1
|
Nevins S, McLoughlin CD, Oliveros A, Stein JB, Rashid MA, Hou Y, Jang MH, Lee KB. Nanotechnology Approaches for Prevention and Treatment of Chemotherapy-Induced Neurotoxicity, Neuropathy, and Cardiomyopathy in Breast and Ovarian Cancer Survivors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300744. [PMID: 37058079 PMCID: PMC10576016 DOI: 10.1002/smll.202300744] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Nanotechnology has emerged as a promising approach for the targeted delivery of therapeutic agents while improving their efficacy and safety. As a result, nanomaterial development for the selective targeting of cancers, with the possibility of treating off-target, detrimental sequelae caused by chemotherapy, is an important area of research. Breast and ovarian cancer are among the most common cancer types in women, and chemotherapy is an essential treatment modality for these diseases. However, chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy are common side effects that can affect breast and ovarian cancer survivors quality of life. Therefore, there is an urgent need to develop effective prevention and treatment strategies for these adverse effects. Nanoparticles (NPs) have extreme potential for enhancing therapeutic efficacy but require continued research to elucidate beneficial interventions for women cancer survivors. In short, nanotechnology-based approaches have emerged as promising strategies for preventing and treating chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy. NP-based drug delivery systems and therapeutics have shown potential for reducing the side effects of chemotherapeutics while improving drug efficacy. In this article, the latest nanotechnology approaches and their potential for the prevention and treatment of chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy in breast and ovarian cancer survivors are discussed.
Collapse
Affiliation(s)
- Sarah Nevins
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Callan D. McLoughlin
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Alfredo Oliveros
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Joshua B. Stein
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mohammad Abdur Rashid
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| |
Collapse
|
2
|
Falconieri A, Folino P, Da Palmata L, Raffa V. Nano-pulling stimulates axon regeneration in dorsal root ganglia by inducing stabilization of axonal microtubules and activation of local translation. Front Mol Neurosci 2024; 17:1340958. [PMID: 38633213 PMCID: PMC11022966 DOI: 10.3389/fnmol.2024.1340958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Axonal plasticity is strongly related to neuronal development as well as regeneration. It was recently demonstrated that active mechanical tension, intended as an extrinsic factor, is a valid contribution to the modulation of axonal plasticity. Methods In previous publications, our team validated a the "nano-pulling" method used to apply mechanical forces to developing axons of isolated primary neurons using magnetic nanoparticles (MNP) actuated by static magnetic fields. This method was found to promote axon growth and synaptic maturation. Here, we explore the use of nano-pulling as an extrinsic factor to promote axon regeneration in a neuronal tissue explant. Results Whole dorsal root ganglia (DRG) were thus dissected from a mouse spinal cord, incubated with MNPs, and then stretched. We found that particles were able to penetrate the ganglion and thus become localised both in the somas and in sprouting axons. Our results highlight that nano-pulling doubles the regeneration rate, and this is accompanied by an increase in the arborizing capacity of axons, an accumulation of cellular organelles related to mass addition (endoplasmic reticulum and mitochondria) and pre-synaptic proteins with respect to spontaneous regeneration. In line with the previous results on isolated hippocampal neurons, we observed that this process is coupled to an increase in the density of stable microtubules and activation of local translation. Discussion Our data demonstrate that nano-pulling enhances axon regeneration in whole spinal ganglia exposed to MNPs and external magnetic fields. These preliminary data represent an encouraging starting point for proposing nano-pulling as a biophysical tool for the design of novel therapies based on the use of force as an extrinsic factor for promoting nerve regeneration.
Collapse
|
3
|
Mohebichamkhorami F, Faizi M, Mahmoudifard M, Hajikarim-Hamedani A, Mohseni SS, Heidari A, Ghane Y, Khoramjouy M, Khayati M, Ghasemi R, Zali H, Hosseinzadeh S, Mostafavi E. Microfluidic Synthesis of Ultrasmall Chitosan/Graphene Quantum Dots Particles for Intranasal Delivery in Alzheimer's Disease Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207626. [PMID: 37309299 DOI: 10.1002/smll.202207626] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/26/2023] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) based therapies for Alzheimer's disease (AD) attract interest due to their ability to pass across or bypass the blood-brain barrier. Chitosan (CS) NPs or graphene quantum dots (GQDs) are promising drug carriers with excellent physicochemical and electrical properties. The current study proposes the combination of CS and GQDs in ultrasmall NP form not as drug carriers but as theranostic agents for AD. The microfluidic-based synthesis of the CS/GQD NPs with optimized characteristics makes them ideal for transcellular transfer and brain targeting after intranasal (IN) delivery. The NPs have the ability to enter the cytoplasm of C6 glioma cells in vitro and show dose and time-dependent effects on the viability of the cells. IN administration of the NPs to streptozotocin (STZ) induced AD-like models lead to a significant number of entrances of the treated rats to the target arm in the radial arm water maze (RAWM) test. It shows the positive effect of the NPs on the memory recovery of the treated rats. The NPs are detectable in the brain via in vivo bioimaging due to GQDs as diagnostic markers. The noncytotoxic NPs localize in the myelinated axons of hippocampal neurons. They do not affect the clearance of amyloid β (Aβ) plaques at intercellular space. Moreover, they showed no positive impact on the enhancement of MAP2 and NeuN expression as markers of neural regeneration. The memory improvement in treated AD rats may be due to neuroprotection via the anti-inflammation effect and regulation of the brain tissue microenvironment that needs to be studied.
Collapse
Affiliation(s)
- Fariba Mohebichamkhorami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1968917313, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 19919-53381, Iran
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, 1497716316, Iran
| | | | - Seyedeh Sarvenaz Mohseni
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 19919-53381, Iran
| | - Amirhossein Heidari
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran
| | - Yekta Ghane
- School of Medicine, Tehran University of Medical Sciences, Tehran, 1461884513, Iran
| | - Mona Khoramjouy
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 19919-53381, Iran
| | - Maryam Khayati
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Rasoul Ghasemi
- Neurophysiology research center and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1968917313, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1968917313, Iran
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1968917313, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
4
|
Sharifi M, Farahani MK, Salehi M, Atashi A, Alizadeh M, Kheradmandi R, Molzemi S. Exploring the Physicochemical, Electroactive, and Biodelivery Properties of Metal Nanoparticles on Peripheral Nerve Regeneration. ACS Biomater Sci Eng 2023; 9:106-138. [PMID: 36545927 DOI: 10.1021/acsbiomaterials.2c01216] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the advances in the regeneration/rehabilitation field of damaged tissues, the functional recovery of peripheral nerves (PNs), especially in a long gap injury, is considered a great medical challenge. Recent progress in nanomedicine has provided great hope for PN regeneration through the strategy of controlling cell behavior by metal nanoparticles individually or loaded on scaffolds/conduits. Despite the confirmed toxicity of metal nanoparticles due to long-term accumulation in nontarget tissues, they play a role in the damaged PN regeneration based on the topography modification of scaffolds/conduits, enhancing neurotrophic factor secretion, the ion flow improvement, and the regulation of electrical signals. Determining the fate of neural progenitor cells would be a major achievement in PN regeneration, which seems to be achievable by metal nanoparticles through altering cell vital approaches and controlling their functions. Therefore, in this literature, an attempt was made to provide an overview of the effective activities of metal nanoparticles on the PN regeneration, until the vital clues of the PN regeneration and how they are changed by metal nanoparticles are revealed to the researcher.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Mohammad Kamalabadi Farahani
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Faculty of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Rasoul Kheradmandi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Sahar Molzemi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| |
Collapse
|
5
|
Hu X, Xu Y, Xu Y, Li Y, Guo J. Nanotechnology and Nanomaterials in Peripheral Nerve Repair and Reconstruction. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
6
|
Hu X, Xu Y, Xu Y, Li Y, Guo J. Nanotechnology and Nanomaterials in Peripheral Nerve Repair and Reconstruction. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_30-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Mesa-Infante V, Afonso-Oramas D, Salas-Hernández J, Rodríguez-Núñez J, Barroso-Chinea P. Long-term exposure to GDNF induces dephosphorylation of Ret, AKT, and ERK1/2, and is ineffective at protecting midbrain dopaminergic neurons in cellular models of Parkinson's disease. Mol Cell Neurosci 2021; 118:103684. [PMID: 34826608 DOI: 10.1016/j.mcn.2021.103684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/01/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) promotes differentiation, proliferation, and survival in different cell types, including dopaminergic neurons. Thus, GDNF has been proposed as a promising neuroprotective therapy in Parkinson's disease. Although findings from cellular and animal models of Parkinson's disease were encouraging, results emerging from clinical trials were not as good as expected, probably due to the inappropriate administration protocols. Despite the growing information on GDNF action mechanisms, many aspects of its pharmacological effects are still unclear and data from different studies are still contradictory. Considering that GDNF action mechanisms are mediated by its receptor tyrosine kinase Ret, which activates PI3K/AKT and MAPK/ERK signaling pathways, we aimed to investigate Ret activation and its effect over both signaling pathways in midbrain cell cultures treated with GDNF at different doses (0.3, 1, and 10 ng/ml) and times (15 min, 24 h, 24 h (7 days), and 7 continuous days). The results showed that short-term or acute (15 min, 24 h, and 24 h (7 days)) GDNF treatment in rat midbrain neurons increases Tyrosine hydroxylase (TH) expression and the phosphorylation levels of Ret (Tyr 1062), AKT (Ser 473), ERK1/2 (Thr202/Tyr204), S6 (Ser 235/236), and GSK3-β (Ser 9). However, the phosphorylation level of these kinases, TH expression, and dopamine uptake, decreased below basal levels after long-term or prolonged treatment with 1 and 10 ng/ml GDNF (7 continuous days). Our data suggest that long-term GDNF treatment inactivates the receptor by an unknown mechanism, affecting its neuroprotective capacity against degeneration caused by 6-OHDA or rotenone, while short-term exposure to GDNF promoted dopaminergic cell survival. These findings highlight the need to find new and more effective long-acting therapeutic approaches for disorders in which GDNF plays a beneficial role, including Parkinson's disease. In this regard, it is necessary to propose new GDNF treatment guidelines to regulate and control its long-term expression levels and optimize the clinical use of this trophic factor in patients with Parkinson's disease.
Collapse
Affiliation(s)
- V Mesa-Infante
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - D Afonso-Oramas
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain.
| | - J Salas-Hernández
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - J Rodríguez-Núñez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - P Barroso-Chinea
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
8
|
De Stefano P, Federici AS, Draghi L. In Vitro Models for the Development of Peripheral Nerve Conduits, Part I: Design of a Fibrin Gel-Based Non-Contact Test. Polymers (Basel) 2021; 13:3573. [PMID: 34685331 PMCID: PMC8540146 DOI: 10.3390/polym13203573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
Current clinical strategies to repair peripheral nerve injuries draw on different approaches depending on the extent of lost tissue. Nerve guidance conduits (NGCs) are considered to be a promising, off-the-shelf alternative to autografts when modest gaps need to be repaired. Unfortunately, to date, the implantation of an NGC prevents the sacrifice of a healthy nerve at the price of suboptimal clinical performance. Despite the significant number of materials and fabrication strategies proposed, an ideal combination has not been yet identified. Validation and comparison of NGCs ultimately requires in vivo animal testing due to the lack of alternative models, but in the spirit of the 3R principles, a reliable in vitro model for preliminary screening is highly desirable. Nevertheless, more traditional in vitro tests, and direct cell seeding on the material in particular, are not representative of the actual regeneration scenario. Thus, we have designed a very simple set-up in the attempt to appreciate the relevant features of NGCs through in vitro testing, and we have verified its applicability using electrospun NGCs. To this aim, neural cells were encapsulated in a loose fibrin gel and enclosed within the NGC membrane. Different thicknesses and porosity values of two popular polymers (namely gelatin and polycaprolactone) were compared. Results indicate that, with specific implementation, the system might represent a useful tool to characterize crucial NGC design aspects.
Collapse
Affiliation(s)
- Paola De Stefano
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (A.S.F.); (L.D.)
| | - Angelica Silvia Federici
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (A.S.F.); (L.D.)
- Local Unit Politecnico di Milano, INSTM—National Interuniversity Consortium of Materials Science and Technology, P.zza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Lorenza Draghi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (A.S.F.); (L.D.)
- Local Unit Politecnico di Milano, INSTM—National Interuniversity Consortium of Materials Science and Technology, P.zza Leonardo da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
9
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
10
|
Pop NL, Nan A, Urda-Cimpean AE, Florea A, Toma VA, Moldovan R, Decea N, Mitrea DR, Orasan R. Chitosan Functionalized Magnetic Nanoparticles to Provide Neural Regeneration and Recovery after Experimental Model Induced Peripheral Nerve Injury. Biomolecules 2021; 11:676. [PMID: 33946445 PMCID: PMC8147170 DOI: 10.3390/biom11050676] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
(1) Background: Peripheral nerve injuries have a great impact on a patient's quality of life and a generally poor outcome regarding functional recovery. Lately, studies have focused on different types of nanoparticles and various natural substances for the treatment of peripheral nerve injuries. This is the case of chitosan, a natural compound from the crustaceans' exoskeleton. The present study proposes to combine chitosan benefic properties to the nanoparticles' ability to transport different substances to specific locations and evaluate the effects of magnetic nanoparticles functionalized with chitosan (CMNPs) on peripheral nerve injuries' rehabilitation by using an in vivo experimental model. (2) Methods: CMNPs treatment was administrated daily, orally, for 21 days to rats subjected to right sciatic nerve lesion and compared to the control group (no treatment) by analyzing the sciatic functional index, pain level, body weight, serum nerve growth factor levels and histology, TEM and EDX analysis at different times during the study. (3) Results: Animals treated with CMNPs had a statistically significant functional outcome compared to the control group regarding: sciatic functional index, pain-like behavior, total body weight, which were confirmed by the histological and TEM images. (4) Conclusions: The results of the study suggest that CMNPs appear to be a promising treatment method for peripheral nerve injuries.
Collapse
Affiliation(s)
- Nadina Liana Pop
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Clinicilor Street No. 1-3, 400006 Cluj-Napoca, Cluj County, Romania; (N.L.P.); (R.M.); (N.D.); (R.O.)
| | - Alexandrina Nan
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donath Street No. 67-103, 400293 Cluj-Napoca, Cluj County, Romania;
| | - Andrada Elena Urda-Cimpean
- Department of Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Pasteur Street No. 4-6, 400349 Cluj-Napoca, Cluj County, Romania;
| | - Adrian Florea
- Department of Cell and Molecular Biology, Iuliu Haţieganu University of Medicine and Pharmacy, Pasteur Street No. 4-6, 400349 Cluj-Napoca, Cluj County, Romania;
| | - Vlad Alexandru Toma
- Department of Molecular Biology and Biotechnologies, Babeș-Bolyai University, Clinicilor Street No. 4-6, 400000 Cluj-Napoca, Cluj County, Romania;
- Institute of Biological Research, Republicii Street No. 48, 400015 Cluj-Napoca, Cluj County, Romania
| | - Remus Moldovan
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Clinicilor Street No. 1-3, 400006 Cluj-Napoca, Cluj County, Romania; (N.L.P.); (R.M.); (N.D.); (R.O.)
| | - Nicoleta Decea
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Clinicilor Street No. 1-3, 400006 Cluj-Napoca, Cluj County, Romania; (N.L.P.); (R.M.); (N.D.); (R.O.)
| | - Daniela Rodica Mitrea
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Clinicilor Street No. 1-3, 400006 Cluj-Napoca, Cluj County, Romania; (N.L.P.); (R.M.); (N.D.); (R.O.)
| | - Remus Orasan
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Clinicilor Street No. 1-3, 400006 Cluj-Napoca, Cluj County, Romania; (N.L.P.); (R.M.); (N.D.); (R.O.)
| |
Collapse
|
11
|
Schutte SC, Kadakia F, Davidson S. Skin-Nerve Co-Culture Systems for Disease Modeling and Drug Discovery. Tissue Eng Part C Methods 2021; 27:89-99. [PMID: 33349133 DOI: 10.1089/ten.tec.2020.0296] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Prominent clinical problems related to the skin-nerve interface include barrier dysfunction and erythema, but it is the symptoms of pain and itch that most often lead patients to seek medical treatment. Tissue-engineered innervated skin models provide an excellent solution for studying the mechanisms underlying neurocutaneous disorders for drug screening, and cutaneous device development. Innervated skin substitutes provide solutions beyond traditional monolayer cultures and have advantages that make them preferable to in vivo animal studies for certain applications, such as measuring somatosensory transduction. The tissue-engineered innervated skin models replicate the complex stratified epidermis that provides barrier function in native skin, a feature that is lacking in monolayer co-cultures, while allowing for a level of detail in measurement of nerve morphology and function that cannot be achieved in animal models. In this review, the advantages and disadvantages of different cell sources and scaffold materials will be discussed and a presentation of the current state of the field is reviewed. Impact statement A review of the current state of innervated skin substitutes and the considerations that need to be addressed when developing these models. Tissue-engineered skin substitutes are customizable and provide barrier function allowing for screening of topical drugs and for studying nerve function.
Collapse
Affiliation(s)
- Stacey C Schutte
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Feni Kadakia
- Department of Anesthesiology, Pain Research Center, and Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Steve Davidson
- Department of Anesthesiology, Pain Research Center, and Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
12
|
Xue NY, Ge DY, Dong RJ, Kim HH, Ren XJ, Tu Y. Effect of electroacupuncture on glial fibrillary acidic protein and nerve growth factor in the hippocampus of rats with hyperlipidemia and middle cerebral artery thrombus. Neural Regen Res 2021; 16:137-142. [PMID: 32788468 PMCID: PMC7818884 DOI: 10.4103/1673-5374.286973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Electroacupuncture (EA) has been shown to reduce blood lipid level and improve cerebral ischemia in rats with hyperlipemia complicated by cerebral ischemia. However, there are few studies on the results and mechanism of the effect of EA in reducing blood lipid level or promoting neural repair after stroke in hyperlipidemic subjects. In this study, EA was applied to a rat model of hyperlipidemia and middle cerebral artery thrombosis and the condition of neurons and astrocytes after hippocampal injury was assessed. Except for the normal group, rats in other groups were fed a high-fat diet throughout the whole experiment. Hyperlipidemia models were established in rats fed a high-fat diet for 6 weeks. Middle cerebral artery thrombus models were induced by pasting 50% FeCl3 filter paper on the left middle cerebral artery for 20 minutes on day 50 as the model group. EA1 group rats received EA at bilateral ST40 (Fenglong) for 7 days before the thrombosis. Rats in the EA1 and EA2 groups received EA at GV20 (Baihui) and bilateral ST40 for 14 days after model establishment. Neuronal health was assessed by hematoxylin-eosin staining in the brain. Hyperlipidemia was assessed by biochemical methods that measured total cholesterol, triglyceride, low-density lipoprotein and high-density lipoprotein in blood sera. Behavioral analysis was used to confirm the establishment of the model. Immunohistochemical methods were used to detect the expression of glial fibrillary acidic protein and nerve growth factor in the hippocampal CA1 region. The results demonstrated that, compared with the model group, blood lipid levels significantly decreased, glial fibrillary acidic protein immunoreactivity was significantly weakened and nerve growth factor immunoreactivity was significantly enhanced in the EA1 and EA2 groups. The repair effect was superior in the EA1 group than in the EA2 group. These findings confirm that EA can reduce blood lipid, inhibit glial fibrillary acidic protein expression and promote nerve growth factor expression in the hippocampal CA1 region after hyperlipidemia and middle cerebral artery thrombosis. All experimental procedures and protocols were approved by the Animal Use and Management Committee of Beijing University of Chinese Medicine, China (approval No. BUCM-3-2018022802-1002) on April 12, 2018.
Collapse
Affiliation(s)
- Na-Ying Xue
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Dong-Yu Ge
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Rui-Juan Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hyung-Hwan Kim
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Xiu-Jun Ren
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ya Tu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Amato R, Giannaccini M, Dal Monte M, Cammalleri M, Pini A, Raffa V, Lulli M, Casini G. Association of the Somatostatin Analog Octreotide With Magnetic Nanoparticles for Intraocular Delivery: A Possible Approach for the Treatment of Diabetic Retinopathy. Front Bioeng Biotechnol 2020; 8:144. [PMID: 32158755 PMCID: PMC7051943 DOI: 10.3389/fbioe.2020.00144] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/12/2020] [Indexed: 12/17/2022] Open
Abstract
The somatostatin analog octreotide (OCT) displays important neuroprotective and anti-angiogenic properties that could make it an interesting candidate to treat diabetic retinopathy (DR). Unfortunately, systemic drug administration is hindered by severe side effects, therefore topical administration routes are preferable. However, drug delivery through eye drops may be difficult due to ocular barriers and, in the long term, could induce ocular damage. On the other hand, intraocular injections must be repeated to maintain drug concentration, and this may cause severe damage to the eye. To decrease injection frequency, long-term release and reduced biodegradation could be obtained by binding the drug to biodegradable polymeric nanoparticles. In the present study, we made a preparation of OCT bound to magnetic nanoparticles (MNP-OCT) and tested its possible use as an OCT delivery system to treat retinal pathologies such as DR. In particular, in vitro, ex vivo, and in vivo experimental models of the mammalian retina were used to investigate the possible toxicity of MNPs, possible effects of the binding to MNPs on OCT bioactivity, and the localization of MNP-OCT in the retina after intraocular injection. The results showed that, both in human retinal endothelial cells (HRECs) and in mouse retinal explants, MNPs were not toxic and the binding with MNPs did not influence OCT antiangiogenic or antiapoptotic activity. Rather, effects of MNP-OCT were observed at concentrations up to 100-fold (in HRECs) or 10-fold (in mouse retinal explants) lower compared to OCT, indicating that OCT bioactivity was enhanced in MNP-OCT. MNP-OCT in mouse retinas in vivo after intraocular delivery were initially localized mainly to the outer retina, at the level of the retinal pigment epithelium, while after 5 days they were observed throughout the retinal thickness. These observations demonstrate that MNP-OCT may be used as an OCT intraocular delivery system that may ensure OCT localization to the retina and enhanced OCT bioactivity. Further studies will be necessary to determine the OCT release rate in the retina and the persistence of drug effects in the long period.
Collapse
Affiliation(s)
- Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Maurizio Cammalleri
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Lacko CS, Singh I, Wall MA, Garcia AR, Porvasnik SL, Rinaldi C, Schmidt CE. Magnetic particle templating of hydrogels: engineering naturally derived hydrogel scaffolds with 3D aligned microarchitecture for nerve repair. J Neural Eng 2020; 17:016057. [PMID: 31577998 DOI: 10.1088/1741-2552/ab4a22] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Hydrogel scaffolds hold promise for a myriad of tissue engineering applications, but often lack tissue-mimetic architecture. Therefore, in this work, we sought to develop a new technology for the incorporation of aligned tubular architecture within hydrogel scaffolds engineered from the bottom-up. APPROACH We report a platform fabrication technology-magnetic templating-distinct from other approaches in that it uses dissolvable magnetic alginate microparticles (MAMs) to form aligned columnar structures under an applied magnetic field. Removal of the MAMs yields scaffolds with aligned tubular microarchitecture that can promote cell remodeling for a variety of applications. This approach affords control of microstructure diameter and biological modification for advanced applications. Here, we sought to replicate the microarchitecture of the native nerve basal lamina using magnetic templating of hydrogels composed of glycidyl methacrylate hyaluronic acid and collagen I. MAIN RESULTS Magnetically templated hydrogels were characterized for particle alignment and micro-porosity. Overall MAM removal efficacy was verified by 96.8% removal of iron oxide nanoparticles. Compressive mechanical properties were well-matched to peripheral nerve tissue at 0.93 kPa and 1.29 kPa, respectively. In vitro, templated hydrogels exhibited approximately 36% faster degradation over 12 h, and were found to guide axon extension from dorsal root ganglia. Finally, in a pilot in vivo study utilizing a 10 mm rat sciatic nerve defect model, magnetically templated hydrogels demonstrated promising results with qualitatively increased remodeling and axon regeneration compared to non-templated controls. SIGNIFICANCE This simple and scalable technology has the flexibility to control tubular microstructure over long length scales, and thus the potential to meet the need for engineered scaffolds for tissue regeneration, including nerve guidance scaffolds.
Collapse
Affiliation(s)
- Christopher S Lacko
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, United States of America
| | | | | | | | | | | | | |
Collapse
|
15
|
Fu XM, Wang Y, Fu WL, Liu DH, Zhang CY, Wang QL, Tong XJ. The Combination of Adipose-derived Schwann-like Cells and Acellular Nerve Allografts Promotes Sciatic Nerve Regeneration and Repair through the JAK2/STAT3 Signaling Pathway in Rats. Neuroscience 2019; 422:134-145. [PMID: 31682951 DOI: 10.1016/j.neuroscience.2019.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Schwann cells (SCs) combined with acellular nerve allografts (ANAs) effectively promote the regeneration and repair of peripheral nerves, but the exact mechanism has not been fully elucidated. However, the disadvantages of SCs include their limited source and slow rate of expansion in vitro. Previous studies have found that adipose-derived stem cells have the ability to differentiate into Schwann-like cells. Therefore, we speculated that Schwann-like cells combined with ANAs could profoundly facilitate nerve regeneration and repair. The aim of the present study was to investigate the cellular and molecular mechanisms of regeneration and repair. In this study, tissue-engineered nerves were first constructed by adipose-derived Schwann-like cells and ANAs to bridge missing sciatic nerves. Then, the rats were randomly divided into five groups (n = 12 per group): a Control group; a Model group; an ADSC group; an SC-L group; and a DMEM group. Twelve weeks postsurgery, behavioral function tests and molecular biological techniques were used to evaluate the function of regenerated nerves and the relevant molecular mechanisms after sciatic nerve injury (SNI). The results showed that adipose-derived Schwann-like cells combined with ANAs markedly promoted sciatic nerve regeneration and repair. These findings also demonstrated that the expression of neurotrophic factors (NFs) was increased, and the expression of Janus activated kinase2 (JAK2)/P-JAK2, signal transducer and activator of transcription-3 (STAT3)/P-STAT3 was decreased in the spinal cord after SNI. Therefore, these results suggested that highly expressed NFs in the spinal cord could promote nerve regeneration and repair by inhibiting activation of the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xiu-Mei Fu
- Department of Anatomy, College of Basic Medical Sciences, Chengde Medical University, Chengde, Hebei 067000, China.
| | - Ying Wang
- Research Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang 157011, China
| | - Wen-Liang Fu
- Department of Anatomy, College of Basic Medical Sciences, Chengde Medical University, Chengde, Hebei 067000, China
| | - Dong-Hui Liu
- Department of Anatomy, College of Basic Medical Sciences, Chengde Medical University, Chengde, Hebei 067000, China
| | - Cheng-Yun Zhang
- Department of Anatomy, College of Basic Medical Sciences, Chengde Medical University, Chengde, Hebei 067000, China
| | - Qiao-Ling Wang
- Department of Anatomy, College of Basic Medical Sciences, Shenyang Medical College, Shenyang, Liaoning 110034, China
| | - Xiao-Jie Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| |
Collapse
|
16
|
Funnell JL, Balouch B, Gilbert RJ. Magnetic Composite Biomaterials for Neural Regeneration. Front Bioeng Biotechnol 2019; 7:179. [PMID: 31404143 PMCID: PMC6669379 DOI: 10.3389/fbioe.2019.00179] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
Nervous system damage caused by physical trauma or degenerative diseases can result in loss of sensory and motor function for patients. Biomaterial interventions have shown promise in animal studies, providing contact guidance for extending neurites or sustained release of various drugs and growth factors; however, these approaches often target only one aspect of the regeneration process. More recent studies investigate hybrid approaches, creating complex materials that can reduce inflammation or provide neuroprotection in addition to stimulating growth and regeneration. Magnetic materials have shown promise in this field, as they can be manipulated non-invasively, are easily functionalized, and can be used to mechanically stimulate cells. By combining different types of biomaterials (hydrogels, nanoparticles, electrospun fibers) and incorporating magnetic elements, magnetic materials can provide multiple physical and chemical cues to promote regeneration. This review, for the first time, will provide an overview of design strategies for promoting regeneration after neural injury with magnetic biomaterials.
Collapse
Affiliation(s)
| | | | - Ryan J. Gilbert
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
17
|
Zhang PX, Han N, Kou YH, Zhu QT, Liu XL, Quan DP, Chen JG, Jiang BG. Tissue engineering for the repair of peripheral nerve injury. Neural Regen Res 2019; 14:51-58. [PMID: 30531070 PMCID: PMC6263012 DOI: 10.4103/1673-5374.243701] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injury is a common clinical problem and affects the quality of life of patients. Traditional restoration methods are not satisfactory. Researchers increasingly focus on the field of tissue engineering. The three key points in establishing a tissue engineering material are the biological scaffold material, the seed cells and various growth factors. Understanding the type of nerve injury, the construction of scaffold and the process of repair are necessary to solve peripheral nerve injury and promote its regeneration. This review describes the categories of peripheral nerve injury, fundamental research of peripheral nervous tissue engineering and clinical research on peripheral nerve scaffold material, and paves a way for related research and the use of conduits in clinical practice.
Collapse
Affiliation(s)
| | - Na Han
- Peking University People's Hospital, Beijing, China
| | - Yu-Hui Kou
- Peking University People's Hospital, Beijing, China
| | - Qing-Tang Zhu
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao-Lin Liu
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Da-Ping Quan
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jian-Guo Chen
- School of Life Science, Peking University, Beijing, China
| | | |
Collapse
|
18
|
Silver nanoparticles conjugated with Neurotrophin 3 upregulate myelin gene transcription pathway. J Theor Biol 2018; 459:111-118. [PMID: 30268839 DOI: 10.1016/j.jtbi.2018.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 11/22/2022]
Abstract
Mathematical modeling is the art of converting problems from the biological area into handy mathematical formulations whose theoretical and numerical analysis provides understandings about the directions and solutions to the particular problem. Recently, the combination therapy treatments have been revealed exceptionally fruitful by using mathematical modeling technique. The human nervous system is composed of axons, covered by the myelin sheath. Axons carry signals and promote myelin development. The abnormalities in myelination formation due to mutations in myelin gene result in memory disorders and impaired cognitive activities. The ERBb gene family is responsible for causing abnormalities in myelin gene. Using this knowledge, the pathway of mutated myelin gene was retrieved and its model was developed. Modeling and simulation analysis was performed to determine the level of expression of several genes. The Neurotrophin 3 ligand-coated with silver nanoparticle was induced in the model to normalize the transcription of myelin gene. It was observed that the myelin gene expression level increases from 0 after two days of NT3 induction and reaches to the maximum level on the 10th day of drug induction along with an increase in ERBb expression. This research work can be used in the future as a part of drug discovery and formulation.
Collapse
|
19
|
Marcus M, Smith A, Maswadeh A, Shemesh Z, Zak I, Motiei M, Schori H, Margel S, Sharoni A, Shefi O. Magnetic Targeting of Growth Factors Using Iron Oxide Nanoparticles. NANOMATERIALS 2018; 8:nano8090707. [PMID: 30201889 PMCID: PMC6163445 DOI: 10.3390/nano8090707] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 12/29/2022]
Abstract
Growth factors play an important role in nerve regeneration and repair. An attractive drug delivery strategy, termed “magnetic targeting”, aims to enhance therapeutic efficiency by directing magnetic drug carriers specifically to selected cell populations that are suitable for the nervous tissues. Here, we covalently conjugated nerve growth factor to iron oxide nanoparticles (NGF-MNPs) and used controlled magnetic fields to deliver the NGF–MNP complexes to target sites. In order to actuate the magnetic fields a modular magnetic device was designed and fabricated. PC12 cells that were plated homogenously in culture were differentiated selectively only in targeted sites out of the entire dish, restricted to areas above the magnetic “hot spots”. To examine the ability to guide the NGF-MNPs towards specific targets in vivo, we examined two model systems. First, we injected and directed magnetic carriers within the sciatic nerve. Second, we injected the MNPs intravenously and showed a significant accumulation of MNPs in mouse retina while using an external magnet that was placed next to one of the eyes. We propose a novel approach to deliver drugs selectively to injured sites, thus, to promote an effective repair with minimal systemic side effects, overcoming current challenges in regenerative therapeutics.
Collapse
Affiliation(s)
- Michal Marcus
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
| | - Alexandra Smith
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Ahmad Maswadeh
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Department of Neurosurgery, Sheba Medical Center, Ramat Gan 5290002, Israel.
| | - Ziv Shemesh
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Idan Zak
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Menachem Motiei
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
| | - Hadas Schori
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
| | - Shlomo Margel
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Amos Sharoni
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
- Department of Physics, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Orit Shefi
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
| |
Collapse
|
20
|
Xie F, Zhang F, Min S, Chen J, Yang J, Wang X. Glial cell line-derived neurotrophic factor (GDNF) attenuates the peripheral neuromuscular dysfunction without inhibiting the activation of spinal microglia/monocyte. BMC Geriatr 2018; 18:110. [PMID: 29743034 PMCID: PMC5944173 DOI: 10.1186/s12877-018-0796-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Background Peripheral neuromuscular dysfunctions were found in elderly individuals, and spinal microglia/monocyte plays an important role on this process. This study aims to test whether the glial cell line-derived neurotrophic factor (GDNF) could attenuate age-related neuromuscular dysfunction by inhibiting the activation of spinal microglia/monocyte. Methods Male Sprague-Dawley rats were divided into an adult group and an aged group. The aged rats were intrathecally injected with normal saline (NS) and GDNF. All the rats were harvested 5 days after each injection. The muscular function was tested by compound muscle action potential, and the activation of microglia/monocyte was detected by immunofluorescence staining; cytokines were assayed by enzyme-linked immunosorbent assay; the expression level of GDNF and its known receptor GFR-α in the spinal cord, the expression level of neuregulin-1 (NRG-1) in the sciatic nerve, and the expression level of γ- and α7- ε-nicotinic acetylcholine receptors in the tibialis anterior muscle were measured by western blotting. Results The activated microglia/monocyte was found in the aged rats compared to the adult rats. The aged rats showed a significant neuromuscular dysfunction and cytokine release as well as increased expression of γ- and α7-nAChR. The protein expression of GDNF, GFR-α, and NRG-1 in the aged rats were significantly lower than that in the adult rats. However, the exogenous injection of GDNF could alleviate the neuromuscular dysfunction but not inhibit the activation of spinal microglia/monocyte. Furthermore, the levels of GFR-α and NRG-1 also increased after GDNF treatment. Conclusion The GDNF could attenuate the age-related peripheral neuromuscular dysfunction without inhibiting the activation of microglia/monocyte in the spinal cord.
Collapse
Affiliation(s)
- Fei Xie
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1#, Yuan Jia Gang, Chongqing, 400016, China
| | - Fan Zhang
- Department of Anesthesiology, the People's Hospital of Jianyang City, Chengdu, Sichuan, China
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1#, Yuan Jia Gang, Chongqing, 400016, China.
| | - Jingyuan Chen
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1#, Yuan Jia Gang, Chongqing, 400016, China
| | - Jun Yang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1#, Yuan Jia Gang, Chongqing, 400016, China
| | - Xin Wang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1#, Yuan Jia Gang, Chongqing, 400016, China
| |
Collapse
|
21
|
Yuan M, Wang Y, Qin YX. Promoting neuroregeneration by applying dynamic magnetic fields to a novel nanomedicine: Superparamagnetic iron oxide (SPIO)-gold nanoparticles bounded with nerve growth factor (NGF). NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1337-1347. [PMID: 29627520 DOI: 10.1016/j.nano.2018.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/13/2018] [Accepted: 03/25/2018] [Indexed: 12/17/2022]
Abstract
Neuroregeneration imposes a significant challenge in neuroscience for treating neurodegenerative diseases. The objective of this study is to evaluate the hypothesis that the nerve growth factor (NGF) functionalized superparamagnetic iron oxide (SPIO)-gold (Au) nanomedicine can stimulate the neuron growth and differentiation under external magnetic fields (MFs), and dynamic MFs outperform their static counterparts. The SPIO-Au core-shell nanoparticles (NPs) (Diameter: 20.8 nm) possessed advantages such as uniform quasi-spherical shapes, narrow size distribution, excellent stabilities, and low toxicity (viability >96% for 5 days). NGF functionalization has enhanced the cellular uptake. The promotion of neuronal growth and orientation using NGF functionalized SPIO-Au NPs, driven by both the static and dynamic MFs, was revealed experimentally on PC-12 cells and theoretically on a cytoskeletal force model. More importantly, dynamic MFs via rotation performed better than the static ones, i.e., the cellular differentiation ratio increased 58%; the neurite length elongation increased 63%.
Collapse
Affiliation(s)
- Muzhaozi Yuan
- Department of Mechanical Engineering, State University of New York at Stony Brook, Stony Brook, NY, United States
| | - Ya Wang
- Department of Mechanical Engineering, State University of New York at Stony Brook, Stony Brook, NY, United States.
| | - Yi-Xian Qin
- Department of Mechanical Engineering, State University of New York at Stony Brook, Stony Brook, NY, United States; Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY, United States
| |
Collapse
|
22
|
Giannaccini M, Usai A, Chiellini F, Guadagni V, Andreazzoli M, Ori M, Pasqualetti M, Dente L, Raffa V. Neurotrophin-conjugated nanoparticles prevent retina damage induced by oxidative stress. Cell Mol Life Sci 2018; 75:1255-1267. [PMID: 29098325 PMCID: PMC5843686 DOI: 10.1007/s00018-017-2691-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/02/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Abstract
Glaucoma and other optic neuropathies are characterized by a loss of retinal ganglion cells (RGCs), a cell layer located in the posterior eye segment. Several preclinical studies demonstrate that neurotrophins (NTs) prevent RGC loss. However, NTs are rarely investigated in the clinic due to various issues, such as difficulties in reaching the retina, the very short half-life of NTs, and the need for multiple injections. We demonstrate that NTs can be conjugated to magnetic nanoparticles (MNPs), which act as smart drug carriers. This combines the advantages of the self-localization of the drug in the retina and drug protection from fast degradation. We tested the nerve growth factor and brain-derived neurotrophic factor by comparing the neuroprotection of free versus conjugated proteins in a model of RGC loss induced by oxidative stress. Histological data demonstrated that the conjugated proteins totally prevented RGC loss, in sharp contrast to the equivalent dose of free proteins, which had no effect. The overall data suggest that the nanoscale MNP-protein hybrid is an excellent tool in implementing ocular drug delivery strategies for neuroprotection and therapy.
Collapse
Affiliation(s)
| | - Alice Usai
- Department of Biology, Università di Pisa, 56127, Pisa, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, Università di Pisa, 56124, Pisa, Italy
| | | | | | - Michela Ori
- Department of Biology, Università di Pisa, 56127, Pisa, Italy
| | | | - Luciana Dente
- Department of Biology, Università di Pisa, 56127, Pisa, Italy
| | - Vittoria Raffa
- Department of Biology, Università di Pisa, 56127, Pisa, Italy.
| |
Collapse
|
23
|
Influence of Different ECM-Like Hydrogels on Neurite Outgrowth Induced by Adipose Tissue-Derived Stem Cells. Stem Cells Int 2017; 2017:6319129. [PMID: 29333166 PMCID: PMC5733162 DOI: 10.1155/2017/6319129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/22/2017] [Accepted: 09/18/2017] [Indexed: 01/19/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been proposed for spinal cord injury (SCI) applications due to their capacity to secrete growth factors and vesicles—secretome—that impacts important phenomena in SCI regeneration. To improve MSC survival into SCI sites, hydrogels have been used as transplantation vehicles. Herein, we hypothesized if different hydrogels could interact differently with adipose tissue-derived MSCs (ASCs). The efficacy of three natural hydrogels, gellan gum (functionalized with a fibronectin peptide), collagen, and a hydrogel rich in laminin epitopes (NVR-gel) in promoting neuritogenesis (alone and cocultured with ASCs), was evaluated in the present study. Their impact on ASC survival, metabolic activity, and gene expression was also evaluated. Our results indicated that all hydrogels supported ASC survival and viability, being this more evident for the functionalized GG hydrogels. Moreover, the presence of different ECM-derived biological cues within the hydrogels appears to differently affect the mRNA levels of growth factors involved in neuronal survival, differentiation, and axonal outgrowth. All the hydrogel-based systems supported axonal growth mediated by ASCs, but this effect was more robust in functionalized GG. The data herein presented highlights the importance of biological cues within hydrogel-based biomaterials as possible modulators of ASC secretome and its effects for SCI applications.
Collapse
|
24
|
Azzouz A, Hanini A, Bouslama Z, Saili L, Benaceur S, Sakly M, Tliba S, Abdelmelek H. Iron prevents demyelination of frog sciatic nerves. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:51-54. [PMID: 28823653 DOI: 10.1016/j.etap.2017.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
Metal ions are of particular importance in nervous system function, notably iron. However, very little has been done to investigate its physiological role in frog peripheral nervous system. The present research aim to evaluate i) the time-effect of sciatic nerve ligation and/or ii) iron sulphate (1.50mg/kg, in lymphatic sac) on frog myelin sheaths. Histological sections following ligation shows degeneration of some fibres with axonal and myelin breakdown associated to a decrease of Schwann cells number following 2h (45.00±0.30, p<0.0001), 24h (28.00±0.020, p<0.0001). Interestingly, iron administration reduces the degeneration of myelin sheaths classically observed in frog ligated sciatic nerve associated with an increase of Schwann cells number (139.00±0.50, p<0.0001). Thus, iron could prevent degeneration or promote regeneration induced by ligation in frog sciatic nerve.
Collapse
Affiliation(s)
- Amina Azzouz
- Laboratoire d'Ecologie des Systèmes Terrestres et Aquatiques, Faculté des Sciences, Université Badji Mokhtar, BP 12, 23000 Sidi Amar, Annaba, Algeria.
| | - Amel Hanini
- Laboratoire de Physiologie Intégrée, Faculté des Sciences, Université de Carthage, Jarzouna, Bizerte 7021, Tunisia
| | - Zihad Bouslama
- Laboratoire d'Ecologie des Systèmes Terrestres et Aquatiques, Faculté des Sciences, Université Badji Mokhtar, BP 12, 23000 Sidi Amar, Annaba, Algeria
| | - Linda Saili
- Laboratoire d'Ecologie des Systèmes Terrestres et Aquatiques, Faculté des Sciences, Université Badji Mokhtar, BP 12, 23000 Sidi Amar, Annaba, Algeria
| | - Sihem Benaceur
- Laboratoire de Physiologie Intégrée, Faculté des Sciences, Université de Carthage, Jarzouna, Bizerte 7021, Tunisia
| | - Mohsen Sakly
- Laboratoire de Physiologie Intégrée, Faculté des Sciences, Université de Carthage, Jarzouna, Bizerte 7021, Tunisia
| | - Souhil Tliba
- Laboratoire de Génie Biologique des Cancers, Faculté de Médecine, Université Abderrahmane Mira, Aboudaou, Bejaia 06000, Algeria
| | - Hafedh Abdelmelek
- Laboratoire de Physiologie Intégrée, Faculté des Sciences, Université de Carthage, Jarzouna, Bizerte 7021, Tunisia
| |
Collapse
|
25
|
Giannaccini M, Calatayud MP, Poggetti A, Corbianco S, Novelli M, Paoli M, Battistini P, Castagna M, Dente L, Parchi P, Lisanti M, Cavallini G, Junquera C, Goya GF, Raffa V. Magnetic Nanoparticles for Efficient Delivery of Growth Factors: Stimulation of Peripheral Nerve Regeneration. Adv Healthc Mater 2017; 6. [PMID: 28156059 DOI: 10.1002/adhm.201601429] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/09/2017] [Indexed: 12/19/2022]
Abstract
The only clinically approved alternative to autografts for treating large peripheral nerve injuries is the use of synthetic nerve guidance conduits (NGCs), which provide physical guidance to the regenerating stump and limit scar tissue infiltration at the injury site. Several lines of evidence suggest that a potential future strategy is to combine NGCs with cellular or molecular therapies to deliver growth factors that sustain the regeneration process. However, growth factors are expensive and have a very short half-life; thus, the combination approach has not been successful. In the present paper, we proposed the immobilization of growth factors (GFs) on magnetic nanoparticles (MNPs) for the time- and space-controlled release of GFs inside the NGC. We tested the particles in a rat model of a peripheral nerve lesion. Our results revealed that the injection of a cocktail of MNPs functionalized with nerve growth factor (NGF) and with vascular endothelial growth factor (VEGF) strongly accelerate the regeneration process and the recovery of motor function compared to that obtained using the free factors. Additionally, we found that injecting MNPs in the NGC is safe and does not impair the regeneration process, and the MNPs remain in the conduit for weeks.
Collapse
Affiliation(s)
- Martina Giannaccini
- Department of Biology; Università di Pisa; S.S. 12 Abetone e Brennero 4 56127 Pisa Italy
| | - M. Pilar Calatayud
- Instituto de Nanociencia de Aragon; Universidad de Zaragoza; Mariano Esquillor 50018 Zaragoza Spain
| | - Andrea Poggetti
- Department of Translational Research and of New Surgical and Medical Technologies; Università di Pisa; Via Savi 8 56126 Pisa Italy
| | - Silvia Corbianco
- Department of Translational Research and of New Surgical and Medical Technologies; Università di Pisa; Via Savi 8 56126 Pisa Italy
| | - Michela Novelli
- Department of Translational Research and of New Surgical and Medical Technologies; Università di Pisa; Via Savi 8 56126 Pisa Italy
| | - Melania Paoli
- Institute of Life Science; Scuola Superiore Sant'Anna; Piazza Martiri della Libertà 33 56127 Pisa Italy
| | - Pietro Battistini
- Department of Translational Research and of New Surgical and Medical Technologies; Università di Pisa; Via Savi 8 56126 Pisa Italy
| | - Maura Castagna
- Department of Translational Research and of New Surgical and Medical Technologies; Università di Pisa; Via Savi 8 56126 Pisa Italy
| | - Luciana Dente
- Department of Biology; Università di Pisa; S.S. 12 Abetone e Brennero 4 56127 Pisa Italy
| | - Paolo Parchi
- Department of Translational Research and of New Surgical and Medical Technologies; Università di Pisa; Via Savi 8 56126 Pisa Italy
| | - Michele Lisanti
- Department of Translational Research and of New Surgical and Medical Technologies; Università di Pisa; Via Savi 8 56126 Pisa Italy
| | - Gabriella Cavallini
- Department of Translational Research and of New Surgical and Medical Technologies; Università di Pisa; Via Savi 8 56126 Pisa Italy
| | - Concepción Junquera
- Institute for Health Research Aragon IIS; Faculty of Medicine, C/Domingo Mirals/n; 50009 Zaragoza Spain
| | - Gerardo F. Goya
- Instituto de Nanociencia de Aragon; Universidad de Zaragoza; Mariano Esquillor 50018 Zaragoza Spain
| | - Vittoria Raffa
- Department of Biology; Università di Pisa; S.S. 12 Abetone e Brennero 4 56127 Pisa Italy
- Institute of Life Science; Scuola Superiore Sant'Anna; Piazza Martiri della Libertà 33 56127 Pisa Italy
| |
Collapse
|
26
|
Wuttke S, Zimpel A, Bein T, Braig S, Stoiber K, Vollmar A, Müller D, Haastert-Talini K, Schaeske J, Stiesch M, Zahn G, Mohmeyer A, Behrens P, Eickelberg O, Bölükbas DA, Meiners S. Validating Metal-Organic Framework Nanoparticles for Their Nanosafety in Diverse Biomedical Applications. Adv Healthc Mater 2017; 6. [PMID: 27863166 DOI: 10.1002/adhm.201600818] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/06/2016] [Indexed: 01/09/2023]
Abstract
Metal-organic frameworks (MOFs) are promising platforms for the synthesis of nanoparticles for diverse medical applications. Their fundamental design principles allow for significant control of the framework architecture and pore chemistry, enabling directed functionalization for nanomedical applications. However, before applying novel nanomaterials to patients, it is imperative to understand their potential health risks. In this study, the nanosafety of different MOF nanoparticles is analyzed comprehensively for diverse medical applications. The authors first evaluate the effects of MOFs on human endothelial and mouse lung cells, which constitute a first line of defense upon systemic blood-mediated and local lung-specific applications of nanoparticles. Second, we validated these MOFs for multifunctional surface coatings of dental implants using human gingiva fibroblasts. Moreover, biocompatibility of MOFs is assessed for surface coating of nerve guidance tubes using human Schwann cells and rat dorsal root ganglion cultures. The main finding of this study is that the nanosafety and principal suitability of our MOF nanoparticles as novel agents for drug delivery and implant coatings strongly varies with the effector cell type. We conclude that it is therefore necessary to carefully evaluate the nanosafety of MOF nanomaterials with respect to their particular medical application and their interacting primary cell types, respectively.
Collapse
Affiliation(s)
- Stefan Wuttke
- Department of Chemistry and Center for NanoScience (CeNS); University of Munich (LMU); 81377 Munich Germany
| | - Andreas Zimpel
- Department of Chemistry and Center for NanoScience (CeNS); University of Munich (LMU); 81377 Munich Germany
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS); University of Munich (LMU); 81377 Munich Germany
| | - Simone Braig
- Department of Pharmacy; University of Munich (LMU); 81377 Munich Germany
| | - Katharina Stoiber
- Department of Pharmacy; University of Munich (LMU); 81377 Munich Germany
| | - Angelika Vollmar
- Department of Pharmacy; University of Munich (LMU); 81377 Munich Germany
| | - Dominik Müller
- Institute of Neuroanatomy; Hannover Medical School; Hannover 30625 Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy; Hannover Medical School; Hannover 30625 Germany
- Center for Systems Neurosciences (ZSN) Hannover; 30625 Hannover Germany
| | - Jörn Schaeske
- Department of Prosthetic Dentistry and Biomedical Materials Science; Hannover Medical School; Hannover 30625 Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science; Hannover Medical School; Hannover 30625 Germany
| | - Gesa Zahn
- Institute for Inorganic Chemistry; Leibniz University Hannover; Hannover 30167 Germany
| | - Alexander Mohmeyer
- Institute for Inorganic Chemistry; Leibniz University Hannover; Hannover 30167 Germany
| | - Peter Behrens
- Institute for Inorganic Chemistry; Leibniz University Hannover; Hannover 30167 Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center (CPC); University Hospital, University of Munich (LMU); Member of the German Center for Lung Research (DZL); 81377 Munich Germany
| | - Deniz A. Bölükbas
- Comprehensive Pneumology Center (CPC); University Hospital, University of Munich (LMU); Member of the German Center for Lung Research (DZL); 81377 Munich Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC); University Hospital, University of Munich (LMU); Member of the German Center for Lung Research (DZL); 81377 Munich Germany
| |
Collapse
|
27
|
Yokel RA. Physicochemical properties of engineered nanomaterials that influence their nervous system distribution and effects. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2081-2093. [DOI: 10.1016/j.nano.2016.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
|
28
|
Marcus M, Karni M, Baranes K, Levy I, Alon N, Margel S, Shefi O. Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations. J Nanobiotechnology 2016; 14:37. [PMID: 27179923 PMCID: PMC4867999 DOI: 10.1186/s12951-016-0190-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
Background The ability to direct and manipulate neuronal cells has important potential in therapeutics and neural network studies. An emerging approach for remotely guiding cells is by incorporating magnetic nanoparticles (MNPs) into cells and transferring the cells into magnetic sensitive units. Recent developments offer exciting possibilities of magnetic manipulations of MNPs-loaded cells by external magnetic fields. In the present study, we evaluated and characterized uptake properties for optimal loading of cells by MNPs. We examined the interactions between MNPs of different cores and coatings, with primary neurons and neuron-like cells. Results We found that uncoated-maghemite iron oxide nanoparticles maximally interact and penetrate into cells with no cytotoxic effect. We observed that the cellular uptake of the MNPs depends on the time of incubation and the concentration of nanoparticles in the medium. The morphology patterns of the neuronal cells were not affected by MNPs uptake and neurons remained electrically active. We theoretically modeled magnetic fluxes and demonstrated experimentally the response of MNP-loaded cells to the magnetic fields affecting cell motility. Furthermore, we successfully directed neurite growth orientation along regeneration. Conclusions Applying mechanical forces via magnetic mediators is a useful approach for biomedical applications. We have examined several types of MNPs and studied the uptake behavior optimized for magnetic neuronal manipulations. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0190-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michal Marcus
- Neuro-engineering lab, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel.,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan, Israel
| | - Moshe Karni
- Neuro-engineering lab, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel.,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan, Israel
| | - Koby Baranes
- Neuro-engineering lab, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel.,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan, Israel
| | - Itay Levy
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel.,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan, Israel
| | - Noa Alon
- Neuro-engineering lab, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel.,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan, Israel
| | - Shlomo Margel
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel.,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan, Israel
| | - Orit Shefi
- Neuro-engineering lab, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel. .,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan, Israel.
| |
Collapse
|
29
|
Meyer C, Wrobel S, Raimondo S, Rochkind S, Heimann C, Shahar A, Ziv-Polat O, Geuna S, Grothe C, Haastert-Talini K. Peripheral Nerve Regeneration through Hydrogel-Enriched Chitosan Conduits Containing Engineered Schwann Cells for Drug Delivery. Cell Transplant 2016; 25:159-82. [DOI: 10.3727/096368915x688010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Critical length nerve defects in the rat sciatic nerve model were reconstructed with chitosan nerve guides filled with Schwann cells (SCs) containing hydrogel. The transplanted SCs were naive or had been genetically modified to overexpress neurotrophic factors, thus providing a cellular neurotrophic factor delivery system. Prior to the assessment in vivo, in vitro studies evaluating the properties of engineered SCs overexpressing glial cell line-derived neurotrophic factor (GDNF) or fibroblast growth factor 2 (FGF-218kDa) demonstrated their neurite outgrowth inductive bioactivity for sympathetic PC-12 cells as well as for dissociated dorsal root ganglion cell drop cultures. SCs within NVR-hydrogel, which is mainly composed of hyaluronic acid and laminin, were delivered into the lumen of chitosan hollow conduits with a 5% degree of acetylation. The viability and neurotrophic factor production by engineered SCs within NVR-Gel inside the chitosan nerve guides was further demonstrated in vitro. In vivo we studied the outcome of peripheral nerve regeneration after reconstruction of 15-mm nerve gaps with either chitosan/NVR-Gel/SCs composite nerve guides or autologous nerve grafts (ANGs). While ANGs did guarantee for functional sensory and motor regeneration in 100% of the animals, delivery of NVR-Gel into the chitosan nerve guides obviously impaired sufficient axonal outgrowth. This obstacle was overcome to a remarkable extent when the NVR-Gel was enriched with FGF-218kDa overexpressing SCs.
Collapse
Affiliation(s)
- Cora Meyer
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany
- Center for Systems Neuroscience (ZSN) Hannover, Lower-Saxony, Germany
| | - Sandra Wrobel
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany
- Center for Systems Neuroscience (ZSN) Hannover, Lower-Saxony, Germany
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, Università degli studi di Torino, Orbassano, Piemonte, Italy
| | - Shimon Rochkind
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | - Stefano Geuna
- Department of Clinical and Biological Sciences, Università degli studi di Torino, Orbassano, Piemonte, Italy
| | - Claudia Grothe
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany
- Center for Systems Neuroscience (ZSN) Hannover, Lower-Saxony, Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany
- Center for Systems Neuroscience (ZSN) Hannover, Lower-Saxony, Germany
| |
Collapse
|
30
|
Zuidema JM, Provenza C, Caliendo T, Dutz S, Gilbert RJ. Magnetic NGF-releasing PLLA/iron oxide nanoparticles direct extending neurites and preferentially guide neurites along aligned electrospun microfibers. ACS Chem Neurosci 2015; 6:1781-8. [PMID: 26322376 DOI: 10.1021/acschemneuro.5b00189] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nerve growth factor releasing composite nanoparticles (NGF-cNPs) were developed to direct the extension of neurite outgrowth from dorsal root ganglia (DRG). Iron oxide magnetic nanoparticles were incorporated into poly-l-lactic acid (PLLA) nanoparticles in order to position the NGF-cNPs in a culture dish. Neurites growing from DRG extended toward the NGF released from the NGF-cNPs. DRG were then cultured on aligned PLLA microfibers in the presence of NGF-cNPs, and these biomaterials combined to align DRG neurite extension along one axis and preferentially toward the NGF-cNPs. This combinatorial biomaterial approach shows promise as a strategy to direct the extension of regenerating neurites.
Collapse
Affiliation(s)
- Jonathan M. Zuidema
- Department
of Chemistry and Biochemistry, University of California—San Diego, La Jolla, California 92093, United States
| | | | | | - Silvio Dutz
- Institute
of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, G-Kirchhoff-Str. 2, D-98693 Ilmenau, Germany
- Department
of Nano Biophotonics, Leibniz Institute of Photonic Technology (IPHT), A.-Einstein-Str. 9, D-07745 Jena, Germany
| | | |
Collapse
|
31
|
Kandasamy G, Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm 2015; 496:191-218. [PMID: 26520409 DOI: 10.1016/j.ijpharm.2015.10.058] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/15/2022]
Abstract
Recently superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively used in cancer therapy and diagnosis (theranostics) via magnetic targeting, magnetic resonance imaging, etc. due to their remarkable magnetic properties, chemical stability, and biocompatibility. However, the magnetic properties of SPIONs are influenced by various physicochemical and synthesis parameters. So, this review mainly focuses on the influence of spin canting effects, introduced by the variations in size, shape, and organic/inorganic surface coatings, on the magnetic properties of SPIONs. This review also describes the several predominant chemical synthesis procedures and role of the synthesis parameters for monitoring the size, shape, crystallinity and composition of the SPIONs. Moreover, this review discusses about the latest developments of the inorganic materials and organic polymers for encapsulation of the SPIONs. Finally, the most recent advancements of the SPIONs and their nanopackages in combination with other imaging/therapeutic agents have been comprehensively discussed for their effective usage as in vitro and in vivo theranostic agents in cancer treatments.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Nanomaterials Lab, Department of Mechanical Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| | - Dipak Maity
- Nanomaterials Lab, Department of Mechanical Engineering, Shiv Nadar University, Uttar Pradesh 201314, India.
| |
Collapse
|
32
|
Assunção-Silva RC, Oliveira CC, Ziv-Polat O, Gomes ED, Sahar A, Sousa N, Silva NA, Salgado AJ. Induction of neurite outgrowth in 3D hydrogel-based environments. Biomed Mater 2015; 10:051001. [DOI: 10.1088/1748-6041/10/5/051001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Geuna S, Raimondo S, Fregnan F, Haastert-Talini K, Grothe C. In vitromodels for peripheral nerve regeneration. Eur J Neurosci 2015; 43:287-96. [DOI: 10.1111/ejn.13054] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/03/2015] [Accepted: 08/20/2015] [Indexed: 01/10/2023]
Affiliation(s)
- S. Geuna
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute; University of Turin; Ospedale San Luigi, Regione Gonzole 10 10043 Orbassano Turin Italy
| | - S. Raimondo
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute; University of Turin; Ospedale San Luigi, Regione Gonzole 10 10043 Orbassano Turin Italy
| | - F. Fregnan
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute; University of Turin; Ospedale San Luigi, Regione Gonzole 10 10043 Orbassano Turin Italy
| | - K. Haastert-Talini
- Institute of Neuroanatomy; Hannover Medical School and Center for Systems Neuroscience (ZSN); Hannover Germany
| | - C. Grothe
- Institute of Neuroanatomy; Hannover Medical School and Center for Systems Neuroscience (ZSN); Hannover Germany
| |
Collapse
|
34
|
Pinkernelle J, Raffa V, Calatayud MP, Goya GF, Riggio C, Keilhoff G. Growth factor choice is critical for successful functionalization of nanoparticles. Front Neurosci 2015; 9:305. [PMID: 26388717 PMCID: PMC4557102 DOI: 10.3389/fnins.2015.00305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/12/2015] [Indexed: 12/16/2022] Open
Abstract
Nanoparticles (NPs) show new characteristics compared to the corresponding bulk material. These nanoscale properties make them interesting for various applications in biomedicine and life sciences. One field of application is the use of magnetic NPs to support regeneration in the nervous system. Drug delivery requires a functionalization of NPs with bio-functional molecules. In our study, we functionalized self-made PEI-coated iron oxide NPs with nerve growth factor (NGF) and glial cell-line derived neurotrophic factor (GDNF). Next, we tested the bio-functionality of NGF in a rat pheochromocytoma cell line (PC12) and the bio-functionality of GDNF in an organotypic spinal cord culture. Covalent binding of NGF to PEI-NPs impaired bio-functionality of NGF, but non-covalent approach differentiated PC12 cells reliably. Non-covalent binding of GDNF showed a satisfying bio-functionality of GDNF:PEI-NPs, but turned out to be unstable in conjugation to the PEI-NPs. Taken together, our study showed the importance of assessing bio-functionality and binding stability of functionalized growth factors using proper biological models. It also shows that successful functionalization of magnetic NPs with growth factors is dependent on the used binding chemistry and that it is hardly predictable. For use as therapeutics, functionalization strategies have to be reproducible and future studies are needed.
Collapse
Affiliation(s)
- Josephine Pinkernelle
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University of MagdeburgMagdeburg, Germany
- Institute for Biochemistry and Cell Biology, Otto-von-Guericke University of MagdeburgMagdeburg, Germany
| | - Vittoria Raffa
- Department of Biology, University of PisaPisa, Italy
- Institute of Life Science, Scuola Superiore Sant' AnnaPisa, Italy
| | | | - Gerado F. Goya
- Aragon Institute of Nanosciences, University of ZaragozaZaragoza, Spain
- Department of Condensed Matter Physics, University of ZaragozaSpain
| | - Cristina Riggio
- Institute of Life Science, Scuola Superiore Sant' AnnaPisa, Italy
| | - Gerburg Keilhoff
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University of MagdeburgMagdeburg, Germany
| |
Collapse
|
35
|
Ziv-Polat O, Margel S, Shahar A. Application of iron oxide anoparticles in neuronal tissue engineering. Neural Regen Res 2015; 10:189-91. [PMID: 25883609 PMCID: PMC4392658 DOI: 10.4103/1673-5374.152364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ofra Ziv-Polat
- N.V.R Research Ltd., 11 Heharash St, Ness-Ziona 74031, Israel
| | - Shlomo Margel
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Abraham Shahar
- N.V.R Research Ltd., 11 Heharash St, Ness-Ziona 74031, Israel
| |
Collapse
|
36
|
Gan L, Qian M, Shi K, Chen G, Gu Y, Du W, Zhu G. Restorative effect and mechanism of mecobalamin on sciatic nerve crush injury in mice. Neural Regen Res 2015; 9:1979-84. [PMID: 25598780 PMCID: PMC4283280 DOI: 10.4103/1673-5374.145379] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2014] [Indexed: 12/21/2022] Open
Abstract
Mecobalamin, a form of vitamin B12 containing a central metal element (cobalt), is one of the most important mediators of nervous system function. In the clinic, it is often used to accelerate recovery of peripheral nerves, but its molecular mechanism remains unclear. In the present study, we performed sciatic nerve crush injury in mice, followed by daily intraperitoneal administration of mecobalamin (65 μg/kg or 130 μg/kg) or saline (negative control). Walking track analysis, histomorphological examination, and quantitative real-time PCR showed that mecobalamin significantly improved functional recovery of the sciatic nerve, thickened the myelin sheath in myelinated nerve fibers, and increased the cross-sectional area of target muscle cells. Furthermore, mecobalamin upregulated mRNA expression of growth associated protein 43 in nerve tissue ipsilateral to the injury, and of neurotrophic factors (nerve growth factor, brain-derived nerve growth factor and ciliary neurotrophic factor) in the L4–6 dorsal root ganglia. Our findings indicate that the molecular mechanism underlying the therapeutic effect of mecobalamin after sciatic nerve injury involves the upregulation of multiple neurotrophic factor genes.
Collapse
Affiliation(s)
- Lin Gan
- Department of Orthopedics, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu Province, China
| | - Minquan Qian
- Department of Orthopedics, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu Province, China
| | - Keqin Shi
- Department of Orthopedics, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu Province, China
| | - Gang Chen
- Department of Orthopedics, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu Province, China
| | - Yanglin Gu
- Department of Orthopedics, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu Province, China
| | - Wei Du
- Department of Orthopedics, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu Province, China
| | - Guoxing Zhu
- Department of Orthopedics, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu Province, China
| |
Collapse
|
37
|
Anderson M, Shelke NB, Manoukian OS, Yu X, McCullough LD, Kumbar SG. Peripheral Nerve Regeneration Strategies: Electrically Stimulating Polymer Based Nerve Growth Conduits. Crit Rev Biomed Eng 2015; 43:131-59. [PMID: 27278739 PMCID: PMC5266796 DOI: 10.1615/critrevbiomedeng.2015014015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Treatment of large peripheral nerve damages ranges from the use of an autologous nerve graft to a synthetic nerve growth conduit. Biological grafts, in spite of many merits, show several limitations in terms of availability and donor site morbidity, and outcomes are suboptimal due to fascicle mismatch, scarring, and fibrosis. Tissue engineered nerve graft substitutes utilize polymeric conduits in conjunction with cues both chemical and physical, cells alone and or in combination. The chemical and physical cues delivered through polymeric conduits play an important role and drive tissue regeneration. Electrical stimulation (ES) has been applied toward the repair and regeneration of various tissues such as muscle, tendon, nerve, and articular tissue both in laboratory and clinical settings. The underlying mechanisms that regulate cellular activities such as cell adhesion, proliferation, cell migration, protein production, and tissue regeneration following ES is not fully understood. Polymeric constructs that can carry the electrical stimulation along the length of the scaffold have been developed and characterized for possible nerve regeneration applications. We discuss the use of electrically conductive polymers and associated cell interaction, biocompatibility, tissue regeneration, and recent basic research for nerve regeneration. In conclusion, a multifunctional combinatorial device comprised of biomaterial, structural, functional, cellular, and molecular aspects may be the best way forward for effective peripheral nerve regeneration.
Collapse
Affiliation(s)
- Matthew Anderson
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT
- Institute for Regenerative Engineering, UConn Health, Farmington, CT
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT
| | - Namdev B. Shelke
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT
- Institute for Regenerative Engineering, UConn Health, Farmington, CT
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT
| | - Ohan S. Manoukian
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT
| | - Xiaojun Yu
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ
| | | | - Sangamesh G. Kumbar
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT
- Institute for Regenerative Engineering, UConn Health, Farmington, CT
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT
| |
Collapse
|
38
|
Morano M, Wrobel S, Fregnan F, Ziv-Polat O, Shahar A, Ratzka A, Grothe C, Geuna S, Haastert-Talini K. Nanotechnology versus stem cell engineering: in vitro comparison of neurite inductive potentials. Int J Nanomedicine 2014; 9:5289-306. [PMID: 25484582 PMCID: PMC4238897 DOI: 10.2147/ijn.s71951] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Innovative nerve conduits for peripheral nerve reconstruction are needed in order to specifically support peripheral nerve regeneration (PNR) whenever nerve autotransplantation is not an option. Specific support of PNR could be achieved by neurotrophic factor delivery within the nerve conduits via nanotechnology or stem cell engineering and transplantation. Methods Here, we comparatively investigated the bioactivity of selected neurotrophic factors conjugated to iron oxide nanoparticles (np-NTFs) and of bone marrow-derived stem cells genetically engineered to overexpress those neurotrophic factors (NTF-BMSCs). The neurite outgrowth inductive activity was monitored in culture systems of adult and neonatal rat sensory dorsal root ganglion neurons as well as in the cell line from rat pheochromocytoma (PC-12) cell sympathetic culture model system. Results We demonstrate that np-NTFs reliably support numeric neurite outgrowth in all utilized culture models. In some aspects, especially with regard to their long-term bioactivity, np-NTFs are even superior to free NTFs. Engineered NTF-BMSCs proved to be less effective in induction of sensory neurite outgrowth but demonstrated an increased bioactivity in the PC-12 cell culture system. In contrast, primary nontransfected BMSCs were as effective as np-NTFs in sensory neurite induction and demonstrated an impairment of neuronal differentiation in the PC-12 cell system. Conclusion Our results evidence that nanotechnology as used in our setup is superior over stem cell engineering when it comes to in vitro models for PNR. Furthermore, np-NTFs can easily be suspended in regenerative hydrogel matrix and could be delivered that way to nerve conduits for future in vivo studies and medical application.
Collapse
Affiliation(s)
- Michela Morano
- Department of Clinical and Biological Sciences, Università Degli Studi di Torino, Orbassano, Piemonte, Italy
| | - Sandra Wrobel
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany ; Center for Systems Neuroscience (ZSN), Hannover, Lower-Saxony, Germany
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, Università Degli Studi di Torino, Orbassano, Piemonte, Italy
| | | | | | - Andreas Ratzka
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany ; Center for Systems Neuroscience (ZSN), Hannover, Lower-Saxony, Germany
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, Università Degli Studi di Torino, Orbassano, Piemonte, Italy
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany ; Center for Systems Neuroscience (ZSN), Hannover, Lower-Saxony, Germany
| |
Collapse
|