1
|
Guamán SA, Elhadi A, Salama AAK, Manuelian CL, Caja G, Albanell E. Beta-Glucans Improve the Mammary Innate Immune Response to Endotoxin Challenge in Dairy Ewes. Animals (Basel) 2024; 14:3023. [PMID: 39457952 PMCID: PMC11505092 DOI: 10.3390/ani14203023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
This study evaluated short-term immune responses of dairy ewes supplemented with barley β-glucan (BG) following an intramammary Escherichia coli lipopolysaccharide (LPS) challenge. In the adaptation period, 36 ewes were fed an alfalfa hay diet ad libitum and barley grain cv. Hispanic (3.8% BG). Then, ewes were assigned into three experimental groups: (1) Control (CON), the same previous diet (13.3 g BG/d); (2) high β-glucans barley (HBG), new barley (cv. Annapurna) containing 10% BG (35 g BG/d); (3) intraperitoneally injected (INP) with a 1.4% BG solution dose (2 g BG/ewe). At d 9, all ewes were infused with an E. coli LPS or saline solution in each udder half. After the challenge, rectal temperature (RT), milk yield and composition, somatic cell count (SCC), and plasma interleukins (IL-1α and IL-1β) were monitored daily. The INP treatment revealed a transitory increase in RT and decreased milk yield by 38%. Milk fat, protein, and SCC increased in LPS-treated udders but not by BG treatment. The IL-1α plasma concentration was similar among groups but INP ewes showed a lower IL-1β concentration suggesting a lower inflammatory response. The BG administration appears more effective intraperitoneally than orally, which needs additional study.
Collapse
Affiliation(s)
- Santiago A. Guamán
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
- Sede Orellana, Escuela Superior Politécnica de Chimborazo (ESPOCH), El Coca 220150, Ecuador
| | - Abdelaali Elhadi
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
| | - Ahmed A. K. Salama
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
| | - Carmen L. Manuelian
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
| | - Gerardo Caja
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
| | - Elena Albanell
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
| |
Collapse
|
2
|
Ragab A, Fattah AMA, Sayed AR, GamalEl Din SF, Mahmoud Hassan SM, Mohamed AYM, Hamed MA. Correlation between Serum Levels of Nitric Oxide and Adropin and Erectile Dysfunction in Males with Nonalcoholic Fatty Liver Disease: An Observational Study. Reprod Sci 2024; 31:2676-2684. [PMID: 38691315 PMCID: PMC11393249 DOI: 10.1007/s43032-024-01537-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
The current study aimed to evaluate the serum levels of nitric oxide (NO) and adropin in males with non-alcoholic fatty liver disease (NAFLD) induced erectile dysfunction (ED) and NAFLD patients without ED and controls. The current study selected 165 participants from the hepatology department from November 2021 to November 2022. The patients were either suffering from NAFLD with normal liver functions or non-alcoholic steatohepatitis with abnormal liver functions. They were diagnosed by abdominal ultrasonography. Participants were evaluated using the validated Arabic version of the International Index of Erectile Function (ArIIEF-5), the Arabic form of the Generalized Anxiety Disorder-7 (GAD-7) questionnaire and the Patient Health Questionnaire-9 (PHQ-9). Noteworthy, there were significant positive correlations between ArIIEF-5 score, NO, adropin and total testosterone (r = 0.380, p = 0.001; r = 0.507, p = < 0.001; r = 0.246, p = 0.038, respectively). Meanwhile, there were significant negative correlations between ArIIEF-5 score, creatinine, duration of the disease and scores of GAD-7 and PHQ-9 (r = -0.656, p = < 0.001; r = -0.368, p = 0.002; r = -0.663, p = < 0.001; r = -0.248, p = 0.037, respectively). Finally, a linear regression analysis revealed that GAD-7, creatinine, and adropin were the only strong independent predictors of ArIIEF-5, as the 95% confidence interval in the form of upper and lower bounds was -0.349, -0.843, p < 0.001, -6.507, -18.402, p < 0.001, 0.476, 0.117, and p 0.002, respectively. Impaired NO and adropin levels play a potential role in the development of ED in patients with NAFLD.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Andrology, Sexology and STDs, Faculty of Medicine, Beni-Suef University, BeniSuef, Egypt
| | - Ali M Abdel Fattah
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Beni-Suef University, BeniSuef, Egypt
| | - Ahmed Reda Sayed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Beni-Suef University, BeniSuef, Egypt
| | - Sameh Fayek GamalEl Din
- Department of Andrology, Sexology and STDs, KasrAlainy Faculty of Medicine, Cairo University, Al-Saray Street, El Manial, Cairo, 11956, Egypt.
| | | | | | - Mostafa Ahmed Hamed
- Department of Andrology, Sexology and STDs, Faculty of Medicine, Beni-Suef University, BeniSuef, Egypt
| |
Collapse
|
3
|
Palmisano M, Ramunno CF, Farhat E, Dvir-Ginzberg M, Lutz B, de Almodovar CR, Bilkei-Gorzo A. Local cannabinoid receptor type-1 regulates glial cell activity and insulin-like growth factor-1 receptor signaling in the mediobasal hypothalamus. Mech Ageing Dev 2024; 220:111954. [PMID: 38821184 DOI: 10.1016/j.mad.2024.111954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
As organisms age, the activity of the endocannabinoid system in the brain declines, coinciding with increased neuroinflammation and disrupted hypothalamic functions. Notably, cannabinoid receptors type-1 (CB1) are highly expressed in the ventromedial hypothalamic nucleus (VMH) within the mediobasal hypothalamus, a central area of neuroendocrine regulation. This study investigates whether the CB1 receptor influences age-related changes in a brain region-dependent manner. Therefore, we performed stereotaxic injections of rAAV1/2 expressing Cre recombinase in 2-month-old CB1flox/flox male animals to delete the CB1 gene and in CB1-deficient (CB1-STOP) mice to induce its re-expression. The intensity of pro-inflammatory glial activity, gonadotropin-releasing hormone (GnRH) and insulin-like growth factor-1 receptor (IGF-1R) expression was assessed in the hypothalamus of mice at 18-19 months of age. Site-specific CB1 receptor deletion induced pro-inflammatory glial activity and increased hypothalamic Igf1r mRNA expression. Unexpectedly, GnRH levels remained unaltered. Importantly, rescuing the receptor in null mutant animals had the opposite effect: it reduced pro-inflammatory glial activation and decreased Igf1r mRNA expression without affecting GnRH production. Overall, the study highlights the important role of the CB1 receptor in the VMH in reducing age-related inflammation and modulating IGF-1R signaling.
Collapse
Affiliation(s)
- Michela Palmisano
- Institute of Molecular Psychiatry, Medical Faculty, University Clinics of Bonn, Bonn 53125, Germany
| | - Carla Florencia Ramunno
- Institute for Neurovascular Cell Biology, University Hospital Bonn, University Clinics of Bonn, Bonn 53125, Germany
| | - Eli Farhat
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 12272, Israel
| | - Mona Dvir-Ginzberg
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 12272, Israel
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany; Leibniz Institute for Resilience Research, Mainz 55122, Germany
| | - Carmen Ruiz de Almodovar
- Institute for Neurovascular Cell Biology, University Hospital Bonn, University Clinics of Bonn, Bonn 53125, Germany
| | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University Clinics of Bonn, Bonn 53125, Germany.
| |
Collapse
|
4
|
Dos Santos FCF, Lima GFC, Merlo E, Januario CDF, Miranda-Alves L, Miranda RA, Lisboa PC, Graceli JB. Single microcystin exposure impairs the hypothalamic-pituitary-gonadal axis at different levels in female rats. Mol Cell Endocrinol 2024; 586:112203. [PMID: 38490633 DOI: 10.1016/j.mce.2024.112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Microcystin (MC) is most common cyanobacterial toxin. Few studies have evaluated the MC effects on the hypothalamic-pituitary-gonadal (HPG) axis and metabolic function. In this study, we assessed whether MC exposure results in HPG axis and metabolic changes. Female rats were exposed to a single dose of MC at environmentally relevant levels (5, 20 and 40 μg/kg). After 24 h, we evaluated reproductive and metabolic parameters for 15 days. MC reduced the hypothalamic GnRH protein expression, increased the pituitary protein expression of GnRHr and IL-6. MC reduced LH levels and increased FSH levels. MC reduced the primary follicles, increased the corpora lutea, elevated levels of anti-Müllerian hormone (AMH) and progesterone, and decreased estrogen levels. MC increased ovarian VEGFr, LHr, AMH, ED1, IL-6 and Gp91-phox protein expression. MC increased uterine area and reduced endometrial gland number. A blunted estrogen-negative feedback was observed in MC rats after ovariectomy, with no changes in LH levels compared to intact MC rats. Therefore, these data suggest that a MC leads to abnormal HPG axis function in female rats.
Collapse
Affiliation(s)
- Flavia C F Dos Santos
- Department of Morphology, Federal University of Espírito Santo, 290440-090, Vitória, Brazil
| | - Gabriela F C Lima
- Department of Morphology, Federal University of Espírito Santo, 290440-090, Vitória, Brazil
| | - Eduardo Merlo
- Department of Morphology, Federal University of Espírito Santo, 290440-090, Vitória, Brazil
| | - Cidalia de F Januario
- Department of Morphology, Federal University of Espírito Santo, 290440-090, Vitória, Brazil
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, 21941-904, Ilha do Governador, Brazil
| | - Rosiane A Miranda
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Patrícia C Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, 290440-090, Vitória, Brazil.
| |
Collapse
|
5
|
Kim D, Manikat R, Cholankeril G, Ahmed A. Endogenous sex hormones and nonalcoholic fatty liver disease in US adults. Liver Int 2024; 44:460-471. [PMID: 38010926 DOI: 10.1111/liv.15786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND AIMS Sex steroid hormones and sex hormone-binding globulin (SHBG) have a role in predisposing individuals to nonalcoholic fatty liver disease (NAFLD), but their effects are known to differ between men and women. The testosterone-to-estradiol ratio (T/E2 ratio) and free androgen index (FAI) were known biomarkers for the hormonal milieu. We investigated whether sex steroid hormones, T/E2 ratio, FAI, and SHBG were associated with NAFLD in US adults. METHODS A cross-sectional analysis using the 2013-2016 National Health and Nutrition Examination Survey (NHANES) was performed. NAFLD was defined by utilizing the Hepatic Steatosis Index (HSI) and the US fatty liver index (USFLI) without other causes of chronic liver disease. RESULTS Out of 8687 subjects (49.5% male), low total testosterone levels were associated with progressively higher odds of NAFLD in men. Increasing T/E2 ratio was inversely associated with higher odds of NAFLD in men. Low serum SHBG levels were independently associated with an increased risk of NAFLD regardless of sex and menopausal status. Increasing FAI was independently associated with NAFLD. When we additionally adjusted for SHBG, T/E2 ratio, not total testosterone, was inversely associated with NAFLD in a dose-dependent manner. Increasing FAI was associated with higher odds of NAFLD in premenopausal women and marginally associated with NAFLD in postmenopausal women. CONCLUSION The T/E2 ratio and SHBG were inversely associated with an increased risk of NAFLD in men. In women, increasing FAI was associated with NAFLD, whereas SHBG was inversely associated with NAFLD.
Collapse
Affiliation(s)
- Donghee Kim
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Richie Manikat
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - George Cholankeril
- Liver Center, Division of Abdominal Transplantation, Michael E DeBakey Department of General Surgery, Baylor College of Medicine, Houston, Texas, USA
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
6
|
Liu L, Li M, Chen P, Li Y, Song Q, Han J, Fang L, Guan Q, Yu C. The Fatty Liver Index, the Strongest Risk Factor for Low Testosterone Level. Obes Facts 2023; 16:588-597. [PMID: 37797596 PMCID: PMC10697743 DOI: 10.1159/000533962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION The study aimed to determine if hepatic steatosis assessed by fatty liver index (FLI) was an independent risk factor for male low testosterone level and whether the FLI was the strongest risk factor for low testosterone level in two different age groups. METHODS Two cross-sectional studies were performed. A total of 3,443 male participants (aged 46-75) were recruited into study A (part of lONgitudinal study (REACTION)). Then a total of 267 male participants (aged 25-45) were recruited into study B. Serum total testosterone (TT) and sex hormone-binding globulin (SHBG) levels, indicators for assessing hepatic steatosis were measured. The Pearson correlation and regression analysis were performed to investigate the risk factors for low testosterone level. RESULTS The FLI had the strongest negative correlation with serum testosterone in the study A (r = -0.436) and B (r = -0.542). Compared with patients with a FLI lower than 30, the risk for low testosterone level increased by 3.48-fold in subjects with a FLI higher than 60 adjusted for potential risk factors in study A. In study B, the odds ratio of low testosterone level in patients with potential hepatic steatosis was 4.26 (1.57-11.60) after adjusted for age and homeostasis model assessment of insulin resistance (HOMA-IR) and 0.59 (0.14-2.60) after adjusted for age, HOMA-IR, waist circumference, body mass index, and SHBG. CONCLUSIONS FLI was the strongest risk factor for male low testosterone level independent of insulin resistance in male populations of different ages; however, the association can be modulated by SHBG levels in the young. SIGNIFICANCE STATEMENT In the study, FLI was the strongest negative risk factor for low testosterone level in the Chinese adult male population. The results suggested that hepatic steatosis assessed by the FLI was the main risk factor for male low testosterone level, independent of age, insulin resistance, smoking, and drinking status; however, the association of FLI and TT levels can be modulated by SHBG levels. Taken together these findings indicate that clinical physicians should pay more attention to the FLI index and hepatic steatosis, so that they can take advantage of them for assessing the risk of developing of low testosterone level in the male population.
Collapse
Affiliation(s)
- Luna Liu
- Department of Endocrinology, Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
| | - Man Li
- Department of Geratology, Qilu Hospital of Shandong University, Jinan, China
| | - Pengcheng Chen
- Department of Endocrinology, Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
| | - Yuchen Li
- Department of Endocrinology, Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
| | - Qianmei Song
- Department of Endocrinology, Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
| | - Junming Han
- Department of Endocrinology, Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, China
| | - Li Fang
- Department of Endocrinology, Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, China
| | - Qingbo Guan
- Department of Endocrinology, Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, China
| | - Chunxiao Yu
- Department of Endocrinology, Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, China
| |
Collapse
|
7
|
Zimerman J, Niño OMS, da Costa CS, Zanol JF, Comério M, da Gama de Souza LN, Miranda-Alves L, Miranda RA, Lisboa PC, Camilo TA, Rorato R, Alves GA, Frazão R, Zomer HD, Freitas-Lima LC, Graceli JB. Subacute high-refined carbohydrate diet leads to abnormal reproductive control of the hypothalamic-pituitary axis in female rats. Reprod Toxicol 2023; 119:108410. [PMID: 37211340 DOI: 10.1016/j.reprotox.2023.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
We previously reported that female rats placed on a diet containing refined carbohydrates (HCD) resulted in obesity and reproductive abnormalities, such as high serum LH concentration and abnormal ovarian function. However, the impacts at the hypothalamic-pituitary (HP) function, specifically regarding pathways linked to reproductive axis modulation are unknown. In this study, we assessed whether subacute feeding with HCD results in abnormal reproductive control in the HP axis. Female rats were fed with HCD for 15 days and reproductive HP axis morphophysiology was assessed. HCD reduced hypothalamic mRNA expression (Kiss1, Lepr, and Amhr2) and increased pituitary LHβ+ cells. These changes likely contribute to the increase in serum LH concentration observed in HCD. Blunted estrogen negative feedback was observed in HCD, with increased kisspeptin protein expression in the arcuate nucleus of the hypothalamus (ARH), lower LHβ+ cells and LH concentration in ovariectomized (OVX)+HCD rats. Thus, these data suggest that HCD feeding led to female abnormal reproductive control of HP axis.
Collapse
Affiliation(s)
- Jeanini Zimerman
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Oscar M S Niño
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil; Faculty of Human Sciences and Education, Universidad de los Llanos, Villavicencio, Meta, Colombia
| | - Charles S da Costa
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Jordana F Zanol
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Milena Comério
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, UFRJ, RJ, Brazil
| | - Rosiane A Miranda
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Patrícia C Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Tays A Camilo
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Rodrigo Rorato
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Guilherme Andrade Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Renata Frazão
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Helena D Zomer
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | | | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil.
| |
Collapse
|
8
|
Zammit NW, McDowell J, Warren J, Muskovic W, Gamble J, Shi YC, Kaczorowski D, Chan CL, Powell J, Ormandy C, Brown D, Oakes SR, Grey ST. TNFAIP3 Reduction-of-Function Drives Female Infertility and CNS Inflammation. Front Immunol 2022; 13:811525. [PMID: 35464428 PMCID: PMC9027572 DOI: 10.3389/fimmu.2022.811525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
Women with autoimmune and inflammatory aetiologies can exhibit reduced fecundity. TNFAIP3 is a master negative regulator of inflammation, and has been linked to many inflammatory conditions by genome wide associations studies, however its role in fertility remains unknown. Here we show that mice harbouring a mild Tnfaip3 reduction-of-function coding variant (Tnfaip3I325N) that reduces the threshold for inflammatory NF-κB activation, exhibit reduced fecundity. Sub-fertility in Tnfaip3I325N mice is associated with irregular estrous cycling, low numbers of ovarian secondary follicles, impaired mammary gland development and insulin resistance. These pathological features are associated with infertility in human subjects. Transplantation of Tnfaip3I325N ovaries, mammary glands or pancreatic islets into wild-type recipients rescued estrous cycling, mammary branching and hyperinsulinemia respectively, pointing towards a cell-extrinsic hormonal mechanism. Examination of hypothalamic brain sections revealed increased levels of microglial activation with reduced levels of luteinizing hormone. TNFAIP3 coding variants may offer one contributing mechanism for the cause of sub-fertility observed across otherwise healthy populations as well as for the wide variety of auto-inflammatory conditions to which TNFAIP3 is associated. Further, TNFAIP3 represents a molecular mechanism that links heightened immunity with neuronal inflammatory homeostasis. These data also highlight that tuning-up immunity with TNFAIP3 comes with the potentially evolutionary significant trade-off of reduced fertility.
Collapse
Affiliation(s)
- Nathan W. Zammit
- Immunity and Inflammation Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Joseph McDowell
- Immunity and Inflammation Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Joanna Warren
- Immunity and Inflammation Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Walter Muskovic
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Joanne Gamble
- Centre for NSW Health Pathology, Institute of Clinical Pathology And Medical Research, Westmead Hospital, Westmead, NSW, Australia
| | - Yan-Chuan Shi
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Dominik Kaczorowski
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Chia-Ling Chan
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Joseph Powell
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Chris Ormandy
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Translation Science Pillar, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - David Brown
- Centre for NSW Health Pathology, Institute of Clinical Pathology And Medical Research, Westmead Hospital, Westmead, NSW, Australia
| | - Samantha R. Oakes
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Translation Science Pillar, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Shane T. Grey
- Immunity and Inflammation Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Translation Science Pillar, Garvan Institute of Medical Research, Sydney, NSW, Australia
| |
Collapse
|
9
|
Mechanisms of Central Hypogonadism. Int J Mol Sci 2021; 22:ijms22158217. [PMID: 34360982 PMCID: PMC8348115 DOI: 10.3390/ijms22158217] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 02/01/2023] Open
Abstract
Reproductive function depends upon an operational hypothalamo–pituitary–gonadal (HPG) axis. Due to its role in determining survival versus reproductive strategies, the HPG axis is vulnerable to a diverse plethora of signals that ultimately manifest with Central Hypogonadism (CH) in all its many guises. Acquired CH can result from any pituitary or hypothalamic lesion, including its treatment (such as surgical resection and/or radiotherapy). The HPG axis is particularly sensitive to the suppressive effects of hyperprolactinaemia that can occur for many reasons, including prolactinomas, and as a side effect of certain drug therapies. Physiologically, prolactin (combined with the suppressive effects of autonomic neural signals from suckling) plays a key role in suppressing the gonadal axis and establishing temporary CH during lactation. Leptin is a further key endocrine regulator of the HPG axis. During starvation, hypoleptinaemia (from diminished fat stores) results in activation of hypothalamic agouti-related peptide neurons that have a dual purpose to enhance appetite (important for survival) and concomitantly suppresses GnRH neurons via effects on neural kisspeptin release. Obesity is associated with hyperleptinaemia and leptin resistance that may also suppress the HPG axis. The suppressibility of the HPG axis also leaves it vulnerable to the effects of external signals that include morphine, anabolic-androgenic steroids, physical trauma and stress, all of which are relatively common causes of CH. Finally, the HPG axis is susceptible to congenital malformations, with reports of mutations within >50 genes that manifest with congenital CH, including Kallmann Syndrome associated with hyposmia or anosmia (reduction or loss of the sense of smell due to the closely associated migration of GnRH with olfactory neurons during embryogenesis). Analogous to the HPG axis itself, patients with CH are often vulnerable, and their clinical management requires both sensitivity and empathy.
Collapse
|
10
|
Synthesis of a green bigel using cottonseed oil/cannabis oil/alginate/ferula gum for quercetin release: Synergistic effects for treating infertility in rats. Int J Biol Macromol 2021; 177:157-165. [PMID: 33609576 DOI: 10.1016/j.ijbiomac.2021.02.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 02/15/2021] [Indexed: 11/24/2022]
Abstract
Although therapeutic effect of quercetin (Quer) was reported on non-alcoholic fatty liver disease (NAFLD), destructive effects have been shown on male fertility due to its pro-oxidative properties. On the other hand, NAFLD impairs germ cells to produce sperm and leads to male infertility. Herein, a biocompatible and green bigel was designed for Quer delivery to prevent infertility induced by NAFLD as the increasing complications. Bigels were prepared using cottonseed oil/cannabis oil/alginate/ferula gum and optimized by the mixture design method. NAFLD was induced by 58% of dietary calorie as lard and 42 g/l fructose for 16 weeks in Sprague-Dawley rats. So on animals received 2 mg/kg Quer loaded on bigels, free bigels, or free Quer for 45 days as daily gavage. Semen was analyzed, followed by the assessment of DNA integrity. Count, motility, and normal morphology reached the healthy control group at the bigel-Quer-treated one. Moreover, all of these parameters were significantly higher in the bigel-Quer group than the Quer and bigel, alone. The percent of sperms with head and tail abnormality decreased considerably in the bigel-Quer group compared with the Quer, free bigel, and NAFLD groups. Serum testosterone levels significantly increased and reached the healthy control group in the bigel-Quer group. DNA fragmentation of sperm significantly decreased in the bigel-Quer group (p < 0.05). The bigel showed synergistic effects with Quer for treating infertility in rats with NAFLD.
Collapse
|
11
|
Wojtulewicz K, Krawczyńska A, Tomaszewska-Zaremba D, Wójcik M, Herman AP. Effect of Acute and Prolonged Inflammation on the Gene Expression of Proinflammatory Cytokines and Their Receptors in the Anterior Pituitary Gland of Ewes. Int J Mol Sci 2020; 21:E6939. [PMID: 32967383 PMCID: PMC7554822 DOI: 10.3390/ijms21186939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 01/01/2023] Open
Abstract
An acute and prolonged inflammation inhibits the reproduction process by the disruption of the neurohormonal activity of the hypothalamic-pituitary-gonadal axis. It is thought that these changes may be caused by proinflammatory cytokines, i.e., interleukin (IL) -1β, IL-6 and tumor necrosis factor (TNF) α. The aim of this study was to determine the effect of an acute and prolonged inflammation on the expression of genes encoding cytokine and their receptors, gonadotropin releasing hormone receptor (GnRHR), beta subunits of luteinizing hormone (LHβ) and follicle-stimulating (FSHβ) in the anterior pituitary (AP). Moreover, the circulating concentration of LH and FSH was also assayed. Two experiments were carried out on adult ewes which were divided into two control groups and treated with lipopolysaccharide (LPS; 400 ng / kg). Acute inflammation was caused by a single injection of LPS into the external jugular vein, while the chronic inflammation was induced by seven times LPS injection (one a day). In both experiments, animals were euthanized 3h after the last LPS / NaCl injection and the blood samples collected 15 min before euthanasia. An acute inflammation stimulates the expression of the IL-1β, IL-6 and TNFα genes and their receptors in the AP of sheep. Prolonged inflammation increased TNFα gene expression and both types of TNFα and IL-6 receptors. Both an acute and prolonged inflammation inhibited LHβ gene expression in the AP and reduced LH level in blood. A sevenfold LPS injection raises FSH concentration. The gene expression of GnRHR was reduced in the ovine AP only after a single injection of endotoxin. Our results suggest that there are important differences in the way how an acute and prolonged inflammation influence proinflammatory cytokines and their receptors gene expression in the AP of anestrous ewes, which could be reflected by differences in the AP secretory activity during these states.
Collapse
Affiliation(s)
- Karolina Wojtulewicz
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 03-105 Jabłonna, Poland; (A.K.); (D.T.-Z.); (M.W.); (A.P.H.)
| | | | | | | | | |
Collapse
|
12
|
Staphylococcal infections and infertility: mechanisms and management. Mol Cell Biochem 2020; 474:57-72. [PMID: 32691256 DOI: 10.1007/s11010-020-03833-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/11/2020] [Indexed: 12/18/2022]
Abstract
Infertility is a subject of worldwide concern as it affects approximately 15% of couples. Among the prime contributors of infertility, urogenital bacterial infections have lately gained much clinical importance. Staphylococcal species are commensal bacteria and major human pathogens mediating an array of reproductive tract infections. Emerging evidences are 'bit by bit' revealing the mechanisms by which Staphylococci strategically disrupt normal reproductive functions. Staphylococcal species can directly or through hematogenous routes can invade the reproductive tissues. In the testicular cells, epididymis as well as in various compartments of female reproductive tracts, the pathogen recognition receptors, toll-like receptors (TLRs), can recognize the pathogen-associated molecular patterns on the Staphylococci and thereby activate inflammatory signalling pathways. These elicit pro-inflammatory mediators trigger other immune cells to infiltrate and release further inflammatory agents and reactive oxygen species (ROS). Adaptive immune responses may intensify the inflammation-induced reproductive tissue damage, particularly via activation of T-helper (Th) cells, Th1 and Th17 by the innate components or by staphylococcal exotoxins. Staphylococcal surface factors binding with sperm membrane proteins can directly impair sperm functions. Although Staphylococci, being one of the most virulent bacterial species, are major contributors in infection-induced infertility in both males and females, the mechanisms of their operations remain under-discussed. The present review aims to provide a comprehensive perception of the possible mechanisms of staphylococcal infection-induced male and female infertility and aid potential interventions to address the lack of competent therapeutic measures for staphylococcal infection-induced infertility.
Collapse
|
13
|
Wójcik M, Herman AP, Zieba DA, Krawczyńska A. The Impact of Photoperiod on the Leptin Sensitivity and Course of Inflammation in the Anterior Pituitary. Int J Mol Sci 2020; 21:ijms21114153. [PMID: 32532062 PMCID: PMC7312887 DOI: 10.3390/ijms21114153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Leptin has a modulatory impact on the course of inflammation, affecting the expression of proinflammatory cytokines and their receptors. Pathophysiological leptin resistance identified in humans occurs typically in sheep during the long-day photoperiod. This study aimed to determine the effect of the photoperiod with relation to the leptin-modulating action on the expression of the proinflammatory cytokines and their receptors in the anterior pituitary under physiological or acute inflammation. Two in vivo experiments were conducted on 24 blackface sheep per experiment in different photoperiods. The real-time PCR analysis for the expression of the genes IL1B, IL1R1, IL1R2, IL6, IL6R, IL6ST, TNF, TNFR1, and TNFR2 was performed. Expression of all examined genes, except IL1β and IL1R2, was higher during short days. The leptin injection increased the expression of all examined genes during short days. In short days the synergistic effect of lipopolysaccharide and leptin increased the expression of IL1B, IL1R1, IL1R2, IL6, TNF, and TNFR2, and decreased expression of IL6ST. This mechanism was inhibited during long days for the expression of IL1R1, IL6, IL6ST, and TNFR1. The obtained results suggest the occurrence of leptin resistance during long days and suggest that leptin modulates the course of inflammation in a photoperiod-dependent manner in the anterior pituitary.
Collapse
Affiliation(s)
- Maciej Wójcik
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland; (A.P.H.); (A.K.)
- Correspondence:
| | - Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland; (A.P.H.); (A.K.)
| | - Dorota Anna Zieba
- Laboratory of Biotechnology and Genomics, Department of Nutrition, Animal Biotechnology and Fisheries, Agricultural University of Krakow, 30-248 Krakow, Poland;
| | - Agata Krawczyńska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland; (A.P.H.); (A.K.)
| |
Collapse
|
14
|
Chung GE, Yim JY, Kim D, Kwak MS, Yang JI, Park B, An SJ, Kim JS. Nonalcoholic Fatty Liver Disease Is Associated with Benign Prostate Hyperplasia. J Korean Med Sci 2020; 35:e164. [PMID: 32508064 PMCID: PMC7279945 DOI: 10.3346/jkms.2020.35.e164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/31/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is associated with a wide spectrum of metabolic abnormalities. This study aimed to evaluate whether NAFLD is associated with benign prostatic hyperplasia (BPH) independent of other risk factors. METHODS A total of 3,508 subjects who underwent prostate and hepatic ultrasonography were enrolled. NAFLD was diagnosed and graded by ultrasonographic findings. BPH was defined by total prostate volume. RESULTS The prevalence of BPH was significantly increased according to NAFLD severity (P < 0.001). The multivariate analysis showed that NAFLD was associated with a 22% increase in the risk of BPH (odds ratio [OR], 1.22; 95% confidence interval [CI], 1.02-1.45). In non-obese subjects, NAFLD was associated with a 41% increase in the risk of BPH (OR, 1.41; 95% CI, 1.14-1.73), and an incremental increase in the risk of BPH according to NAFLD severity was pronounced (adjusted OR [95% CI], 1.32 [1.05-1.68] for mild NAFLD, 1.55 [1.15-2.10] for moderate to severe NAFLD vs. no NAFLD, P for trend = 0.004). However, in the obese population, the association of NAFLD in the risk of BPH was insignificant (P = 0.208). CONCLUSION NAFLD is associated with an increased risk of BPH regardless of metabolic syndrome, especially in non-obese subjects. An incrementally increased risk of BPH according to NAFLD severity is prominent in non-obese subjects with NAFLD. Thus, physicians caring for non-obese patients with NAFLD may consider assessing the risk of BPH and associated urologic conditions.
Collapse
Affiliation(s)
- Goh Eun Chung
- Department of Internal Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| | - Jeong Yoon Yim
- Department of Internal Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea.
| | - Donghee Kim
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Min Sun Kwak
- Department of Internal Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| | - Jong In Yang
- Department of Internal Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| | - Boram Park
- Department of Public Health Science, Seoul National University, Seoul, Korea
| | | | - Joo Sung Kim
- Department of Internal Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Xu P, Choi E, White K, Yafi FA. Low Testosterone in Male Cancer Patients and Survivors. Sex Med Rev 2020; 9:133-142. [PMID: 32430241 DOI: 10.1016/j.sxmr.2020.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Hypogonadism (HG) is prevalent among patients with ongoing advanced cancer and cancer survivors. The etiology of HG in these patients is multifactorial and can be examined from cancer-related and cancer-treatment perspectives. There is evidence that HG contributes to increased morbidity in male cancer patients. Testosterone replacement therapy (TRT) for cancer survivors and advanced cancer patients is not well studied outside of prostate cancer. Here, we evaluate and summarize the current literature on HG in male cancer patients, including the role of TRT in nonprostate cancer patients. OBJECTIVE To summarize and present the literature for the background, etiology, clinical consequences, and treatment for HG in male cancer patients and survivors. METHODS A literature review was performed in MEDLINE between 1980 and 2020 using the terms hypogonadism, advanced cancer, testosterone replacement therapy, quality of life, and cancer survivors. Studies including only prostate cancer patients were excluded. RESULTS The main outcome measure was to complete a review of peer-reviewed literature. HG is not only prevalent among male cancer patients and survivors but also clinically reduces quality of life and increases morbidity. The etiology of HG in male cancer patients and survivors is multifactorial. There are few studies examining the benefit of TRT in these patient populations. The results of randomized controlled trials show potential benefit for TRT in hypogonadal male cancer survivors and those with advanced cancer. CONCLUSION HG affects many male cancer patients and survivors because of a multifactorial etiology. HG in these patients contributes to increased morbidity and reduced quality of life. Treatment of HG in male cancer patients is not well studied, and further studies are needed to elucidate the role of TRT. Xu P, Choi E, White K, et al. Low Testosterone in Male Cancer Patients and Survivors. Sex Med 2021;9:133-142.
Collapse
Affiliation(s)
- Perry Xu
- Department of Urology, University of California Irvine, Irvine, CA, USA
| | - Edward Choi
- Department of Urology, University of California Irvine, Irvine, CA, USA
| | - Kayla White
- Department of Urology, University of California Irvine, Irvine, CA, USA
| | - Faysal A Yafi
- Department of Urology, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
16
|
Nonalcoholic Fatty Liver Disease, Male Sexual Dysfunction, and Infertility: Common Links, Common Problems. Sex Med Rev 2020; 8:274-285. [DOI: 10.1016/j.sxmr.2019.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/28/2018] [Accepted: 01/14/2019] [Indexed: 12/18/2022]
|
17
|
Szlis M, Wójcik-Gładysz A, Przybył BJ. Central obestatin administration affect the LH and FSH secretory activity in peripubertal sheep. Theriogenology 2020; 145:10-17. [PMID: 31982689 DOI: 10.1016/j.theriogenology.2020.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Obestatin - a 23 amino acid peptide is synthesized as another product of the ghrl gene and its synthesis occurs mainly in gastric mucosa cells. This hormone is involved in complex gut-brain neurohormonal networks, thereby can participates in the modulation of gonadotrophic axis activity. The aim of this study was to investigate the consequence of intracerebroventricular infusions of obestatin on LH and FSH pituitary cells secretory activity in peripubertal female sheep. Animals were randomly divided into two groups: the control group (n = 14) received intracerebroventricular infusions of Ringer-Lock solution (120 μL h-1), and the obestatin group (n = 14) was infused with obestatin (25 μg/120 μL h-1) diluted in Ringer-Lock solution. A series of four infusions was performed on three consecutive days. Blood samples were collected on day 0 and day 3. The sheep were slaughtered immediately after the end of the experiment. For molecular biological analysis, pituitaries from 7 sheep from each group (n = 7 + 7) were prepared and frozen in liquid nitrogen immediately after collection and then stored at -80 °C until Real Time RT-qPCR and RIA analyzes. For immunohistochemical analysis, pituitary tissues from the remaining animals (n = 7 + 7) was fixed in situ for further examination. Real-Time qPCR and immunohistochemistry analyses revealed substantial changes in the LH and FSH pituitary cells secretory activity in obestatin-infused sheep. Exogenous obestatin administration reduced LHβ mRNA expression and increased the accumulation of immunoreactive LH in gonadotrophic cells of the adenohypophysis. These changes were accompanied by a decrease in the mean LH concentration in the peripheral blood resulting from the lower LH pulse amplitude. Moreover, an increase in both FSHβ mRNA expression and FSH immunoreactivity and amount in pituitary cells were noted, while mean blood FSH concentration remained unchanged after obestatin treatment. The obtained results showed that exogenous obestatin affected LH secretory activity at the level of protein synthesis, accumulation and release as well as obestatin increase FSHβ mRNA expression and accumulation of this hormone but at the same time have no effect on FSH release to blood. Thus, obestatin can participate in the neuroendocrine network, which modulates gonadotrophic axis activity in sheep.
Collapse
Affiliation(s)
- Michał Szlis
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Anna Wójcik-Gładysz
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland.
| | - Bartosz Jarosław Przybył
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| |
Collapse
|
18
|
Barabás K, Szabó-Meleg E, Ábrahám IM. Effect of Inflammation on Female Gonadotropin-Releasing Hormone (GnRH) Neurons: Mechanisms and Consequences. Int J Mol Sci 2020; 21:ijms21020529. [PMID: 31947687 PMCID: PMC7014424 DOI: 10.3390/ijms21020529] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
: Inflammation has a well-known suppressive effect on fertility. The function of gonadotropin-releasing hormone (GnRH) neurons, the central regulator of fertility is substantially altered during inflammation in females. In our review we discuss the latest results on how the function of GnRH neurons is modified by inflammation in females. We first address the various effects of inflammation on GnRH neurons and their functional consequences. Second, we survey the possible mechanisms underlying the inflammation-induced actions on GnRH neurons. The role of several factors will be discerned in transmitting inflammatory signals to the GnRH neurons: cytokines, kisspeptin, RFamide-related peptides, estradiol and the anti-inflammatory cholinergic pathway. Since aging and obesity are both characterized by reproductive decline our review also focuses on the mechanisms and pathophysiological consequences of the impact of inflammation on GnRH neurons in aging and obesity.
Collapse
Affiliation(s)
- Klaudia Barabás
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, H-7624 Pécs, Hungary;
| | - Edina Szabó-Meleg
- Departement of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary;
| | - István M. Ábrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, H-7624 Pécs, Hungary;
- Correspondence:
| |
Collapse
|
19
|
Herman AP, Skipor J, Krawczyńska A, Bochenek J, Wojtulewicz K, Pawlina B, Antushevich H, Herman A, Tomaszewska-Zaremba D. Effect of Central Injection of Neostigmine on the Bacterial Endotoxin Induced Suppression of GnRH/LH Secretion in Ewes during the Follicular Phase of the Estrous Cycle. Int J Mol Sci 2019; 20:ijms20184598. [PMID: 31533319 PMCID: PMC6769544 DOI: 10.3390/ijms20184598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022] Open
Abstract
Induced by a bacterial infection, an immune/inflammatory challenge is a potent negative regulator of the reproduction process in females. The reduction of the synthesis of pro-inflammatory cytokine is considered as an effective strategy in the treatment of inflammatory induced neuroendocrine disorders. Therefore, the effect of direct administration of acetylcholinesterase inhibitor—neostigmine—into the third ventricle of the brain on the gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretions under basal and immune stress conditions was evaluated in this study. In the study, 24 adult, 2-years-old Blackhead ewes during the follicular phase of their estrous cycle were used. Immune stress was induced by the intravenous injection of LPS Escherichia coli in a dose of 400 ng/kg. Animals received an intracerebroventricular injection of neostigmine (1 mg/animal) 0.5 h before LPS/saline treatment. It was shown that central administration of neostigmine might prevent the inflammatory-dependent decrease of GnRH/LH secretion in ewes and it had a stimulatory effect on LH release. This central action of neostigmine is connected with its inhibitory action on local pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)α synthesis in the hypothalamus, which indicates the importance of this mediator in the inhibition of GnRH secretion during acute inflammation.
Collapse
Affiliation(s)
- Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
- Correspondence: ; Tel.: +48-22-765-33-02; Fax: +48-22-765-33-03
| | - Janina Skipor
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Agata Krawczyńska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| | - Joanna Bochenek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| | - Karolina Wojtulewicz
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| | - Bartosz Pawlina
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| | - Hanna Antushevich
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| | - Anna Herman
- Faculty of Health Sciences, Warsaw School of Engineering and Health, 02-366 Warsaw, Poland;
| | - Dorota Tomaszewska-Zaremba
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-100 Jabłonna, Poland; (A.K.); (J.B.); (K.W.); (B.P.); (H.A.); (D.T.-Z.)
| |
Collapse
|
20
|
Bashir SO. Concomitant administration of resveratrol and insulin protects against diabetes mellitus type-1-induced renal damage and impaired function via an antioxidant-mediated mechanism and up-regulation of Na +/K +-ATPase. Arch Physiol Biochem 2019; 125:104-113. [PMID: 29436859 DOI: 10.1080/13813455.2018.1437752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study investigated if a combination of resveratrol (RES) and insulin could reverse type 1 diabetic mellitus-induced (T1DM) nephropathy and illustrates mechanism of action. Rats were divided into six groups (n = 10/group) as follows: control, control + RES (20 mg/kg), T1DM, T1DM + RES, T1DM + insulin (1 U/g), and T1DM + RES + insulin and treated for eight weeks. While individual administrations of both drugs significantly but partially restored renal function and cortex architectures, combination therapy of both RES and insulin produced the maximum improvements. Mechanism of actions revealed a synergist effect of both drugs due to hypoglycaemic effect of insulin and the ability of both drugs to increase renal cortex antioxidant enzymes activities, inhibit lipid peroxidation, and up-regulate Na+/K+-ATPase, independent of each others. In conclusion, these data suggest the combined therapy with insulin and RES could provide an excellent combined drug therapy against T1DM-induced nephropathy.
Collapse
Affiliation(s)
- Salah O Bashir
- a Department of Physiology, College of Medicine , King Khalid University , Abha , Saudi Arabia
| |
Collapse
|
21
|
Berbets A, Koval H, Barbe A, Albota O, Yuzko O. Melatonin decreases and cytokines increase in women with placental insufficiency. J Matern Fetal Neonatal Med 2019; 34:373-378. [PMID: 31023180 DOI: 10.1080/14767058.2019.1608432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purpose: To investigate the levels of melatonin, proinflammatory and anti-inflammatory cytokines in pregnant women with placental insufficiency (PI).Materials and Methods: The PI was manifested as the intrauterine growth restriction syndrome of fetus (IUGR) in the third pregnancy trimester. The control group consisted of 20 women with uncomplicated pregnancy in the same term. The blood concentrations of melatonin, proinflammatory cytokines, such as tumor necrotizing factor-α (TNF-α), interleukin-1-β (IL-1-β), interleukin-6 (IL-6), and anti-inflammatory cytokines, such as interleukin-4 (IL-4), and interleukin-10 (IL-10), were studied.Results: The concentration of melatonin was found to decrease significantly if pregnancy was complicated by intrauterine fetal growth retardation (study group -126.87 ± 14.87 pg/ml, control group -231.25 ± 21.56 pg/ml, p < .001). The levels of proinflammatory cytokines in the study group were significantly higher as compared with the control group (TNF-α: study group -10.05 ± 1.35 pg/ml, control group -5.60 ± 1.50 pg/ml, p < .05; IL-1-β: study group -14.67 ± 2.13 pg/ml, control group -3.96 ± 0.92 pg/ml, p < .001; IL-6: study group -6.91 ± 0.99 pg/ml, control group -2.69 ± 0.99 pg/ml, p < .05). The same is true about anti-inflammatory cytokines (IL-4: study group -5.97 ± 0.50 pg/ml, control group -3.74 ± 0.62 pg/ml, p < .05; IL-10: study group -11.40 ± 1.50 pg/ml, control group -4.70 ± 3.20 pg/ml, p < .001). A moderate negative correlation between melatonin and IL-1-β in the group with PI (r = -0.3776, p = .0097), a closed negative correlation between the same indexes in the control group (r = -0.6785, p = .001), and a moderate negative correlation between melatonin and TNF-α (r = -0.4908, p = .02) were found.Conclusions: The blood level of melatonin significantly decreases in case of placental insufficiency, manifested as intrauterine fetal growth restriction. Strengthening of the proinflammatory immunity shown as the increasing of the levels of TNF-α, IL-1-β, and IL-6 levels is also present in case of IUGR. Increase of the serum concentration of the anti-inflammatory cytokines, such as IL-4 and IL-10, in our opinion, can be explained by activation of compensatory mechanisms, which decrease the risk of premature labor.
Collapse
Affiliation(s)
- Andrii Berbets
- Department of Obstetrics and Gynecology, Bukovinskij Derzhavnij Medichnij Universitet, Chernivtsi, Ukraine
| | - Halyna Koval
- Department of Clinical Immunology and Endocrinology, Bukovinskij Derzhavnij Medichnij Universitet, Chernivtsi, Ukraine
| | - Adrian Barbe
- Department of Obstetrics and Gynecology, Bukovinskij Derzhavnij Medichnij Universitet, Chernivtsi, Ukraine
| | - Olena Albota
- Department of Obstetrics and Gynecology, Bukovinskij Derzhavnij Medichnij Universitet, Chernivtsi, Ukraine
| | - Oleksandr Yuzko
- Department of Obstetrics and Gynecology, Bukovinskij Derzhavnij Medichnij Universitet, Chernivtsi, Ukraine
| |
Collapse
|
22
|
Wojtulewicz K, Tomaszewska-Zaremba D, Krawczyńska A, Tomczyk M, Przemysław Herman A. The effect of inflammation on the synthesis of luteinizing hormone and gonadotropin-releasing hormone receptor expression in the pars tuberalis of ewe during different photoperiodic conditions. CANADIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1139/cjas-2017-0121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study was designed to determine the effect of endotoxin-induced inflammation on luteinizing hormone (LH) synthesis and gonadotropin-releasing hormone (GnRH) receptor expression in the pars tuberalis (PT) of ewes during anestrous season and follicular phase taking into account the time of the day. Moreover, the effect of inflammation on the release of melatonin and its type I receptor gene expression in the PT was also determined. Lipopolysaccharide administration reduced nocturnal release of melatonin only during anestrous season, but it did not influence the gene expression of melatonin type I receptor in the PT. Inflammation inhibited nocturnal increase in the gene and protein expression of LH in the PT during the follicular phase. Since in day-active species nocturnal accumulation of LH protein in the pituitary precedes the LH surge, this lowering of LH content may delay or disturb the surge occurrence. Suppression of LH secretion could have resulted from the decreased sensitivity of the PT on the action of GnRH because inflammation reduced GnRH receptor expression. The study suggests that the ability of endotoxin to suppress LH synthesis in the PT may be another mechanism by which inflammation disturbs reproductive neuroendocrine axis in seasonal breeders.
Collapse
Affiliation(s)
- Karolina Wojtulewicz
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Dorota Tomaszewska-Zaremba
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Agata Krawczyńska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Monika Tomczyk
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| | - Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, Jabłonna 05-110, Poland
| |
Collapse
|
23
|
Yim JY, Kim J, Kim D, Ahmed A. Serum testosterone and non-alcoholic fatty liver disease in men and women in the US. Liver Int 2018. [PMID: 29517842 DOI: 10.1111/liv.13735] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Testosterone plays a role in predisposing individuals to cardiovascular and metabolic diseases, but its effects differ between men and women. We investigated the association between serum total testosterone and non-alcoholic fatty liver disease in adults in the US. METHODS A cross-sectional analysis of data from participants in the 2011-2012 National Health and Nutrition Examination Survey was performed. Subjects with significant alcohol consumption and those with viral hepatitis were excluded. We used the highest sex-specific quartiles of serum total testosterone as references. Suspected non-alcoholic fatty liver disease was diagnosed when serum alanine aminotransferase was >30 IU/L for men and >19 IU/L for women. RESULTS Of the 4758 subjects (49.4% men), the prevalence of suspected non-alcoholic fatty liver disease was inversely correlated with the sex-specific quartiles of testosterone in men and women. In a multivariate model, low total testosterone levels were associated with progressively higher odds of suspected non-alcoholic fatty liver disease in men after adjusting for age, obesity and other metabolic risk factors (P values for trends <.01). When the women were divided into 2 groups according to menopausal status, a significant correlation was observed only in the post-menopausal women (P values for trends <.01). The adjusted odds ratios for suspected non-alcoholic fatty liver disease were 1.72-1.99 in men and 2.15-2.26 in post-menopausal women (lowest quartile vs highest quartile). CONCLUSIONS In this nationally representative sample of adults in the US, low total testosterone levels were associated with suspected non-alcoholic fatty liver disease in men and post-menopausal women independent of known risk factors.
Collapse
Affiliation(s)
- Jeong Yoon Yim
- Department of Internal Medicine, Healthcare Research Institute, Gangnam Healthcare Center, Seoul National University Hospital, Seoul, Korea
| | - Jinju Kim
- Department of Obstetrics and Gynecology, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea.,The Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Donghee Kim
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
24
|
The Role of Interleukin-10 in Mediating the Effect of Immune Challenge on Mouse Gonadotropin-Releasing Hormone Neurons In Vivo. eNeuro 2018; 5:eN-NWR-0211-18. [PMID: 30406179 PMCID: PMC6220573 DOI: 10.1523/eneuro.0211-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022] Open
Abstract
Immune challenge alters neural functioning via cytokine production. Inflammation has profound impact on the central regulation of fertility, but the mechanisms involved are not clearly defined. The anti-inflammatory cytokine interleukin (IL)-10 is responsible for balancing the immune response in the brain. To examine whether IL-10 has an effect on the function of the gonadotropin-releasing hormone (GnRH) neurons, we first examined the effect of immune responses with distinct cytokine profiles, such as the T cell-dependent (TD) and T cell-independent (TI) B-cell response. We investigated the effect of the TD and TI immune responses on ERK1/2 phosphorylation in GnRH neurons by administering fluorescein isothiocyanate/keyhole limpet hemocyanin (KLH-FITC) or dextran-FITC to female mice. Although dextran-FITC had no effect, KLH-FITC induced ERK1/2 phosphorylation in GnRH neurons after 6 d. KLH-FITC treatment increased the levels of IL-10 in the hypothalamus (HYP), but this treatment did not cause lymphocyte infiltration or an increase in the levels of proinflammatory cytokines. In IL-10 knock-out (KO) mice, KLH-FITC-induced ERK1/2 phosphorylation in the GnRH neurons was absent. We also showed that in IL-10 KO mice, the estrous cycle was disrupted. Perforated patch-clamp recordings from GnRH-GFP neurons, IL-10 immunohistochemistry, and in vitro experiments on acute brain slices revealed that IL-10 can directly alter GnRH neuron firing and induce ERK1/2 phosphorylation. These observations demonstrate that IL-10 plays a role in influencing signaling of GnRH neurons in the TD immune response. These results also provide the first evidence that IL-10 can directly alter the function of GnRH neurons and may help the maintenance of the integrity of the estrous cycle.
Collapse
|
25
|
Saedi S, Khoradmehr A, Mohammad Reza JS, Tamadon A. The role of neuropeptides and neurotransmitters on kisspeptin/kiss1r-signaling in female reproduction. J Chem Neuroanat 2018; 92:71-82. [PMID: 30008384 DOI: 10.1016/j.jchemneu.2018.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/01/2018] [Accepted: 07/02/2018] [Indexed: 01/08/2023]
Abstract
Reproductive function is regulated by the hypothalamic-pituitary-gonads (HPG) axis. Hypothalamic neurons synthesizing kisspeptin play a fundamental role in the central regulation of the timing of puberty onset and reproduction in mammals. Kisspeptin is a regulator of gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH). In female rodent, the kisspeptin (encoded by kiss1 gene), neurokinin B (Tac3) and dynorphin neurons form the basis for the "KNDy neurons" in the arcuate nucleus and play a fundamental role in the regulation of GnRH/LH release. Furthermore, various factors including neurotransmitters and neuropeptides may cooperate with kisspeptin signaling to modulate GnRH function. Many neuropeptides including proopiomelanocortin, neuropeptide Y, agouti-related protein, and other neuropeptides, as well as neurotransmitters, dopamine, norepinephrine and γ-aminobutyric acid are suggested to control feeding and HPG axis, the underlying mechanisms are not well known. Nonetheless, to date, information about the neurochemical factors of kisspeptin neurons remains incomplete in rodent. This review is intended to provide an overview of KNDy neurons; major neuropeptides and neurotransmitters interfere in kisspeptin signaling to modulate GnRH function for regulation of puberty onset and reproduction, with a focus on the female rodent.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Arezoo Khoradmehr
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | | | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
26
|
Wojtulewicz K, Tomaszewska-Zaremba D, Herman AP. Endotoxin-Induced Inflammation Suppresses the Effect of Melatonin on the Release of LH from the Ovine Pars Tuberalis Explants-Ex Vivo Study. Molecules 2017; 22:E1933. [PMID: 29125559 PMCID: PMC6150294 DOI: 10.3390/molecules22111933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/27/2022] Open
Abstract
The secretion of the hormone melatonin reliably reflects environmental light conditions. Among numerous actions, in seasonal breeders, melatonin may regulate the secretion of the gonadotropins acting via its corresponding receptors occurring in the Pars Tuberalis (PT). However, it was previously found that the secretory activity of the pituitary may be dependent on the immune status of the animal. Therefore, this study was designed to determine the role of melatonin in the modulation of luteinizing hormone (LH) secretion from the PT explants collected from saline- and endotoxin-treated ewes in the follicular phase of the oestrous cycle. Twelve Blackhead ewes were sacrificed 3 h after injection with lipopolysaccharide (LPS; 400 ng/kg) or saline, and the PTs were collected. Each PT was cut into 4 explants, which were then divided into 4 groups: I, incubated with 'pure' medium 199; II, treated with gonadotropin-releasing hormone (GnRH) (100 pg/mL); III, treated with melatonin (10 nmol/mL); and IV, incubated with GnRH and melatonin. Melatonin reduced (p < 0.05) GnRH-induced secretion of LH only in the PT from saline-treated ewes. Explants collected from LPS-treated ewes were characterized by lower (p < 0.05) GnRH-dependent response in LH release. It was also found that inflammation reduced the gene expression of the GnRH receptor and the MT1 melatonin receptors in the PT. Therefore, it was shown that inflammation affects the melatonin action on LH secretion from the PT, which may be one of the mechanisms via which immune/inflammatory challenges disturb reproduction processes in animals.
Collapse
Affiliation(s)
- Karolina Wojtulewicz
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, 05-110 Jabłonna, Poland.
| | - Dorota Tomaszewska-Zaremba
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, 05-110 Jabłonna, Poland.
| | - Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, 05-110 Jabłonna, Poland.
| |
Collapse
|
27
|
Peripheral Inhibitor of AChE, Neostigmine, Prevents the Inflammatory Dependent Suppression of GnRH/LH Secretion during the Follicular Phase of the Estrous Cycle. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6823209. [PMID: 28894751 PMCID: PMC5574266 DOI: 10.1155/2017/6823209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 11/17/2022]
Abstract
The study was designed to test the hypothesis that the inhibition of acetylcholinesterase (AChE) activity at the periphery by Neostigmine (0.5 mg/animal) will be sufficient to prevent inflammatory dependent suppression of the gonadotropin-releasing hormone (GnRH)/luteinising hormone (LH) secretion in ewes in the follicular phase of the estrous cycle, and this effect will be comparable with the systemic AChE inhibitor, Donepezil (2.5 mg/animal). An immune/inflammatory challenge was induced by peripheral administration of lipopolysaccharide (LPS; 400 ng/kg). Peripheral treatment with Donepezil and Neostigmine prevented the LPS-induced decrease (P < 0.05) in LHβ gene expression in the anterior pituitary gland (AP) and in LH release. Moreover, Donepezil completely abolished (P < 0.05) the suppressory effect of inflammation on GnRH synthesis in the preoptic area, when pretreatment with Neostigmine reduced (P < 0.05) the decrease in GnRH content in this hypothalamic structure. Moreover, administration of both AChE inhibitors diminished (P < 0.05) the inhibitory effect of LPS treatment on the expression of GnRH receptor in the AP. Our study shows that inflammatory dependent changes in the GnRH/LH secretion may be eliminated or reduced by AChE inhibitors suppressing inflammatory reaction only at the periphery such as Neostigmine, without the need for interfering in the central nervous system.
Collapse
|
28
|
Cytokines in Endocrine Dysfunction of Plasma Cell Disorders. Mediators Inflamm 2017; 2017:7586174. [PMID: 28740334 PMCID: PMC5504949 DOI: 10.1155/2017/7586174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/25/2017] [Indexed: 12/25/2022] Open
Abstract
Monoclonal gammopathies (MG) are classically associated with lytic bone lesions, hypercalcemia, anemia, and renal insufficiency. However, in some cases, symptoms of endocrine dysfunction are more prominent than these classical signs and misdiagnosis can thus be possible. This concerns especially the situation where the presence of M-protein is limited and the serum protein electrophoresis (sPEP) appears normal. To understand the origin of the endocrine symptoms associated with MG, we overview here the current knowledge on the complexity of interactions between cytokines and the endocrine system in MG and discuss the perspectives for both the diagnosis and treatments for this class of diseases. We also illustrate the role of major cytokines and growth factors such as IL-6, IL-1β, TNF-α, and VEGF in the endocrine system, as these tumor-relevant signaling molecules not only help the clonal expansion and invasion of the tumor cells but also influence cellular metabolism through autocrine, paracrine, and endocrine mechanisms. We further discuss the broader impact of these tumor environment-derived molecules and proinflammatory state on systemic hormone signaling. The diagnostic challenges and clinical work-up are illustrated from the point of view of an endocrinologist.
Collapse
|
29
|
Fergani C, Routly JE, Jones DN, Pickavance LC, Smith RF, Dobson H. KNDy neurone activation prior to the LH surge of the ewe is disrupted by LPS. Reproduction 2017. [PMID: 28630099 DOI: 10.1530/rep-17-0191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the ewe, steroid hormones act on the hypothalamic arcuate nucleus (ARC) to initiate the GnRH/LH surge. Within the ARC, steroid signal transduction may be mediated by estrogen receptive dopamine-, β-endorphin- or neuropeptide Y (NPY)-expressing cells, as well as those co-localising kisspeptin, neurokinin B (NKB) and dynorphin (termed KNDy). We investigated the time during the follicular phase when these cells become activated (i.e., co-localise c-Fos) relative to the timing of the LH surge onset and may therefore be involved in the surge generating mechanism. Furthermore, we aimed to elucidate whether these activation patterns are altered after lipopolysaccharide (LPS) administration, which is known to inhibit the LH surge. Follicular phases of ewes were synchronised by progesterone withdrawal and blood samples were collected every 2 h. Hypothalamic tissue was retrieved at various times during the follicular phase with or without the administration of LPS (100 ng/kg). The percentage of activated dopamine cells decreased before the onset of sexual behaviour, whereas activation of β-endorphin decreased and NPY activation tended to increase during the LH surge. These patterns were not disturbed by LPS administration. Maximal co-expression of c-Fos in dynorphin immunoreactive neurons was observed earlier during the follicular phase, compared to kisspeptin and NKB, which were maximally activated during the surge. This indicates a distinct role for ARC dynorphin in the LH surge generation mechanism. Acute LPS decreased the percentage of activated dynorphin and kisspeptin immunoreactive cells. Thus, in the ovary-intact ewe, KNDy neurones are activated prior to the LH surge onset and this pattern is inhibited by the administration of LPS.
Collapse
Affiliation(s)
- C Fergani
- School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - J E Routly
- School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - D N Jones
- School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - L C Pickavance
- School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - R F Smith
- School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - H Dobson
- School of Veterinary Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
30
|
Tomaszewska-Zaremba D, Herman A, Haziak K. How does bacterial endotoxin influence gonadoliberin/gonadotropins secretion and action? JOURNAL OF ANIMAL AND FEED SCIENCES 2016. [DOI: 10.22358/jafs/67366/2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Guo R, Qin Y, Shi P, Xie J, Chou M, Chen Y. IL-1β promotes proliferation and migration of gallbladder cancer cells via Twist activation. Oncol Lett 2016; 12:4749-4755. [PMID: 28105184 DOI: 10.3892/ol.2016.5254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 07/20/2016] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence has revealed a correlation between chronic inflammation and gallbladder cancer (GBC). However, the underlying molecular mechanisms remain to be elucidated. In the present study, secretion of interleukin (IL)-1β was examined in tissues of GBC, chronic cholecystitis and normal gallbladder, as well as in the supernatant of GBC-SD, SGC996 and HIBEpiC cells. The effect of IL-1β on the proliferation and migration of GBC cell lines was also evaluated. In addition, the role of Twist in IL-1β-induced proliferation of GBC cells was also studied. It was observed that the level of IL-1β protein in normal gallbladder tissue was low, while it was significantly increased in GBC and chronic cholecystitis tissues. The level of IL-1β protein and mRNA in GBC-SD and SGC996 cells was markedly higher than those in HIBEpiC cells. Exogenous IL-1β promoted the proliferation of GBC-SD and SGC996 cells in vitro and in vivo, and also promoted migration in vitro. The level of Twist protein was significantly increased following treatment with exogenous IL-1β. In addition, gene silencing of Twist blocked IL-1β-induced proliferation and migration of GBC-SD and SGC996 cells. Taken together, these results indicate that IL-1β promotes proliferation and migration of GBC cells via Twist activation.
Collapse
Affiliation(s)
- Runsheng Guo
- Department of General Surgery, Jiading Central Hospital, Shanghai 201800, P.R. China
| | - Yiyu Qin
- Clinical College, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224005, P.R. China
| | - Peidong Shi
- Department of General Surgery, Jiading Central Hospital, Shanghai 201800, P.R. China
| | - Jinbi Xie
- Department of Gastroenterology, Jiading Central Hospital, Shanghai 201899, P.R. China
| | - Ming Chou
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 201705, P.R. China
| | - Yueyu Chen
- Department of General Surgery, Jiading Central Hospital, Shanghai 201800, P.R. China
| |
Collapse
|
32
|
Veldhuis J, Yang R, Roelfsema F, Takahashi P. Proinflammatory Cytokine Infusion Attenuates LH's Feedforward on Testosterone Secretion: Modulation by Age. J Clin Endocrinol Metab 2016; 101:539-49. [PMID: 26600270 PMCID: PMC4880122 DOI: 10.1210/jc.2015-3611] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT In the experimental animal, inflammatory signals quench LH's feedforward drive of testosterone (T) secretion and appear to impair GnRH-LH output. The degree to which such suppressive effects operate in the human is not known. OBJECTIVE To test the hypothesis that IL-2 impairs LH's feedforward drive on T and T's feedback inhibition of LH secretion in healthy men. SETTING Mayo Center for Translational Science Activities. PATIENTS OR OTHER PARTICIPANTS A total of 35 healthy men, 17 young and 18 older. INTERVENTIONS Randomized prospective double-blind saline-controlled study of IL-2 infusion in 2 doses with concurrent 10-minute blood sampling for 24 hours. MAIN OUTCOME MEASURES Deconvolution analysis of LH and T secretion. RESULTS After saline injection, older compared with young men exhibited reduced LH feedforward drive on T secretion (P < .001), and decreased T feedback inhibition of LH secretion (P < .01). After IL-2 injection, LH's feedforward onto T secretion declined markedly especially in young subjects (P < .001). Concomitantly, IL-2 potentiated T's proportional feedback on LH secretion especially in older volunteers. CONCLUSION This investigation confirms combined feedforward and feedback deficits in older relative to young men given saline and demonstrates 1) joint mechanisms by which IL-2 enforces biochemical hypogonadism, viz, combined feedforward block and feedback amplification; and 2) unequal absolute inhibition of T and LH secretion by IL-2 in young and older men. These outcomes establish that the male gonadal axis is susceptible to dual-site suppression by a prototypic inflammatory mediator. Thus, we postulate that selected ILs might also enforce male hypogonadism in chronic systemic inflammation.
Collapse
Affiliation(s)
- Johannes Veldhuis
- Endocrine Research Unit (J.V., R.Y.), Mayo Clinic College of Medicine, Center for Translational Science Activities, and Primary Care Internal Medicine (P.T.), Mayo Clinic, Rochester, Minnesota 55905; and Leiden University Medical Center (F.R.), 2333ZA Leiden, The Netherlands
| | - Rebecca Yang
- Endocrine Research Unit (J.V., R.Y.), Mayo Clinic College of Medicine, Center for Translational Science Activities, and Primary Care Internal Medicine (P.T.), Mayo Clinic, Rochester, Minnesota 55905; and Leiden University Medical Center (F.R.), 2333ZA Leiden, The Netherlands
| | - Ferdinand Roelfsema
- Endocrine Research Unit (J.V., R.Y.), Mayo Clinic College of Medicine, Center for Translational Science Activities, and Primary Care Internal Medicine (P.T.), Mayo Clinic, Rochester, Minnesota 55905; and Leiden University Medical Center (F.R.), 2333ZA Leiden, The Netherlands
| | - Paul Takahashi
- Endocrine Research Unit (J.V., R.Y.), Mayo Clinic College of Medicine, Center for Translational Science Activities, and Primary Care Internal Medicine (P.T.), Mayo Clinic, Rochester, Minnesota 55905; and Leiden University Medical Center (F.R.), 2333ZA Leiden, The Netherlands
| |
Collapse
|
33
|
Abstract
Controversies surround the usefulness of identifying patients with the metabolic syndrome (MetS). Many of the components are accepted risk factors for cardiovascular disease (CVD). Although the MetS as defined includes many men with insulin resistance, insulin resistance is not universal. The low total testosterone (TT) and sex hormone binding globulin (SHBG) levels in these men are best explained by the hyperinsulinism and increased inflammatory cytokines that accompany obesity and increased waist circumference. It is informative that low SHBG levels predict future development of the MetS. Evidence is strong relating low TT levels to CVD in men with and without the MetS; however, the relationship may not be causal. The recommendations of the International Diabetes Federation for managing the MetS include cardiovascular risk assessment, lifestyle changes in diet, exercise, weight reduction and treatment of individual components of the MetS. Unfortunately, it is uncommon to see patients with the MetS lose and maintain a 10% weight loss. Recent reports showing testosterone treatment induced dramatic changes in weight, waist circumference, insulin sensitivity, hemoglobin A1c levels and improvements in each of the components of the MetS are intriguing. While some observational studies have reported that testosterone replacement therapy increases cardiovascular events, the Food and Drug Administration in the United States has reviewed these reports and found them to be seriously flawed. Large, randomized, placebo-controlled trials are needed to provide more definitive data regarding the efficacy and safety of this treatment in middle and older men with the MetS and low TT levels.
Collapse
Affiliation(s)
- Glenn R Cunningham
- Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Baylor St. Luke's Medical Center, 6624 Fannin, Suite 1180, Houston, TX 77030, USA
| |
Collapse
|
34
|
Narayanan KB, Ali M, Barclay BJ, Cheng QS, D'Abronzo L, Dornetshuber-Fleiss R, Ghosh PM, Gonzalez Guzman MJ, Lee TJ, Leung PS, Li L, Luanpitpong S, Ratovitski E, Rojanasakul Y, Romano MF, Romano S, Sinha RK, Yedjou C, Al-Mulla F, Al-Temaimi R, Amedei A, Brown DG, Ryan EP, Colacci A, Hamid RA, Mondello C, Raju J, Salem HK, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Kim SY, Bisson WH, Lowe L, Park HH. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death. Carcinogenesis 2015; 36 Suppl 1:S89-110. [PMID: 26106145 DOI: 10.1093/carcin/bgv032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- Department of Chemistry and Biochemistry, Yeungnam University, Gyeongsan 712-749, South Korea, Sultan Zainal Abidin University, Malaysia, Plant Biotechnologies Inc, St. Albert AB, Canada, Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA, Department of Urology, University of California Davis, Sacramento, CA 95817, USA, Department of Pharmacology and Toxicology, University of Vienna, Austria, University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan Puerto Rico 00936-5067, USA, Department of Anatomy, College of Medicine, Yeungnam University, Daegu, 705-717, South Korea, School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand, Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA, Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA, Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy, Department of Molecular and Experimental Medicine, MEM 180, The Scripps Research Institute, La Jolla, CA 92037, USA, Department of Biology, Jackson State University, Jackson, MS 39217, USA, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy, Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Se
| | - Manaf Ali
- Sultan Zainal Abidin University, Malaysia
| | | | - Qiang Shawn Cheng
- Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA
| | - Leandro D'Abronzo
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | | | - Paramita M Ghosh
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Michael J Gonzalez Guzman
- University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan Puerto Rico 00936-5067, USA
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, 705-717, South Korea
| | - Po Sing Leung
- School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China
| | - Lin Li
- School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China
| | - Suidjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Edward Ratovitski
- Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Ranjeet K Sinha
- Department of Molecular and Experimental Medicine, MEM 180, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Clement Yedjou
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Roslida A Hamid
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia, 27100, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, K1A0K9, Canada
| | - Hosni K Salem
- Urology Department, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo, 12515, Egypt
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia, 27100, Italy
| | - Neetu Singh
- Advenced Molecular Science Research Centre, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande, 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande, 95029, Italy
| | - Seo Yun Kim
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, South Korea
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA and
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Hyun Ho Park
- Department of Chemistry and Biochemistry, Yeungnam University, Gyeongsan 712-749, South Korea, Sultan Zainal Abidin University, Malaysia, Plant Biotechnologies Inc, St. Albert AB, Canada, Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA, Department of Urology, University of California Davis, Sacramento, CA 95817, USA, Department of Pharmacology and Toxicology, University of Vienna, Austria, University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan Puerto Rico 00936-5067, USA, Department of Anatomy, College of Medicine, Yeungnam University, Daegu, 705-717, South Korea, School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand, Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA, Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA, Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy, Department of Molecular and Experimental Medicine, MEM 180, The Scripps Research Institute, La Jolla, CA 92037, USA, Department of Biology, Jackson State University, Jackson, MS 39217, USA, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy, Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Se
| |
Collapse
|
35
|
Interleukin-1 β Modulates Melatonin Secretion in Ovine Pineal Gland: Ex Vivo Study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:526464. [PMID: 26339621 PMCID: PMC4538322 DOI: 10.1155/2015/526464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/22/2015] [Accepted: 04/30/2015] [Indexed: 01/02/2023]
Abstract
The study was designed to determine the effect of proinflammatory cytokine, interleukin- (IL-) 1β, on melatonin release and expression enzymes essential for this hormone synthesis: arylalkylamine-N-acetyltransferase (AA-NAT) and hydroxyindole-O-methyltransferase (HIOMT) in ovine pineal gland, taking into account the immune status of animals before sacrificing. Ewes were injected by lipopolysaccharide (LPS; 400 ng/kg) or saline, two hours after sunset during short day period (December). Animals were euthanized three hours after the injection. Next, the pineal glands were collected and divided into four explants. The explants were incubated with (1) medium 199 (control explants), (2) norepinephrine (NE; 10 µM), (3) IL-1β (75 pg/mL), or (4) NE + IL-1β. It was found that IL-1β abolished (P < 0.05) NE-induced increase in melatonin release. Treatment with IL-1β also reduced (P < 0.05) expression of AA-NAT enzyme compared to NE-treated explants. There was no effect of NE or IL-1β treatment on gene expression of HIOMT; however, the pineal fragments isolated from LPS-treated animals were characterized by elevated (P < 0.05) expression of HIOMT mRNA and protein compared to the explants from saline-treated ewes. Our study proves that IL-1β suppresses melatonin secretion and its action seems to be targeted on the reduction of pineal AA-NAT protein expression.
Collapse
|
36
|
Munkhzaya M, Matsuzaki T, Iwasa T, Tungalagsuvd A, Kawami T, Kato T, Kuwahara A, Irahara M. The suppressive effect of immune stress on LH secretion is absent in the early neonatal period in rats. Int J Dev Neurosci 2015; 46:38-43. [DOI: 10.1016/j.ijdevneu.2015.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/12/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022] Open
Affiliation(s)
- Munkhsaikhan Munkhzaya
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Toshiya Matsuzaki
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Takeshi Iwasa
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Altankhuu Tungalagsuvd
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Takako Kawami
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Takeshi Kato
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Akira Kuwahara
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Minoru Irahara
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| |
Collapse
|
37
|
Caffeine stimulates in vitro pituitary LH secretion in lipopolysaccharide-treated ewes. Reprod Biol 2015; 15:20-6. [DOI: 10.1016/j.repbio.2014.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/04/2014] [Accepted: 12/04/2014] [Indexed: 11/18/2022]
|
38
|
Effects of central injection of anti-LPS antibody and blockade of TLR4 on GnRH/LH secretion during immunological stress in anestrous ewes. Mediators Inflamm 2014; 2014:867170. [PMID: 24719525 PMCID: PMC3956420 DOI: 10.1155/2014/867170] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 12/19/2022] Open
Abstract
The present study was designed to examine the effect of intracerebroventricular (icv) administration of antilipopolysaccharide (LPS) antibody and blockade of Toll-like receptor 4 (TLR4) during immune stress induced by intravenous (iv) LPS injection on the gonadotropin-releasing hormone/luteinizing hormone (GnRH/LH) secretion in anestrous ewes. Injection of anti-LPS antibody and TLR4 blockade significantly (P < 0.01) reduced the LPS dependent lowering amount of GnRH mRNA in the median eminence (ME). Moreover, blockade of TLR4 caused restoration of LH-β transcription in the anterior pituitary decreased by the immune stress. However, there was no effect of this treatment on reduced LH release. The results of our study showed that the blockade of TLR4 receptor in the hypothalamus is not sufficient to unblock the release of LH suppressed by the immune/inflammatory challenges. This suggests that during inflammation the LH secretion could be inhibited directly at the pituitary level by peripheral factors such as proinflammatory cytokines and circulating endotoxin as well.
Collapse
|