1
|
Santana NNM, Silva EHA, Santos SFD, Bezerra LLF, da Silva MMO, Cavalcante JS, Fiuza FP, Morais PLADG, Engelberth RC. Neuronal Stability, Volumetric Changes, and Decrease in GFAP Expression of Marmoset (Callithrix jacchus) Subcortical Visual Nuclei During Aging. J Comp Neurol 2024; 532:e25649. [PMID: 38967410 DOI: 10.1002/cne.25649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
The physiological aging process is well known for functional decline in visual abilities. Among the components of the visual system, the dorsal lateral geniculate nucleus (DLG) and superior colliculus (SC) provide a good model for aging investigations, as these structures constitute the main visual pathways for retinal inputs reaching the visual cortex. However, there are limited data available on quantitative morphological and neurochemical aspects in DLG and SC across lifespan. Here, we used optical density to determine immunoexpression of glial fibrillary acidic protein (GFAP) and design-based stereological probes to estimate the neuronal number, total volume, and layer volume of the DLG and SC in marmosets (Callithrix jacchus), ranging from 36 to 143 months of age. Our results revealed an age-related increase in total volume and layer volume of the DLG, with an overall stability in SC volume. Furthermore, a stable neuronal number was demonstrated in DLG and superficial layers of SC (SCv). A decrease in GFAP immunoexpression was observed in both visual centers. The results indicate region-specific variability in volumetric parameter, possibly attributed to structural plastic events in response to inflammation and compensatory mechanisms at the cellular and subcellular level. Additionally, the DLG and SCv seem to be less vulnerable to aging effects in terms of neuronal number. The neuropeptidergic data suggest that reduced GFAP expression may reflect morphological atrophy in the astroglial cells. This study contributes to updating the current understanding of aging effects in the visual system and stablishes a crucial foundation for future research on visual perception throughout the aging process.
Collapse
Affiliation(s)
- Nelyane N M Santana
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Eryck H A Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sâmarah F Dos Santos
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Lyzandro L F Bezerra
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Maria M O da Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Felipe P Fiuza
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Paulo L A de G Morais
- Laboratory of Experimental Neurology, College of the Health Sciences, University of the State of Rio Grande do Norte, Mossoró, Brazil
| | - Rovena Clara Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
2
|
Björk V. Aging of the Suprachiasmatic Nucleus, CIRCLONSA Syndrome, Implications for Regenerative Medicine and Restoration of the Master Body Clock. Rejuvenation Res 2021; 24:274-282. [PMID: 33573456 DOI: 10.1089/rej.2020.2388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The suprachiasmatic nucleus (SCN) in the brain is the master regulator of the circadian clocks throughout the human body. With increasing age the circadian clock in humans and other mammals becomes increasingly disorganized leading to a large number of more or less well-categorized problems. While a lot of aging research has focused on the peripheral clocks in tissues across organisms, it remains a paramount task to quantify aging of the most important master clock, the human SCN. Furthermore, a pipeline needs to be developed with therapies to mitigate the systemic cellular circadian dysfunction in the elderly and ultimately repair and reverse aging of the SCN itself. A disease classification for the aging SCN, Circadian Clock Neuronal Senile Atrophy (CIRCLONSA syndrome), would improve research funding and goal-oriented biotechnological entrepreneurship.
Collapse
|
3
|
Kostin A, Alam MA, McGinty D, Alam MN. Adult hypothalamic neurogenesis and sleep-wake dysfunction in aging. Sleep 2021; 44:5986548. [PMID: 33202015 DOI: 10.1093/sleep/zsaa173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
In the mammalian brain, adult neurogenesis has been extensively studied in the hippocampal sub-granular zone and the sub-ventricular zone of the anterolateral ventricles. However, growing evidence suggests that new cells are not only "born" constitutively in the adult hypothalamus, but many of these cells also differentiate into neurons and glia and serve specific functions. The preoptic-hypothalamic area plays a central role in the regulation of many critical functions, including sleep-wakefulness and circadian rhythms. While a role for adult hippocampal neurogenesis in regulating hippocampus-dependent functions, including cognition, has been extensively studied, adult hypothalamic neurogenic process and its contributions to various hypothalamic functions, including sleep-wake regulation are just beginning to unravel. This review is aimed at providing the current understanding of the hypothalamic adult neurogenic processes and the extent to which it affects hypothalamic functions, including sleep-wake regulation. We propose that hypothalamic neurogenic processes are vital for maintaining the proper functioning of the hypothalamic sleep-wake and circadian systems in the face of regulatory challenges. Sleep-wake disturbance is a frequent and challenging problem of aging and age-related neurodegenerative diseases. Aging is also associated with a decline in the neurogenic process. We discuss a hypothesis that a decrease in the hypothalamic neurogenic process underlies the aging of its sleep-wake and circadian systems and associated sleep-wake disturbance. We further discuss whether neuro-regenerative approaches, including pharmacological and non-pharmacological stimulation of endogenous neural stem and progenitor cells in hypothalamic neurogenic niches, can be used for mitigating sleep-wake and other hypothalamic dysfunctions in aging.
Collapse
Affiliation(s)
- Andrey Kostin
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA
| | - Md Aftab Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Psychiatry, University of California, Los Angeles, CA
| | - Dennis McGinty
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Psychology, University of California, Los Angeles, CA
| | - Md Noor Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
4
|
Cai ZJ. Hypothalamic aging and hormones. VITAMINS AND HORMONES 2021; 115:15-37. [PMID: 33706947 DOI: 10.1016/bs.vh.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
It is the heterogeneous changes of hypothalamic functions that determine the chronological sequence of aging in mammals. Recently, it was hypothesized by Cai the decrease in slow-wave sleep (SWS) resulting from skin aging as responsible for the degeneration of hypothalamic suprachiasmatic nucleus (SCN). It was soon hypothesized by the European people in television that the increase in body fat as responsible for the degeneration of male preoptic sexually dimorphic nucleus (SDN-POA), via the aromatase converting testosterone to estradiol as proposed by Cohen. It is the hypothalamic paraventricular nucleus (PVN) that remains unchanged in neuron number during aging for psychological stress. In this chapter, it is briefly reviewed more manifestations of hypothalamic related mammalian aging processes, including (1) the aging of ovary by lipid, estradiol and hypothalamus; (2) the aging of muscle, stomach, intestine, thymus, and the later aging of brain, regulated by growth hormone/insulin-like growth factor 1(GH/IGF1); (3) the cardiovascular hypertension from PVN activation, the bone and other peripheral aging by psychological stress, and that of kidney by vasopressin. It is classified these aging processes by the primary regulation from one of the three hypothalamic nuclei, although still necessary to investigate and supplement their secondary regulation by the hypothalamic nuclei in future. It is the hypothalamic structural changes that shift the functional balance among these three hypothalamic systems toward aging.
Collapse
Affiliation(s)
- Zi-Jian Cai
- CaiFortune Consulting, Suzhou, Jiangsu, PR China.
| |
Collapse
|
5
|
Hozer C, Perret M, Pavard S, Pifferi F. Survival is reduced when endogenous period deviates from 24 h in a non-human primate, supporting the circadian resonance theory. Sci Rep 2020; 10:18002. [PMID: 33093578 PMCID: PMC7582969 DOI: 10.1038/s41598-020-75068-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Circadian rhythms are ubiquitous attributes across living organisms and allow the coordination of internal biological functions with optimal phases of the environment, suggesting a significant adaptive advantage. The endogenous period called tau lies close to 24 h and is thought to be implicated in individuals' fitness: according to the circadian resonance theory, fitness is reduced when tau gets far from 24 h. In this study, we measured the endogenous period of 142 mouse lemurs (Microcebus murinus), and analyzed how it is related to their survival. We found different effects according to sex and season. No impact of tau on mortality was found in females. However, in males, the deviation of tau from 24 h substantially correlates with an increase in mortality, particularly during the inactive season (winter). These results, comparable to other observations in mice or drosophila, show that captive gray mouse lemurs enjoy better fitness when their circadian period closely matches the environmental periodicity. In addition to their deep implications in health and aging research, these results raise further ecological and evolutionary issues regarding the relationships between fitness and circadian clock.
Collapse
Affiliation(s)
- Clara Hozer
- Unité Mécanismes Adaptatifs et Evolution, Muséum National d'Histoire Naturelle, CNRS, 1 Avenue du Petit Château, 91800, Brunoy, France
| | - Martine Perret
- Unité Mécanismes Adaptatifs et Evolution, Muséum National d'Histoire Naturelle, CNRS, 1 Avenue du Petit Château, 91800, Brunoy, France
| | - Samuel Pavard
- Unité Eco-Anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université de Paris, 75016, Paris, France
| | - Fabien Pifferi
- Unité Mécanismes Adaptatifs et Evolution, Muséum National d'Histoire Naturelle, CNRS, 1 Avenue du Petit Château, 91800, Brunoy, France.
| |
Collapse
|
6
|
Gonçalves FB, Gonçalves BSB, Cavalcante JS, Azevedo CVM. Aging-related changes on social synchronization of circadian activity rhythm in a diurnal primate ( Callithrix jacchus). Chronobiol Int 2020; 37:980-992. [PMID: 32573282 DOI: 10.1080/07420528.2020.1773495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The input of environmental time cues and expression of circadian activity rhythms may change with aging. Among nonphotic zeitgebers, social cues from conspecific vocalizations may contribute to the stability and survival of individuals of social species, such as nonhuman primates. We evaluated aging-related changes on social synchronization of the circadian activity rhythm (CAR) in a social diurnal primate, the common marmoset. The activity of 18 male marmosets was recorded by actiwatches in two conditions. (1) Experimental - 4 young adult (5 ± 2 yrs of age) and 4 older (10 ± 2 yrs of age) animals maintained under LD 12/12 h and LL in a room with full insulation for light but only partial insulation for sound from vocalizations of conspecifics maintained outdoors in the colony; and (2) Control - 10 young adult animals maintained outdoors in the colony (5 animals as a control per age group). In LL, the CAR of young adults showed more stable synchronization with controls. Among the aged marmosets, two free-ran with τ > 24 h, whereas the other two showed relative coordination during the first 30 days in LL, but free-ran thereafter. These differences were reflected in the "social" phase angles (ψon and ψoff ) between rhythms of experimental and control animal groups. Moreover, the activity patterns of aged animals showed lower social synchrony with controls compared to young adults, with the time lags of the time series between each experimental group and control group being negative in aged and positive in young adult animals (t-test, p < 0.05). The index of stability of the CAR showed no differences according to age, while the intradaily variability of the CAR was higher in the aged animals during LD-resynchronization, who took additional days to resynchronize. Thus, the social modulation on CAR may vary with age in marmosets. In the aged group, there was a lower effect of social synchronization, which may be associated with aging-related changes in the synchronization and generation of the CAR as well as in system outputs.
Collapse
Affiliation(s)
- Fabiana B Gonçalves
- Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte , Caicó, RN, Brazil
| | - Bruno S B Gonçalves
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo , São Paulo, SP, Brazil
| | - Jeferson S Cavalcante
- Laboratório de Estudos Neuroquímicos, Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte , Natal, RN, Brazil
| | - Carolina V M Azevedo
- Laboratório de Cronobiologia, Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte , Natal, RN, Brazil
| |
Collapse
|
7
|
Chan YC, Wu CS, Wu TC, Lin YH, Chang SJ. A Standardized Extract of Asparagus officinalis Stem (ETAS ®) Ameliorates Cognitive Impairment, Inhibits Amyloid β Deposition via BACE-1 and Normalizes Circadian Rhythm Signaling via MT1 and MT2. Nutrients 2019; 11:nu11071631. [PMID: 31319549 PMCID: PMC6683278 DOI: 10.3390/nu11071631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/15/2022] Open
Abstract
The prevalence of cognitive impairments and circadian disturbances increases in the elderly and Alzheimer’s disease (AD) patients. This study investigated the effects of a standardized extract of Asparagus officinalis stem, ETAS® on cognitive impairments and circadian rhythm status in senescence-accelerated mice prone 8 (SAMP8). ETAS® consists of two major bioactive constituents: 5-hydroxymethyl-2-furfural (HMF), an abundant constituent, and (S)-asfural, a novel constituent, which is a derivative of HMF. Three-month-old SAMP8 male mice were divided into a control, 200 and 1000 mg/kg BW ETAS® groups, while senescence-accelerated resistant mice (SAMR1) were used as the normal control. After 12-week feeding, ETAS® significantly enhanced cognitive performance by an active avoidance test, inhibited the expressions of amyloid-beta precursor protein (APP) and BACE-1 and lowered the accumulation of amyloid β (Aβ) in the brain. ETAS® also significantly increased neuron number in the suprachiasmatic nucleus (SCN) and normalized the expressions of the melatonin receptor 1 (MT1) and melatonin receptor 2 (MT2). In conclusion, ETAS® enhances the cognitive ability, inhibits Aβ deposition and normalizes circadian rhythm signaling, suggesting it is beneficial for preventing cognitive impairments and circadian rhythm disturbances in aging.
Collapse
Affiliation(s)
- Yin-Ching Chan
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Ci-Sian Wu
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Tsai-Chen Wu
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Yu-Hsuan Lin
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Sue-Joan Chang
- Department of Life Sciences, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
8
|
Eghlidi DH, Luna SL, Brown DI, Garyfallou VT, Kohama SG, Urbanski HF. Gene expression profiling of the SCN in young and old rhesus macaques. J Mol Endocrinol 2018; 61:57-67. [PMID: 29743294 PMCID: PMC6054827 DOI: 10.1530/jme-18-0062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 12/11/2022]
Abstract
In mammals, the suprachiasmatic nucleus (SCN) is the location of a master circadian pacemaker. It receives photic signals from the environment via the retinal hypothalamic tract, which play a key role in synchronizing the body's endogenously generated circadian rhythms with the 24-h rhythm of the environment. Therefore, it is plausible that age-related changes within the SCN contribute to the etiology of perturbed activity-rest cycles that become prevalent in humans during aging. To test this hypothesis, we used gene arrays and quantitative RT-PCR to profile age-related gene expression changes within the SCN of male rhesus macaques - a pragmatic translational animal model of human aging, which similarly displays an age-related attenuation of daytime activity levels. As expected, the SCN showed high expression of arginine vasopressin, vasoactive intestinal polypeptide, calbindin and nuclear receptor subfamily 1, group D, member 1 (NR1D1) (also known as reverse strand of ERBA (REV-ERBα), both at the mRNA and protein level. However, no obvious difference was detected between the SCNs of young (7-12 years) and old animals (21-26 years), in terms of the expression of core clock genes or genes associated with SCN signaling and neurotransmission. These data demonstrate the resilience of the primate SCN to normal aging, at least at the transcriptional level and, at least in males, suggest that age-related disruption of activity-rest cycles in humans may instead stem from changes within other components of the circadian system, such as desynchronization of subordinate oscillators in other parts of the body.
Collapse
Affiliation(s)
- Dominique H Eghlidi
- Department of Neurology and Division of Sleep MedicineHarvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Selva L Luna
- Escuela de Química y FarmaciaFacultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Donald I Brown
- Instituto de BiologíaFacultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Vasilios T Garyfallou
- Division of NeuroscienceOregon National Primate Research Center, Beaverton, Oregon, USA
| | - Steven G Kohama
- Division of NeuroscienceOregon National Primate Research Center, Beaverton, Oregon, USA
| | - Henryk F Urbanski
- Division of NeuroscienceOregon National Primate Research Center, Beaverton, Oregon, USA
- Department of Behavioral NeuroscienceOregon Health & Science University, Portland, Oregon, USA
- Department of Physiology & PharmacologyOregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
9
|
Santana NNM, Barros MAS, Medeiros HHA, Santana MAD, Silva LL, Morais PLAG, Ladd FVL, Cavalcante JS, Lima RRM, Cavalcante JC, Costa MSMO, Engelberth RCJG, Nascimento Jr. ES. The Suprachiasmatic Nucleus and the Intergeniculate Leaflet of the Flat-Faced Fruit-Eating Bat ( Artibeus planirostris): Retinal Projections and Neurochemical Anatomy. Front Neuroanat 2018; 12:36. [PMID: 29867376 PMCID: PMC5962671 DOI: 10.3389/fnana.2018.00036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/20/2018] [Indexed: 12/27/2022] Open
Abstract
In mammals, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL) are the main components of the circadian timing system. The SCN, classically known as the master circadian clock, generates rhythms and synchronizes them to environmental cues. The IGL is a key structure that modulates SCN activity. Strategies on the use of time by animals can provide important clues about how some species are adapted to competitive process in nature. Few studies have provided information about temporal niche in bats with special attention on the neural substrate underlies circadian rhythms. The aim of this study was to investigate these circadian centers with respect to their cytoarchitecture, chemical content and retinal projections in the flat-faced fruit-eating bat (Artibeus planirostris), a chiropteran endemic to South America. Unlike other species of phyllostomid bats, the flat-faced fruit-eating bat's peak of activity occurs 5 h after sunset. This raises several questions about the structure and function of the SCN and IGL in this species. We carried out a mapping of the retinal projections and cytoarchitectural study of the nuclei using qualitative and quantitative approaches. Based on relative optical density findings, the SCN and IGL of the flat-faced fruit-eating bat receive bilaterally symmetric retinal innervation. The SCN contains vasopressin (VP) and vasoactive intestinal polypeptide (VIP) neurons with neuropeptide Y (NPY), serotonin (5-HT) and glutamic acid decarboxylase (GAD) immunopositive fibers/terminals and is marked by intense glial fibrillary acidic protein (GFAP) immunoreactivity. The IGL contains NPY perikarya as well as GAD and 5-HT immunopositive terminals and is characterized by dense GFAP immunostaining. In addition, stereological tools were combined with Nissl stained sections to estimate the volumes of the circadian centers. Taken together, the present results in the flat-faced fruit-eating bat reveal some differences compared to other bat species which might explain the divergence in the hourly activity among bats in order to reduce the competitive potential and resource partitioning in nature.
Collapse
Affiliation(s)
- Nelyane N. M. Santana
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Helder H. A. Medeiros
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Melquisedec A. D. Santana
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Lara L. Silva
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Paulo L. A. G. Morais
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Fernando V. L. Ladd
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S. Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ruthnaldo R. M. Lima
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Judney C. Cavalcante
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Miriam S. M. O. Costa
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rovena C. J. G. Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Expedito S. Nascimento Jr.
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
10
|
Fiuza FP, Aquino ACQ, Câmara DA, Cavalcanti JRLP, Nascimento Júnior ES, Lima RH, Engelberth RCGJ, Cavalcante JS. Region-specific glial hyperplasia and neuronal stability of rat lateral geniculate nucleus during aging. Exp Gerontol 2017; 100:91-99. [PMID: 29113752 DOI: 10.1016/j.exger.2017.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/20/2017] [Accepted: 11/03/2017] [Indexed: 10/18/2022]
Abstract
The normal aging process is accompanied by functional declines in image-forming and non-image forming visual systems. Among the components of these systems, the thalamic lateral geniculate nucleus (LGN) offers a good model for aging studies since its three anatomical subdivisions, namely dorsal lateral geniculate nucleus (dLGN), intergeniculate leaflet (IGL) and ventral lateral geniculate nucleus (vLGN), receives light information from retina and projects to different brain areas involved in visual-related functions. Nevertheless, there is very little data available about quantitative morphological aspects in LGN across lifespan. In this study, we used design-based stereology to estimate the number of neurons, glial cells, the glia/neuron ratio and the volume of the LGN of Wistar rats from 3, 13 or 23months of age. We examined each LGN subdivision processed by immunohistochemistry for NeuN and Nissl counterstain. We observed no significant age-related neuronal loss in any nuclei and a 21% and 33% significant increase in dLGN and IGL glial cells of 23month-old rats. We also observed the glia/neuron relation increases in dLGN of 13month-old rats and in dLGN, IGL and vLGN internal portion of 23month-old ones. Moreover, we report an age-related increase in IGL volume. These results show region-specific glial hyperplasia during aging within LGN nuclei, perhaps due to compensatory responses to inflammation. In addition, we observed the glia/neuron ratio as a more sensitive parameter to quantify age-related alterations. Hence, we provide an updated and expanded quantitative characterization of these visual-related thalamic nuclei and its variability across lifespan.
Collapse
Affiliation(s)
- Felipe P Fiuza
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil.
| | - Antônio Carlos Q Aquino
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Diego A Câmara
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - José Rodolfo L P Cavalcanti
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Health Science Center, University of State of Rio Grande do Norte, 59607-360 Mossoró, RN, Brazil
| | - Expedito S Nascimento Júnior
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Ramon H Lima
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Rovena Clara G J Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Jeferson S Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| |
Collapse
|
11
|
Engelberth RCGJ, Silva KDDA, Fiuza FP, Soares JG, Costa MSMO, Lima RRDM, Nascimento ESD, Santos JRD, Cavalcanti JRLP, Cavalcante JS. Retinal, NPY- and 5ht- inputs to the aged suprachiasmatic nucleus in common marmosets (Callithrix jacchus). Neurosci Res 2017; 121:54-59. [PMID: 28288865 DOI: 10.1016/j.neures.2017.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/02/2016] [Accepted: 03/09/2017] [Indexed: 01/08/2023]
Abstract
The circadian timing system (CTS) anticipates optimal physiological patterns in response to environmental fluctuations, such as light-dark cycle. Since age-related disruption of circadian synchronization is linked to several pathological conditions, we characterized alterations of neurochemical constituents and retinal projections to the major pacemaker of CTS, the suprachiasmatic nucleus (SCN), in adult and aged marmosets. We used intraocular injections of neural tracer Cholera toxin b (CTb) to report age-related reductions in CTb, neuropeptide Y and serotonin immunoreactivities. Considering these projections arise in SCN from nuclei that relay environmental information to entrain the circadian clock, we provide important anatomical correlates to age-associated physiological deficits.
Collapse
Affiliation(s)
- Rovena C G J Engelberth
- Laboratory of Neurochemical Studies, Physiology Department, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil.
| | - Kayo D de Azevedo Silva
- Laboratory of Neurochemical Studies, Physiology Department, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Felipe Porto Fiuza
- Laboratory of Neurochemical Studies, Physiology Department, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Joacil Germano Soares
- Laboratory of Neuroanatomy, Morphology Department, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Miriam S M O Costa
- Laboratory of Neuroanatomy, Morphology Department, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ruthnaldo R de Melo Lima
- Laboratory of Neuroanatomy, Morphology Department, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Expedito Silva do Nascimento
- Laboratory of Neuroanatomy, Morphology Department, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - José R Dos Santos
- Department of Biosciences, Federal University of Sergipe, Itabaiana, Sergipe, Brazil
| | - José R L P Cavalcanti
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Health Science Center, University of State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Jeferson S Cavalcante
- Laboratory of Neurochemical Studies, Physiology Department, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| |
Collapse
|
12
|
A hypothetic aging pathway from skin to hypothalamic suprachiasmatic nucleus via slow wave sleep. ACTA ACUST UNITED AC 2016; 9:212-215. [PMID: 28123663 PMCID: PMC5241610 DOI: 10.1016/j.slsci.2016.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/05/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022]
Abstract
Many observations have demonstrated that the hypothalamic neuroendocrine change determines the chronological sequence of aging in mammals. However, it remains uncertain on the mechanism to account for the hypothalamic aging manifestations. In this article, it is pointed out that, as constantly exposed to sunshine and oxygen, the skin would undergo both telomere-shortening and oxidative senescent processes. The senescent alterations of skin, such as attenuation in electrodermal activities, would in turn reduce the emotional responses and memories. Whereas previously I demonstrated that the slow wave sleep just functioned to adjust the emotional balance disrupted by accumulated emotional memories, especially capable of ameliorating the symptoms of depressed patients. Therefore, the reduction in emotional responses and memories from skin senescence would reduce the requirement for slow wave sleep in many senescent observations. The decrement in slow wave sleep would in further cause functional but not chronological degeneration of suprachiasmatic nucleus rather than paraventricular nucleus in hypothalamus. In these respects, from skin senescence to slow wave sleep, there forms a new degenerative aging pathway able to account for the hypothalamic chronological sequence of aging, specifically addressed to the suprachiasmatic nucleus.
Collapse
|
13
|
Didier ES, MacLean AG, Mohan M, Didier PJ, Lackner AA, Kuroda MJ. Contributions of Nonhuman Primates to Research on Aging. Vet Pathol 2016; 53:277-90. [PMID: 26869153 PMCID: PMC5027759 DOI: 10.1177/0300985815622974] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aging is the biological process of declining physiologic function associated with increasing mortality rate during advancing age. Humans and higher nonhuman primates exhibit unusually longer average life spans as compared with mammals of similar body mass. Furthermore, the population of humans worldwide is growing older as a result of improvements in public health, social services, and health care systems. Comparative studies among a wide range of organisms that include nonhuman primates contribute greatly to our understanding about the basic mechanisms of aging. Based on their genetic and physiologic relatedness to humans, nonhuman primates are especially important for better understanding processes of aging unique to primates, as well as for testing intervention strategies to improve healthy aging and to treat diseases and disabilities in older people. Rhesus and cynomolgus macaques are the predominant monkeys used in studies on aging, but research with lower nonhuman primate species is increasing. One of the priority topics of research about aging in nonhuman primates involves neurologic changes associated with cognitive decline and neurodegenerative diseases. Additional areas of research include osteoporosis, reproductive decline, caloric restriction, and their mimetics, as well as immune senescence and chronic inflammation that affect vaccine efficacy and resistance to infections and cancer. The purpose of this review is to highlight the findings from nonhuman primate research that contribute to our understanding about aging and health span in humans.
Collapse
Affiliation(s)
- E S Didier
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - A G MacLean
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - M Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - P J Didier
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - A A Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - M J Kuroda
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, USA
| |
Collapse
|
14
|
Fiuza FP, Silva KDA, Pessoa RA, Pontes ALB, Cavalcanti RLP, Pires RS, Soares JG, Nascimento Júnior ES, Costa MSMO, Engelberth RCGJ, Cavalcante JS. Age-related changes in neurochemical components and retinal projections of rat intergeniculate leaflet. AGE (DORDRECHT, NETHERLANDS) 2016; 38:4. [PMID: 26718202 PMCID: PMC5005876 DOI: 10.1007/s11357-015-9867-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Aging leads to several anatomical and functional deficits in circadian timing system. In previous works, we observed morphological alterations with age in hypothalamic suprachiasmatic nuclei, one central component of this system. However, there are few data regarding aging effects on other central components of this system, such as thalamic intergeniculate leaflet (IGL). In this context, we studied possible age-related alterations in neurochemical components and retinal projections of rat IGL. For this goal, young (3 months), adult (13 months), and aged (23 months) Wistar rats were submitted to an intraocular injection of neural tracer, cholera toxin subunit b (CTb), 5 days before a tissue fixation process by paraformaldehyde perfusion. Optical density measurements and cell count were performed at digital pictures of brain tissue slices processed by immunostaining for glutamic acid decarboxylase (GAD), enkephalin (ENK), neuropeptide Y (NPY) and CTb, characteristic markers of IGL and its retinal terminals. We found a significant age-related loss in NPY immunoreactive neurons, but not in immunoreactivity to GAD and ENK. We also found a decline of retinal projections to IGL with age. We conclude aging impairs both a photic environmental clue afferent to IGL and a neurochemical expression which has an important modulatory circadian function, providing strong anatomical correlates to functional deficits of the aged biological clock.
Collapse
Affiliation(s)
- Felipe P Fiuza
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Kayo D A Silva
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Renata A Pessoa
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - André L B Pontes
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Rodolfo L P Cavalcanti
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Raquel S Pires
- Neuroscience Center, University of São Paulo City, São Paulo, SP, Brazil
| | - Joacil G Soares
- Laboratory of Neuroanatomy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Miriam S M O Costa
- Laboratory of Neuroanatomy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Rovena C G J Engelberth
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Jeferson S Cavalcante
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
15
|
Hardman JA, Haslam IS, Farjo N, Farjo B, Paus R. Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle. PLoS One 2015; 10:e0121878. [PMID: 25822259 PMCID: PMC4379003 DOI: 10.1371/journal.pone.0121878] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/18/2015] [Indexed: 02/01/2023] Open
Abstract
The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease.
Collapse
Affiliation(s)
- Jonathan A. Hardman
- The Dermatology Centre, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Doctoral Training Centre in Integrative Systems Biology, Manchester Interdisciplinary Bio centre, University of Manchester, Manchester, United Kingdom
| | - Iain S. Haslam
- The Dermatology Centre, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Nilofer Farjo
- The Farjo Hair Institute, Manchester, United Kingdom
| | - Bessam Farjo
- The Farjo Hair Institute, Manchester, United Kingdom
| | - Ralf Paus
- The Dermatology Centre, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Department of Dermatology, University of Muenster, Muenster, Germany
| |
Collapse
|