play a crucial role in the pathogenesis of PD, while the active ingredients of traditional Chinese medicine (TCM) have been found to possess a protective effect against PD. TCM has demonstrated significant potential in mitigating oxidative stress (OS), neuroinflammation, and apoptosis of DA neurons via the regulation of signaling pathways associated with PD. AIM OF THE REVIEW This study discussed and analyzed the signaling pathways involved in the occurrence and development of PD and the mechanism of active ingredients of TCM regulating PD via signaling pathways, with the aim of providing a basis for the development and clinical application of therapeutic strategies for TCM in PD. MATERIALS AND METHODS With "Parkinson's disease", "Idiopathic Parkinson's Disease", "Lewy Body Parkinson's Disease", "Parkinson's Disease, Idiopathic", "Parkinson Disease, Idiopathic", "Parkinson's disorders", "Parkinsonism syndrome", "Traditional Chinese medicine", "Chinese herbal medicine", "active ingredients", "medicinal plants" as the main keywords, PubMed, Web of Science and other online search engines were used for literature retrieval. RESULTS PD exhibits a close association with various signaling pathways, including but not limited to MAPKs, NF-κB, PI3K/Akt, Nrf2/ARE, Wnt/β-catenin, TLR/TRIF, NLRP3, Notch. The therapeutic potential of TCM lies in its ability to regulate these signaling pathways. In addition, the active ingredients of TCM have shown significant effects in improving OS, neuroinflammation, and DA neuron apoptosis in PD. CONCLUSION The active ingredients of TCM have unique advantages in regulating PD-related signaling pathways. It is suggested to combine network pharmacology and bioinformatics to study the specific targets of TCM. This not only provides a new way for the prevention and treatment of PD with the active ingredients of TCM, but also provides a scientific basis for the selection and development of TCM preparations.
Collapse
Affiliation(s)
- Xiaxia Jin
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wendi Dong
- Foshan Clinical Medical College, Guangzhou University of Traditional Chinese Medicine, Foshan 528000, China
| | - Kaile Chang
- Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Yongmei Yan
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Encephalopathy, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang 712000, China.
| |
Collapse
|
2
|
Han T, Xu Y, Liu H, Sun L, Cheng X, Shen Y, Wei J. Function and Mechanism of Abscisic Acid on Microglia-Induced Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2024; 25:4920. [PMID: 38732130 PMCID: PMC11084589 DOI: 10.3390/ijms25094920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Parkinson's disease (PD), as a neurologically implemented disease with complex etiological factors, has a complex and variable pathogenesis. Accompanying further research, neuroinflammation has been found to be one of the possible factors in its pathogenesis. Microglia, as intrinsic immune cells in the brain, play an important role in maintaining microenvironmental homeostasis in the brain. However, over-activation of neurotoxic microglia in PD promotes neuroinflammation, which further increases dopaminergic (DA) neuronal damage and exacerbates the disease process. Therefore, targeting and regulating the functional state of microglia is expected to be a potential avenue for PD treatment. In addition, plant extracts have shown great potential in the treatment of neurodegenerative disorders due to their abundant resources, mild effects, and the presence of multiple active ingredients. However, it is worth noting that some natural products have certain toxic side effects, so it is necessary to pay attention to distinguish medicinal ingredients and usage and dosage when using to avoid aggravating the progression of diseases. In this review, the roles of microglia with different functional states in PD and the related pathways inducing microglia to transform into neuroprotective states are described. At the same time, it is discussed that abscisic acid (ABA) may regulate the polarization of microglia by targeting them, promote their transformation into neuroprotective state, reduce the neuroinflammatory response in PD, and provide a new idea for the treatment of PD and the selection of drugs.
Collapse
Affiliation(s)
- Tingting Han
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Yuxiang Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Haixuan Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Xiangshu Cheng
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Ying Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| |
Collapse
|
3
|
Liu Y, Yang W, Xue J, Chen J, Liu S, Zhang S, Zhang X, Gu X, Dong Y, Qiu P. Neuroinflammation: The central enabler of postoperative cognitive dysfunction. Biomed Pharmacother 2023; 167:115582. [PMID: 37748409 DOI: 10.1016/j.biopha.2023.115582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
The proportion of advanced age patients undergoing surgical procedures is on the rise owing to advancements in surgical and anesthesia technologies as well as an overall aging population. As a complication of anesthesia and surgery, older patients frequently suffer from postoperative cognitive dysfunction (POCD), which may persist for weeks, months or even longer. POCD is a complex pathological process involving multiple pathogenic factors, and its mechanism is yet unclear. Potential theories include inflammation, deposition of pathogenic proteins, imbalance of neurotransmitters, and chronic stress. The identification, prevention, and treatment of POCD are still in the exploratory stages owing to the absence of standardized diagnostic criteria. Undoubtedly, comprehending the development of POCD remains crucial in overcoming the illness. Neuroinflammation is the leading hypothesis and a crucial component of the pathological network of POCD and may have complex interactions with other mechanisms. In this review, we discuss the possible ways in which surgery and anesthesia cause neuroinflammation and investigate the connection between neuroinflammation and the development of POCD. Understanding these mechanisms may likely ensure that future treatment options of POCD are more effective.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Wei Yang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Juntong Chen
- Zhejiang University School of Medicine, Hangzhou 311121, Zhejiang province, China
| | - Shiqing Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Shijie Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiaohui Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China.
| | - Youjing Dong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
4
|
Chavda V, Singh K, Patel V, Mishra M, Mishra AK. Neuronal Glial Crosstalk: Specific and Shared Mechanisms in Alzheimer’s Disease. Brain Sci 2022; 12:brainsci12010075. [PMID: 35053818 PMCID: PMC8773743 DOI: 10.3390/brainsci12010075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 02/04/2023] Open
Abstract
The human brain maintains billions of neurons functional across the lifespan of the individual. The glial, supportive cells of the brain are indispensable to neuron elasticity. They undergo various states (active, reactive, macrophage, primed, resting) and carefully impose either quick repair or the cleaning of injured neurons to avoid damage extension. Identifying the failure of these interactions involving the relation of the input of glial cells to the inception and/or progression of chronic neurodegenerative diseases (ND) is crucial in identifying therapeutic options, given the well-built neuro-immune module of these diseases. In the present review, we scrutinize different interactions and important factors including direct cell–cell contact, intervention by the CD200 system, various receptors present on their surfaces, CXC3RI and TREM2, and chemokines and cytokines with special reference to Alzheimer’s disease (AD). The present review of the available literature will elucidate the contribution of microglia and astrocytes to the pathophysiology of AD, thus evidencing glial cells as obligatory transducers of pathology and superlative targets for interference.
Collapse
Affiliation(s)
- Vishal Chavda
- Division of Anesthesia, Dreamzz IVF Center and Women’s Care Hospital, Ahmedabad 382350, Gujarat, India;
| | - Kavita Singh
- Centre for Translational Research, Jiwaji University, Gwalior 474011, Madhya Pradesh, India;
| | - Vimal Patel
- Department of Pharmaceutics, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Meerambika Mishra
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (M.M.); (A.K.M.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
- Correspondence: (M.M.); (A.K.M.)
| |
Collapse
|
5
|
Boero G, Tyler RE, Todd CA, O'Buckley TK, Balan I, Besheer J, Morrow AL. (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP) regulation of hypothalamic and extrahypothalamic corticotropin releasing factor (CRF): Sexual dimorphism and brain region specificity in Sprague Dawley rats. Neuropharmacology 2021; 186:108463. [PMID: 33460689 DOI: 10.1016/j.neuropharm.2021.108463] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 11/25/2022]
Abstract
CRF is the main activator of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress. CRF neurons are found mainly in the hypothalamus, but CRF positive cells and CRF1 receptors are also found in extrahypothalamic structures, including amygdala (CeA), hippocampus, NAc and VTA. CRF release in the hypothalamus is regulated by inhibitory GABAergic interneurons and extrahypothalamic glutamatergic inputs, and disruption of this balance is found in stress-related disorders and addiction. (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP), the most potent positive modulator of GABAA receptors, attenuates the stress response reducing hypothalamic CRF mRNA expression and ACTH and corticosterone serum levels. In this study, we explored 3α,5α-THP regulation of hypothalamic and extrahypothalamic CRF mRNA and peptide expression, in male and female Sprague Dawley rats, following vehicle or 3α,5α-THP administration (15 mg/kg). In the hypothalamus, we found sex differences in CRF mRNA expression (females +74%, p < 0.01) and CRF peptide levels (females -71%, p < 0.001). 3α,5α-THP administration reduced hypothalamic CRF mRNA expression only in males (-50%, p < 0.05) and did not alter CRF peptide expression in either sex. In hippocampus and CeA, 3α,5α-THP administration reduced CRF peptide concentrations only in the male (hippocampus -29%, p < 0.05; CeA -62%, p < 0.01). In contrast, 3α,5α-THP injection increased CRF peptide concentration in the VTA of both males (+32%, p < 0.01) and females (+26%, p < 0.01). The results show sex and region-specific regulation of CRF signals and the response to 3α,5α-THP administration. This data may be key to successful development of therapeutic approaches for stress-related disorders and addiction.
Collapse
Affiliation(s)
- Giorgia Boero
- Department of Psychiatry, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ryan E Tyler
- Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Caroline A Todd
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Irina Balan
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Joyce Besheer
- Department of Psychiatry, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - A Leslie Morrow
- Department of Psychiatry, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Alteration in the expression of inflammatory cytokines in primary hippocampal astrocytes in response to MK-801 through ERK1/2 and PI3K signals. Cytokine 2020; 138:155366. [PMID: 33187817 DOI: 10.1016/j.cyto.2020.155366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/19/2020] [Accepted: 11/05/2020] [Indexed: 11/21/2022]
Abstract
Our previous study showed that dizocilpine (MK-801) induced schizophrenia-like behavior in rats, enhanced GFAP expression, and activated primary cultured hippocampal astrocytes. Astrocytes play an essential role in neuroinflammation and contribute to the crosstalk that generates chronic neuro-inflammation in neurological diseases. However, the effects of MK-801 treatment on astrocytic neuroinflammatory responses and its mechanism of action have not been studied in detail. To address this issue, IL1β, IL6, TNFα and IL10 expression and secretion levels were evaluated in hippocampal astrocytes in response to MK-801 for 24 h by ELISA and real-time PCR, with and without pretreatment of either the ERK1/2 inhibitor, PD98059 or the PI3K inhibitor, LY294002. Cell apoptosis, viability, and proliferation were also examined. MK-801 treatment did not induce hippocampal astrocytes apoptosis or proliferation, however, MK-801 enhanced astrocytes viability. Additionally, the expression and secretion levels of IL1β, IL6 and TNFα were elevated, but that of IL10 was decreased, in which ERK1/2 and PI3K signals were involved. These findings suggest that hippocampal astrocytes may regulate the expressions of inflammatory cytokines through ERK1/2 and PI3K signaling pathway to participate in the pathogenesis of schizophrenia.
Collapse
|
7
|
Zabegalov KN, Wang D, Yang L, Wang J, Hu G, Serikuly N, Alpyshov ET, Khatsko SL, Zhdanov A, Demin KA, Galstyan DS, Volgin AD, de Abreu MS, Strekalova T, Song C, Amstislavskaya TG, Sysoev Y, Musienko PE, Kalueff AV. Decoding the role of zebrafish neuroglia in CNS disease modeling. Brain Res Bull 2020; 166:44-53. [PMID: 33027679 DOI: 10.1016/j.brainresbull.2020.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
Abstract
Neuroglia, including microglia and astrocytes, is a critical component of the central nervous system (CNS) that interacts with neurons to modulate brain activity, development, metabolism and signaling pathways. Thus, a better understanding of the role of neuroglia in the brain is critical. Complementing clinical and rodent data, the zebrafish (Danio rerio) is rapidly becoming an important model organism to probe the role of neuroglia in brain disorders. With high genetic and physiological similarity to humans and rodents, zebrafish possess some common (shared), as well as some specific molecular biomarkers and features of neuroglia development and functioning. Studying these common and zebrafish-specific aspects of neuroglia may generate important insights into key brain mechanisms, including neurodevelopmental, neurodegenerative, neuroregenerative and neurological processes. Here, we discuss the biology of neuroglia in humans, rodents and fish, its role in various CNS functions, and further directions of translational research into the role of neuroglia in CNS disorders using zebrafish models.
Collapse
Affiliation(s)
- Konstantin N Zabegalov
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia
| | - Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - LongEn Yang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Guojun Hu
- School of Pharmacy, Southwest University, Chongqing, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | | | | | | | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Andrey D Volgin
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Division of Molecular Psychiatry, Centre of Mental Health, University of Würzburg, Würzburg, Germany
| | - Cai Song
- Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China; Marine Medicine Development Center, Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Zelman Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Yury Sysoev
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, Petersburg State University, St. Petersburg, Russia; Department of Pharmacology and Clinical Pharmacology, St. Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | - Pavel E Musienko
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, Petersburg State University, St. Petersburg, Russia; Institute of Phthisiopulmonology, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
8
|
Hou LS, Cui ZY, Sun P, Piao HQ, Han X, Song J, Wang G, Zheng S, Dong XX, Gao L, Zhu Y, Lian LH, Nan JX, Wu YL. Rutin mitigates hepatic fibrogenesis and inflammation through targeting TLR4 and P2X7 receptor signaling pathway in vitro and in vivo. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103700] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
9
|
Boero G, Porcu P, Morrow AL. Pleiotropic actions of allopregnanolone underlie therapeutic benefits in stress-related disease. Neurobiol Stress 2019; 12:100203. [PMID: 31879693 PMCID: PMC6920111 DOI: 10.1016/j.ynstr.2019.100203] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 01/20/2023] Open
Abstract
For several years, research from around the world has suggested that the neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone) may have therapeutic potential for treatment of various stress-related diseases including post-traumatic stress disorder (PTSD), depression, alcohol use disorders (AUDs), as well as neurological and psychiatric conditions that are worsened in the presence of stress, such as multiple sclerosis, schizophrenia, and seizure disorders. In this review, we make the argument that the pleiotropic actions of allopregnanolone account for its ability to promote recovery in such a wide variety of illnesses. Likewise, the allopregnanolone precursors, pregnenolone and progesterone, share many actions of allopregnanolone. Of course, pregnenolone and progesterone lack direct effects on GABAA receptors, but these compounds are converted to allopregnanolone in vivo. This review presents a theoretical framework for understanding how endogenous neurosteroids that regulate 1) γ-aminobutyric acid (GABA)A receptors, 2) corticotropin releasing factor (CRF) and 3) pro-inflammatory signaling in the innate immune system and brain could play a key role in both the prevention and treatment of stress-related disease. We further discuss cautions and limitations of allopregnanolone or precursor therapy as well as the need for more clinical studies.
Collapse
Affiliation(s)
- Giorgia Boero
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - A Leslie Morrow
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
10
|
Liu CY, Wang X, Liu C, Zhang HL. Pharmacological Targeting of Microglial Activation: New Therapeutic Approach. Front Cell Neurosci 2019; 13:514. [PMID: 31803024 PMCID: PMC6877505 DOI: 10.3389/fncel.2019.00514] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence suggests that neuroinflammation is not just a consequence but a vital contributor to the development and progression of Parkinson’s disease (PD). Microglia in particular, may contribute to the induction and modulation of inflammation in PD. Upon stimulation, microglia convert into activated phenotypes, which exist along a dynamic continuum and bear different immune properties depending on the disease stage and severity. Activated microglia release various factors involved in neuroinflammation, such as cytokines, chemokines, growth factors, reactive oxygen species (ROS), reactive nitrogen species (RNS), and prostaglandins (PGs). Further, activated microglia interact with other cell types (e.g., neurons, astrocytes and mast cells) and are closely associated with α-synuclein (α-syn) pathophysiology and iron homeostasis disturbance. Taken together, microglial activation and microglia-mediated inflammatory responses play essential roles in the pathogenesis of PD and elucidation of the complexity and imbalance of microglial activation may shed light on novel therapeutic approaches for PD.
Collapse
Affiliation(s)
- Cai-Yun Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Chang Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hong-Liang Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Life Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
11
|
Sarrouilhe D, Dejean C, Mesnil M. Connexin43- and Pannexin-Based Channels in Neuroinflammation and Cerebral Neuropathies. Front Mol Neurosci 2017; 10:320. [PMID: 29066951 PMCID: PMC5641369 DOI: 10.3389/fnmol.2017.00320] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
Connexins (Cx) are largely represented in the central nervous system (CNS) with 11 Cx isoforms forming intercellular channels. Moreover, in the CNS, Cx43 can form hemichannels (HCs) at non-junctional membrane as does the related channel-forming Pannexin1 (Panx1) and Panx2. Opening of Panx1 channels and Cx43 HCs appears to be involved in inflammation and has been documented in various CNS pathologies. Over recent years, evidence has accumulated supporting a link between inflammation and cerebral neuropathies (migraine, Alzheimer’s disease (AD), Parkinson’s disease (PD), major depressive disorder, autism spectrum disorder (ASD), epilepsy, schizophrenia, bipolar disorder). Involvement of Panx channels and Cx43 HCs has been also proposed in pathophysiology of neurological diseases and psychiatric disorders. Other studies showed that following inflammatory injury of the CNS, Panx1 activators are released and prolonged opening of Panx1 channels triggers neuronal death. In neuropsychiatric diseases, comorbidities are frequently present and can aggravate the symptoms and make therapeutic management more complex. The high comorbidity between some neuropathies can be partially understood by the fact that these diseases share a common etiology involving inflammatory pathways and Panx1 channels or Cx43 HCs. Thus, anti-inflammatory therapy opens perspectives of targets for new treatments and could have real potential in controlling a cerebral neuropathy and some of its comorbidities. The purpose of this mini review is to provide information of our knowledge on the link between Cx43- and Panx-based channels, inflammation and cerebral neuropathies.
Collapse
Affiliation(s)
- Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers, France
| | - Catherine Dejean
- Service Pharmacie, Pavillon Janet, Centre Hospitalier Henri Laborit, Poitiers, France
| | - Marc Mesnil
- STIM Laboratory, ERL 7368-CNRS, Université de Poitiers, Pôle Biologie Santé, Poitiers, France
| |
Collapse
|
12
|
Wu LY, Ye ZN, Zhou CH, Wang CX, Xie GB, Zhang XS, Gao YY, Zhang ZH, Zhou ML, Zhuang Z, Liu JP, Hang CH, Shi JX. Roles of Pannexin-1 Channels in Inflammatory Response through the TLRs/NF-Kappa B Signaling Pathway Following Experimental Subarachnoid Hemorrhage in Rats. Front Mol Neurosci 2017. [PMID: 28634441 PMCID: PMC5459922 DOI: 10.3389/fnmol.2017.00175] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Accumulating evidence suggests that neuroinflammation plays a critical role in early brain injury after subarachnoid hemorrhage (SAH). Pannexin-1 channels, as a member of gap junction proteins located on the plasma membrane, releases ATP, ions, second messengers, neurotransmitters, and molecules up to 1 kD into the extracellular space, when activated. Previous studies identified that the opening of Pannexin-1 channels is essential for cellular migration, apoptosis and especially inflammation, but its effects on inflammatory response in SAH model have not been explored yet. Methods: Adult male Sprague-Dawley rats were divided into six groups: sham group (n = 20), SAH group (n = 20), SAH + LV-Scramble-ShRNA group (n = 20), SAH + LV-ShRNA-Panx1 group (n = 20), SAH + LV-NC group (n = 20), and SAH + LV-Panx1-EGFP group (n = 20). The rat SAH model was induced by injection of 0.3 ml fresh arterial, non-heparinized blood into the prechiasmatic cistern in 20 s. In SAH + LV-ShRNA-Panx1 group and SAH + LV-Panx1-EGFP group, lentivirus was administered via intracerebroventricular injection (i.c.v.) at 72 h before the induction of SAH. The Quantitative real-time polymerase chain reaction, electrophoretic mobility shift assay, enzyme-linked immunosorbent assay, immunofluorescence staining, and western blotting were performed to explore the potential interactive mechanism between Pannexin-1 channels and TLR2/TLR4/NF-κB-mediated signaling pathway. Cognitive and memory changes were investigated by the Morris water maze test. Results: Administration with LV-ShRNA-Panx1 markedly decreased the expression levels of TLR2/4/NF-κB pathway-related agents in the brain cortex and significantly ameliorated neurological cognitive and memory deficits in this SAH model. On the contrary, administration of LV-Panx1-EGFP elevated the expressions of TLR2/4/NF-κB pathway-related agents, which correlated with augmented neuronal apoptosis. Conclusion: Pannexin-1 channels may contribute to inflammatory response and neurobehavioral dysfunction through the TLR2/TLR4/NF-κB-mediated pathway signaling after SAH, suggesting a potential role of Pannexin-1 channels could be a potential therapeutic target for the treatment of SAH.
Collapse
Affiliation(s)
- Ling-Yun Wu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China
| | - Zhen-Nan Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Chen-Hui Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China
| | - Chun-Xi Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China
| | - Guang-Bin Xie
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China
| | - Xiang-Sheng Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China
| | - Yong-Yue Gao
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China
| | - Zi-Huan Zhang
- Department of Neurosurgery, Zhongdu HospitalBengbu, China
| | - Meng-Liang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China
| | - Zong Zhuang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China
| | - Jing-Peng Liu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical UniversityNanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China.,Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical UniversityNanjing, China
| | - Ji-Xin Shi
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China
| |
Collapse
|
13
|
Valdebenito S, Barreto A, Eugenin EA. The role of connexin and pannexin containing channels in the innate and acquired immune response. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:154-165. [PMID: 28559189 DOI: 10.1016/j.bbamem.2017.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/17/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022]
Abstract
Connexin (Cx) and pannexin (Panx) containing channels - gap junctions (GJs) and hemichannels (HCs) - are present in virtually all cells and tissues. Currently, the role of these channels under physiological conditions is well defined. However, their role in the immune response and pathological conditions has only recently been explored. Data from several laboratories demonstrates that infectious agents, including HIV, have evolved to take advantage of GJs and HCs to improve viral/bacterial replication, enhance inflammation, and help spread toxicity into neighboring areas. In the current review, we discuss the role of Cx and Panx containing channels in immune activation and the pathogenesis of several infectious diseases. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Public Health Research Institute (PHRI), Newark, NJ, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
| | - Andrea Barreto
- Public Health Research Institute (PHRI), Newark, NJ, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
| | - Eliseo A Eugenin
- Public Health Research Institute (PHRI), Newark, NJ, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
14
|
Kéri S, Szabó C, Kelemen O. Antipsychotics influence Toll-like receptor (TLR) expression and its relationship with cognitive functions in schizophrenia. Brain Behav Immun 2017; 62:256-264. [PMID: 28003154 DOI: 10.1016/j.bbi.2016.12.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/22/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence suggests that altered immune functions are related to the pathophysiology of schizophrenia. Relatively little information is available on Toll-like receptors (TLRs), which are implicated in the recognition of molecular patterns associated with pathogens and internal cellular damage signals. By using immunophenotyping and flow cytometry, we investigated TLRs in CD14+ monocytes, CD4+CD25+Foxp3+ regulatory T cells (Treg), and CD3+CD4+CD25+ activated T cells (Tact) in 35 drug-naïve patients with schizophrenia before and after an 8-week period of antipsychotic treatment with risperidone or olanzapine. As compared with 30 healthy control individuals, drug-naïve patients with schizophrenia exhibited an increased percentage of TLR4+ and TLR5+ monocytes and TLR5+ Treg/Tact cells. At the end of the treatment period, we observed normalized TLR4+ monocytes and an up-regulation of TLR2+ monocytes and Treg/Tact cells. Mean fluorescent intensity values, indicating receptor density, were consistent with these findings. In the drug-naïve state, but not after treatment, higher percentages of TLR4+ and TLR5+ monocytes were correlated with more severe cognitive deficits. Positive, negative, and general clinical symptoms were not associated with TLRs. There were no significant differences between patients receiving olanzapine and risperidone. These results indicate that abnormal expression of TLRs can be detected in the earliest stage of schizophrenia, which is modulated by antipsychotics. Immunological alterations in unmedicated schizophrenia patients may be linked to cognitive deficits.
Collapse
Affiliation(s)
- Szabolcs Kéri
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary; Nyírő Gyula Hospital - National Institute of Psychiatry and Addictions, Budapest, Hungary; Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Csilla Szabó
- Nyírő Gyula Hospital - National Institute of Psychiatry and Addictions, Budapest, Hungary
| | - Oguz Kelemen
- Department of Behavioral Science, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
15
|
Skaper SD, Facci L, Zusso M, Giusti P. Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons. Neuroscientist 2017; 23:478-498. [PMID: 29283023 DOI: 10.1177/1073858416687249] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions.
Collapse
Affiliation(s)
- Stephen D Skaper
- 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Laura Facci
- 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Morena Zusso
- 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Pietro Giusti
- 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| |
Collapse
|
16
|
Maturana CJ, Aguirre A, Sáez JC. High glucocorticoid levels during gestation activate the inflammasome in hippocampal oligodendrocytes of the offspring. Dev Neurobiol 2016; 77:625-642. [PMID: 27314460 DOI: 10.1002/dneu.22409] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022]
Abstract
Exposure to high levels of glucocorticoids (GCs) during early life induces long-lasting neuroinflammation. GCs induce rapid degranulation of mast cells, which release proinflammatory molecules promoting activation of microglia and astrocytes. The possible involvement of oligodendrocytes, however, remains poorly understood. It was studied whether high GC levels during gestation activates the inflammasome in hippocampal oligodendrocytes of mouse offspring. Oligodendrocytes of control pups showed expression of inflammasome components (NLRP3, ACS, and caspase-1) and their levels were increased by prenatal administration of dexamethasone (DEX), a synthetic GC. These cells also showed high levels of IL-1β and TNF-α, revealing activation of the inflammasome. Moreover, they showed increased levels of the P2X7 receptor and pannexin1, which are associated to inflammasome activation. However, levels of connexins either were not affected (Cx29) or reduced (Cx32 and Cx47). Nonetheless, the functional states of pannexin1 and connexin hemichannels were elevated and directly associated to functional P2X7 receptors. As observed in DEX-treated brain slices, hemichannel activity first increased in hippocampal mast cells and later in microglia and macroglia. DEX-induced oligodendrocyte hemichannel activity was mimicked by urocortin-II, which is a corticotropin-releasing hormone receptor (CRHR) agonist. Response to DEX and urocortin-II was inhibited by antalarmin (a CRHR blocker) or by mast cells or microglia inhibitors. The increase in hemichannel activity persisted for several weeks after birth and cross-fostering with a control mother did not reverse this condition. It is proposed that activation of the oligodendrocyte inflammasome might be relevant in demyelinating diseases associated with early life exposure to high GC levels. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 625-642, 2017.
Collapse
Affiliation(s)
- Carola J Maturana
- Departamento De Fisiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile, Santiago, Chile.,Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto Milenio, Valparaíso, Chile
| | - Adam Aguirre
- Departamento De Fisiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Juan C Sáez
- Departamento De Fisiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile, Santiago, Chile.,Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto Milenio, Valparaíso, Chile
| |
Collapse
|
17
|
Wohleb ES, Franklin T, Iwata M, Duman RS. Integrating neuroimmune systems in the neurobiology of depression. Nat Rev Neurosci 2016; 17:497-511. [PMID: 27277867 DOI: 10.1038/nrn.2016.69] [Citation(s) in RCA: 419] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Data from clinical and preclinical studies indicate that immune dysregulation, specifically of inflammatory processes, is associated with symptoms of major depressive disorder (MDD). In particular, increased levels of circulating pro-inflammatory cytokines and concomitant activation of brain-resident microglia can lead to depressive behavioural symptoms. Repeated exposure to psychological stress has a profound impact on peripheral immune responses and perturbs the function of brain microglia, which may contribute to neurobiological changes underlying MDD. Here, we review these findings and discuss ongoing studies examining neuroimmune mechanisms that influence neuronal activity as well as synaptic plasticity. Interventions targeting immune-related cellular and molecular pathways may benefit subsets of MDD patients with immune dysregulation.
Collapse
Affiliation(s)
- Eric S Wohleb
- Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Tina Franklin
- Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Masaaki Iwata
- Division of Neuropsychiatry, Department of Brain and Neurosciences, Tottori University Faculty of Medicine, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Ronald S Duman
- Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| |
Collapse
|
18
|
Shakya A, Soni UK, Rai G, Chatterjee SS, Kumar V. Gastro-protective and Anti-stress Efficacies of Monomethyl Fumarate and a Fumaria indica Extract in Chronically Stressed Rats. Cell Mol Neurobiol 2016; 36:621-35. [PMID: 26215054 DOI: 10.1007/s10571-015-0243-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/22/2015] [Indexed: 01/15/2023]
Abstract
Results of the very first experiments conducted to evaluate therapeutic potentials of a fumarate containing Fumaria indica extract and of fairly low daily oral doses of monomethyl fumarate for prevention of chronic unavoidable foot-shock stress-induced gastric ulcers, and possible involvement of diverse neuro-hormonal and oxidative process in their stress response desensitizing effects are reported and discussed in this article. Preventive effects of 21 daily oral 60, 120, and 240 mg/kg doses of a standardized 50 % methanolic F. indica extract (MFI) and 1.25, 2.50, and 5.00 mg/kg/day of pure monomethyl fumarate (MMF) were compared in rats subjected to one hour daily unavoidable foot-shocks. A pharmaceutically well-standardized Withania somnifera (WS) root extract was used as a reference herbal anti-stress agent in all experiments. Effects of the treatments on stress-induced alterations in body weight, adrenal and spleen weights, gastric ulcer and ulcer index, weight of glandular stomach, protective mucosal glycoprotein content, cellular proliferation, oxidative stress on stomach fundus, and brain tissues of male rats were quantified. Other parameters quantified were plasma corticosterone levels, brain monoamine levels, and expressions of the cytokines TNF-α, IL-10, and IL-1β in blood and brain of stressed and treated rats. Most but not every observed stress-induced anomalies were suppressed or completely prevented by both MFI and pure MMF treatments in dose-dependent manner. Qualitatively, the observed activity profiles of both of them were similar to those of WS dose tested. These results reveal that both MFI and MMF are potent gastro-protective agents against chronic unavoidable stress-induced ulcers and strongly suggest that they act as regulators or modulators of monoamine, corticosterone, and cytokine homeostasis.
Collapse
Affiliation(s)
- Anshul Shakya
- Neuropharmacology Research Laboratory, Department of Pharmaceutics, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221 005, India
| | - Upendra Kumar Soni
- Department of Molecular and Human Genetics, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Geeta Rai
- Department of Molecular and Human Genetics, Faculty of Science, Banaras Hindu University, Varanasi, India
| | | | - Vikas Kumar
- Neuropharmacology Research Laboratory, Department of Pharmaceutics, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
19
|
Connexin 43 Mediates CXCL12 Production from Spinal Dorsal Horn to Maintain Bone Cancer Pain in Rats. Neurochem Res 2015; 41:1200-8. [DOI: 10.1007/s11064-015-1815-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/11/2015] [Accepted: 12/21/2015] [Indexed: 01/28/2023]
|
20
|
Madeddu S, Woods TA, Mukherjee P, Sturdevant D, Butchi NB, Peterson KE. Identification of Glial Activation Markers by Comparison of Transcriptome Changes between Astrocytes and Microglia following Innate Immune Stimulation. PLoS One 2015. [PMID: 26214311 PMCID: PMC4516330 DOI: 10.1371/journal.pone.0127336] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The activation of astrocytes and microglia is often associated with diseases of the central nervous system (CNS). Understanding how activation alters the transcriptome of these cells may offer valuable insight regarding how activation of these cells mediate neurological damage. Furthermore, identifying common and unique pathways of gene expression during activation may provide new insight into the distinct roles these cells have in the CNS during infection and inflammation. Since recent studies indicate that TLR7 recognizes not only viral RNA but also microRNAs that are released by damaged neurons and elevated during neurological diseases, we first examined the response of glial cells to TLR7 stimulation using microarray analysis. Microglia were found to generate a much stronger response to TLR7 activation than astrocytes, both in the number of genes induced as well as fold induction. Although the primary pathways induced by both cell types were directly linked to immune responses, microglia also induced pathways associated with cellular proliferation, while astrocytes did not. Targeted analysis of a subset of the upregulated genes identified unique mRNA, including Ifi202b which was only upregulated by microglia and was found to be induced during both retroviral and bunyavirus infections in the CNS. In addition, other genes including Birc3 and Gpr84 as well as two expressed sequences AW112010 and BC023105 were found to be induced in both microglia and astrocytes and were upregulated in the CNS following virus infection. Thus, expression of these genes may a useful measurement of glial activation during insult or injury to the CNS.
Collapse
Affiliation(s)
- Silvia Madeddu
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
| | - Tyson A. Woods
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
| | - Piyali Mukherjee
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
| | - Dan Sturdevant
- Research Technologies Branch, RML, NIAID, NIH, Hamilton, Montana, United States of America
| | | | - Karin E. Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
21
|
Diezmos EF, Sandow SL, Perera DS, King DW, Bertrand PP, Liu L. Pannexin-2 is expressed in the human colon with extensive localization in the enteric nervous system. Neurogastroenterol Motil 2015; 27:672-83. [PMID: 25773474 DOI: 10.1111/nmo.12541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/16/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Pannexin-2 (Panx2) is a member of the novel group of membrane spanning protein channels present in the central nervous system. Limited studies have examined Panx2 in the intestine, where it may have important physiological roles. The present study characterized Panx2 expression and localization in the human colon in health and disease states. METHODS Immunofluorescence determined Panx2 localization and co-localization, and quantitative real-time PCR and Western blot determined gene and protein expression in ulcerative colitis (UC), Crohn's disease (CD), and control human colon. KEY RESULTS Panx2 was widely expressed in myenteric and submucosal ganglia, particularly in the cytoplasm of neurons. Panx2 was also expressed on smooth muscle of the muscularis and blood vessels, some non-lymphoid leukocytes, mast cells, and mucosal epithelial cells. Co-localization of Panx2 occurred with β-tubulin, neuronal nitric oxide synthase, substance P, vesicular acetylcholine transporter, and calcitonin gene-related peptide, indicating widespread Panx2 expression in extrinsic and intrinsic neurons. Molecular studies revealed a 3.4-fold higher level of Panx2 mRNA in ascending compared to sigmoid muscularis (p < 0.05), despite similar protein levels. Similarly, UC muscularis showed a 35-fold up-regulation in Panx2 mRNA, but not in protein (p < 0.05). CONCLUSIONS & INFERENCES Here, we demonstrated the dense expression of Panx2 in the enteric nervous system and the co-localization of Panx2 with a spectrum of neuronal markers, indicating that Panx2 may be involved in mediating neurotransmission in the colon. The substantial increase in Panx2 mRNA in UC muscle but not protein suggests that the Panx2 translation process may be disrupted in UC.
Collapse
Affiliation(s)
- E F Diezmos
- School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Robinson CR, Dougherty PM. Spinal astrocyte gap junction and glutamate transporter expression contributes to a rat model of bortezomib-induced peripheral neuropathy. Neuroscience 2014; 285:1-10. [PMID: 25446343 DOI: 10.1016/j.neuroscience.2014.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 01/01/2023]
Abstract
There is increasing evidence implicating astrocytes in multiple forms of chronic pain, as well as in the specific context of chemotherapy-induced peripheral neuropathy (CIPN). However, it is still unclear what the exact role of astrocytes may be in the context of CIPN. Findings in oxaliplatin and paclitaxel models have displayed altered expression of astrocytic gap junctions and glutamate transporters as means by which astrocytes may contribute to observed behavioral changes. The current study investigated whether these changes were also generalizable to the bortezomib CIPN. Changes in mechanical sensitivity were verified in bortezomib-treated animals, and these changes were prevented by co-treatment with a glial activation inhibitor (minocycline), a gap junction decoupler (carbenoxolone), and by a glutamate transporter upregulator (ceftriaxone). Immunohistochemistry data at day 30 in bortezomib-treated animals showed increases in expression of glial fibrillary acidic protein (GFAP) and connexin 43 but a decrease in GLAST expression. These changes were prevented by co-treatment with minocycline. Follow-up Western blotting data showed a shift in connexin 43 from a non-phosphorylated state to a phosphorylated state, indicating increased trafficking of expressed connexin 43 to the cell membrane. These data suggest that increases in behavioral sensitivity to cutaneous stimuli may be tied to persistent synaptic glutamate resulting from increased calcium flow between spinal astrocytes.
Collapse
Affiliation(s)
- C R Robinson
- The Department of Anesthesiology and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, 1400 Holcombe, Unit 409, Houston, TX 77030, Unites States
| | - P M Dougherty
- The Department of Anesthesiology and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, 1400 Holcombe, Unit 409, Houston, TX 77030, Unites States.
| |
Collapse
|
23
|
Vasiadi M, Newman J, Theoharides TC. Isoflavones inhibit poly(I:C)-induced serum, brain, and skin inflammatory mediators - relevance to chronic fatigue syndrome. J Neuroinflammation 2014; 11:168. [PMID: 25359293 PMCID: PMC4236420 DOI: 10.1186/s12974-014-0168-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Background Chronic Fatigue Syndrome (CFS) is a neuroimmunoendocrine disease affecting about 1% of the US population, mostly women. It is characterized by debilitating fatigue for six or more months in the absence of cancer or other systemic diseases. Many CFS patients also have fibromyalgia and skin hypersensitivity that worsen with stress. Corticotropin-releasing hormone (CRH) and neurotensin (NT), secreted under stress, activate mast cells (MC) necessary for allergic reactions to release inflammatory mediators that could contribute to CFS symptoms. Objective To investigate the effect of isoflavones on the action of polyinosinic:polycytidylic acid (poly(I:C)), with or without swim stress, on mouse locomotor activity and inflammatory mediator expression, as well as on human MC activation. Methods Female C57BL/6 mice were randomly divided into four groups: (a) control/no-swim, (b) control/swim, (c) polyinosinic:polycytidylic acid (poly(I:C))/no swim, and (d) polyinosinic:polycytidylic acid (poly(I:C))/swim. Mice were provided with chow low or high in isoflavones for 2 weeks prior to ip injection with 20 mg/kg poly(I:C) followed or not by swim stress for 15 minutes. Locomotor activity was monitored overnight and animals were sacrificed the following day. Brain and skin gene expression, as well as serum levels, of inflammatory mediators were measured. Data were analyzed using the non-parametric Mann-Whitney U-test. Results Poly(I:C)-treated mice had decreased locomotor activity over 24 hours, and increased serum levels of TNF-α, IL-6, KC (IL-8/CXCL8 murine homolog), CCL2,3,4,5, CXCL10, as well as brain and skin gene expression of TNF, IL-6, KC (Cxcl1, IL8 murine homolog), CCL2, CCL4, CCL5 and CXCL10. Histidine decarboxylase (HDC) and NT expression were also increased, but only in the skin, over the same period. High isoflavone diet reversed these effects. Conclusion Poly(I:C) treatment decreased mouse locomotor activity and increased serum levels and brain and skin gene expression of inflammatory mediators. These effects were inhibited by isoflavones that may prove useful in CFS. Electronic supplementary material The online version of this article (doi:10.1186/s12974-014-0168-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magdalini Vasiadi
- Department of Integrative Physiology and Pathobiology, Molecular Immunopharmacology and Drug Discovery Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA. .,Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA.
| | - Jennifer Newman
- Department of Neuroscience, Tufts University, School of Medicine, Boston, MA, USA.
| | - Theoharis C Theoharides
- Department of Integrative Physiology and Pathobiology, Molecular Immunopharmacology and Drug Discovery Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA. .,Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA. .,Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
24
|
Liu J, Buisman-Pijlman F, Hutchinson MR. Toll-like receptor 4: innate immune regulator of neuroimmune and neuroendocrine interactions in stress and major depressive disorder. Front Neurosci 2014; 8:309. [PMID: 25324715 PMCID: PMC4179746 DOI: 10.3389/fnins.2014.00309] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/13/2014] [Indexed: 01/06/2023] Open
Abstract
Major depressive disorder (MDD) poses one of the highest disease burdens worldwide. Yet, current treatments targeting serotonergic and noradrenaline reuptake systems are insufficient to provide long-term relief from depressive symptoms in most patients, indicating the need for new treatment targets. Having the ability to influence behavior similar to depressive symptoms, as well as communicate with neuronal and neuroendocrine systems, the innate immune system is a strong candidate for MDD treatments. Given the complex nature of immune signaling, the main question becomes: What is the role of the innate immune system in MDD? The current review presents evidence that toll-like receptor 4 (TLR4), via driving both peripheral and central immune responses, can interact with serotonergic neurotransmission and cause neuroendocrine disturbances, thus integrating with widely observed hallmarks of MDD. Additionally, through describing the multi-directional communication between immune, neural and endocrine systems in stress, TLR4—related mechanisms can mediate stress-induced adaptations, which are necessary for the development of MDD. Therefore, apart from exogenous pathogenic mechanisms, TLR4 is involved in immune changes as a result of endogenous stress signals, playing an integral part in the pathophysiology, and could be a potential target for pharmacological treatments to improve current interventions for MDD.
Collapse
Affiliation(s)
- JiaJun Liu
- Neuroimmunopharmacology Group, Discipline of Physiology, School of Medical Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Femke Buisman-Pijlman
- Discipline of Pharmacology, School of Medical Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Mark R Hutchinson
- Neuroimmunopharmacology Group, Discipline of Physiology, School of Medical Sciences, The University of Adelaide Adelaide, SA, Australia
| |
Collapse
|
25
|
Liu G, Guo J, Liu J, Wang Z, Liang D. Toll-like receptor signaling directly increases functional IL-17RA expression in neuroglial cells. Clin Immunol 2014; 154:127-40. [PMID: 25076485 DOI: 10.1016/j.clim.2014.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 07/18/2014] [Accepted: 07/19/2014] [Indexed: 11/26/2022]
Abstract
IL-17, the hallmark cytokine of Th17 cells, plays a pivotal role in the pathogenesis of autoimmune diseases, including encephalomyelitis. In the central nervous system, neuroglial cells are the main residents that express IL-17R and respond to IL-17 by producing chemokines/cytokines and boosting local inflammation. Factors that influence the IL-17R expression in neuroglial cells can also exert their impacts on the outbreak, progression and outcome of encephalomyelitis. Here, we reported that Toll-like receptor signaling has its bias for promoting the IL-17RA, but not the IL-17RC, expression in mouse neuroglial cells in a T cell infiltration independent manner. Elevated IL-17R functionally responded to IL-17 by secreting more chemokines and accelerating CD4 cell migration. First, real-time PCR confirmed that the expression of Il-17ra, but not Il-17rc, was significantly increased in the brain and spinal cord of EAE-induced mice. This effect was elicited by something in complete Freund's adjuvant (CFA), because markedly increased IL-17R was detected in mice immunized with CFA only, even though no evidence of EAE was found. Furthermore, in Rag1(-/-) mice, it was confirmed that CFA could augment the IL-17RA expression in the CNS in the absence of T cell infiltration. In vivo immunization with TLR ligands and in vitro treatment of purified neuroglial cells demonstrated that TLR ligands directly and effectively evoke the IL-17RA expression in the CNS and in cultured astrocytes, microglia and oligodendrocytes. LPS was the most effective inducer of the IL-17RA expression in astrocytes, and polyIC was superior to LPS for microglia and oligodendrocytes. Activated CD4 cells can also promote the secretion of chemokines by LPS pre-treated astrocytes, and hence accelerate the migration of CD4 cells, which was blocked by the neutralization of IL-17RA on the surface of the astrocyte. Taken together, we concluded that TLR signaling can directly stimulate the expression of IL-17RA, but not IL-17RC, in neuroglial cells, which functionally respond to IL-17A by secreting chemokines, accelerating CD4 cell migration, and contributing to the pathogenesis of encephalomyelitis.
Collapse
Affiliation(s)
- Guoping Liu
- Department of Neurology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Jie Guo
- Department of Neurology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Jin Liu
- Department of Neurology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Dongchun Liang
- Doheny Eye Institute, University of Southern California, CA 90033, USA.
| |
Collapse
|
26
|
Flores G, Atzori M. The Potential of Cerebrolysin in the Treatment of Schizophrenia. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/pp.2014.57079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|