1
|
Nayak A, Warrier NM, Kumar P. Cancer Stem Cells and the Tumor Microenvironment: Targeting the Critical Crosstalk through Nanocarrier Systems. Stem Cell Rev Rep 2022; 18:2209-2233. [PMID: 35876959 PMCID: PMC9489588 DOI: 10.1007/s12015-022-10426-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/25/2022]
Abstract
The physiological state of the tumor microenvironment (TME) plays a central role in cancer development due to multiple universal features that transcend heterogeneity and niche specifications, like promoting cancer progression and metastasis. As a result of their preponderant involvement in tumor growth and maintenance through several microsystemic alterations, including hypoxia, oxidative stress, and acidosis, TMEs make for ideal targets in both diagnostic and therapeutic ventures. Correspondingly, methodologies to target TMEs have been investigated this past decade as stratagems of significant potential in the genre of focused cancer treatment. Within targeted oncotherapy, nanomedical derivates-nanocarriers (NCs) especially-have emerged to present notable prospects in enhancing targeting specificity. Yet, one major issue in the application of NCs in microenvironmental directed therapy is that TMEs are too broad a spectrum of targeting possibilities for these carriers to be effectively employed. However, cancer stem cells (CSCs) might portend a solution to the above conundrum: aside from being quite heavily invested in tumorigenesis and therapeutic resistance, CSCs also show self-renewal and fluid clonogenic properties that often define specific TME niches. Further scrutiny of the relationship between CSCs and TMEs also points towards mechanisms that underly tumoral characteristics of metastasis, malignancy, and even resistance. This review summarizes recent advances in NC-enabled targeting of CSCs for more holistic strikes against TMEs and discusses both the current challenges that hinder the clinical application of these strategies as well as the avenues that can further CSC-targeting initiatives. Central role of CSCs in regulation of cellular components within the TME.
Collapse
Affiliation(s)
- Aadya Nayak
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Neerada Meenakshi Warrier
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Praveen Kumar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
2
|
Forouzandehmehr M, Ghoytasi I, Shamloo A, Ghosi S. Particles in coronary circulation: A review on modelling for drug carrier design. MATERIALS & DESIGN 2022; 216:110511. [DOI: 10.1016/j.matdes.2022.110511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Emerging Approaches to Understanding Microvascular Endothelial Heterogeneity: A Roadmap for Developing Anti-Inflammatory Therapeutics. Int J Mol Sci 2021; 22:ijms22157770. [PMID: 34360536 PMCID: PMC8346165 DOI: 10.3390/ijms22157770] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
The endothelium is the inner layer of all blood vessels and it regulates hemostasis. It also plays an active role in the regulation of the systemic inflammatory response. Systemic inflammatory disease often results in alterations in vascular endothelium barrier function, increased permeability, excessive leukocyte trafficking, and reactive oxygen species production, leading to organ damage. Therapeutics targeting endothelium inflammation are urgently needed, but strong concerns regarding the level of phenotypic heterogeneity of microvascular endothelial cells between different organs and species have been expressed. Microvascular endothelial cell heterogeneity in different organs and organ-specific variations in endothelial cell structure and function are regulated by intrinsic signals that are differentially expressed across organs and species; a result of this is that neutrophil recruitment to discrete organs may be regulated differently. In this review, we will discuss the morphological and functional variations in differently originated microvascular endothelia and discuss how these variances affect systemic function in response to inflammation. We will review emerging in vivo and in vitro models and techniques, including microphysiological devices, proteomics, and RNA sequencing used to study the cellular and molecular heterogeneity of endothelia from different organs. A better understanding of microvascular endothelial cell heterogeneity will provide a roadmap for developing novel therapeutics to target the endothelium.
Collapse
|
4
|
Franco-Urquijo CA, Navarro-Becerra JÁ, Ríos A, Escalante B. Release of vascular agonists from liposome-microbubble conjugate by ultrasound-mediated microbubble destruction: effect on vascular function. Drug Deliv Transl Res 2021; 12:1175-1186. [PMID: 33939122 DOI: 10.1007/s13346-021-00994-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 11/26/2022]
Abstract
The endothelium is a single cell layer of the vessel wall and a key regulator of blood flow in vascular beds. Local and systemic pathologies have been associated with alterations in endothelial function. However, targeting the endothelium with vasoconstrictor or vasodilator drugs is often accompanied by systemic effects. Here, we evaluated a liposome-microbubble delivery system as a vascular hydrophilic agonist carrier. Phenylephrine (Phe) or acetylcholine (Ach)-loaded liposomes were conjugated to microbubbles. The drug release was triggered by ultrasound (US), and the vascular response was assessed in rat aortic rings using an isolated organ chamber. Aortic rings incubated with Phe-liposome-microbubble conjugate, exposed to US showed a marked contractile response (0.79 ± 0.04 g) compared to empty liposomes conjugated to microbubbles, aortic rings exposed only to US, and Phe-liposome-microbubble conjugate without US exposure that elicited a minimal or no response. Expressed as %, contractile responses were 85.24 ± 4.31% and 12.62 ± 3.23% for Phe-Chol-liposome-microbubble conjugate and empty Chol-liposome-microbubble conjugate exposed to US, respectively. Addition of 1 × 10-5 M Ach to pre-contracted aortic rings decreased the contraction response from 1 to 0.21 g. The addition of Ach-liposome conjugate and exposure to US decreased the contraction response to 0.32 g. Additionally, the ED50 values for Phe and Ach released by US from liposome-microbubble conjugates were 3.6 × 10-8 M ± 2.8 × 10-9 M for Phe and 2.0 × 10-8 M ± 1.8 × 10-9 M. In conclusion, we evaluated a hybrid delivery system that consisted of loaded liposomes conjugated to microbubbles to deliver and release vascular agonists using UMMD.
Collapse
Affiliation(s)
- Carlos A Franco-Urquijo
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Vía del Conocimiento 201, PIIT, NL, Apodaca, Mexico
| | - J Ángel Navarro-Becerra
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Vía del Conocimiento 201, PIIT, NL, Apodaca, Mexico
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Drive, Boulder, CO, USA
| | - Amelia Ríos
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Vía del Conocimiento 201, PIIT, NL, Apodaca, Mexico.
| | - Bruno Escalante
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Vía del Conocimiento 201, PIIT, NL, Apodaca, Mexico
- Universidad de Monterrey, Av. Ignacio Morones Prieto 4500, San Pedro Garza García, NL, Mexico
| |
Collapse
|
5
|
Kiseleva RY, Glassman PG, LeForte KM, Walsh LR, Villa CH, Shuvaev VV, Myerson JW, Aprelev PA, Marcos-Contreras OA, Muzykantov VR, Greineder CF. Bivalent engagement of endothelial surface antigens is critical to prolonged surface targeting and protein delivery in vivo. FASEB J 2020; 34:11577-11593. [PMID: 32738178 DOI: 10.1096/fj.201902515rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022]
Abstract
Targeted drug delivery to the endothelium has the potential to generate localized therapeutic effects at the blood-tissue interface. For some therapeutic cargoes, it is essential to maintain contact with the bloodstream to exert protective effects. The pharmacokinetics (PK) of endothelial surface-targeted affinity ligands and biotherapeutic cargo remain a largely unexplored area, despite obvious translational implications for this strategy. To bridge this gap, we site-specifically radiolabeled mono- (scFv) and bivalent (mAb) affinity ligands specific for the endothelial cell adhesion molecules, PECAM-1 (CD31) and ICAM-1 (CD54). Radiotracing revealed similar lung biodistribution at 30 minutes post-injection (79.3% ± 4.2% vs 80.4% ± 10.6% ID/g for αICAM and 58.9% ± 3.6% ID/g vs. 47.7% ± 5.8% ID/g for αPECAM mAb vs. scFv), but marked differences in organ residence time, with antibodies demonstrating an order of magnitude greater area under the lung concentration vs. time curve (AUCinf 1698 ± 352 vs. 53.3 ± 7.9 ID/g*hrs for αICAM and 1023 ± 507 vs. 114 ± 37 ID/g*hrs for αPECAM mAb vs scFv). A physiologically based pharmacokinetic model, fit to and validated using these data, indicated contributions from both superior binding characteristics and prolonged circulation time supporting multiple binding-detachment cycles. We tested the ability of each affinity ligand to deliver a prototypical surface cargo, thrombomodulin (TM), using one-to-one protein conjugates. Bivalent mAb-TM was superior to monovalent scFv-TM in both pulmonary targeting and lung residence time (AUCinf 141 ± 3.2 vs 12.4 ± 4.2 ID/g*hrs for ICAM and 188 ± 90 vs 34.7 ± 19.9 ID/g*hrs for PECAM), despite having similar blood PK, indicating that binding strength is more important parameter than the kinetics of binding. To maximize bivalent target engagement, we synthesized an oriented, end-to-end anti-ICAM mAb-TM conjugate and found that this therapeutic had the best lung residence time (AUCinf 253 ± 18 ID/g*hrs) of all TM modalities. These observations have implications not only for the delivery of TM, but also potentially all therapeutics targeted to the endothelial surface.
Collapse
Affiliation(s)
- R Yu Kiseleva
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - P G Glassman
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - K M LeForte
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - L R Walsh
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C H Villa
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - V V Shuvaev
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J W Myerson
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - P A Aprelev
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - O A Marcos-Contreras
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - V R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C F Greineder
- Department of Emergency Medicine and Pharmacology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Beldman T, Malinova TS, Desclos E, Grootemaat AE, Misiak ALS, van der Velden S, van Roomen CPAA, Beckers L, van Veen HA, Krawczyk PM, Hoebe RA, Sluimer JC, Neele AE, de Winther MPJ, van der Wel NN, Lutgens E, Mulder WJM, Huveneers S, Kluza E. Nanoparticle-Aided Characterization of Arterial Endothelial Architecture during Atherosclerosis Progression and Metabolic Therapy. ACS NANO 2019; 13:13759-13774. [PMID: 31268670 PMCID: PMC6933811 DOI: 10.1021/acsnano.8b08875] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/03/2019] [Indexed: 05/08/2023]
Abstract
Atherosclerosis is associated with a compromised endothelial barrier, facilitating the accumulation of immune cells and macromolecules in atherosclerotic lesions. In this study, we investigate endothelial barrier integrity and the enhanced permeability and retention (EPR) effect during atherosclerosis progression and therapy in Apoe-/- mice using hyaluronan nanoparticles (HA-NPs). Utilizing ultrastructural and en face plaque imaging, we uncover a significantly decreased junction continuity in the atherosclerotic plaque-covering endothelium compared to the normal vessel wall, indicative of disrupted endothelial barrier. Intriguingly, the plaque advancement had a positive effect on junction stabilization, which correlated with a 3-fold lower accumulation of in vivo administrated HA-NPs in advanced plaques compared to early counterparts. Furthermore, by using super-resolution and correlative light and electron microscopy, we trace nanoparticles in the plaque microenvironment. We find nanoparticle-enriched endothelial junctions, containing 75% of detected HA-NPs, and a high HA-NP accumulation in the endothelium-underlying extracellular matrix, which suggest an endothelial junctional traffic of HA-NPs to the plague. Finally, we probe the EPR effect by HA-NPs in the context of metabolic therapy with a glycolysis inhibitor, 3PO, proposed as a vascular normalizing strategy. The observed trend of attenuated HA-NP uptake in aortas of 3PO-treated mice coincides with the endothelial silencing activity of 3PO, demonstrated in vitro. Interestingly, the therapy also reduced the plaque inflammatory burden, while activating macrophage metabolism. Our findings shed light on natural limitations of nanoparticle accumulation in atherosclerotic plaques and provide mechanistic insight into nanoparticle trafficking across the atherosclerotic endothelium. Furthermore, our data contribute to the rising field of endothelial barrier modulation in atherosclerosis.
Collapse
Affiliation(s)
- Thijs
J. Beldman
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Tsveta S. Malinova
- Vascular
Microenvironment and Integrity, Department of Medical Biochemistry,
Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Center, Amsterdam 1105 AZ, The
Netherlands
| | - Emilie Desclos
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Anita E. Grootemaat
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Aresh L. S. Misiak
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Saskia van der Velden
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Cindy P. A. A. van Roomen
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Linda Beckers
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Henk A. van Veen
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Przemyslaw M. Krawczyk
- Department
of Medical Biology, Amsterdam University
Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Ron A. Hoebe
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Judith C. Sluimer
- Department
of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht 6229 ER, The Netherlands
| | - Annette E. Neele
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Menno P. J. de Winther
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
- Institute
for Cardiovascular Prevention, Ludwig Maximilians
University, Munich 80336, Germany
| | - Nicole N. van der Wel
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Esther Lutgens
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
- Institute
for Cardiovascular Prevention, Ludwig Maximilians
University, Munich 80336, Germany
| | - Willem J. M. Mulder
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
- Translational
and Molecular Imaging Institute, Icahn School
of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Stephan Huveneers
- Vascular
Microenvironment and Integrity, Department of Medical Biochemistry,
Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Center, Amsterdam 1105 AZ, The
Netherlands
| | - Ewelina Kluza
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
7
|
Radhakrishnan R, Farokhirad S, Eckmann DM, Ayyaswamy PS. Nanoparticle transport phenomena in confined flows. ADVANCES IN HEAT TRANSFER 2019; 51:55-129. [PMID: 31692964 DOI: 10.1016/bs.aiht.2019.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanoparticles submerged in confined flow fields occur in several technological applications involving heat and mass transfer in nanoscale systems. Describing the transport with nanoparticles in confined flows poses additional challenges due to the coupling between the thermal effects and fluid forces. Here, we focus on the relevant literature related to Brownian motion, hydrodynamic interactions and transport associated with nanoparticles in confined flows. We review the literature on the several techniques that are based on the principles of non-equilibrium statistical mechanics and computational fluid dynamics in order to simultaneously preserve the fluctuation-dissipation relationship and the prevailing hydrodynamic correlations. Through a review of select examples, we discuss the treatments of the temporal dynamics from the colloidal scales to the molecular scales pertaining to nanoscale fluid dynamics and heat transfer. As evident from this review, there, indeed has been little progress made in regard to the accurate modeling of heat transport in nanofluids flowing in confined geometries such as tubes. Therefore the associated mechanisms with such processes remain unexplained. This review has revealed that the information available in open literature on the transport properties of nanofluids is often contradictory and confusing. It has been very difficult to draw definitive conclusions. The quality of work reported on this topic is non-uniform. A significant portion of this review pertains to the treatment of the fluid dynamic aspects of the nanoparticle transport problem. By simultaneously treating the energy transport in ways discussed in this review as related to momentum transport, the ultimate goal of understanding nanoscale heat transport in confined flows may be achieved.
Collapse
Affiliation(s)
- Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.,Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Samaneh Farokhirad
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - David M Eckmann
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.,Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States
| | - Portonovo S Ayyaswamy
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, United States.,Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA, United States
| |
Collapse
|
8
|
Glassman PM, Muzykantov VR. Pharmacokinetic and Pharmacodynamic Properties of Drug Delivery Systems. J Pharmacol Exp Ther 2019; 370:570-580. [PMID: 30837281 PMCID: PMC6806371 DOI: 10.1124/jpet.119.257113] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/26/2019] [Indexed: 12/19/2022] Open
Abstract
The use of drug delivery systems (DDS) is an attractive approach to facilitate uptake of therapeutic agents at the desired site of action, particularly when free drug has poor pharmacokinetics/biodistribution (PK/BD) or significant off-site toxicities. Successful translation of DDS into the clinic is dependent on a thorough understanding of the in vivo behavior of the carrier, which has, for the most part, been an elusive goal. This is, at least in part, due to significant differences in the mechanisms controlling pharmacokinetics for classic drugs and DDSs. In this review, we summarize the key physiologic mechanisms controlling the in vivo behavior of DDS, compare and contrast this with classic drugs, and describe engineering strategies designed to improve DDS PK/BD. In addition, we describe quantitative approaches that could be useful for describing PK/BD of DDS, as well as critical steps between tissue uptake and pharmacologic effect.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Multivalent Binding of a Ligand-Coated Particle: Role of Shape, Size, and Ligand Heterogeneity. Biophys J 2019; 114:1830-1846. [PMID: 29694862 DOI: 10.1016/j.bpj.2018.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 01/18/2023] Open
Abstract
We utilize a multiscale modeling framework to study the effect of shape, size, and ligand composition on the efficacy of binding of a ligand-coated particle to a substrate functionalized with the target receptors. First, we show how molecular dynamics along with steered molecular dynamics calculations can be used to accurately parameterize the molecular-binding free energy and the effective spring constant for a receptor-ligand pair. We demonstrate this for two ligands that bind to the α5β1-domain of integrin. Next, we show how these effective potentials can be used to build computational models at the meso- and continuum-scales. These models incorporate the molecular nature of the receptor-ligand interactions and yet provide an inexpensive route to study the multivalent interaction of receptors and ligands through the construction of Bell potentials customized to the molecular identities. We quantify the binding efficacy of the ligand-coated-particle in terms of its multivalency, binding free-energy landscape, and the losses in the configurational entropies. We show that 1) the binding avidity for particle sizes less than 350 nm is set by the competition between the enthalpic and entropic contributions, whereas that for sizes above 350 nm is dominated by the enthalpy of binding; 2) anisotropic particles display higher levels of multivalent binding compared to those of spherical particles; and 3) variations in ligand composition can alter binding avidity without altering the average multivalency. The methods and results presented here have wide applications in the rational design of functionalized carriers and also in understanding cell adhesion.
Collapse
|
10
|
Farokhirad S, Ranganathan A, Myerson J, Muzykantov VR, Ayyaswamy PS, Eckmann DM, Radhakrishnan R. Stiffness can mediate balance between hydrodynamic forces and avidity to impact the targeting of flexible polymeric nanoparticles in flow. NANOSCALE 2019; 11:6916-6928. [PMID: 30912772 PMCID: PMC7376444 DOI: 10.1039/c8nr09594a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report computational investigations of deformable polymeric nanoparticles (NPs) under colloidal suspension flow and adhesive environment. We employ a coarse-grained model for the polymeric NP and perform Brownian dynamics (BD) simulations with hydrodynamic interactions and in the presence of wall-confinement, particulate margination, and wall-adhesion for obtaining NP microstructure, shape, and anisotropic and inhomogeneous transport properties for different NP stiffness. These microscopic properties are utilized in solving the Fokker-Planck equation to obtain the spatial distribution of NP subject to shear, margination due to colloidal microparticles, and confinement due to a vessel wall. Comparing our computational results for the amount of NP margination to the near-wall adhesion regime with those of our binding experiments in cell culture under shear, we found quantitative agreement on shear-enhanced binding, the effect of particulate volume fraction, and the effect of NP stiffness. For the experimentally realized polymeric NP, our model predicts that the shear and volume fraction mediated enhancement in targeting has a hydrodynamic transport origin and is not due to a multivalent binding effect. However, for ultrasoft polymeric NPs, our model predicts a substantial increase in targeting due to multivalent binding. Our results are also in general agreement with experiments of tissue targeting measurements in vivo in mice, however, one needs to exercise caution in extending the modeling treatment to in vivo conditions owing to model approximations. The reported combined computational approach and results are expected to enable fine-tuning of design and optimization of flexible NP in targeted drug delivery applications.
Collapse
Affiliation(s)
- Samaneh Farokhirad
- University of Pennsylvania, Department of Mechanical Engineering and Applied Mechanics, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Personalised deposition maps for micro- and nanoparticles targeting an atherosclerotic plaque: attributions to the receptor-mediated adsorption on the inflamed endothelial cells. Biomech Model Mechanobiol 2019; 18:813-828. [DOI: 10.1007/s10237-018-01116-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 12/29/2018] [Indexed: 01/25/2023]
|
12
|
Kiseleva RY, Glassman PM, Greineder CF, Hood ED, Shuvaev VV, Muzykantov VR. Targeting therapeutics to endothelium: are we there yet? Drug Deliv Transl Res 2018; 8:883-902. [PMID: 29282646 DOI: 10.1007/s13346-017-0464-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vascular endothelial cells represent an important therapeutic target in many pathologies, including inflammation, oxidative stress, and thrombosis; however, delivery of drugs to this site is often limited by the lack of specific affinity of therapeutics for these cells. Selective delivery of both small molecule drugs and therapeutic proteins to the endothelium has been achieved through the use of targeting ligands, such as monoclonal antibodies, directed against endothelial cell surface markers, particularly cell adhesion molecules (CAMs). Careful selection of target molecules and targeting agents allows for precise delivery to sites of inflammation, thereby maximizing therapeutic drug concentrations at the site of injury. A good understanding of the physiological and pathological determinants of drug and drug carrier pharmacokinetics and biodistribution may allow for a priori identification of optimal properties of drug carrier and targeting agent. Targeted delivery of therapeutics such as antioxidants and antithrombotic agents to the injured endothelium has shown efficacy in preclinical models, suggesting the potential for translation into clinical practice. As with all therapeutics, demonstration of both efficacy and safety are required for successful clinical implementation, which must be considered not only for the individual components (drug, targeting agent, etc.) but also for the sum of the parts (e.g., the drug delivery system), as unexpected toxicities may arise with complex delivery systems. While the use of endothelial targeting has not been translated into the clinic to date, the preclinical results summarized here suggest that there is hope for successful implementation of these agents in the years to come.
Collapse
Affiliation(s)
- Raisa Yu Kiseleva
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104-5158, USA
| | - Patrick M Glassman
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104-5158, USA
| | - Colin F Greineder
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104-5158, USA
| | - Elizabeth D Hood
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104-5158, USA
| | - Vladimir V Shuvaev
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104-5158, USA
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104-5158, USA.
| |
Collapse
|
13
|
Sedki M, Khalil IA, El-Sherbiny IM. Hybrid nanocarrier system for guiding and augmenting simvastatin cytotoxic activity against prostate cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S641-S650. [DOI: 10.1080/21691401.2018.1505743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Mohammed Sedki
- Nanomedicine Lab, Center of Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza, Egypt
| | - Islam A. Khalil
- Nanomedicine Lab, Center of Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza, Egypt
| | - Ibrahim M. El-Sherbiny
- Nanomedicine Lab, Center of Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza, Egypt
| |
Collapse
|
14
|
DiRito JR, Hosgood SA, Tietjen GT, Nicholson ML. The future of marginal kidney repair in the context of normothermic machine perfusion. Am J Transplant 2018; 18:2400-2408. [PMID: 29878499 PMCID: PMC6175453 DOI: 10.1111/ajt.14963] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/13/2018] [Accepted: 05/29/2018] [Indexed: 01/25/2023]
Abstract
Normothermic machine perfusion (NMP) is a technique that utilizes extracorporeal membrane oxygenation to recondition and repair kidneys at near body temperature prior to transplantation. The application of this new technology has been fueled by a significant increase in the use of the kidneys that were donated after cardiac death, which are more susceptible to ischemic injury. Preliminary results indicate that NMP itself may be able to repair marginal organs prior to transplantation. In addition, NMP serves as a platform for delivery of therapeutics. The isolated setting of NMP obviates problems of targeting a particular therapy to an intended organ and has the potential to reduce the harmful effects of systemic drug delivery. There are a number of emerging therapies that have shown promise in this platform. Nutrients, therapeutic gases, mesenchymal stromal cells, gene therapies, and nanoparticles, a newly explored modality, have been successfully delivered during NMP. These technologies may be effective at blocking multiple mechanisms of ischemia- reperfusion injury (IRI) and improving renal transplant outcomes. This review addresses the mechanisms of renal IRI, examines the potential for NMP as a platform for pretransplant allograft modulation, and discusses the introduction of various therapies in this setting.
Collapse
Affiliation(s)
- Jenna R. DiRito
- Department of SurgeryUniversity of CambridgeCambridgeUK,Department of SurgeryYale School of MedicineNew HavenCT
| | | | | | | |
Collapse
|
15
|
Wodicka JR, Morikis VA, Dehghani T, Simon SI, Panitch A. Selectin-Targeting Peptide-Glycosaminoglycan Conjugates Modulate Neutrophil-Endothelial Interactions. Cell Mol Bioeng 2018; 12:121-130. [PMID: 30740185 PMCID: PMC6345733 DOI: 10.1007/s12195-018-0555-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022] Open
Abstract
Introduction The glycocalyx is a layer of glycoproteins, proteoglycans and glycosaminoglycans that coats the luminal surface of most blood vessels. It effectively regulates adhesive interactions between leukocytes in flowing blood and the endothelium, where during inflammation, binding to E- and P-selectins and intercellular adhesion molecule-1 (ICAM-1) promotes cell tethering and arrest under shear flow. Methods In this study, we examine the targeting of E-selectin by an engineered peptide moiety bound to a dermatan sulfate backbone. We further investigate this conjugate, denoted as EC-SEAL, by observing its binding to inflamed endothelium, and quantifying its ability to modulate neutrophil–endothelium interactions. Results Binding data reveal that EC-SEAL recognizes domains on E-selectin, and to a lesser degree on P- and L-selectin, and ICAM-1. Further, EC-SEAL increases neutrophil rolling velocity, and decreases neutrophil arrest and migration on inflamed human microvascular endothelial cells under physiologically relevant flow conditions. Conclusions We conclude that simple targeting strategies can mimic glycocalyx function under inflammatory conditions, effectively reducing neutrophil recruitment. Electronic supplementary material The online version of this article (10.1007/s12195-018-0555-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James R Wodicka
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA.,Indiana University School of Medicine, Indianapolis, IN 46202 USA.,Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616 USA
| | - Vasilios A Morikis
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616 USA
| | - Tima Dehghani
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616 USA
| | - Scott I Simon
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616 USA
| | - Alyssa Panitch
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA.,Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616 USA
| |
Collapse
|
16
|
Moshaei MH, Tehrani M, Sarvestani A. On Stability of Specific Adhesion of Particles to Membranes in Simple Shear Flow. J Biomech Eng 2018; 141:2696679. [PMID: 30098158 DOI: 10.1115/1.4041046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Indexed: 12/21/2022]
Abstract
Adhesion of carrier particles to the luminal surface of endothelium under hemodynamic flow conditions is critical for successful vascular drug delivery. Endothelial cells line the inner surface of blood vessels. The effect of mechanical behavior of this compliant surface on the adhesion of blood-borne particles is unknown. In this contribution, we use a phase-plane method, first developed by Hammer and Lauffenburger [Biophysical Journal, 52, 475 (1987)], to analyze the stability of specific adhesion of a spherical particle to a compliant interface layer. We construct a phase diagram that predicts the state of particle adhesion, subjected to an incident simple shear flow, in terms of interfacial elasticity, shear rate, binding affinity of cell adhesive molecules, and their surface density. The main conclusion is that the local deformation of the flexible interface inhibits the stable adhesion of the particle. In comparison with adhesion to a rigid substrate, a greater ligand density is required to establish a stable adhesion between a particle and a compliant interface. The results can be used for the rational design of particles in vascular drug delivery.
Collapse
Affiliation(s)
| | - Mohammad Tehrani
- Department of Mechanical Engineering, Ohio University, Athens OH 45701, USA
| | - Alireza Sarvestani
- Department of Mechanical Engineering, Ohio University, Athens OH 45701, USA; Department of Mechanical Engineering, Mercer University, Macon GA 31207, USA
| |
Collapse
|
17
|
Vascular endothelial effects of collaborative binding to platelet/endothelial cell adhesion molecule-1 (PECAM-1). Sci Rep 2018; 8:1510. [PMID: 29367646 PMCID: PMC5784113 DOI: 10.1038/s41598-018-20027-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/11/2018] [Indexed: 11/23/2022] Open
Abstract
Targeting drugs to endothelial cells has shown the ability to improve outcomes in animal models of inflammatory, ischemic and thrombotic diseases. Previous studies have revealed that certain pairs of ligands (antibodies and antibody fragments) specific for adjacent, but distinct, epitopes on PECAM-1 enhance each other’s binding, a phenomenon dubbed Collaborative Enhancement of Paired Affinity Ligands, or CEPAL. This discovery has been leveraged to enable simultaneous delivery of multiple therapeutics to the vascular endothelium. Given the known role of PECAM-1 in promoting endothelial quiescence and cell junction integrity, we sought here to determine if CEPAL might induce unintended vascular effects. Using a combination of in vitro and in vivo techniques and employing human and mouse endothelial cells under physiologic and pathologic conditions, we found only modest or non-significant effects in response to antibodies to PECAM-1, whether given solo or in pairs. In contrast, these methods detected significant elevation of endothelial permeability, pro-inflammatory vascular activation, and systemic cytokine release following antibody binding to the related endothelial junction protein, VE-Cadherin. These studies support the notion that PECAM-1-targeted CEPAL provides relatively well-tolerated endothelial drug delivery. Additionally, the analysis herein creates a template to evaluate potential toxicities of vascular-targeted nanoparticles and protein therapeutics.
Collapse
|
18
|
Greineder CF, Villa CH, Walsh LR, Kiseleva RY, Hood ED, Khoshnejad M, Warden-Rothman R, Tsourkas A, Muzykantov VR. Site-Specific Modification of Single-Chain Antibody Fragments for Bioconjugation and Vascular Immunotargeting. Bioconjug Chem 2017; 29:56-66. [PMID: 29200285 DOI: 10.1021/acs.bioconjchem.7b00592] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The conjugation of antibodies to drugs and drug carriers improves delivery to target tissues. Widespread implementation and effective translation of this pharmacologic strategy awaits the development of affinity ligands capable of a defined degree of modification and highly efficient bioconjugation without loss of affinity. To date, such ligands are lacking for the targeting of therapeutics to vascular endothelial cells. To enable site-specific, click-chemistry conjugation to therapeutic cargo, we used the bacterial transpeptidase, sortase A, to attach short azidolysine containing peptides to three endothelial-specific single chain antibody fragments (scFv). While direct fusion of a recognition motif (sortag) to the scFv C-terminus generally resulted in low levels of sortase-mediated modification, improved reaction efficiency was observed for one protein, in which two amino acids had been introduced during cloning. This prompted insertion of a short, semi-rigid linker between scFv and sortag. The linker significantly enhanced modification of all three proteins, to the extent that unmodified scFv could no longer be detected. As proof of principle, purified, azide-modified scFv was conjugated to the antioxidant enzyme, catalase, resulting in robust endothelial targeting of functional cargo in vitro and in vivo.
Collapse
Affiliation(s)
- Colin F Greineder
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine and ‡Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Carlos H Villa
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine and ‡Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Landis R Walsh
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine and ‡Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Raisa Y Kiseleva
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine and ‡Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Elizabeth D Hood
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine and ‡Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Makan Khoshnejad
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine and ‡Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Robert Warden-Rothman
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine and ‡Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Andrew Tsourkas
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine and ‡Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine and ‡Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
19
|
mZD7349 peptide-conjugated PLGA nanoparticles directed against VCAM-1 for targeted delivery of simvastatin to restore dysfunctional HUVECs. Microvasc Res 2017; 112:14-19. [DOI: 10.1016/j.mvr.2017.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/21/2016] [Accepted: 02/01/2017] [Indexed: 11/18/2022]
|
20
|
Wodicka JR, Chambers AM, Sangha GS, Goergen CJ, Panitch A. Development of a Glycosaminoglycan Derived, Selectin Targeting Anti-Adhesive Coating to Treat Endothelial Cell Dysfunction. Pharmaceuticals (Basel) 2017; 10:ph10020036. [PMID: 28353658 PMCID: PMC5490393 DOI: 10.3390/ph10020036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/26/2022] Open
Abstract
Endothelial cell (EC) dysfunction is associated with many disease states including deep vein thrombosis (DVT), chronic kidney disease, sepsis and diabetes. Loss of the glycocalyx, a thin glycosaminoglycan (GAG)-rich layer on the EC surface, is a key feature of endothelial dysfunction and increases exposure of EC adhesion molecules such as selectins, which are involved in platelet binding to ECs. Once bound, platelets cause thrombus formation and an increased inflammatory response. We have developed a GAG derived, selectin targeting anti-adhesive coating (termed EC-SEAL) consisting of a dermatan sulfate backbone and multiple selectin-binding peptides designed to bind to inflamed endothelium and prevent platelet binding to create a more quiescent endothelial state. Multiple EC-SEAL variants were evaluated and the lead variant was found to preferentially bind to selectin-expressing ECs and smooth muscle cells (SMCs) and inhibit platelet binding and activation in a dose-dependent manner. In an in vivo model of DVT, treatment with the lead variant resulted in reduced thrombus formation. These results indicate that EC-SEAL has promise as a potential therapeutic in the treatment of endothelial dysfunction.
Collapse
Affiliation(s)
- James R Wodicka
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Andrea M Chambers
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Gurneet S Sangha
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Alyssa Panitch
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
21
|
P-Selectin Targeted Dexamethasone-Loaded Lipid Nanoemulsions: A Novel Therapy to Reduce Vascular Inflammation. Mediators Inflamm 2016; 2016:1625149. [PMID: 27703301 PMCID: PMC5039295 DOI: 10.1155/2016/1625149] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 12/04/2022] Open
Abstract
Inflammation is a common process associated with numerous vascular pathologies. We hypothesized that targeting the inflamed endothelium by coupling a peptide with high affinity for P-selectin to the surface of dexamethasone-loaded lipid nanoemulsions will highly increase their specific binding to activated endothelial cells (EC) and reduce the cell activation. We developed and characterized dexamethasone-loaded lipid nanoemulsions directed towards P-selectin (PLN-Dex) and monitored their anti-inflammatory effects in vitro using cultured EC (EA.hy926 cells) and in vivo using a mouse model of acute inflammation [lipopolysaccharides (LPS) intravenously administered in C57BL/6 mice]. We found that PLN-Dex bound specifically to the surface of activated EC are efficiently internalized by EC and reduced the expression of proinflammatory genes, thus preventing the monocyte adhesion and transmigration to/through activated EC. Given intravenously in mice with acute inflammation, PLN-Dex accumulated at a significant high level in the lungs (compared to nontargeted nanoemulsions) and significantly reduced mRNA expression level of key proinflammatory cytokines such as IL-1β, IL-6, and MCP-1. In conclusion, the newly developed nanoformulation, PLN-Dex, is functional in vitro and in vivo, reducing selectively the endothelium activation and the consequent monocyte infiltration and diminishing significantly the lungs' inflammation, in a mouse model of acute inflammation.
Collapse
|
22
|
Ramakrishnan N, Tourdot RW, Eckmann DM, Ayyaswamy PS, Muzykantov VR, Radhakrishnan R. Biophysically inspired model for functionalized nanocarrier adhesion to cell surface: roles of protein expression and mechanical factors. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160260. [PMID: 27429783 PMCID: PMC4929918 DOI: 10.1098/rsos.160260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/24/2016] [Indexed: 05/11/2023]
Abstract
In order to achieve selective targeting of affinity-ligand coated nanoparticles to the target tissue, it is essential to understand the key mechanisms that govern their capture by the target cell. Next-generation pharmacokinetic (PK) models that systematically account for proteomic and mechanical factors can accelerate the design, validation and translation of targeted nanocarriers (NCs) in the clinic. Towards this objective, we have developed a computational model to delineate the roles played by target protein expression and mechanical factors of the target cell membrane in determining the avidity of functionalized NCs to live cells. Model results show quantitative agreement with in vivo experiments when specific and non-specific contributions to NC binding are taken into account. The specific contributions are accounted for through extensive simulations of multivalent receptor-ligand interactions, membrane mechanics and entropic factors such as membrane undulations and receptor translation. The computed NC avidity is strongly dependent on ligand density, receptor expression, bending mechanics of the target cell membrane, as well as entropic factors associated with the membrane and the receptor motion. Our computational model can predict the in vivo targeting levels of the intracellular adhesion molecule-1 (ICAM1)-coated NCs targeted to the lung, heart, kidney, liver and spleen of mouse, when the contributions due to endothelial capture are accounted for. The effect of other cells (such as monocytes, etc.) do not improve the model predictions at steady state. We demonstrate the predictive utility of our model by predicting partitioning coefficients of functionalized NCs in mice and human tissues and report the statistical accuracy of our model predictions under different scenarios.
Collapse
Affiliation(s)
- N. Ramakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard W. Tourdot
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M. Eckmann
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Portonovo S. Ayyaswamy
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir R. Muzykantov
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics and Department of Pharmacology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Translational Research Center, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Author for correspondence: Ravi Radhakrishnan e-mail:
| |
Collapse
|
23
|
Greineder CF, Hood ED, Yao A, Khoshnejad M, Brenner JS, Johnston IH, Poncz M, Gottstein C, Muzykantov VR. Molecular engineering of high affinity single-chain antibody fragment for endothelial targeting of proteins and nanocarriers in rodents and humans. J Control Release 2016; 226:229-37. [PMID: 26855052 DOI: 10.1016/j.jconrel.2016.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/03/2016] [Indexed: 11/30/2022]
Abstract
Endothelial cells (EC) represent an important target for pharmacologic intervention, given their central role in a wide variety of human pathophysiologic processes. Studies in lab animal species have established that conjugation of drugs and carriers with antibodies directed to surface targets like the Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1, a highly expressed endothelial transmembrane protein) help to achieve specific therapeutic interventions in ECs. To translate such "vascular immunotargeting" to clinical practice, it is necessary to replace antibodies by advanced ligands that are more amenable to use in humans. We report the molecular design of a single chain variable antibody fragment (scFv) that binds with high affinity to human PECAM-1 and cross-reacts with its counterpart in rats and other animal species, allowing parallel testing in vivo and in human endothelial cells in microfluidic model. Site-specific modification of the scFv allows conjugation of protein cargo and liposomes, enabling their endothelial targeting in these models. This study provides a template for molecular engineering of ligands, enabling studies of drug targeting in animal species and subsequent use in humans.
Collapse
Affiliation(s)
- Colin F Greineder
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Elizabeth D Hood
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Anning Yao
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Makan Khoshnejad
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jake S Brenner
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ian H Johnston
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Mortimer Poncz
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Claudia Gottstein
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| | - Vladimir R Muzykantov
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
24
|
Khoshnejad M, Shuvaev VV, Pulsipher KW, Dai C, Hood ED, Arguiri E, Christofidou-Solomidou M, Dmochowski IJ, Greineder CF, Muzykantov VR. Vascular Accessibility of Endothelial Targeted Ferritin Nanoparticles. Bioconjug Chem 2016; 27:628-37. [PMID: 26718023 DOI: 10.1021/acs.bioconjchem.5b00641] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Targeting nanocarriers to the endothelium, using affinity ligands to cell adhesion molecules such as ICAM-1 and PECAM-1, holds promise to improve the pharmacotherapy of many disease conditions. This approach capitalizes on the observation that antibody-targeted carriers of 100 nm and above accumulate in the pulmonary vasculature more effectively than free antibodies. Targeting of prospective nanocarriers in the 10-50 nm range, however, has not been studied. To address this intriguing issue, we conjugated monoclonal antibodies (Ab) to ICAM-1 and PECAM-1 or their single chain antigen-binding fragments (scFv) to ferritin nanoparticles (FNPs, size 12 nm), thereby producing Ab/FNPs and scFv/FNPs. Targeted FNPs retained their typical symmetric core-shell structure with sizes of 20-25 nm and ∼4-5 Ab (or ∼7-9 scFv) per particle. Ab/FNPs and scFv/FNPs, but not control IgG/FNPs, bound specifically to cells expressing target molecules and accumulated in the lungs after intravenous injection, with pulmonary targeting an order of magnitude higher than free Ab. Most intriguing, the targeting of Ab/FNPs to ICAM-1, but not PECAM-1, surpassed that of larger Ab/carriers targeted by the same ligand. These results indicate that (i) FNPs may provide a platform for targeting endothelial adhesion molecules with carriers in the 20 nm size range, which has not been previously reported; and (ii) ICAM-1 and PECAM-1 (known to localize in different domains of endothelial plasmalemma) differ in their accessibility to circulating objects of this size, common for blood components and nanocarriers.
Collapse
Affiliation(s)
| | | | | | | | | | - Evguenia Arguiri
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania , 835W Gates Building, 3600 Spruce Street, Philadelphia, Pennsylvania 19104, United States
| | - Melpo Christofidou-Solomidou
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania , 835W Gates Building, 3600 Spruce Street, Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
25
|
Nanoliposomal Nitroglycerin Exerts Potent Anti-Inflammatory Effects. Sci Rep 2015; 5:16258. [PMID: 26584637 PMCID: PMC4653649 DOI: 10.1038/srep16258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/13/2015] [Indexed: 12/22/2022] Open
Abstract
Nitroglycerin (NTG) markedly enhances nitric oxide (NO) bioavailability. However, its ability to mimic the anti-inflammatory properties of NO remains unknown. Here, we examined whether NTG can suppress endothelial cell (EC) activation during inflammation and developed NTG nanoformulation to simultaneously amplify its anti-inflammatory effects and ameliorate adverse effects associated with high-dose NTG administration. Our findings reveal that NTG significantly inhibits human U937 cell adhesion to NO-deficient human microvascular ECs in vitro through an increase in endothelial NO and decrease in endothelial ICAM-1 clustering, as determined by NO analyzer, microfluorimetry, and immunofluorescence staining. Nanoliposomal NTG (NTG-NL) was formulated by encapsulating NTG within unilamellar lipid vesicles (DPhPC, POPC, Cholesterol, DHPE-Texas Red at molar ratio of 6:2:2:0.2) that were ~155 nm in diameter and readily uptaken by ECs, as determined by dynamic light scattering and quantitative fluorescence microscopy, respectively. More importantly, NTG-NL produced a 70-fold increase in NTG therapeutic efficacy when compared with free NTG while preventing excessive mitochondrial superoxide production associated with high NTG doses. Thus, these findings, which are the first to reveal the superior therapeutic effects of an NTG nanoformulation, provide the rationale for their detailed investigation for potentially superior vascular normalization therapies.
Collapse
|
26
|
Greineder CF, Brenza JB, Carnemolla R, Zaitsev S, Hood ED, Pan DC, Ding BS, Esmon CT, Chacko AM, Muzykantov VR. Dual targeting of therapeutics to endothelial cells: collaborative enhancement of delivery and effect. FASEB J 2015; 29:3483-92. [PMID: 25953848 DOI: 10.1096/fj.15-271213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/21/2015] [Indexed: 12/16/2022]
Abstract
Anchoring pharmacologic agents to the vascular lumen has the potential to modulate critical processes at the blood-tissue interface, avoiding many of the off-target effects of systemically circulating agents. We report a novel strategy for endothelial dual targeting of therapeutics, which both enhances drug delivery and enables targeted agents to partner enzymatically to generate enhanced biologic effect. Based on the recent discovery that paired antibodies directed to adjacent epitopes of platelet endothelial cell adhesion molecule (PECAM)-1 stimulate each other's binding, we fused single-chain fragments (scFv) of paired anti-mouse PECAM-1 antibodies to recombinant murine thrombomodulin (TM) and endothelial protein C receptor (EPCR), endothelial membrane proteins that partner in activation of protein C (PC). scFv/TM and scFv/EPCR bound to mouse endothelial PECAM-1 with high affinity (EC50 1.5 and 3.8 nM, respectively), and codelivery induced a 5-fold increase in PC activation not seen when TM and EPCR are anchored to distinct cell adhesion molecules. In a mouse model of acute lung injury, dual targeting reduces both the expression of lung inflammatory markers and trans-endothelial protein leak by as much as 40%, as compared to either agent alone. These findings provide proof of principle for endothelial dual targeting, an approach with numerous potential biomedical applications.
Collapse
Affiliation(s)
- Colin F Greineder
- *Department of Pharmacology, Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, and Departments of Radiology and Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetic Medicine, Howard Hughes Medical Institute, Weill Cornell Medical College, New York, New York, USA; and Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Howard Hughes Medical Institute, Oklahoma City, Oklahoma, USA
| | - Jacob B Brenza
- *Department of Pharmacology, Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, and Departments of Radiology and Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetic Medicine, Howard Hughes Medical Institute, Weill Cornell Medical College, New York, New York, USA; and Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Howard Hughes Medical Institute, Oklahoma City, Oklahoma, USA
| | - Ronald Carnemolla
- *Department of Pharmacology, Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, and Departments of Radiology and Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetic Medicine, Howard Hughes Medical Institute, Weill Cornell Medical College, New York, New York, USA; and Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Howard Hughes Medical Institute, Oklahoma City, Oklahoma, USA
| | - Sergei Zaitsev
- *Department of Pharmacology, Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, and Departments of Radiology and Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetic Medicine, Howard Hughes Medical Institute, Weill Cornell Medical College, New York, New York, USA; and Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Howard Hughes Medical Institute, Oklahoma City, Oklahoma, USA
| | - Elizabeth D Hood
- *Department of Pharmacology, Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, and Departments of Radiology and Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetic Medicine, Howard Hughes Medical Institute, Weill Cornell Medical College, New York, New York, USA; and Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Howard Hughes Medical Institute, Oklahoma City, Oklahoma, USA
| | - Daniel C Pan
- *Department of Pharmacology, Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, and Departments of Radiology and Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetic Medicine, Howard Hughes Medical Institute, Weill Cornell Medical College, New York, New York, USA; and Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Howard Hughes Medical Institute, Oklahoma City, Oklahoma, USA
| | - Bi-Sen Ding
- *Department of Pharmacology, Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, and Departments of Radiology and Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetic Medicine, Howard Hughes Medical Institute, Weill Cornell Medical College, New York, New York, USA; and Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Howard Hughes Medical Institute, Oklahoma City, Oklahoma, USA
| | - Charles T Esmon
- *Department of Pharmacology, Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, and Departments of Radiology and Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetic Medicine, Howard Hughes Medical Institute, Weill Cornell Medical College, New York, New York, USA; and Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Howard Hughes Medical Institute, Oklahoma City, Oklahoma, USA
| | - Ann Marie Chacko
- *Department of Pharmacology, Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, and Departments of Radiology and Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetic Medicine, Howard Hughes Medical Institute, Weill Cornell Medical College, New York, New York, USA; and Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Howard Hughes Medical Institute, Oklahoma City, Oklahoma, USA
| | - Vladimir R Muzykantov
- *Department of Pharmacology, Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, and Departments of Radiology and Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetic Medicine, Howard Hughes Medical Institute, Weill Cornell Medical College, New York, New York, USA; and Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Howard Hughes Medical Institute, Oklahoma City, Oklahoma, USA
| |
Collapse
|
27
|
Myerson JW, Brenner JS, Greineder CF, Muzykantov VR. Systems approaches to design of targeted therapeutic delivery. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:253-65. [PMID: 25946066 PMCID: PMC4713047 DOI: 10.1002/wsbm.1304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 02/06/2023]
Abstract
Targeted drug delivery aims to improve therapeutic effects and enable mechanisms that are not feasible for untargeted agents (e.g., due to impermeable biological barriers). To achieve targeting, a drug or its carrier should possess properties providing specific accumulation from circulation at the desired site. There are several examples of systems-inspired approaches that have been applied to achieve this goal. First, proteomics analysis of plasma membrane fraction of the vascular endothelium has identified a series of target molecules and their ligands (e.g., antibodies) that deliver conjugated cargoes to well-defined vascular cells and subcellular compartments. Second, selection of ligands binding to cells of interest using phage display libraries in vitro and in vivo has provided peptides and polypeptides that bind to normal and pathologically altered cells. Finally, large-scale high-throughput combinatorial synthesis and selection of lipid- and polymer-based nanocarriers varying their chemical components has yielded a series of carriers accumulating in diverse organs and delivering RNA interference agents to diverse cells. Together, these approaches offer a basis for systems-based design and selection of targets, targeting molecules, and targeting vehicles. Current studies focus on expanding the arsenal of these and alternative targeting strategies, devising drug delivery systems capitalizing on these strategies and evaluation of their benefit/risk ratio in adequate animal models of human diseases. These efforts, combined with better understanding of mechanisms and unintended consequences of these targeted interventions, need to be ultimately translated into industrial development and the clinical domain.
Collapse
Affiliation(s)
- Jacob W Myerson
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob S Brenner
- Pulmonary and Critical Care Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Colin F Greineder
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
28
|
Gonzalez-Rodriguez D, Barakat AI. Dynamics of receptor-mediated nanoparticle internalization into endothelial cells. PLoS One 2015; 10:e0122097. [PMID: 25901833 PMCID: PMC4406860 DOI: 10.1371/journal.pone.0122097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/19/2015] [Indexed: 12/17/2022] Open
Abstract
Nanoparticles offer a promising medical tool for targeted drug delivery, for example to treat inflamed endothelial cells during the development of atherosclerosis. To inform the design of such therapeutic strategies, we develop a computational model of nanoparticle internalization into endothelial cells, where internalization is driven by receptor-ligand binding and limited by the deformation of the cell membrane and cytoplasm. We specifically consider the case of nanoparticles targeted against ICAM-1 receptors, of relevance for treating atherosclerosis. The model computes the kinetics of the internalization process, the dynamics of binding, and the distribution of stresses exerted between the nanoparticle and the cell membrane. The model predicts the existence of an optimal nanoparticle size for fastest internalization, consistent with experimental observations, as well as the role of bond characteristics, local cell mechanical properties, and external forces in the nanoparticle internalization process.
Collapse
Affiliation(s)
- David Gonzalez-Rodriguez
- Laboratoire d’Hydrodynamique (LadHyX), École Polytechnique, CNRS UMR 7646, Palaiseau, France
- * E-mail: (DGR), (AIB)
| | - Abdul I. Barakat
- Laboratoire d’Hydrodynamique (LadHyX), École Polytechnique, CNRS UMR 7646, Palaiseau, France
- * E-mail: (DGR), (AIB)
| |
Collapse
|
29
|
Almeda D, Wang B, Auguste DT. Minimizing antibody surface density on liposomes while sustaining cytokine-activated EC targeting. Biomaterials 2015; 41:37-44. [DOI: 10.1016/j.biomaterials.2014.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/31/2014] [Accepted: 11/08/2014] [Indexed: 01/03/2023]
|