1
|
Costa FP, Wiedenmann B, Schöll E, Tuszynski J. Emerging cancer therapies: targeting physiological networks and cellular bioelectrical differences with non-thermal systemic electromagnetic fields in the human body - a comprehensive review. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1483401. [PMID: 39720338 PMCID: PMC11666389 DOI: 10.3389/fnetp.2024.1483401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
A steadily increasing number of publications support the concept of physiological networks, and how cellular bioelectrical properties drive cell proliferation and cell synchronization. All cells, especially cancer cells, are known to possess characteristic electrical properties critical for physiological behavior, with major differences between normal and cancer cell counterparts. This opportunity can be explored as a novel treatment modality in Oncology. Cancer cells exhibit autonomous oscillations, deviating from normal rhythms. In this context, a shift from a static view of cellular processes is required for a better understanding of the dynamic connections between cellular metabolism, gene expression, cell signaling and membrane polarization as states in constant flux in realistic human models. In oncology, radiofrequency electromagnetic fields have produced sustained responses and improved quality of life in cancer patients with minimal side effects. This review aims to show how non-thermal systemic radiofrequency electromagnetic fields leads to promising therapeutic responses at cellular and tissue levels in humans, supporting this newly emerging cancer treatment modality with early favorable clinical experience specifically in advanced cancer.
Collapse
Affiliation(s)
| | | | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
| | - Jack Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB, Canada
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
2
|
Fanaki M, Michala L, Nazari E, Daskalakis G. Central Precocious Puberty During the COVID-19 Pandemic Period: A Systematic Review of Literature. Cureus 2024; 16:e71002. [PMID: 39507164 PMCID: PMC11539905 DOI: 10.7759/cureus.71002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Central precocious puberty (CPP) is a condition where the hypothalamus-pituitary-gonadal axis is activated earlier than normal, leading to premature development of secondary sexual characteristics before eight years of age in girls and nine years of age in boys. The purpose of this study was to critically and systematically evaluate the literature regarding CPP rise during the COVID-19 pandemic. We searched PubMed and Google Scholar for relevant articles using the following MeSH terms: "COVID-19, "precocious puberty," "early puberty," "pediatric endocrinology," and "pandemic effects." We included studies calculating the risk of CPP before and during the COVID-19 pandemic. We excluded studies looking at patients with an identifiable cause for CPP or with peripheral precocious puberty. The primary outcome was the prevalence of central precocious puberty during the pandemic compared to the pre-pandemic period. We analyzed data regarding anthropometric, biochemical, and pelvic ultrasound data between the two groups. Overall, 16 studies with 2.175 subjects were included, of which 1.818 were diagnosed with CPP. There was a rise in the number of new diagnoses of CPP during the COVID-19 pandemic (985 subjects) compared with the pre-pandemic period (833 subjects). The mean age of diagnosis in the first group was 7.42 years versus 7.54 years in the second group. Notably, CPP during the pandemic was associated with a higher body mass index (BMI) compared with the group of the pre-pandemic period (17.50 versus 17.08). The pandemic and lockdowns led to changes in lifestyle habits, social isolation, sleep disturbance, excess screen time, and increased stress levels. We hypothesize that these alterations influenced the increase in CPP frequency.
Collapse
Affiliation(s)
- Maria Fanaki
- First Department of Obstetrics and Gynecology, 'Alexandra' General Hospital, National and Kapodistrian University of Athens, Athens, GRC
| | - Lina Michala
- First Department of Obstetrics and Gynecology, 'Alexandra' General Hospital, National and Kapodistrian University of Athens, Athens, GRC
| | - Ervin Nazari
- First Surgery Clinic, Korgialeneio-Mpenakeio Hospital, Athens, GRC
| | - George Daskalakis
- First Department of Obstetrics and Gynecology, 'Alexandra' General Hospital, National and Kapodistrian University of Athens, Athens, GRC
| |
Collapse
|
3
|
Woldańska-Okońska M, Koszela K. The Physiological Impact of Melatonin, Its Effect on the Course of Diseases and Their Therapy and the Effect of Magnetic Fields on Melatonin Secretion-Potential Common Pathways of Influence. Biomolecules 2024; 14:929. [PMID: 39199317 PMCID: PMC11353072 DOI: 10.3390/biom14080929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Melatonin is a relic, due to its millions-of-years-old presence in chemical reactions, found in evolutionarily diverse organisms. It has a multidirectional biological function. It controls diurnal rhythms, redox homeostasis, intestinal motor functions, mitochondrial biogenesis and fetal development and has antioxidant effects. It also has analgesic and therapeutic effects. The purpose of this paper is to describe the role of melatonin in vital processes occurring in interaction with the environment, with particular reference to various magnetic fields ubiquitous in the life of animate matter, especially radio frequency/extra low frequency (RF/ELF EMF) and static magnetic fields. The most important part of this article is to describe the potential effects of magnetic fields on melatonin secretion and the resulting possible health effects. Melatonin in some cases positively amplifies the electromagnetic signal, intensifying health effects, such as neurogenesis, analgesic effects or lowering blood pressure. In other cases, it is a stimulus that inhibits the processes of destruction and aggravation of lesions. Sometimes, however, in contrast to the beneficial effects of electromagnetic fields in therapy, they intensify pathogenic effects, as in multiple sclerosis by intensifying the inflammatory process.
Collapse
Affiliation(s)
- Marta Woldańska-Okońska
- Department of Internal Medicine, Rehabilitation and Physical Medicine, Medical University of Lodz, 90-419 Lodz, Poland
| | - Kamil Koszela
- Department of Neuroorthopedics and Neurology Clinic and Polyclinic, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| |
Collapse
|
4
|
Rabiei M, Masoumi SJ, Haghani M, Nematolahi S, Rabiei R, Mortazavi SMJ. Do blue light filter applications improve sleep outcomes? A study of smartphone users' sleep quality in an observational setting. Electromagn Biol Med 2024; 43:107-116. [PMID: 38461462 DOI: 10.1080/15368378.2024.2327432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Exposure to blue light at bedtime, suppresses melatonin secretion, postponing the sleep onset and interrupting the sleep process. Some smartphone manufacturers have introduced night-mode functions, which have been claimed to aid in improving sleep quality. In this study, we evaluate the impact of blue light filter application on decreasing blue light emissions and improving sleep quality. Participants in this study recorded the pattern of using their mobile phones through a questionnaire. In order to evaluate sleep quality, we used a PSQI questionnaire. Blue light filters were used by 9.7% of respondents, 9.7% occasionally, and 80% never. The mean score of PSQI was more than 5 in 54.10% of the participants and less than 5 in 45.90%. ANOVA test was performed to assess the relationship between using blue light filter applications and sleep quality (p-value = 0.925). The findings of this study indicate a connection between the use of blue light filter apps and habitual sleep efficiency in the 31-40 age group. However, our results align only to some extent with prior research, as we did not observe sustained positive effects on all parameters of sleep quality from the long-term use of blue light filtering apps. Several studies have found that blue light exposure can suppress melatonin secretion, exacerbating sleep problems. Some studies have reported that physical blue light filters, such as lenses, can affect melatonin secretion and improve sleep quality. However, the impact of blue light filtering applications remains unclear and debatable.
Collapse
Affiliation(s)
- Marziye Rabiei
- Student Research Committee, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Seyed Jalil Masoumi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Center for Cohort Study of SUMS Employees' Health, Shiraz University of Medical Science, Shiraz, Iran
| | - Masoud Haghani
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Nematolahi
- Non-Communicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Reza Rabiei
- Educational science expert, Department of Education, Bushehr, Iran
| | - Seyed Mohammad Javad Mortazavi
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
5
|
Nair PS, Zadeh-Haghighi H, Simon C. Radical pair model for magnetic field effects on NMDA receptor activity. Sci Rep 2024; 14:3628. [PMID: 38351304 PMCID: PMC10864372 DOI: 10.1038/s41598-024-54343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/12/2024] [Indexed: 02/16/2024] Open
Abstract
The N-methyl-D-aspartate receptor is a prominent player in brain development and functioning. Perturbations to its functioning through external stimuli like magnetic fields can potentially affect the brain in numerous ways. Various studies have shown that magnetic fields of varying strengths affect these receptors. We propose that the radical pair mechanism, a quantum mechanical process, could explain some of these field effects. Radicals of the form [Formula: see text], where R is a protein residue that can be Serine or Tyrosine, are considered for this study. The variation in the singlet fractional yield of the radical pairs, as a function of magnetic field strength, is calculated to understand how the magnetic field affects the products of the radical pair reactions. Based on the results, the radical pair mechanism is a likely candidate for explaining the magnetic field effects observed on the receptor activity. The model predicts changes in the behaviour of the system as magnetic field strength is varied and also predicts certain isotope effects. The results further suggest that similar effects on radical pairs could be a plausible explanation for various magnetic field effects within the brain.
Collapse
Affiliation(s)
- Parvathy S Nair
- Department of Physics, Indian Institute of Science Education and Research (IISER), Tirupati, Tirupati, Andhra Pradesh, 517507, India.
| | - Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
6
|
Woldańska-Okońska M, Kubsik-Gidlewska A, Koszela K. Changes in Melatonin Concentration in a Clinical Observation Study under the Influence of Low-Frequency Magnetic Fields (Magnetic Stimulation in Men with Low Back Pain)-Results of Changes in an Eight-Point Circadian Profile. Int J Mol Sci 2023; 24:15860. [PMID: 37958842 PMCID: PMC10648269 DOI: 10.3390/ijms242115860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study was to assess the changes in melatonin concentration under the influence of magnetic stimulation in men with low back pain. A total of 15 men were used in this study, divided into two groups. In Group 1, consisting of seven men, the M1P1 Viofor JPS program was used twice a day for 8 min, at 08:00 and 13:00. In Group 2, consisting of eight men, the M2P2 Viofor JPS program was used once a day for 12 min at 10:00. The application was subjected to the whole body of patients. The treatments in both groups lasted 3 weeks, for 5 days each week, with breaks on weekends. The diurnal melatonin profile was determined the day before exposure and the day after the last treatment, as well as at one-month follow-up. Blood samples were collected eight times a day. In both programs, magnetic stimulation did not reduce the nocturnal peak of melatonin concentration. After exposure, prolonged secretion of melatonin was observed until the morning hours. The impact of the magnetic field was maintained 1 month after the end of the application. The effect of the magnetic field was maintained for 1 month from the end of the application, which confirms the thesis about the occurrence of the phenomenon of biological hysteresis. The parameters of the magnetic fields, the application system, and the time and length of the application may affect the secretion of melatonin.
Collapse
Affiliation(s)
- Marta Woldańska-Okońska
- Department of Internal Medicine, Rehabilitation and Physical Medicine, Medical University, 90-419 Lodz, Poland; (M.W.-O.); (A.K.-G.)
| | - Anna Kubsik-Gidlewska
- Department of Internal Medicine, Rehabilitation and Physical Medicine, Medical University, 90-419 Lodz, Poland; (M.W.-O.); (A.K.-G.)
| | - Kamil Koszela
- Department of Neuroorthopedics and Neurology Clinic and Polyclinic, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| |
Collapse
|
7
|
Prasad V, Arora M, Varsha. Enhancement of persistent currents and magnetic fields in a two dimensional quantum ring. Sci Rep 2023; 13:15486. [PMID: 37726317 PMCID: PMC10509181 DOI: 10.1038/s41598-023-42417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023] Open
Abstract
We present the study of the SiGe quantum ring (QR) modeled by an anharmonic axially symmetric potential with a centrifugal core in the effective mass approximation. We show how the femtosecond laser pulses (FLPs) can be used efficiently for controlling the induced current and magnetic field. We have compared the strength of induced currents and magnetic fields with and without pulsed laser which shows a substantial change. The spin-orbit interaction (SOI) and Zeeman energy show a massive impact on the generation and enhancement of these induced current and magnetic fields. These induced currents and magnetic fields have many applications in interdisciplinary areas. We have shown that the SOI presence with the FLP fields while competing with the confinement strength lowers the strength of the induced current and field.
Collapse
Affiliation(s)
- Vinod Prasad
- Department of Physics, Swami Shraddhanand College, University of Delhi, Delhi, 110036, India
| | - Monika Arora
- Department of Mathematics, Miranda House, University of Delhi, Delhi, 110007, India
| | - Varsha
- Department of Physics and Astrophysics, University of Delhi, Delhi, 110007, India.
- Department of Physics, Kalindi College, University of Delhi, Delhi, 110008, India.
| |
Collapse
|
8
|
Analysis of the Optimized Compensating Loops Effect on the Magnetic Induction Due to Very-High-Voltage Underground Cable Using Grey Wolf Optimizer. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-023-07656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
9
|
Chioma L, Chiarito M, Bottaro G, Paone L, Todisco T, Bizzarri C, Cappa M. COVID-19 pandemic phases and female precocious puberty: The experience of the past 4 years (2019 through 2022) in an Italian tertiary center. Front Endocrinol (Lausanne) 2023; 14:1132769. [PMID: 36926039 PMCID: PMC10011474 DOI: 10.3389/fendo.2023.1132769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVE Since the outbreak of COVID-19 pandemic, several centers of pediatric endocrinology worldwide have observed a significant increase in the number of girls presenting with precocious or early puberty. We aimed to compare the incidence rates of female precocious puberty before and during the different phases of COVID-19 pandemic. METHODS We have retrospectively analyzed all the consultations recorded in the outpatient clinic database of the Endocrinology Unit of Bambino Gesù Children's Hospital, Rome, Italy, from the lockdown start in March 2020 up to September 2020, in comparison with the consultations recorded in the same months of 2019, 2021 and 2022. Age, height, weight, body mass index, Tanner's pubertal stage and bone age at presentation, birth weight, ethnicity, family history of central precocious puberty (CPP), maternal age at menarche, history of adoption were retrieved from clinical records. Serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH) both at baseline and after gonadotropin-releasing hormone (GnRH) stimulation, and basal estradiol levels were collected. RESULTS In 2019, 78 girls with suspected precocious puberty were referred for endocrinological consultation, compared to 202 girls in 2020, 158 girls in 2021 and 112 girls in 2022. A significant increase in the proportion of girls diagnosed with rapidly progressive CPP was observed in 2020, compared to 2019 (86/202 vs. 18/78, p<0.01). In the following periods of 2021 and 2022, a gradual decrease in the number of cases of progressive CPP was evident, so much that the number of cases was not significantly different from that observed in 2019 (56/158 in 2021 and 35/112 in 2022, p=0.054 and p=0.216 respectively, compared to 2019). CONCLUSIONS Our research suggests that drastic lifestyle changes, such as those imposed by COVID-19 lockdown, and the consequent stress may affect the regulation of pubertal timing. The remarkable increase in CPP cases observed during the 2020 first pandemic wave seems to be reduced in 2021 and 2022, concurrently with the progressive resumption of daily activities. These data seem to support the hypothesis of a direct relationship between profound life-style changes related to the pandemic and the rise in precocious puberty cases.
Collapse
|
10
|
Barberi C, Di Natale V, Assirelli V, Bernardini L, Candela E, Cassio A. Implicating factors in the increase in cases of central precocious puberty (CPP) during the COVID-19 pandemic: Experience of a tertiary centre of pediatric endocrinology and review of the literature. Front Endocrinol (Lausanne) 2022; 13:1032914. [PMID: 36531478 PMCID: PMC9747748 DOI: 10.3389/fendo.2022.1032914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
Sexual development is a complex mechanism activated by the hypothalamic-pituitary-gonadal axis. Over the last one hundred years there has been a decline in the age at puberty onset in industrialised countries. Some Italian studies showed an increase in diagnoses of Central Precocious Puberty (CPP) during the COVID-19 pandemic. It is thus supposed that in this period there was an increased impact of factors that can influence pubertal development. Our retrospective monocentric study aimed to confirm the existence of this phenomenon and analysed possible related factors. We retrospectively evaluated clinical, laboratory, radiological and ultrasound (US) data of 154 girls referred to our Tertiary Centre of Paediatric Endocrinology from January 2019 to April 2021 for different forms of Precocious Puberty. We subdivided the cases into subgroups according to the final diagnosis: CPP, Early Puberty (EP), isolated thelarche and isolated pubarche. The observation period was subdivided into: Period 1, before lockdown (1 January 2019 - 8 March 2020) and Period 2, lockdown and the following months (9 March 2020 - 30 April 2021). Period 2 was further divided into "restrictive lockdown period" (Period 2.1) (March 2020 - 14 June 2020, in which the schools were closed) and "less restrictive lockdown period" (Period 2.2) (15 June 2020 - 30 April 2021). We analysed data regarding the use of electronic devices before and during lockdown in a group of girls with CPP diagnosed in Period 2 and we compared the data with that of a control group. Our data show an increase in the number of new diagnoses of CPP during lockdown and in the following months, compared with the previous period. We also detected a higher use of PCs and smartphones in girls with CPP diagnosed in Period 2, compared with the control group. The percentage of the presence of endometrial rhyme detected during the pelvic ultrasound was higher in girls with CPP in Period 2, compared with the previous period. Based on our data we assume there was an environmental effect on pubertal timing that calls our attention to factors such as food, use of electronic devices and stress. We will need further studies to better understand this data.
Collapse
Affiliation(s)
- C. Barberi
- Department of Medical and Surgical Sciences, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliera Universitaria di Bologna, Bologna, Italy
| | - V. Di Natale
- Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Azienda Ospedaliera Universitaria di Bologna, Program of Endocrine Metabolic Diseases, Unit of Pediatrics, Bologna, Italy
| | - V. Assirelli
- Department of Medical and Surgical Sciences, Pediatric School of University of Bologna, University of Bologna, Bologna, Italy
| | - L. Bernardini
- Department of Medical and Surgical Sciences, Pediatric School of University of Bologna, University of Bologna, Bologna, Italy
| | - E. Candela
- Department of Medical and Surgical Sciences, Pediatric School of University of Bologna, University of Bologna, Bologna, Italy
| | - A. Cassio
- Department of Medical and Surgical Sciences, University of Bologna, IRCCS Azienda Ospedaliera Universitaria di Bologna, Program of Endocrine Metabolic Diseases, Bologna, Italy
| |
Collapse
|
11
|
Olejárová S, Moravčík R, Herichová I. 2.4 GHz Electromagnetic Field Influences the Response of the Circadian Oscillator in the Colorectal Cancer Cell Line DLD1 to miR-34a-Mediated Regulation. Int J Mol Sci 2022; 23:13210. [PMID: 36361993 PMCID: PMC9656412 DOI: 10.3390/ijms232113210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 10/15/2023] Open
Abstract
Radiofrequency electromagnetic fields (RF-EMF) exert pleiotropic effects on biological processes including circadian rhythms. miR-34a is a small non-coding RNA whose expression is modulated by RF-EMF and has the capacity to regulate clock gene expression. However, interference between RF-EMF and miR-34a-mediated regulation of the circadian oscillator has not yet been elucidated. Therefore, the present study was designed to reveal if 24 h exposure to 2.4 GHz RF-EMF influences miR-34a-induced changes in clock gene expression, migration and proliferation in colorectal cancer cell line DLD1. The effect of up- or downregulation of miR-34a on DLD1 cells was evaluated using real-time PCR, the scratch assay test and the MTS test. Administration of miR-34a decreased the expression of per2, bmal1, sirtuin1 and survivin and inhibited proliferation and migration of DLD1 cells. When miR-34a-transfected DLD1 cells were exposed to 2.4 GHz RF-EMF, an increase in cry1 mRNA expression was observed. The inhibitory effect of miR-34a on per2 and survivin was weakened and abolished, respectively. The effect of miR-34a on proliferation and migration was eliminated by RF-EMF exposure. In conclusion, RF-EMF strongly influenced regulation mediated by the tumour suppressor miR-34a on the peripheral circadian oscillator in DLD1 cells.
Collapse
Affiliation(s)
| | | | - Iveta Herichová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovakia
| |
Collapse
|
12
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
13
|
Díaz-Del Cerro E, Félix J, Tresguerres JAF, De la Fuente M. Improvement of several stress response and sleep quality hormones in men and women after sleeping in a bed that protects against electromagnetic fields. Environ Health 2022; 21:72. [PMID: 35864547 PMCID: PMC9306162 DOI: 10.1186/s12940-022-00882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The electromagnetic fields (EMFs) emitted by the technologies affect the homeostatic systems (nervous, endocrine, and immune systems) and consequently the health. In a previous work, we observed that men and women, after 2 months of using a bed with a registered HOGO system, that prevents and drain EMFs, improved their immunity, redox and inflammatory states and rejuvenated their rate of aging or biological age. Since, EMFs can act as a chronic stressor stimulus, and affect the sleep quality. The objective of this work was to study in men and women (23-73 years old) the effect of sleeping for 2 months on that bed in the blood concentrations of several hormones related to stress response and sleep quality as well as to corroborate the rejuvenation of their biological age. METHODS In 18 men and women, plasma concentration of cortisol, dehydroepiandrosterone (DHEA), catecholamines (epinephrine, norepinephrine and dopamine), serotonin, oxytocin and melatonin were analyzed before and after 2 months of using the HOGO beds. A group of 10 people was used as placebo control. In another cohort of 25 men (20 experimental and 5 placebo), the effects of rest on the HOGO system on the concentration of cortisol and testosterone in plasma were studied. In all these volunteers, the biological age was analyzed using the Immunity Clock model. RESULTS There is a significant increase in plasma concentration of DHEA, norepinephrine, serotonin, oxytocin, and melatonin as well as in testosterone, after resting for 2 months in that bed with the EMFs avoiding system. In addition, decreases in Cortisol/DHEA and Testosterone/cortisol ratio and plasma dopamine concentration were observed. No differences were found in placebo groups. In all participants that slept on HOGO beds, the biological age was reduced. CONCLUSIONS Sleeping in a bed that isolates from EMFs and drain them can be a possible strategy to improve the secretion of hormones related to a better response to stress and sleep quality, which means a better endocrine system, and consequently better homeostasis and maintenance of health. This fact was confirmed with the slowdown in the rate of aging checked with a rejuvenation of the biological age.
Collapse
Affiliation(s)
- E Díaz-Del Cerro
- Department of Genetics, Physiology and Microbiology (Unity of Animal Physiology). Faculty de Biology, Complutense University of Madrid, José Antonio Novais, 12. 28040, Madrid, Spain
- Research Institute of 12 de Octubre Hospital of Madrid (I+12), Madrid, Spain
| | - J Félix
- Department of Genetics, Physiology and Microbiology (Unity of Animal Physiology). Faculty de Biology, Complutense University of Madrid, José Antonio Novais, 12. 28040, Madrid, Spain
| | - JAF Tresguerres
- Department of Physiology. Medicine Faculty, Complutense University of Madrid, Madrid, Spain
| | - M De la Fuente
- Department of Genetics, Physiology and Microbiology (Unity of Animal Physiology). Faculty de Biology, Complutense University of Madrid, José Antonio Novais, 12. 28040, Madrid, Spain
- Research Institute of 12 de Octubre Hospital of Madrid (I+12), Madrid, Spain
| |
Collapse
|
14
|
Investigating Electromagnetic Shielding Properties of Building Materials Doped with Carbon Nanomaterials. BUILDINGS 2022. [DOI: 10.3390/buildings12030361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Electromagnetic (EM) shielding has become an essential element in the modern world alongside the increased use of electronic products and telecommunication equipment. We are surrounded by electromagnetic fields that have inevitably become formidable in our lives. It is possible to absorb EM waves by adding materials. Researches have focused the addition of different additives into the cement based mixture to increase the Electromagnetic (EM) shielding. This study aims to investigate the performance of carbon nanomaterial on mechanical, electromagnetic shielding properties of composite. Hence, samples were produced using obtained cement composites. After 28 days of curing, ultrasonic pulse velocity, flexural and compressive strength, water absorption tests and electromagnetic shielding were implemented for samples. As a result of this research, it was concluded that electromagnetic shielding was formed as the percentage carbon nanotube contribution increased, and electromagnetic pollution was partially prevented.
Collapse
|
15
|
Low-Density Geopolymer Composites for the Construction Industry. Polymers (Basel) 2022; 14:polym14020304. [PMID: 35054711 PMCID: PMC8781880 DOI: 10.3390/polym14020304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/03/2022] Open
Abstract
The article presents preliminary results in studying reinforced and light-weight geopolymers, which can be employed in buildings, especially for walling. Such materials are very promising for the construction industry having great potential due to their favorable properties such as high mechanical strengths, low thermal conductivity, and low density. Moreover, they also exhibit several advantages from an economic and ecological point of view. The present study exanimated the use of specific fillers for the metakaolin-based light-weight geopolymers, emphasizing the above-mentioned physical properties. This research also investigated the electromagnetic shielding ability of the carbon grid built into the light-weight geopolymer structure. According to the study, the most suitable materials to be used as fillers are polystyrenes, along with hollow ceramic microsphere and Liapor. The polystyrene geopolymer (GPP) achieves five times lower thermal conductivity compared to cement concretes, which means five times lower heat loss by conduction. Furthermore, GPP is 28% lighter than the standard geopolymer composite. Although the achieved flexural strength of GPP is high enough, the compressive strength of GPP is only 12 MPa. This can be seen as a compromise of using polystyrene as a filler. At the same time, the results indicate that Liapor and hollow ceramic microsphere are also suitable fillers. They led to better mechanical strengths of geopolymer composites but also heavier and higher thermal conductivity compared to GPP. The results further show that the carbon grid not only enhances the mechanical performances of the geopolymer composites but also reduces the electromagnetic field. Carbon grids with grid sizes of 10 mm × 15 mm and 21 mm × 21 mm can reduce around 60% of the Wi-Fi emissions when 2 m away from the signal transmitter. Moreover, the Wi-Fi emission was blocked when the signal transmitter was at a distance of 6 m.
Collapse
|
16
|
Zadeh-Haghighi H, Simon C. Radical pairs can explain magnetic field and lithium effects on the circadian clock. Sci Rep 2022; 12:269. [PMID: 34997158 PMCID: PMC8742017 DOI: 10.1038/s41598-021-04334-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Drosophila's circadian clock can be perturbed by magnetic fields, as well as by lithium administration. Cryptochromes are critical for the circadian clock. Further, the radical pairs in cryptochrome also can explain magnetoreception in animals. Based on a simple radical pair mechanism model of the animal magnetic compass, we show that both magnetic fields and lithium can influence the spin dynamics of the naturally occurring radical pairs and hence modulate the circadian clock's rhythms. Using a simple chemical oscillator model for the circadian clock, we show that the spin dynamics influence a rate in the chemical oscillator model, which translates into a change in the circadian period. Our model can reproduce the results of two independent experiments, magnetic field and lithium effects on the circadian clock. Our model predicts that stronger magnetic fields would shorten the clock's period. We also predict that lithium influences the clock in an isotope-dependent manner. Furthermore, our model also predicts that magnetic fields and hyperfine interactions modulate oxidative stress. The findings of this work suggest that the quantum nature of radical pairs might play roles in the brain, as another piece of evidence in addition to recent results on xenon anesthesia and lithium effects on hyperactivity.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
17
|
Kazemi M, Aliyari H, Tekieh E, Tavakoli H, Golabi S, Sahraei H, Meftahi GH, Salehi M, Saberi M. The Effect of 12 Hz Extremely Low-frequency Electromagnetic Field on Visual Memory of Male Macaque Monkeys. Basic Clin Neurosci 2022; 13:1-14. [PMID: 36589014 PMCID: PMC9790106 DOI: 10.32598/bcn.2021.724.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/23/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023] Open
Abstract
Introduction Today, humans live in a world surrounded by electromagnetic fields. Numerous studies have been conducted to discover the biological, physiological, and behavioral effects of electromagnetic fields on humans and animals. Given the biological similarities between monkeys and humans, The present research aimed to examine Visual Memory (VM), hormonal, genomic, and anatomic changes, in the male rhesus macaques exposed to an Extremely Low-Frequency Magnetic Field (ELF-MF). Methods Four male rhesus macaques (Macaca mulatta) were used. For the behavioral tests, the animals should be fasting for 17 hours. For the tests such as visual memory, the animal's cooperation was necessary. Using the radiation protocol, we exposed two monkeys to a 12-Hz electromagnetic field with a magnitude of 0.7 μT (electromagnetic radiation) four hours a day for a month. Before and after the exposure, a visual memory test was conducted using a coated device (visible reward) on a movable stand. Ten milliliters of blood was obtained from the femoral artery of each monkey, and half of it was used to examine cortisol serum levels using the MyBioSource kit (made in the USA). The other half of the blood was used to extract lymphocytes for assaying expressions of Glucocorticoid Receptor (GR) genes before and after radiation using the PCR method. Anatomic studies of the amygdala were carried out based on pre- and post-radiation Magnetic Resonance Imaging (MRI). Results Research results indicated that visual memory in male primates increased significantly after exposure to the 12-Hz frequency. Hormonal analysis at the 12-Hz frequency showed a decrease in cortisol serum levels. However, visual memory and serum cortisol levels did not change considerably in male primates in the control group. There was no considerable amygdala volumetric difference after exposure to the 12-Hz frequency. The expression of the GR genes decreased in the 12-Hz group compared to the control group. Conclusion In short, these results indicated that ELF might benefit memory enhancement because exposure to the 12-HZ ELF can enhance visual memory. This outcome may be due to a decrease in plasma cortisol and or expression of GR genes. Moreover, direct amygdala involvement in this regard cannot be recommended. Highlights The effects of Extremely Low-Frequency Electromagnetic Fields (ELF-EMF) of 12 Hz on monkeys were studied.The results showed a reduction in the serum cortisol levels and the expression of GR genes.The amygdala anatomical area changes were not significant in the experimental group.In the experimental group, visual memory (delay of 30- and 60-s evaluation) improved after exposure to a frequency of 12 Hz. Plain Language Summary Extremely low-frequency electromagnetic fields are among the most important factors affecting humans. This study aimed to determine the fields of 12-Hz frequency on the visual memory changes of male monkeys. The importance of research is due to the cognitive similarity of monkeys to humans. The findings of the research can be attributed to humans. Behavioral, hormonal, genetic, and anatomical studies indicated improvement in visual memory (test monkeys versus control monkeys). This study demonstrates the effect of the 12-Hz frequency on the monkey's visual memory. Researchers can study 12-Hz frequency in other cognitive indices.
Collapse
Affiliation(s)
- Masoomeh Kazemi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamed Aliyari
- Center for Human-Engaged Computing, Kochi University of Technology, Kochi, Japan
| | - Elaheh Tekieh
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hassan Tavakoli
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sahar Golabi
- Department of Medical Physiology, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Maryam Salehi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Saberi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Control of EMI in High-Technology Nano Fab by Exploitation Power Transmission Method with Ideal Permutation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There are many high-power electrical cables around and within semiconductor foundries. These cables are the source of extremely low-frequency (ELF < 300 Hz) magnetic fields that affect the tools which operate by the function of electronic beams. Miss operation (MO) happens because the ELF magnetic fields induce beam shift during the measurement or process for cutting-edge chips below 40 nm. We present the optimal permutation of power transmission lines to reduce electromagnetic influence in high-technology nano fabs. In this study, the magnetic field was reduced using a mirror array power cable system, and simulation results predicted the best permutations to decrease the electromagnetic interference (EMI) value to below 0.4 mG in a working space without any shielding. Furthermore, this innovative method will lower the cost of high-technology nano fabs, especially for the 28 nm process. The motivation behind this paper is to find the ideal permutation of power transmission lines with a three-phase, four-cable framework to decrease the EMI in high-technology nano fabs. In this study, the electromagnetic interference was diminished using the ideal-permutation methodology without investing or using additional energy, labor, or apparatus. Moreover, this advanced methodology will help increase the effectiveness and reduce the costs of nano fabs. The mathematical and experimental results of the study are presented with analysis.
Collapse
|
19
|
Grebeneva OV, Rybalkina DH, Ibrayeva LK, Shadetova AZ, Drobchenko EA, Aleshina NY. Evaluating Occupational Morbidity Among Energy Enterprise Employees In Industrial Region Of Kazakhstan. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Our research project was aimed at studying the effects of an electromagnetic field of industrial frequency (EMF-IF) on employees of an energy company in Kazakhstan. Material and Methods — The object of our study was the health status of electricians (morbidity with temporary disability – MTD), engaged in the maintenance of power lines, relay protection systems and substations (220 and 500 kV) at an energy enterprise in Kazakhstan. The interrelation and dependence of the intensive MTD indicators on the hygienic factors at the workplace were determined, and the risks were calculated from the obtained data. Results — Unfavorable workplace conditions caused an increase in disorders of the musculoskeletal system (up to 77%), blood circulation (up to 65%), nervous system (up to 52%), skin diseases (up to 46.4%), as well as the manifold rise of the likelihood of neoplasm growth and respiratory diseases. For electricians, the relationships between the nervous system disorders (r=0.792), the circulatory system diseases (r=0.573), the musculoskeletal system ailments (r=0.672) and the EMF-IF parameters were discovered. At the same time, the dependence of the incidence rates of various diseases in workers on EMF, as well as moderate to high computed relative risks, implied the occupational genesis of worklace ailments: for nervous system – R2=0.628, cardiovascular system – R2=0.709, skin – R2=0.729, and musculoskeletal system – R2=0.413. Conclusion — As preventive measures for electricians, we recommended to wear individual exposure meters, to limit work in contact with EMF, to include an oncologist in the medical commission, and for trainees, to screen for oxidative stress proteins and chaperone proteins to exclude a predisposition to oncogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Natalya Yu. Aleshina
- Karaganda State Medical University, Karaganda, Kazakhstan; Novosibirsk State Agrarian University, Novosibirsk, Russia
| |
Collapse
|
20
|
Wang Y, Zhang H, Zhang Z, Sun B, Tang C, Zhang L, Jiang Z, Ding B, Liao Y, Cai P. Simulated mobile communication frequencies (3.5 GHz) emitted by a signal generator affects the sleep of Drosophila melanogaster. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117087. [PMID: 33894629 DOI: 10.1016/j.envpol.2021.117087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/12/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
With the rapid development of science and technology, 5G technology will be widely used, and biosafety concerns about the effects of 5G radiofrequency radiation on health have been raised. Drosophila melanogaster was selected as the model organism for our study, in which a 3.5 GHz radiofrequency radiation (RF-EMR) environment was simulated at intensities of 0.1 W/m2, 1 W/m2, and 10 W/m2. The activity of parent male and offspring (F1) male flies was measured using a Drosophila activity monitoring system under short-term and long-term 3.5 GHz RF-EMR exposure. Core genes associated with heat stress, the circadian clock and neurotransmitters were detected by QRT-PCR technology, and the contents of GABA and glutamate were detected by UPLC-MS. The results show that short-term RF-EMR exposure increased the activity level and reduced the sleep duration while long-term RF-EMR exposure reduced the activity level and increased the sleep duration of F1 male flies. Under long-term RF-EMR, the expression of heat stress response-related hsp22, hsp26 and hsp70 genes was increased, the expression of circadian clock-related per, cyc, clk, cry, and tim genes was altered, the content of GABA and glutamate was reduced, and the expression levels of synthesis, transport and receptor genes were altered. In conclusion, long-term RF-EMR exposure enhances the heat stress response of offspring flies and then affects the expression of circadian clock and neurotransmitter genes, which leads to decreased activity, prolonged sleep duration, and improved sleep quality.
Collapse
Affiliation(s)
- Yahong Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of the Chinese Academy of Sciences, Beijing, PR China; Xiamen Key Laboratory of Physical Environment, Xiamen, 361021, China
| | - Hongying Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of the Chinese Academy of Sciences, Beijing, PR China; Xiamen Key Laboratory of Physical Environment, Xiamen, 361021, China
| | - Ziyan Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Xiamen Key Laboratory of Physical Environment, Xiamen, 361021, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Boqun Sun
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of the Chinese Academy of Sciences, Beijing, PR China; Xiamen Key Laboratory of Physical Environment, Xiamen, 361021, China
| | - Chao Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of the Chinese Academy of Sciences, Beijing, PR China; Xiamen Key Laboratory of Physical Environment, Xiamen, 361021, China
| | - Lu Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of the Chinese Academy of Sciences, Beijing, PR China; Xiamen Key Laboratory of Physical Environment, Xiamen, 361021, China
| | - Zhihao Jiang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of the Chinese Academy of Sciences, Beijing, PR China; Xiamen Key Laboratory of Physical Environment, Xiamen, 361021, China
| | - Bo Ding
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of the Chinese Academy of Sciences, Beijing, PR China; Xiamen Key Laboratory of Physical Environment, Xiamen, 361021, China
| | - Yanyan Liao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of the Chinese Academy of Sciences, Beijing, PR China; Xiamen Key Laboratory of Physical Environment, Xiamen, 361021, China
| | - Peng Cai
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Xiamen Key Laboratory of Physical Environment, Xiamen, 361021, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
21
|
Singh MM, Chandel P, Pati A, Parganiha A. Does exposure to radiofrequency radiation (RFR) affect the circadian rhythm of rest-activity patterns and behavioral sleep variables in humans? BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.1945788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Priyanka Chandel
- School of Studies in Life Science, Pandit Ravishankar Shukla University, Raipur, India
| | - Atanu Pati
- School of Studies in Life Science, Pandit Ravishankar Shukla University, Raipur, India
- Center for Translational Chronobiology, Pandit Ravishankar Shukla University, Raipur, India
- Department of Zoology, Gangadhar Meher University, Sambalpur, India
| | - Arti Parganiha
- School of Studies in Life Science, Pandit Ravishankar Shukla University, Raipur, India
- Center for Translational Chronobiology, Pandit Ravishankar Shukla University, Raipur, India
| |
Collapse
|
22
|
Stagi S, De Masi S, Bencini E, Losi S, Paci S, Parpagnoli M, Ricci F, Ciofi D, Azzari C. Increased incidence of precocious and accelerated puberty in females during and after the Italian lockdown for the coronavirus 2019 (COVID-19) pandemic. Ital J Pediatr 2020; 46:165. [PMID: 33148304 PMCID: PMC7609833 DOI: 10.1186/s13052-020-00931-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Background The timing of puberty in girls is occurring at an increasingly early age. While a positive family history is recognised as a predisposing factor for early or precocious puberty, the role of environmental factors is not fully understood. Aims of the study To make a retrospective evaluation of the incidence of newly diagnosed central precocious puberty (CPP) and the rate of pubertal progression in previously diagnosed patients during and after the Italian lockdown for COVID-19, comparing data with corresponding data from the previous 5 years. To determine whether body mass index (BMI) and the use of electronic devices increased during lockdown in these patients. Patients and methods The study included 49 females with CPP. We divided the patients into two groups: group 1, patients presenting a newly diagnosed CPP and group 2, patients with previously diagnosed slow progression CPP whose pubertal progression accelerated during or after lockdown. We collected auxological, clinical, endocrinological and radiological data which were compared with data from two corresponding control groups (patients followed by our Unit, March to July 2015–2019). Patients’ families completed a questionnaire to assess differences in the use of electronic devices before and during lockdown. Results Thirty-seven patients presented newly diagnosed CPP (group 1) and 12, with previously diagnosed but untreated slow progression CPP presented an acceleration in the rate of pubertal progression (group 2). The number of new CPP diagnoses was significantly higher than the mean for the same period of the previous 5 years (p < 0.0005). There were no significant differences between patients in group 1 and control group 1 regarding time between appearance of B2 and CPP diagnosis, although group 1 patients had a significantly earlier chronological age at B2, a more advanced Tanner stage at diagnosis (p < 0.005), higher basal LH and E2 levels, higher LH peak after LHRH test (p < 0.05) and increased uterine length (p < 0.005) and ovarian volume (p < 0.0005). The number of patients with previously diagnosed CPP whose pubertal development accelerated was also statistically higher compared to controls (p < 0.0005). In this group, patients’ basal LH (p < 0.05) and E2 levels (p < 0.0005) became more markedly elevated as did the LH peak after LHRH test (p < 0.05). These patients also showed a significantly accelerated progression rate as measured by the Tanner scale (p < 0.0005), uterine length (p < 0.005), and ovarian volume (p < 0.0005). In both group 1 and group 2, BMI increased significantly (p < 0.05) and patients’ families reported an increased use of electronic devices (p < 0.0005). Conclusion Our data show an increased incidence of newly diagnosed CPP and a faster rate of pubertal progression in patients with a previous diagnosis, during and after lockdown compared to previous years. We hypothesize that triggering environmental factors, such as the BMI and the use of electronic devices, were enhanced during lockdown, stressing their possible role in triggering/influencing puberty and its progression. However, more studies are needed to determine which factors were involved and how they interacted.
Collapse
Affiliation(s)
- Stefano Stagi
- Health Sciences Department, Anna Meyer Children's University Hospital, University of Florence, Viale Pieraccini 24, 50139, Florence, Italy.
| | - Salvatore De Masi
- Anna Meyer Children's University Hospital, Viale Pieraccini 24, 50139, Florence, Italy
| | - Erica Bencini
- Anna Meyer Children's University Hospital, Viale Pieraccini 24, 50139, Florence, Italy
| | - Stefania Losi
- Anna Meyer Children's University Hospital, Viale Pieraccini 24, 50139, Florence, Italy
| | - Silvia Paci
- Anna Meyer Children's University Hospital, Viale Pieraccini 24, 50139, Florence, Italy
| | - Maria Parpagnoli
- Anna Meyer Children's University Hospital, Viale Pieraccini 24, 50139, Florence, Italy
| | - Franco Ricci
- Anna Meyer Children's University Hospital, Viale Pieraccini 24, 50139, Florence, Italy
| | - Daniele Ciofi
- Anna Meyer Children's University Hospital, Viale Pieraccini 24, 50139, Florence, Italy
| | - Chiara Azzari
- Health Sciences Department, Anna Meyer Children's University Hospital, University of Florence, Viale Pieraccini 24, 50139, Florence, Italy
| |
Collapse
|
23
|
Albert L, Deschamps F, Jolivet A, Olivier F, Chauvaud L, Chauvaud S. A current synthesis on the effects of electric and magnetic fields emitted by submarine power cables on invertebrates. MARINE ENVIRONMENTAL RESEARCH 2020; 159:104958. [PMID: 32662447 DOI: 10.1016/j.marenvres.2020.104958] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
The goal of clean renewable energy production has promoted the large-scale deployment of marine renewable energy devices, and their associated submarine cable network. Power cables produce both electric and magnetic fields that raise environmental concerns as many marine organisms have magneto and electroreception abilities used for vital purposes. Magnetic and electric fields' intensities decrease with distance away from the cable. Accordingly, the benthic and the sedimentary compartments are exposed to the highest field values. Although marine invertebrate species are the major fauna of these potentially exposed areas, they have so far received little attention. We provide extensive background knowledge on natural and anthropogenic marine sources of magnetic and electric fields. We then compile evidence for magneto- and electro-sensitivity in marine invertebrates and further highlight what is currently known about their interactions with artificial sources of magnetic and electric fields. Finally we discuss the main gaps and future challenges that require further investigation.
Collapse
Affiliation(s)
- Luana Albert
- TBM Environnement, Porte Océane Bloc 03, 2 rue de Suède, 56400, Auray, France; Univ. Brest, CNRS, IRD, Ifremer, LEMAR, rue Dumont D'Urville, 29280, Plouzané, France.
| | - François Deschamps
- RTE, Immeuble Window, 7C place du Dôme, 92073, Paris La Défense Cedex, France.
| | - Aurélie Jolivet
- TBM Environnement, Porte Océane Bloc 03, 2 rue de Suède, 56400, Auray, France.
| | - Frédéric Olivier
- Biologie des Organismes et écosystèmes Aquatiques (BOREA, UMR 7208), MNHN/SU/UNICAEN/UA/CNRS/IRD, 61 Rue Buffon CP53, 75005, Paris, France; Station Marine de Concarneau, Muséum National d'Histoire Naturelle, Place de la Croix, BP 225, 29182, Concarneau Cedex, France.
| | - Laurent Chauvaud
- Univ. Brest, CNRS, IRD, Ifremer, LEMAR, rue Dumont D'Urville, 29280, Plouzané, France.
| | - Sylvain Chauvaud
- TBM Environnement, Porte Océane Bloc 03, 2 rue de Suède, 56400, Auray, France.
| |
Collapse
|
24
|
Nizhelska O, Marynchenko L, Piasetskyi V. Biological Risks of Using Non-Thermal Non-Ionizing Electromagnetic Fields. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2020. [DOI: 10.20535/ibb.2020.4.2.202452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
25
|
Bieszke B, Namiotko L, Namiotko T. Life history traits of a temporary water ostracod Heterocypris incongruens (Crustacea, Ostracoda) are affected by power frequency (50 Hz) electromagnetic environmental pollution. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1736654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- B. Bieszke
- Laboratory of Biosystematics and Ecology of Aquatic Invertebrates, Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - L. Namiotko
- Laboratory of Biosystematics and Ecology of Aquatic Invertebrates, Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - T. Namiotko
- Laboratory of Biosystematics and Ecology of Aquatic Invertebrates, Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
26
|
Bagheri Hosseinabadi M, Khanjani N, Ebrahimi MH, Mousavi SH, Nazarkhani F. Investigating the effects of exposure to extremely low frequency electromagnetic fields on job burnout syndrome and the severity of depression; the role of oxidative stress. J Occup Health 2020; 62:e12136. [PMID: 32710586 PMCID: PMC7382129 DOI: 10.1002/1348-9585.12136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/06/2020] [Accepted: 05/23/2020] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES This study was designed to investigate the possible effect of exposure to extremely low frequency electromagnetic fields (ELF-EMFs) on occupational burnout syndrome and the severity of depression experienced among thermal power plant workers and the role of oxidative stress. METHODS In this cross-sectional study, 115 power plant workers and 124 administrative personnel of a hospital were enrolled as exposed and unexposed groups, respectively, based on inclusion and exclusion criteria. Levels of oxidative stress biomarkers, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (Cat), and total antioxidant capacity were measured in serum samples. Exposure to electric and magnetic fields was measured using the IEEE Std C95.3.1 standard at each workstation. The burnout syndrome and the severity of depression were assessed using the Maslach Burnout and Beck Depression Inventory. RESULTS The levels of MDA and SOD were significantly lower in the exposed group than the unexposed group. The exposed group reported a higher prevalence of burnout syndrome and higher depression severity. Multiple linear regression showed that work experience, MDA level, and levels of exposure to magnetic fields are the most important predictor variables for burnout syndrome and severity of depression. In addition, a decrease in the level of Cat was significantly associated with increased burnout syndrome. CONCLUSION The thermal power plant workers exposed to ELF-EMFs are at risk of burnout syndrome and depression. These effects may be caused directly by exposure to magnetic fields or indirectly due to increased oxidative stress indices.
Collapse
Affiliation(s)
| | - Narges Khanjani
- Environmental Health Engineering Research CenterKerman University of Medical SciencesKermanIran
| | - Mohammad Hossein Ebrahimi
- Environmental and Occupational Health Research CenterShahroud University of Medical SciencesShahroudIran
| | | | - Fereshteh Nazarkhani
- Department of Occupational Health, Faculty of HealthMazandaran University of Medical SciencesSariIran
| |
Collapse
|
27
|
In vitro study of effects of ELF-EMF on testicular tissues of roe deer (Capreolus capreolus) - FTIR and FT-Raman spectroscopic investigation. Anim Reprod Sci 2019; 213:106258. [PMID: 31987319 DOI: 10.1016/j.anireprosci.2019.106258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/07/2019] [Accepted: 12/13/2019] [Indexed: 01/01/2023]
Abstract
Electromagnetic fields (EMF) are classified as an environmental factor affecting living organisms. The aim of the study was to evaluate the effect of EMF at different frequencies (50 and 120 Hz), durations of treatment (2 and 4 h) and with the magnetic induction of 8 m T on testicular tissues of roe deer (Capreolus capreolus) in vitro by comparison with the control samples. Fourier Transform Raman Spectroscopy (FT-Raman) and Fourier Transform Infrared Spectroscopy (FTIR) were utilized in this study to identify the chemical changes in the testicular tissues. The FTIR and FT-Raman spectroscopy methods were used to evaluate differences in spectra of the treated tissues compared to the control group. The results from the analysis of the spectra indicated there were characteristic differences in the testicular tissue compared with the control samples. There was identification of peaks attributed to different biochemical components. Comparing the spectra for different frequencies and treatment times, there was a greater intensity of peaks originating from most of the functional groups in the tissues evaluated. With the FTIR spectra, there were five of 15 peaks, while with the FT-Raman spectra, there were six of ten peaks that were shifted. For FTIR and FT-Raman analyzed spectral ranges, results from the PCA analysis indicate there was no similarity between control groups (2 and 4 h) and samples treated with EMF at a frequency of 120 Hz for 2 and 4 h. In conclusion, therefore, EMF is an environmental factor affecting the testis of roe deer.
Collapse
|
28
|
Wu H, Chang W, Deng Y, Chen X, Ding Y, Li X, Dong L. Effect of Simulated Geomagnetic Activity on Myocardial Ischemia/Reperfusion Injury in Rats. Braz J Cardiovasc Surg 2019; 34:674-679. [PMID: 31364342 PMCID: PMC6894027 DOI: 10.21470/1678-9741-2018-0306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective To study the response of myocardial ischemia/reperfusion injury (MI/RI) in rats to simulated geomagnetic activity. Methods In a simulated strong geomagnetic outbreak, the MI/RI rat models were radiated, and their area of myocardial infarction, hemodynamic parameters, creatine kinase (CK), lactate dehydrogenase (LDH), melatonin, and troponin I values were measured after a 24-hour intervention. Results Our analysis indicates that the concentrations of troponin I in the geomagnetic shielding+operation group were lower than in the radiation+operation group (P<0.05), the concentrations of melatonin in the shielding+operation group and normal+operation group were higher than in the radiation + operation group (P<0.01), and the concentrations of CK in the shielding + operation group were lower than in the radiation + operation group and normal + operation group (P<0.05). Left ventricular developed pressure (LVDP) and ± dP/dtmax in the radiation+operation group were lower than in the shielding + operation group and normal+operation group (P<0.01). Left ventricular end-diastolic pressure (LEVDP) in the shielding + operation group was higher than in the normal + operation group (P<0.05). There was no significant difference in area of myocardial infarction and LDH between the shielding + operation group and the radiation + operation group. Conclusion Our data suggest that geomagnetic activity is important in regulating myocardial reperfusion injury. The geomagnetic shielding has a protective effect on myocardial injury, and the geomagnetic radiation is a risk factor for aggravating the cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Hui Wu
- The First Affiliated Hospital of Kunming Medical University Department of Pharmacy Kunming Yunnan People's Republic of China Department of Pharmacy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Weiyu Chang
- The First Affiliated Hospital of Kunming Medical University Department of Pharmacy Kunming Yunnan People's Republic of China Department of Pharmacy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Yanglin Deng
- The First Affiliated Hospital of Kunming Medical University Department of Pharmacy Kunming Yunnan People's Republic of China Department of Pharmacy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Xinli Chen
- The First Affiliated Hospital of Kunming Medical University Department of Pharmacy Kunming Yunnan People's Republic of China Department of Pharmacy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Yongli Ding
- The First Affiliated Hospital of Kunming Medical University Department of Pharmacy Kunming Yunnan People's Republic of China Department of Pharmacy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Xuesong Li
- The First Affiliated Hospital of Kunming Medical University Department of Pharmacy Kunming Yunnan People's Republic of China Department of Pharmacy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Liang Dong
- Chinese Academy of Sciences Yunnan Observatories Kunming Yunnan People's Republic of China Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
29
|
Bouché NF, McConway K. Melatonin Levels and Low-Frequency Magnetic Fields in Humans and Rats: New Insights From a Bayesian Logistic Regression. Bioelectromagnetics 2019; 40:539-552. [PMID: 31564068 DOI: 10.1002/bem.22218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/27/2019] [Indexed: 12/31/2022]
Abstract
The present analysis revisits the impact of extremely low-frequency magnetic fields (ELF-MF) on melatonin (MLT) levels in human and rat subjects using both a parametric and non-parametric approach. In this analysis, we use 62 studies from review articles. The parametric approach consists of a Bayesian logistic regression (LR) analysis and the non-parametric approach consists of a Support Vector analysis, both of which are robust against spurious/false results. Both approaches reveal a unique well-ordered pattern, and show that human and rat studies are consistent with each other once the MF strength is restricted to cover the same range (with B ≲ 50 μT). In addition, the data reveal that chronic exposure (longer than ∼22 days) to ELF-MF appears to decrease MLT levels only when the MF strength is below a threshold of ~30 μT ( log B thr [ μ T ] = 1 . 4 - 0 . 4 + 0 . 7 ), i.e., when the man-made ELF-MF intensity is below that of the static geomagnetic field. Studies reporting an association between ELF-MF and changes to MLT levels and the opposite (no association with ELF-MF) can be reconciled under a single framework. Bioelectromagnetics. 2019;40:539-552. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Nicolas F Bouché
- Univ Lyon, Univ Lyon1, ENS de Lyon, CNRS, Centre de Recherche en Astrophysique de Lyon UMR5574, Saint-Genis-Laval, France
| | - Kevin McConway
- Department of Mathematics and Statistics, The Open University, Milton Keys, UK
| |
Collapse
|
30
|
Lundberg L, Sienkiewicz Z, Anthony DC, Broom KA. Effects of 50 Hz magnetic fields on circadian rhythm control in mice. Bioelectromagnetics 2019; 40:250-259. [PMID: 30945762 PMCID: PMC6617993 DOI: 10.1002/bem.22188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 03/12/2019] [Indexed: 12/27/2022]
Abstract
Artificial light and power frequency magnetic fields are ubiquitous in the built environment. Light is a potent zeitgeber but it is unclear whether power frequency magnetic fields can influence circadian rhythm control. To study this possibility, 8-12-week-old male C57BL/6J mice were exposed for 30 min starting at zeitgeber time 14 (ZT14, 2 h into the dark period of the day) to 50 Hz magnetic fields at 580 μT using a pair of Helmholtz coils and/or a blue LED light at 700 lux or neither. Our experiments revealed an acute adrenal response to blue light, in terms of increased adrenal per1 gene expression, increased serum corticosterone levels, increased time spent sleeping, and decreased locomotor activity (in all cases, P < 0.0001) compared to an unexposed control group. There appeared to be no modulating effect of the magnetic fields on the response to light, and there was also no effect of the magnetic fields alone (in both cases, P > 0.05) except for a decrease in locomotor activity (P < 0.03). Gene expression of the cryptochromes cry1 and cry2 in the adrenals, liver, and hippocampus was also not affected by exposures (in all cases, P > 0.05). In conclusion, these results suggest that 50 Hz magnetic fields do not significantly affect the acute light response to a degree that can be detected in the adrenal response. Bioelectromagnetics. 2019;9999:XX-XX. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Louise Lundberg
- Public Health EnglandChiltonUnited Kingdom
- Department of PharmacologyUniversity of OxfordOxfordUnited Kingdom
| | | | | | | |
Collapse
|
31
|
Azadian E, Arjmand B, Khodaii Z, Ardeshirylajimi A. A comprehensive overview on utilizing electromagnetic fields in bone regenerative medicine. Electromagn Biol Med 2019; 38:1-20. [PMID: 30661411 DOI: 10.1080/15368378.2019.1567527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stem cells are one of the most important sources to develope a new strategy for repairing bone lesions through tissue engineering. Osteogenic differentiation of stem cells can be affected by various factors such as biological, chemical, physiological, and physical ones. The application of ELF-EMFs has been the subject of many research in bone tissue engineering and evidence suggests that this exogenous physical stimulus can promote osteogenic differentiation in several types of cells. The purpose of this paper is to review the current knowledge on the effects of EMFs on stem cells in bone tissue engineering studies. We recapitulated and analyzed 39 articles that were focused on the application of EMFs for bone tissue engineering purposes. We tabulated scattered information from these articles for easy use and tried to provide an overview of conducted research and identify the knowledge gaps in the field.
Collapse
Affiliation(s)
- Esmaeel Azadian
- a Urogenital Stem Cell Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,b Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Bahar Arjmand
- a Urogenital Stem Cell Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,b Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Zohreh Khodaii
- c Dietary supplements and Probiotics research center , Alborz University of Medical Sciences , Karaj , Iran.,d Department of Biochemistry, Genetics and Nutrition, Faculty of Medicine , Alborz University of Medical Sciences , Karaj , Iran
| | - Abdolreza Ardeshirylajimi
- a Urogenital Stem Cell Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,b Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
32
|
Patil A, Bhavya, Chaudhury S, Srivastava S. Eyeing computer vision syndrome: Awareness, knowledge, and its impact on sleep quality among medical students. Ind Psychiatry J 2019; 28:68-74. [PMID: 31879450 PMCID: PMC6929228 DOI: 10.4103/ipj.ipj_93_18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/22/2019] [Accepted: 07/11/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Computer vision syndrome (CVS) encompasses a constellation of ocular and extraocular symptoms in computer users who either habitually or compulsively use computers for long periods of time. Electronic devices such as computers, smart phones, and tablets emit blue light (400-490 nm) from their light-emitting diodes and produce electromagnetic fields, both of which interfere with the circadian rhythm. AIM This study aims to assess the awareness, knowledge, and impact on sleep quality of CVS among medical students. MATERIALS AND METHODS This study included 500 medical students. All participants anonymously filled up a pro forma including sociodemographic details and three questionnaires that (a) tested for awareness and knowledge about CVS, (b) tested for CVS, and (c) the Pittsburgh sleep quality index (PSQI), respectively. Data from 463 complete questionnaires were analyzed. RESULTS The mean (±standard deviation) age of the 463 individuals was 19.55 (±1.04) years. The prevalence of CVS was 77.5%. The prevalence was higher in boys (80.23%) compared to girls (75.87%), but the difference was not statistically significant. Only 34.1% of the medical students were aware of CVS. Good knowledge regarding various aspects of CVS was observed in 22.46% individuals, while 53.99% and 23.56% had average and poor knowledge, respectively. Poor sleep quality was present in 75.49% of individuals with CVS compared to 50.96% of students without CVS; the difference was statistically significant (odd's ratio [95% confidence interval]: 0.338 [0.214-0.531]). All the components of PSQI score, except components 1 and 6, had statistically significantly (P < 0.05) higher values in individuals with CVS as compared to individuals without CVS. CONCLUSIONS There is high prevalence but low level of awareness and knowledge about CVS among medical students. CVS is significantly associated with poor sleep quality in medical students.
Collapse
Affiliation(s)
- Ashwini Patil
- Department of Physiology, Dr. D.Y. Patil Medical College, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Bhavya
- Department of Physiology, Dr. D.Y. Patil Medical College, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Suprakash Chaudhury
- Department of Psychiatry, Dr. D.Y. Patil Medical College, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | | |
Collapse
|
33
|
Influence of High Frequency Electromagnetic Fields Produced by Antennas for Mobile Communication on the Structure of the Pancreas in Rats: Histological and Unbiased Stereological Analysis. ACTA VET-BEOGRAD 2019. [DOI: 10.2478/acve-2018-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
The emission of high frequency electromagnetic fields (HF EMF) produced by antennas for mobile communications has been controversially alleged to have adverse health effects. The aim of our work was to examine whether there are effects on living organisms from HF EMF produced by mobile communication antennas. In this experiment Wistar strain rats were exposed to HF EMF with the following characteristics: 1.9 GHz frequency, 0.24 A/m intensity, electric field strength of 4.79 V/m, and SAR (specific absorption rate) value of 2.0 W/m2. Exposure time was 7 hours per day, 5 days per week, over the course of sixty days. This experiment was conducted on a total of 30 male rats divided randomly into two equal groups: one group of animals was exposed to GSM fields (Global System of antennas for Mobile Communications) as described above whereas the other group of animals was not exposed to any GSM fields. In our study, results show that the quantity, diameter and numerical density of the islets of Langerhans in the pancreatic tissue increased in rats exposed to HF EMF compared to the unexposed group. The volume density, number and numerical density of pancreatic cells also changed in rats that were exposed to the HF EMF compared to the unexposed group. Our study shows a change in the stereological and histological parameters of rat pancreatic tissue due to the effects of HF EM fields produced by antennas for mobile communication.
Collapse
|
34
|
Perera PGT, Nguyen THP, Dekiwadia C, Wandiyanto JV, Sbarski I, Bazaka O, Bazaka K, Crawford RJ, Croft RJ, Ivanova EP. Exposure to high-frequency electromagnetic field triggers rapid uptake of large nanosphere clusters by pheochromocytoma cells. Int J Nanomedicine 2018; 13:8429-8442. [PMID: 30587969 PMCID: PMC6294056 DOI: 10.2147/ijn.s183767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Effects of man-made electromagnetic fields (EMF) on living organisms potentially include transient and permanent changes in cell behaviour, physiology and morphology. At present, these EMF-induced effects are poorly defined, yet their understanding may provide important insights into consequences of uncontrolled (e.g., environmental) as well as intentional (e.g., therapeutic or diagnostic) exposure of biota to EMFs. In this work, for the first time, we study mechanisms by which a high frequency (18 GHz) EMF radiation affects the physiology of membrane transport in pheochromocytoma PC 12, a convenient model system for neurotoxicological and membrane transport studies. Methods and results Suspensions of the PC 12 cells were subjected to three consecutive cycles of 30s EMF treatment with a specific absorption rate (SAR) of 1.17 kW kg-1, with cells cooled between exposures to reduce bulk dielectric heating. The EMF exposure resulted in a transient increase in membrane permeability for 9 min in up to 90 % of the treated cells, as demonstrated by rapid internalisation of silica nanospheres (diameter d ≈ 23.5 nm) and their clusters (d ≈ 63 nm). In contrast, the PC 12 cells that received an equivalent bulk heat treatment behaved similar to the untreated controls, showing lack to minimal nanosphere uptake of approximately 1-2 %. Morphology and growth of the EMF treated cells were not altered, indicating that the PC 12 cells were able to remain viable after the EMF exposure. The metabolic activity of EMF treated PC 12 cells was similar to that of the heat treated and control samples, with no difference in the total protein concentration and lactate dehydrogenase (LDH) release between these groups. Conclusion These results provide new insights into the mechanisms of EMF-induced biological activity in mammalian cells, suggesting a possible use of EMFs to facilitate efficient transport of biomolecules, dyes and tracers, and genetic material across cell membrane in drug delivery and gene therapy, where permanent permeabilisation or cell death is undesirable.
Collapse
Affiliation(s)
- Palalle G Tharushi Perera
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | | | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
| | - Jason V Wandiyanto
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Igor Sbarski
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Olga Bazaka
- School of Science, RMIT University, Melbourne, VIC, Australia,
| | - Kateryna Bazaka
- School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | | | - Rodney J Croft
- School of Psychology, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Elena P Ivanova
- School of Science, RMIT University, Melbourne, VIC, Australia,
| |
Collapse
|
35
|
Solek P, Majchrowicz L, Koziorowski M. Aloe arborescens juice prevents EMF-induced oxidative stress and thus protects from pathophysiology in the male reproductive system in vitro. ENVIRONMENTAL RESEARCH 2018; 166:141-149. [PMID: 29886390 DOI: 10.1016/j.envres.2018.05.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/21/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
More and more studies suggest that prolonged exposure to EMF may cause adverse biological effects and point directly to a significantly negative correlation between EMF and human health, especially men fertility. In our previous study, we reported that this could be related to the EMF-induced reactive oxygen species formation, followed by DNA damage, cell cycle arrest and apoptosis induction. In this study, we decided to expand our research by the search for substances which would prevent EMF-induced damage in spermatogenic cells. Such an agent seems to be Aloe arborescens Mill. juice, which was shown to possess a wide range of protective properties. The administration of aloe extract helps among others to prevent the formation of free radicals by various biochemical pathways. Therefore, the main aim of our study was to provide a significant knowledge concerning the mechanism involved in the multi-pathway cytoprotective response of aloe juice against EMF. The study was carried out in an in vitro mouse spermatogenesis pathway cell lines (GC-1 spg and GC-2 spd). Our results suggest that the aloe juice has many positive effects, especially for the cellular antioxidant systems by reducing the intracellular reactive oxygen species pool induced by EMF. In consequence, aloe juice prevents DNA damage, cell cycle arrest and therefore the viability and metabolic activity of both cell line tested are preserved. In conclusion, our study provides new insight into the underlying mechanisms through which aloe juice prevents spermatogenic cells from cytotoxic and genotoxic events.
Collapse
Affiliation(s)
- Przemyslaw Solek
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland; Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland.
| | - Lena Majchrowicz
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland; Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| | - Marek Koziorowski
- Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland; Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| |
Collapse
|
36
|
Oliva R, Jansen B, Benscheidt F, Sandbichler AM, Egg M. Nuclear magnetic resonance affects the circadian clock and hypoxia-inducible factor isoforms in zebrafish. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1498194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Regina Oliva
- Institute of Zoology, University Innsbruck, Innsbruck, Austria
| | - Bianca Jansen
- Institute of Zoology, University Innsbruck, Innsbruck, Austria
| | | | | | - Margit Egg
- Institute of Zoology, University Innsbruck, Innsbruck, Austria
| |
Collapse
|
37
|
Garabelli PJ, Morris BT, May KN, Yu X, Stavrakis S, Scherlag BJ, Po SS. A Randomized Double-blind, Sham-stimulation Control Pilot Study of the Effect of an Electromagnetic Field Generator on Healthy Subjects. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2018; 3:28-32. [DOI: 10.14218/erhm.2017.00031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Li J, Duan Y, Lu W, Chou TW. Polyaniline-stabilized electromagnetic wave absorption composites of reduced graphene oxide on magnetic carbon nanotube film. NANOTECHNOLOGY 2018; 29:155201. [PMID: 29389669 DOI: 10.1088/1361-6528/aaac72] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A multi-layered composite with exceptionally high electromagnetic wave-absorbing capacity and performance stability was fabricated via the facile electrophoresis of a reduced graphene oxide network on carbon nanotube (CNT)-Fe3O4-polyaniline (PANI) film. Minimum reflection loss (RL) of -53.2 dB and absorbing bandwidth of 5.87 GHz (< -10 dB) are achieved, surpassing most recently reported CNT- and graphene-based absorbers. In particular, comparing to the original composites, the minimum RL and bandwidth (< -10 dB) maintains 82.5% and 99.7%, respectively, after 20 h charge/discharge cycling, demonstrating high environmental suitability.
Collapse
Affiliation(s)
- Jinsong Li
- School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, People's Republic of China
| | | | | | | |
Collapse
|
39
|
Farashi S. Interaction between pancreatic β cell and electromagnetic fields: A systematic study toward finding the natural frequency spectrum of β cell system. Electromagn Biol Med 2017; 36:341-356. [PMID: 29087732 DOI: 10.1080/15368378.2017.1389751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Interaction between biological systems and environmental electric or magnetic fields has gained attention during the past few decades. Although there are a lot of studies that have been conducted for investigating such interaction, the reported results are considerably inconsistent. Besides the complexity of biological systems, the important reason for such inconsistent results may arise due to different excitation protocols that have been applied in different experiments. In order to investigate carefully the way that external electric or magnetic fields interact with a biological system, the parameters of excitation, such as intensity or frequency, should be selected purposefully due to the influence of these parameters on the system response. In this study, pancreatic β cell, the main player of blood glucose regulating system, is considered and the study is focused on finding the natural frequency spectrum of the system using modeling approach. Natural frequencies of a system are important characteristics of the system when external excitation is applied. The result of this study can help researchers to select proper frequency parameter for electrical excitation of β cell system. The results show that there are two distinct frequency ranges for natural frequency of β cell system, which consist of extremely low (or near zero) and 100-750 kHz frequency ranges. There are experimental works on β cell exposure to electromagnetic fields that support such finding.
Collapse
Affiliation(s)
- Sajjad Farashi
- a Faculty of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
40
|
A Smartphone Camera-Based Indoor Positioning Algorithm of Crowded Scenarios with the Assistance of Deep CNN. SENSORS 2017; 17:s17040704. [PMID: 28350357 PMCID: PMC5421664 DOI: 10.3390/s17040704] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 11/16/2022]
Abstract
Considering the installation cost and coverage, the received signal strength indicator (RSSI)-based indoor positioning system is widely used across the world. However, the indoor positioning performance, due to the interference of wireless signals that are caused by the complex indoor environment that includes a crowded population, cannot achieve the demands of indoor location-based services. In this paper, we focus on increasing the signal strength estimation accuracy considering the population density, which is different to the other RSSI-based indoor positioning methods. Therefore, we propose a new wireless signal compensation model considering the population density, distance, and frequency. First of all, the number of individuals in an indoor crowded scenario can be calculated by our convolutional neural network (CNN)-based human detection approach. Then, the relationship between the population density and the signal attenuation is described in our model. Finally, we use the trilateral positioning principle to realize the pedestrian location. According to the simulation and tests in the crowded scenarios, the proposed model increases the accuracy of the signal strength estimation by 1.53 times compared to that without considering the human body. Therefore, the localization accuracy is less than 1.37 m, which indicates that our algorithm can improve the indoor positioning performance and is superior to other RSSI models.
Collapse
|
41
|
General Systemic States. Vet Med (Auckl) 2017. [PMCID: PMC7195945 DOI: 10.1016/b978-0-7020-5246-0.00004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Kaczor-Urbanowicz KE, Martín Carreras-Presas C, Kaczor T, Tu M, Wei F, Garcia-Godoy F, Wong DTW. Emerging technologies for salivaomics in cancer detection. J Cell Mol Med 2016; 21:640-647. [PMID: 27862926 PMCID: PMC5345659 DOI: 10.1111/jcmm.13007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/13/2016] [Indexed: 01/04/2023] Open
Abstract
Salivary diagnostics has great potential to be used in the early detection and prevention of many cancerous diseases. If implemented with rigour and efficiency, it can result in improving patient survival times and achieving earlier diagnosis of disease. Recently, extraordinary efforts have been taken to develop non‐invasive technologies that can be applied without complicated and expensive procedures. Saliva is a biofluid that has demonstrated excellent properties and can be used as a diagnostic fluid, since many of the biomarkers suggested for cancers can also be found in whole saliva, apart from blood or other body fluids. The currently accepted gold standard methods for biomarker development include chromatography, mass spectometry, gel electrophoresis, microarrays and polymerase chain reaction‐based quantification. However, salivary diagnostics is a flourishing field with the rapid development of novel technologies associated with point‐of‐care diagnostics, RNA sequencing, electrochemical detection and liquid biopsy. Those technologies will help introduce population‐based screening programs, thus enabling early detection, prognosis assessment and disease monitoring. The purpose of this review is to give a comprehensive update on the emerging diagnostic technologies and tools for the early detection of cancerous diseases based on saliva.
Collapse
Affiliation(s)
| | | | - Tadeusz Kaczor
- Faculty of Mechanical Engineering, Department of Physics, Kazimierz Pulaski University of Technology and Humanities in Radom, Radom, Poland
| | - Michael Tu
- Center for Oral/Head & Neck Oncology Research, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Fang Wei
- Center for Oral/Head & Neck Oncology Research, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Franklin Garcia-Godoy
- Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - David T W Wong
- Center for Oral/Head & Neck Oncology Research, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
43
|
Fullagar H, Skorski S, Duffield R, Meyer T. The effect of an acute sleep hygiene strategy following a late-night soccer match on recovery of players. Chronobiol Int 2016; 33:490-505. [DOI: 10.3109/07420528.2016.1149190] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hugh Fullagar
- Institute of Sports and Preventive Medicine, Saarland University, Saarland University Campus, Saarbrucken, Germany
- Sport & Exercise Discipline Group, University of Technology Sydney, Lindfield, Australia
| | - Sabrina Skorski
- Institute of Sports and Preventive Medicine, Saarland University, Saarland University Campus, Saarbrucken, Germany
| | - Rob Duffield
- Sport & Exercise Discipline Group, University of Technology Sydney, Lindfield, Australia
| | - Tim Meyer
- Institute of Sports and Preventive Medicine, Saarland University, Saarland University Campus, Saarbrucken, Germany
| |
Collapse
|
44
|
Redlarski G, Lewczuk B, Żak A, Koncicki A, Krawczuk M, Piechocki J, Jakubiuk K, Tojza P, Jaworski J, Ambroziak D, Skarbek Ł, Gradolewski D. The influence of electromagnetic pollution on living organisms: historical trends and forecasting changes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:234098. [PMID: 25811025 PMCID: PMC4355556 DOI: 10.1155/2015/234098] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/19/2015] [Indexed: 12/20/2022]
Abstract
Current technologies have become a source of omnipresent electromagnetic pollution from generated electromagnetic fields and resulting electromagnetic radiation. In many cases this pollution is much stronger than any natural sources of electromagnetic fields or radiation. The harm caused by this pollution is still open to question since there is no clear and definitive evidence of its negative influence on humans. This is despite the fact that extremely low frequency electromagnetic fields were classified as potentially carcinogenic. For these reasons, in recent decades a significant growth can be observed in scientific research in order to understand the influence of electromagnetic radiation on living organisms. However, for this type of research the appropriate selection of relevant model organisms is of great importance. It should be noted here that the great majority of scientific research papers published in this field concerned various tests performed on mammals, practically neglecting lower organisms. In that context the objective of this paper is to systematise our knowledge in this area, in which the influence of electromagnetic radiation on lower organisms was investigated, including bacteria, E. coli and B. subtilis, nematode, Caenorhabditis elegans, land snail, Helix pomatia, common fruit fly, Drosophila melanogaster, and clawed frog, Xenopus laevis.
Collapse
Affiliation(s)
- Grzegorz Redlarski
- Department of Mechatronics and High Voltage Engineering, Gdansk University of Technology, Własna Strzecha Street 18A, 80-233 Gdansk, Poland
- Department of Electrical Engineering, Power Engineering, Electronics, and Control Engineering, University of Warmia and Mazury, Oczapowskiego Street 11, 10-736 Olsztyn, Poland
| | - Bogdan Lewczuk
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Street 13, 10-719 Olsztyn, Poland
| | - Arkadiusz Żak
- Department of Mechatronics and High Voltage Engineering, Gdansk University of Technology, Własna Strzecha Street 18A, 80-233 Gdansk, Poland
| | - Andrzej Koncicki
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Street 13, 10-719 Olsztyn, Poland
| | - Marek Krawczuk
- Department of Mechatronics and High Voltage Engineering, Gdansk University of Technology, Własna Strzecha Street 18A, 80-233 Gdansk, Poland
| | - Janusz Piechocki
- Department of Electrical Engineering, Power Engineering, Electronics, and Control Engineering, University of Warmia and Mazury, Oczapowskiego Street 11, 10-736 Olsztyn, Poland
| | - Kazimierz Jakubiuk
- Department of Mechatronics and High Voltage Engineering, Gdansk University of Technology, Własna Strzecha Street 18A, 80-233 Gdansk, Poland
| | - Piotr Tojza
- Department of Mechatronics and High Voltage Engineering, Gdansk University of Technology, Własna Strzecha Street 18A, 80-233 Gdansk, Poland
| | - Jacek Jaworski
- Department of Mechatronics and High Voltage Engineering, Gdansk University of Technology, Własna Strzecha Street 18A, 80-233 Gdansk, Poland
| | - Dominik Ambroziak
- Department of Mechatronics and High Voltage Engineering, Gdansk University of Technology, Własna Strzecha Street 18A, 80-233 Gdansk, Poland
| | - Łukasz Skarbek
- Department of Mechatronics and High Voltage Engineering, Gdansk University of Technology, Własna Strzecha Street 18A, 80-233 Gdansk, Poland
| | - Dawid Gradolewski
- Department of Mechatronics and High Voltage Engineering, Gdansk University of Technology, Własna Strzecha Street 18A, 80-233 Gdansk, Poland
| |
Collapse
|
45
|
Logan AC, Katzman MA, Balanzá-Martínez V. Natural environments, ancestral diets, and microbial ecology: is there a modern "paleo-deficit disorder"? Part I. J Physiol Anthropol 2015; 34:1. [PMID: 25636731 PMCID: PMC4318214 DOI: 10.1186/s40101-015-0041-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/02/2015] [Indexed: 12/15/2022] Open
Abstract
Famed microbiologist René J. Dubos (1901-1982) was an early pioneer in the developmental origins of health and disease (DOHaD) construct. In the 1960s, he conducted groundbreaking experimental research concerning the ways in which early-life experience with nutrition, microbiota, stress, and other environmental variables could influence later-life health outcomes. He also wrote extensively on potential health consequences of a progressive loss of contact with natural environments (now referred to as green or blue space), arguing that Paleolithic experiences have created needs, particularly in the mental realm, that might not be met in the context of rapid global urbanization. He posited that humans would certainly adapt to modern urban landscapes and high technology, but there might be a toll to be paid in the form of higher psychological distress (symptoms of anxiety and depression) and diminished quality of life. In particular, there might be an erosion of humanness, exemplified by declines in altruism/empathy. Here in the first of a two-part review, we examine contemporary research related to natural environments and question to what extent Dubos might have been correct in some of his 50-year-old assertions.
Collapse
Affiliation(s)
- Alan C Logan
- CAMNR, 23679 Calabasas Road Suite 542, Calabasas, CA, 91302, USA.
| | - Martin A Katzman
- START Clinic for Mood and Anxiety Disorders, 32 Park Road, Toronto, ON, M4W 2 N4, Canada.
| | - Vicent Balanzá-Martínez
- Department of Medicine, Section of Psychiatry and Psychological Medicine, University of Valencia Medical School, Avda. Blasco Ibáñez, 15, E46010, Valencia, Spain.
| |
Collapse
|