1
|
Nwabo Kamdje AH, Dongmo Fogang HP, Mimche PN. Role of epigenetic in cancer biology, in hematologic malignancies and in anticancer therapy. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1426454. [PMID: 39308891 PMCID: PMC11412843 DOI: 10.3389/fmmed.2024.1426454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024]
Abstract
Major epigenetic changes are associated with carcinogenesis, including aberrant DNA methylations and post-translational modifications of histone. Indeed evidence accumulated in recent years indicates that inactivating DNA hypermethylation preferentially targets the subset of polycomb group (PcG) genes that are regulators of developmental processes. Conversely, activating DNA hypomethylation targets oncogenic signaling pathway genes, but outcomes of both events lead in the overexpression of oncogenic signaling pathways that contribute to the stem-like state of cancer cells. On the basis of recent evidence from population-basedclinical and experimental studies, we hypothesize that factors associated with risk for developing a hematologic malignancy (HM), such as metabolic syndrome and chronic inflammation, may trigger epigenetic mechanisms to increase the transcriptional expression of oncogenes and activate oncogenic signaling pathways. Signaling pathways associated with such risk factors include but are not limited to pro-inflammatory nuclear factor κB (NF-κB) and mitogenic, growth, and survival Janus kinase (JAK) intracellular non-receptor tyrosine kinase-triggered pathways. The latter includes signaling pathways such as transducer and activator of transcription (STAT), Ras GTPases/mitogen-activated protein kinases (MAPKs)/extracellular signal-related kinases (ERKs), phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), and β-catenin pathways. Recent findings on epigenetic mechanisms at work in the biology of cancer and in HMs and their importance in the etiology and pathogenesis of these diseases are herein summarized and discussed. Furthermore, the role of epigenetic processes in the determination of biological identity, the consequences for interindividual variability in disease clinical profile, and the potential of epigenetic drugs in HMs are also considered.
Collapse
Affiliation(s)
- Armel Hervé Nwabo Kamdje
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Hervet Paulain Dongmo Fogang
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Patrice N. Mimche
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
2
|
Uzuner U, Akkus E, Kocak A, Çelik Uzuner S. Exploring epigenetic drugs as potential inhibitors of SARS-CoV-2 main protease: a docking and MD simulation study. J Biomol Struct Dyn 2024; 42:6892-6903. [PMID: 37458994 DOI: 10.1080/07391102.2023.2236714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2024]
Abstract
The COVID-19 pandemic has caused havoc around the globe since 2019 and is considered the largest global epidemic of the twentieth century. Although the first antiviral drug, Remdesivir, was initially introduced against COVID‑19, virtually no tangible therapeutic drugs exist to treat SARS-CoV-2 infection. FDA-approved Paxlovid (Nirmatrelvir supplemented by Ritonavir) was recently announced as a promising drug against the SARS-CoV-2 major protease (Mpro). Here we report for the first time the remarkable inhibitory potentials of lead epigenetic-targeting drugs (epi-drugs) against SARS-CoV-2 Mpro. Epi-drugs are promising compounds to be used in combination with cancer chemotherapeutics to regulate gene expression. The search for all known epi-drugs for the specific inhibition of SARS-CoV-2 Mpro was performed for the first time by consensus (three high-order program) molecular docking studies and end-state free energy calculations. Several epi-drugs were identified with highly comparable binding affinity to SARS-CoV-2 Mpro compared to Nirmatrelvir. In particular, potent histone methyltransferase inhibitor EPZ005687 and DNA methyltransferase inhibitor Guadecitabine were prominent as the most promising epi-drug inhibitors for SARS-CoV-2 Mpro. Long Molecular dynamics (MD) simulations (200 ns each) and corresponding MM-GBSA calculations confirmed the stability of the EPZ005687-Mpro complex with MM-GBSA binding free energy (ΔGbind) -48.2 kcal/mol (EPZ005687) compared to Nirmatrelvir (-44.7 kcal/mol). Taken together, the antiviral activities of the highlighted epi-drugs are reported beyond widespread use in combination with anti-cancer agents. The current findings therefore highlight as yet unexplored antiviral potential of epi-drugs suitable for use in patients struggling with chronic immunosuppressive disorders.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ugur Uzuner
- Synthetic and Systems Biology Innovation Hub, Texas A&M University, College Station, TX, USA
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Ebru Akkus
- Department of Bioengineering, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Abdulkadir Kocak
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Selcen Çelik Uzuner
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
3
|
Salamanca-Ortiz H, Domínguez-Gomez G, Chávez-Blanco A, Ortega-Bernal D, Díaz-Chávez J, González-Fierro A, Candelaria-Hernández M, Dueñas-González A. The inhibitory and transcriptional effects of the epigenetic repurposed drugs hydralazine and valproate in lymphoma cells. Am J Cancer Res 2024; 14:3068-3082. [PMID: 39005694 PMCID: PMC11236763 DOI: 10.62347/idkg8587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/27/2024] [Indexed: 07/16/2024] Open
Abstract
Lymphoma is a disease that affects countless lives each year. In order to combat this disease, researchers have been exploring the potential of DNMTi and HDACi drugs. These drugs target the cellular processes that contribute to lymphomagenesis and treatment resistance. Our research evaluated the effectiveness of a combination of two such drugs, hydralazine (DNMTi) and valproate (HDACi), in B-cell and T-cell lymphoma cell lines. Here we show that the combination of hydralazine and valproate decreased the viability of cells over time, leading to the arrest of cell-cycle and apoptosis in both B and T-cells. This combination of drugs proved to be synergistic, with each drug showing significant growth inhibition individually. Microarray analyses of HuT 78 and Raji cells showed that the combination of hydralazine and valproate resulted in the up-regulation of 562 and 850 genes, respectively, while down-regulating 152 and 650 genes. Several proapoptotic and cell cycle-related genes were found to be up-regulated. Notably, three and five of the ten most up-regulated genes in HuT 78 and Raji cells, respectively, were related to immune function. In summary, our study suggests that the combination of hydralazine and valproate is an effective treatment option for both B- and T-lymphomas. These findings are highly encouraging, and we urge further clinical evaluation to validate our research and potentially improve lymphoma treatment.
Collapse
Affiliation(s)
- Harold Salamanca-Ortiz
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan)Tlalpan, Mexico City 14080, Mexico
| | - Guadalupe Domínguez-Gomez
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCan)Tlalpan, Mexico City 14080, Mexico
| | - Alma Chávez-Blanco
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan)Tlalpan, Mexico City 14080, Mexico
| | - Daniel Ortega-Bernal
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma MetropolitanaCoyoacan, Mexico City 05348, Mexico
- Department of Sciences, Universidad Autónoma MetropolitanaCoyoacan, Mexico City 04960, Mexico
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana XochimilcoCoyoacan, Mexico City 04960, Mexico
| | - José Díaz-Chávez
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan)Tlalpan, Mexico City 14080, Mexico
| | - Aurora González-Fierro
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan)Tlalpan, Mexico City 14080, Mexico
| | - Myrna Candelaria-Hernández
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCan)Tlalpan, Mexico City 14080, Mexico
| | - Alfonso Dueñas-González
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan)Tlalpan, Mexico City 14080, Mexico
- Department of Genomic Medicine and Environmental Toxicology, Institute of Biomedical Research, Universidad Nacional Autónoma de Mexico (UNAM), Av. Universidad 3004, Copilco UniversidadCoyoacan, Mexico City 04510, Mexico
| |
Collapse
|
4
|
Chomiak AA, Tiedemann RL, Liu Y, Kong X, Cui Y, Wiseman AK, Thurlow KE, Cornett EM, Topper MJ, Baylin SB, Rothbart SB. Select EZH2 inhibitors enhance viral mimicry effects of DNMT inhibition through a mechanism involving NFAT:AP-1 signaling. SCIENCE ADVANCES 2024; 10:eadk4423. [PMID: 38536911 PMCID: PMC10971413 DOI: 10.1126/sciadv.adk4423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
DNA methyltransferase inhibitor (DNMTi) efficacy in solid tumors is limited. Colon cancer cells exposed to DNMTi accumulate lysine-27 trimethylation on histone H3 (H3K27me3). We propose this Enhancer of Zeste Homolog 2 (EZH2)-dependent repressive modification limits DNMTi efficacy. Here, we show that low-dose DNMTi treatment sensitizes colon cancer cells to select EZH2 inhibitors (EZH2is). Integrative epigenomic analysis reveals that DNMTi-induced H3K27me3 accumulates at genomic regions poised with EZH2. Notably, combined EZH2i and DNMTi alters the epigenomic landscape to transcriptionally up-regulate the calcium-induced nuclear factor of activated T cells (NFAT):activating protein 1 (AP-1) signaling pathway. Blocking this pathway limits transcriptional activating effects of these drugs, including transposable element and innate immune response gene expression involved in viral defense. Analysis of primary human colon cancer specimens reveals positive correlations between DNMTi-, innate immune response-, and calcium signaling-associated transcription profiles. Collectively, we show that compensatory EZH2 activity limits DNMTi efficacy in colon cancer and link NFAT:AP-1 signaling to epigenetic therapy-induced viral mimicry.
Collapse
Affiliation(s)
- Alison A. Chomiak
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | - Yanqing Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Xiangqian Kong
- Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ying Cui
- Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ashley K. Wiseman
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kate E. Thurlow
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Evan M. Cornett
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Michael J. Topper
- Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Stephen B. Baylin
- Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Scott B. Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
5
|
Ye C, Jiang N, Zheng J, Zhang S, Zhang J, Zhou J. Epigenetic therapy: Research progress of decitabine in the treatment of solid tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189066. [PMID: 38163523 DOI: 10.1016/j.bbcan.2023.189066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/06/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Decitabine's early successful therapeutic outcomes in hematologic malignancies have led to regulatory approvals from the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for addressing myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). These approvals have sparked keen interest in exploring the potential of decitabine for treating solid tumors. Continuous preclinical and clinical trials have proved that low doses of decitabine also bring benefits in treating solid tumors, and various proposed mechanisms attempt to explain the potential efficacy. It is important to note that the application of decitabine in solid tumors is still considered investigational. This article reviews the application mechanism and current status of decitabine in the treatment of solid tumors.
Collapse
Affiliation(s)
- Chenlin Ye
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Nan Jiang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Zheng
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shumeng Zhang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jingchen Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianya Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Wilczyński JR, Wilczyński M, Paradowska E. "DEPHENCE" system-a novel regimen of therapy that is urgently needed in the high-grade serous ovarian cancer-a focus on anti-cancer stem cell and anti-tumor microenvironment targeted therapies. Front Oncol 2023; 13:1201497. [PMID: 37448521 PMCID: PMC10338102 DOI: 10.3389/fonc.2023.1201497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer, especially high-grade serous type, is the most lethal gynecological malignancy. The lack of screening programs and the scarcity of symptomatology result in the late diagnosis in about 75% of affected women. Despite very demanding and aggressive surgical treatment, multiple-line chemotherapy regimens and both approved and clinically tested targeted therapies, the overall survival of patients is still unsatisfactory and disappointing. Research studies have recently brought some more understanding of the molecular diversity of the ovarian cancer, its unique intraperitoneal biology, the role of cancer stem cells, and the complexity of tumor microenvironment. There is a growing body of evidence that individualization of the treatment adjusted to the molecular and biochemical signature of the tumor as well as to the medical status of the patient should replace or supplement the foregoing therapy. In this review, we have proposed the principles of the novel regimen of the therapy that we called the "DEPHENCE" system, and we have extensively discussed the results of the studies focused on the ovarian cancer stem cells, other components of cancer metastatic niche, and, finally, clinical trials targeting these two environments. Through this, we have tried to present the evolving landscape of treatment options and put flesh on the experimental approach to attack the high-grade serous ovarian cancer multidirectionally, corresponding to the "DEPHENCE" system postulates.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother's Health Center-Research Institute, Lodz, Poland
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
7
|
Charles J, Vrionis A, Mansur A, Mathias T, Shaikh J, Ciner A, Jiang Y, Nezami N. Potential Immunotherapy Targets for Liver-Directed Therapies, and the Current Scope of Immunotherapeutics for Liver-Related Malignancies. Cancers (Basel) 2023; 15:2624. [PMID: 37174089 PMCID: PMC10177356 DOI: 10.3390/cancers15092624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Liver cancer, including hepatocellular carcinoma and intrahepatic cholangiocarcinoma, is increasing in incidence and mortality across the globe. An improved understanding of the complex tumor microenvironment has opened many therapeutic doors and led to the development of novel pharmaceuticals targeting cellular signaling pathways or immune checkpoints. These interventions have significantly improved tumor control rates and patient outcomes, both in clinical trials and in real-world practice. Interventional radiologists play an important role in the multidisciplinary team given their expertise in minimally invasive locoregional therapy, as the bulk of these tumors are usually in the liver. The aim of this review is to highlight the immunological therapeutic targets for primary liver cancers, the available immune-based approaches, and the contributions that interventional radiology can provide in the care of these patients.
Collapse
Affiliation(s)
- Jonathan Charles
- Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA; (J.C.); (A.V.); (J.S.)
| | - Andrea Vrionis
- Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA; (J.C.); (A.V.); (J.S.)
| | - Arian Mansur
- Harvard Medical School, Harvard University, Boston, MA 02115, USA;
| | - Trevor Mathias
- School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Jamil Shaikh
- Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA; (J.C.); (A.V.); (J.S.)
- Department of Radiology, Tampa General Hospital, University of South Florida Health, Tampa General Cir, Tampa, FL 33606, USA
| | - Aaron Ciner
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.); (Y.J.)
| | - Yixing Jiang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.); (Y.J.)
| | - Nariman Nezami
- Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Experimental Therapeutics Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Rosenthal AC, Munoz JL, Villasboas JC. Clinical advances in epigenetic therapies for lymphoma. Clin Epigenetics 2023; 15:39. [PMID: 36871057 PMCID: PMC9985856 DOI: 10.1186/s13148-023-01452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 02/19/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Advances in understanding of cancer biology, genomics, epigenomics, and immunology have resulted in development of several therapeutic options that expand cancer care beyond traditional chemotherapy or radiotherapy, including individualized treatment strategies, novel treatments based on monotherapies or combination therapy to reduce toxicities, and implementation of strategies for overcoming resistance to anticancer therapy. RESULTS This review covers the latest applications of epigenetic therapies for treatment of B cell, T cell, and Hodgkin lymphomas, highlighting key clinical trial results with monotherapies and combination therapies from the main classes of epigenetic therapies, including inhibitors of DNA methyltransferases, protein arginine methyltransferases, enhancer of zeste homolog 2, histone deacetylases, and the bromodomain and extraterminal domain. CONCLUSION Epigenetic therapies are emerging as an attractive add-on to traditional chemotherapy and immunotherapy regimens. New classes of epigenetic therapies promise low toxicity and may work synergistically with other cancer treatments to overcome drug resistance mechanisms.
Collapse
Affiliation(s)
- Allison C Rosenthal
- Division of Hematology, Medical Oncology, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.
| | - Javier L Munoz
- Division of Hematology, Medical Oncology, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - J C Villasboas
- Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| |
Collapse
|
9
|
Costa PMDS, Sales SLA, Pinheiro DP, Pontes LQ, Maranhão SS, Pessoa CDÓ, Furtado GP, Furtado CLM. Epigenetic reprogramming in cancer: From diagnosis to treatment. Front Cell Dev Biol 2023; 11:1116805. [PMID: 36866275 PMCID: PMC9974167 DOI: 10.3389/fcell.2023.1116805] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Disruption of the epigenetic program of gene expression is a hallmark of cancer that initiates and propagates tumorigenesis. Altered DNA methylation, histone modifications and ncRNAs expression are a feature of cancer cells. The dynamic epigenetic changes during oncogenic transformation are related to tumor heterogeneity, unlimited self-renewal and multi-lineage differentiation. This stem cell-like state or the aberrant reprogramming of cancer stem cells is the major challenge in treatment and drug resistance. Given the reversible nature of epigenetic modifications, the ability to restore the cancer epigenome through the inhibition of the epigenetic modifiers is a promising therapy for cancer treatment, either as a monotherapy or in combination with other anticancer therapies, including immunotherapies. Herein, we highlighted the main epigenetic alterations, their potential as a biomarker for early diagnosis and the epigenetic therapies approved for cancer treatment.
Collapse
Affiliation(s)
- Pedro Mikael da Silva Costa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Biotechnology Northeastern Network of Biotechnology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Sarah Leyenne Alves Sales
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Larissa Queiroz Pontes
- Oswaldo Cruz Foundation, FIOCRUZ-Ceará, Sector of Biotechnology, Eusebio, Ceará, Brazil,Postgraduation Program in Biotechnology and Natural Resources, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Sarah Sant’Anna Maranhão
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Claudia do Ó. Pessoa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Biotechnology Northeastern Network of Biotechnology, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Gilvan Pessoa Furtado
- Oswaldo Cruz Foundation, FIOCRUZ-Ceará, Sector of Biotechnology, Eusebio, Ceará, Brazil,Postgraduation Program in Biotechnology and Natural Resources, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cristiana Libardi Miranda Furtado
- Drug Research and Development Center, Postgraduate Program in Translational Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil,Experimental Biology Center, University of Fortaleza, Fortaleza, Ceará, Brazil,*Correspondence: Cristiana Libardi Miranda Furtado,
| |
Collapse
|
10
|
Hydroxymethylation and Epigenetic Drugs: New Insights into the Diagnosis and Treatment in Epigenetics of Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:5449443. [PMID: 36816356 PMCID: PMC9934982 DOI: 10.1155/2023/5449443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/19/2022] [Accepted: 10/15/2022] [Indexed: 02/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal and heterogeneous malignancy with multiple genetic alternations and complex signaling pathways. The complexity and multifactorial nature of HCC pose a tremendous challenge regarding its diagnosis and treatment. Emerging evidence has indicated an important regulatory role of epigenetic modifications in HCC initiation and progression. Epigenetic modifications are stably heritable gene expression traits caused by changing the accessibility of chromatin structure and genetic activity without alteration in the DNA sequence and have been gradually recognized as a hallmark of cancer. In addition, accumulating data suggest a potential value of altered hydroxymethylation in epigenetic modifications and therapeutics targeting the epigenetically mediated regulation. As such, probing the epigenetic field in the era of precision oncology is a valid avenue for promoting the accuracy of early diagnosis and improving the oncological prognosis of HCC patients. This review focuses on the diagnostic performance and clinical utility of 5-hydroxymethylated cytosine, the primary intermediate product of the demethylation process, for early HCC diagnosis and discusses the promising applications of epigenetic-based therapeutic regimens for HCC.
Collapse
|
11
|
Alexandraki A, Strati K. Decitabine Treatment Induces a Viral Mimicry Response in Cervical Cancer Cells and Further Sensitizes Cells to Chemotherapy. Int J Mol Sci 2022; 23:ijms232214042. [PMID: 36430521 PMCID: PMC9692951 DOI: 10.3390/ijms232214042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To investigate the anti-cancer, chemosensitizing and/or immunomodulating effects of decitabine (DAC) to be used as a potential therapeutic agent for the treatment of cervical cancer (CC). METHODS Cervical cancer cell lines were treated with low doses of DAC treatment used as a single agent or in combination with chemotherapy. End-point in vitro assays were developed as indicators of the anti-cancer and/or immunomodulating effects of DAC treatment in CC cells. These assays include cell viability, cell cycle analysis, apoptosis, induction of a viral-mimicry response pathway, expression of MHC-class I and PD-L1 and chemosensitivity. RESULTS High and low doses of DAC treatment induced reduction in cell viability in HeLa (HPV18+), CaSki (HPV16+) and C33A (HPV-) cells. Specifically, a time-dependent reduction in cell viability of HeLa and CaSki cells was observed accompanied by robust cell cycle arrest at G2/M phase and alterations in the cell cycle distribution. Decrease in cell viability was also observed in a non-transformed immortal keratinocyte (HaCat) suggesting a non-cancer specific target effect. DAC treatment also triggered a viral mimicry response through long-term induction of cytoplasmic double-stranded RNA (dsRNA) and activation of downstream IFN-related genes in both HPV+ and HPV- cells. In addition, DAC treatment increased the number of CC cells expressing MHC-class I and PD-L1. Furthermore, DAC significantly increased the proportion of early and late apoptotic CC cells quantified using FACS. Our combination treatments showed that low dose DAC treatment sensitizes cells to chemotherapy. CONCLUSIONS Low doses of DAC treatment promotes robust induction of a viral mimicry response, immunomodulating and chemosensitizing effects in CC, indicating its promising therapeutic role in CC in vitro.
Collapse
|
12
|
Ling SP, Ming LC, Dhaliwal JS, Gupta M, Ardianto C, Goh KW, Hussain Z, Shafqat N. Role of Immunotherapy in the Treatment of Cancer: A Systematic Review. Cancers (Basel) 2022; 14:5205. [PMID: 36358624 PMCID: PMC9655090 DOI: 10.3390/cancers14215205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 01/18/2024] Open
Abstract
Tremendous progress has been made in cancer research over the years, and, as a result, immunotherapy has emerged as an important therapy for the treatment of cancer, either as a stand-alone treatment or in conjunction with other cancer therapies. Immunotherapy has demonstrated encouraging outcomes and offers a viable strategy for not only enhancing the quality of life but also dramatically boosting the overall survival rate of cancer patients. The objective of this systematic review was to assess the efficacy of immunotherapy in the treatment of cancer. Databases such as PubMed and Science Direct were searched from their inception until September 2021, using the following keywords: cancer immunotherapy, cancer recurrence, cancer treatment options, and cancer therapies. The systematic review was conducted in accordance with the PRISMA protocol. There were a total of 599 articles; however, after applying the inclusion and exclusion criteria, the final review ended up with 34 publications. In conclusion, the studies have demonstrated that immunotherapy is a viable alternative treatment option for patients with recurrent or metastatic cancer, since the overall survival rate and progression-free survival rate were shown to be successful.
Collapse
Affiliation(s)
- Sia Pei Ling
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Long Chiau Ming
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Jagjit Singh Dhaliwal
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Madhu Gupta
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Zahid Hussain
- Faculty of Health, University of Canberra, Bruce, ACT 2617, Australia
| | - Naeem Shafqat
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| |
Collapse
|
13
|
Xu Y, Li P, Liu Y, Xin D, Lei W, Liang A, Han W, Qian W. Epi-immunotherapy for cancers: rationales of epi-drugs in combination with immunotherapy and advances in clinical trials. Cancer Commun (Lond) 2022; 42:493-516. [PMID: 35642676 PMCID: PMC9198339 DOI: 10.1002/cac2.12313] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/03/2022] [Accepted: 05/18/2022] [Indexed: 11/12/2022] Open
Abstract
Over the last two decades, several epi-drugs, immune checkpoint inhibitors (ICIs) and adoptive cell therapies have received clinical approval for use in certain types of cancer. However, monotherapy with epi-drugs or ICIs has shown limited efficacy in most cancer patients. Epigenetic agents have been shown to regulate the crosstalk between the tumor and host immunity to alleviate immune evasion, suggesting that epi-drugs can potentially synergize with immunotherapy. In this review, we discuss recent insights into the rationales of incorporating epigenetic therapy into immunotherapy, called epi-immunotherapy, and focus on an update of current clinical trials in both hematological and solid malignancies. Furthermore, we outline the future challenges and strategies in the field of cancer epi-immunotherapy.
Collapse
Affiliation(s)
- Yang Xu
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Ping Li
- Department of HematologyTongji Hospital of Tongji UniversityShanghai200065P. R. China
| | - Yang Liu
- Department of Bio‐Therapeuticthe First Medical CentreChinese PLA General HospitalBeijing100853P. R. China
| | - Dijia Xin
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Wen Lei
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Aibin Liang
- Department of HematologyTongji Hospital of Tongji UniversityShanghai200065P. R. China
| | - Weidong Han
- Department of Bio‐Therapeuticthe First Medical CentreChinese PLA General HospitalBeijing100853P. R. China
| | - Wenbin Qian
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
| |
Collapse
|
14
|
Hu C, Liu X, Zeng Y, Liu J, Wu F. DNA methyltransferase inhibitors combination therapy for the treatment of solid tumor: mechanism and clinical application. Clin Epigenetics 2021; 13:166. [PMID: 34452630 PMCID: PMC8394595 DOI: 10.1186/s13148-021-01154-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
DNA methylation, an epigenetic modification, regulates gene transcription and maintains genome stability. DNA methyltransferase (DNMT) inhibitors can activate silenced genes at low doses and cause cytotoxicity at high doses. The ability of DNMT inhibitors to reverse epimutations is the basis of their use in novel strategies for cancer therapy. In this review, we examined the literature on DNA methyltransferase inhibitors. We summarized the mechanisms underlying combination therapy using DNMT inhibitors and clinical trials based on combining hypomethylation agents with other chemotherapeutic drugs. We also discussed the efficacy of such compounds as antitumor agents, the need to optimize treatment schedules and the regimens for maximal biologic effectiveness. Notably, the combination of DNMT inhibitors and chemotherapy and/or immune checkpoint inhibitors may provide helpful insights into the development of efficient therapeutic approaches.
Collapse
Affiliation(s)
- Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, 410011, Hunan, China
| | - Xiaohan Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yue Zeng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Junqi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, 410011, Hunan, China.
| |
Collapse
|
15
|
Bévant K, Desoteux M, Abdel Wahab AHA, Abdel Wahab SA, Metwally AM, Coulouarn C. DNA Methylation of TGFβ Target Genes: Epigenetic Control of TGFβ Functional Duality in Liver Cancer. Cells 2021; 10:2207. [PMID: 34571856 PMCID: PMC8468746 DOI: 10.3390/cells10092207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor beta (TGFβ) plays a key role in liver carcinogenesis. However, its action is complex, since TGFβ exhibits tumor-suppressive or oncogenic properties, depending on the tumor stage. At an early stage TGFβ exhibits cytostatic features, but at a later stage it promotes cell growth and metastasis, as a potent inducer of epithelial to mesenchymal transition (EMT). Here, we evaluated DNA methylation as a possible molecular mechanism switching TGFβ activity toward tumor progression in hepatocellular carcinoma (HCC). We report that decitabine, a demethylating agent already used in the clinic for the treatment of several cancers, greatly impairs the transcriptional response of SNU449 HCC cells to TGFβ. Importantly, decitabine was shown to induce the expression of EMT-related transcription factors (e.g., SNAI1/2, ZEB1/2). We also report that the promoter of SNAI1 was hypomethylated in poor-prognosis human HCC, i.e., associated with high grade, high AFP level, metastasis and recurrence. Altogether, the data highlight an epigenetic control of several effectors of the TGFβ pathway in human HCC possibly involved in switching its action toward EMT and tumor progression. Thus, we conclude that epidrugs should be carefully evaluated for the treatment of HCC, as they may activate tumor promoting pathways.
Collapse
Affiliation(s)
- Kevin Bévant
- Centre de Lutte Contre le Cancer Eugène Marquis, Inserm, University of Rennes 1, UMR_S 1242, COSS (Chemistry, Oncogenesis Stress Signaling), 35042 Rennes, France; (K.B.); (M.D.)
| | - Matthis Desoteux
- Centre de Lutte Contre le Cancer Eugène Marquis, Inserm, University of Rennes 1, UMR_S 1242, COSS (Chemistry, Oncogenesis Stress Signaling), 35042 Rennes, France; (K.B.); (M.D.)
| | | | - Sabrin A. Abdel Wahab
- Medical Laboratory Department, Students Hospital, Cairo University, Cairo 11796, Egypt;
| | - Ayman Mohamed Metwally
- Medical Laboratory Technology Department, College of Applied Health Science Technology, Misr University for Science and Technology (MUST), Al-Motamayez District, 6th of October P.O. Box 77, Egypt
| | - Cédric Coulouarn
- Centre de Lutte Contre le Cancer Eugène Marquis, Inserm, University of Rennes 1, UMR_S 1242, COSS (Chemistry, Oncogenesis Stress Signaling), 35042 Rennes, France; (K.B.); (M.D.)
| |
Collapse
|
16
|
Hu J, Wang X, Chen F, Ding M, Dong M, Yang W, Yin M, Wu J, Zhang L, Fu X, Sun Z, Li L, Wang X, Li X, Guo S, Zhang D, Lu X, Leng Q, Zhang M, Zhu L, Zhang X, Chen Q. Combination of Decitabine and a Modified Regimen of Cisplatin, Cytarabine and Dexamethasone: A Potential Salvage Regimen for Relapsed or Refractory Diffuse Large B-Cell Lymphoma After Second-Line Treatment Failure. Front Oncol 2021; 11:687374. [PMID: 34222013 PMCID: PMC8253157 DOI: 10.3389/fonc.2021.687374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/31/2021] [Indexed: 01/23/2023] Open
Abstract
Objective The prognosis for patients with relapsed or refractory diffuse large B-cell lymphoma (R/R-DLBCL) after second-line treatment failure is extremely poor. This study prospectively observed the efficacy and safety of decitabine with a modified cisplatin, cytarabine, and dexamethasone (DHAP) regimen in R/R-DLBCL patients who failed second-line treatment. Methods Twenty-one R/R-DLBCL patients were enrolled and treated with decitabine and a modified DHAP regimen. The primary endpoints were overall response rate (ORR) and safety. The secondary endpoints were progression-free survival (PFS) and overall survival (OS). Results ORR reached 50% (complete response rate, 35%), five patients (25%) had stable disease (SD) with disease control rate (DCR) of 75%. Subgroup analysis revealed patients over fifty years old had a higher complete response rate compared to younger patients (P = 0.005), and relapsed patients had a better complete response rate than refractory patients (P = 0.031). Median PFS was 7 months (95% confidence interval, 5.1-8.9 months). Median OS was not achieved. One-year OS was 59.0% (95% CI, 35.5%-82.5%), and two-year OS was 51.6% (95% confidence interval, 26.9%-76.3%). The main adverse events (AEs) were grade 3/4 hematologic toxicities such as neutropenia (90%), anemia (50%), and thrombocytopenia (70%). Other main non-hematologic AEs were grade 1/2 nausea/vomiting (40%) and infection (50%). No renal toxicity or treatment-related death occurred. Conclusion Decitabine with a modified DHAP regimen can improve the treatment response and prognosis of R/R-DLBCL patients with good tolerance to AEs, suggesting this regimen has potential as a possible new treatment option for R/R-DLBCL patients after second-line treatment failure. Clinical Trial Registration ClinicalTrials.gov, identifier: NCT03579082.
Collapse
Affiliation(s)
- Junxia Hu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Chen
- Medical School, Queen Mary School, Nanchang University, Nanchang, China
| | - Mengjie Ding
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Dong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wanqiu Yang
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Meifeng Yin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Wu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaorui Fu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenchang Sun
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinhua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuangshuang Guo
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Dianbao Zhang
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Xiaohui Lu
- Lymphoma Hematopoietic Stem Cell Transplantation Center of the People's Hospital of Jiaozuo City, Jiaozuo, China
| | - Qing Leng
- Department of Hematology, Anshan Central Hospital, Anshan, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linan Zhu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingjiang Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Liu Y, Wang C, Li X, Dong L, Yang Q, Chen M, Shi F, Brock M, Liu M, Mei Q, Liu J, Nie J, Han W. Improved clinical outcome in a randomized phase II study of anti-PD-1 camrelizumab plus decitabine in relapsed/refractory Hodgkin lymphoma. J Immunother Cancer 2021; 9:jitc-2021-002347. [PMID: 33820822 PMCID: PMC8025784 DOI: 10.1136/jitc-2021-002347] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Background Programmed death-1 (PD-1) blockade monotherapy induced durable remission in a subset of patients with relapsed/refractory classical Hodgkin lymphoma (cHL). We asked whether the anti-PD-1 agent, camrelizumab, combined with the DNA demethylating agent, decitabine, improves progression-free survival (PFS) in patients with relapsed/refractory cHL over camrelizumab alone. Methods This extended follow-up of an ongoing randomized phase II trial analyzed PFS among patients enrolled from January 2017 through July 2018. Sixty-one patients with relapsed/refractory cHL who were clinically naïve to PD-1 blockade and had received ≥2 previous therapies were randomized 1:2 to receive either camrelizumab (200 mg) monotherapy or camrelizumab (200 mg, day 8) combined with decitabine (10 mg/day, days 1–5) every 3 weeks. Results With a median follow-up of 34.5 months, complete remission was 79% (95% CI 63% to 90%) in the decitabine-plus-camrelizumab group versus 32% (95% CI 13% to 57%) in the camrelizumab group (p=0.001). Median duration of response was not reached in the decitabine-plus-camrelizumab group, with an estimated 63% (95% CI 46% to 75%) of patients maintaining a response at 24 months. Median PFS with decitabine-plus-camrelizumab therapy was 35.0 months (95% CI not reached) and 15.5 months (95% CI 8.4 to 22.7 months) with camrelizumab monotherapy (HR, 0.46; 95% CI 0.21 to 1.01; p=0.02). Female gender, lower tumor burden, and fewer previous therapies were favorable prognostic factors for durable remission with camrelizumab monotherapy. The PFS benefits of decitabine-plus-camrelizumab versus camrelizumab were observed in most subgroups, especially in patients with relative larger tumor burdens and those treated with ≥3 prior therapies. After decitabine-plus-camrelizumab treatment, the percentage increase of circulating peripheral central memory T-cells correlated with both improved clinical response and PFS, suggesting a putative biomarker of decitabine-plus-camrelizumab therapy for cHL. Conclusions Decitabine-plus-camrelizumab results in longer PFS compared with camrelizumab alone in patients with relapsed/refractory cHL. Trial registration numbers NCT02961101 and NCT03250962.
Collapse
Affiliation(s)
- Yang Liu
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Chunmeng Wang
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiang Li
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Liang Dong
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qingming Yang
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Meixia Chen
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Fengxia Shi
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Malcolm Brock
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miao Liu
- Department of Statistics and Epidemiology, Chinese PLA General Hospital, Beijing, China
| | - Qian Mei
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jiejie Liu
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jing Nie
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Weidong Han
- Department of Bio-therapeutic, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Lai J, Fu Y, Tian S, Huang S, Luo X, Lin L, Zhang X, Wang H, Lin Z, Zhao H, Lin S, Zhao J, Xu S, Li D, Cai S, Dong L, Qian J, Liang J, Li Q, Zhang Y, Fan J, Balderas R, Chen Q. Zebularine elevates STING expression and enhances cGAMP cancer immunotherapy in mice. Mol Ther 2021; 29:1758-1771. [PMID: 33571681 DOI: 10.1016/j.ymthe.2021.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 12/02/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
DNA methylation abnormality is closely related to tumor occurrence and development. Chemical inhibitors targeting DNA methyltransferase (DNMTis) have been used in treating cancer. However, the impact of DNMTis on antitumor immunity has not been well elucidated. In this study, we show that zebularine (a demethylating agent) treatment of cancer cells led to increased levels of interferon response in a cyclic guanosine monophosphate-AMP (cGAMP) synthase (cGAS)- and stimulator of interferon genes (STING)-dependent manner. This treatment also specifically sensitized the cGAS-STING pathway in response to DNA stimulation. Incorporation of zebularine into genomic DNA caused demethylation and elevated expression of a group of genes, including STING. Without causing DNA damage, zebularine led to accumulation of DNA species in the cytoplasm of treated cells. In syngeneic tumor models, administration of zebularine alone reduced tumor burden and extended mice survival. This effect synergized with cGAMP and immune checkpoint blockade therapy. The efficacy of zebularine was abolished in nude mice and in cGAS-/- or STING-/- mice, indicating its dependency on host immunity. Analysis of tumor cells indicates upregulation of interferon-stimulated genes (ISGs) following zebularine administration. Zebularine promoted infiltration of CD8 T cells and natural killer (NK) cells into tumor and therefore suppressed tumor growth. This study unveils the role of zebularine in sensitizing the cGAS-STING pathway to promote anti-tumor immunity and provides the foundation for further therapeutic development.
Collapse
Affiliation(s)
- Junzhong Lai
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China; The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province 350117, China
| | - Yajuan Fu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Shuoran Tian
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Shanlu Huang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Xuan Luo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Lili Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Xing Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Hanze Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Zhang Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Heng Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Shujin Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Junhong Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Shan Xu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Shaoli Cai
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Luna Dong
- BD Biosciences Shanghai, New Bund World Trade Center III, Building B, No. 11, Lane 221, Dongyu Road, Pudong New District, Shanghai 200126, China
| | - Jing Qian
- BD Biosciences Shanghai, New Bund World Trade Center III, Building B, No. 11, Lane 221, Dongyu Road, Pudong New District, Shanghai 200126, China
| | - Jiadi Liang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Qiumei Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Yong Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | - Jiqiang Fan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China
| | | | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province 350117, China; Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350117, China.
| |
Collapse
|
19
|
de Nigris F, Ruosi C, Napoli C. Clinical efficiency of epigenetic drugs therapy in bone malignancies. Bone 2021; 143:115605. [PMID: 32829036 DOI: 10.1016/j.bone.2020.115605] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/07/2020] [Accepted: 08/15/2020] [Indexed: 12/17/2022]
Abstract
A great interest in the scientific community is focused on the improvement of the cure rate in patients with bone malignancies that have a poor response to the first line of therapies. Novel treatments currently include epigenetic compounds or molecules targeting epigenetic-sensitive pathways. Here, we offer an exhaustive review of such agents in these clinical settings. Carefully designed preclinical studies selected several epigenetic drugs, including inhibitors of DNA methyltransferase (DNMTIs), such as Decitabine, histone deacetylase classes I-II (HDACIs), as Entinostat, Belinostat, lysine-specific histone demethylase (LSD1), as INCB059872 or FT-2102 (Olutasidenib), inhibitors of isocitrate dehydrogenases, and enhancer of zeste homolog 2 (EZH2), such as EPZ6438 (Tazemetostat) To enhance the therapeutic effect, the prevalent approach in phase II trial is the association of these epigenetic drug inhibitors, with targeted therapy or immune checkpoint blockade. Optimization of drug dosing and regimens of Phase II trials may improve the clinical efficiency of such novel therapeutic approaches against these devastating cancers.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Carlo Ruosi
- Department of Public Health, Federico II University, 80132 Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; IRCCS SDN, 80134 Naples, IT, Italy
| |
Collapse
|
20
|
Xavier PLP, Müller S, Fukumasu H. Epigenetic Mechanisms in Canine Cancer. Front Oncol 2020; 10:591843. [PMID: 33194754 PMCID: PMC7646326 DOI: 10.3389/fonc.2020.591843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 01/18/2023] Open
Abstract
A plethora of data has highlighted the role of epigenetics in the development of cancer. Initiation and progression of different cancer types are associated with a variety of changes of epigenetic mechanisms, including aberrant DNA methylation, histone modifications, and miRNA expression. At the same time, advances in the available epigenetic tools allow to investigate and reverse these epigenetic changes and form the basis for the development of anticancer drugs in human oncology. Although human and canine cancer shares several common features, only recently that studies emerged investigating the epigenetic landscape in canine cancer and applying epigenetic modulators to canine cancer. This review focuses on the existing studies involving epigenetic changes in different types of canine cancer and the use of small-molecule inhibitors in canine cancer cells.
Collapse
Affiliation(s)
- Pedro Luiz Porfirio Xavier
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil
| | - Susanne Müller
- Structural Genomics Consortium and Institute of Pharmaceutical Chemistry, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Heidge Fukumasu
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil
| |
Collapse
|
21
|
Wong KK. DNMT1 as a therapeutic target in pancreatic cancer: mechanisms and clinical implications. Cell Oncol (Dordr) 2020; 43:779-792. [PMID: 32504382 DOI: 10.1007/s13402-020-00526-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/09/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer or pancreatic ductal adenocarcinoma (PDAC) is one of the most devastating cancer types with a 5-year survival rate of only 9%. PDAC is one of the leading causes of cancer-related deaths in both genders. Epigenetic alterations may lead to the suppression of tumor suppressor genes, and DNA methylation is a predominant epigenetic modification. DNA methyltransferase 1 (DNMT1) is required for maintaining patterns of DNA methylation during cellular replication. Accumulating evidence has implicated the oncogenic roles of DNMT1 in various malignancies including PDACs. CONCLUSIONS Herein, the expression profiles, oncogenic roles, regulators and inhibitors of DNMT1 in PDACs are presented and discussed. DNMT1 is overexpressed in PDAC cases compared with non-cancerous pancreatic ducts, and its expression gradually increases from pre-neoplastic lesions to PDACs. DNMT1 plays oncogenic roles in suppressing PDAC cell differentiation and in promoting their proliferation, migration and invasion, as well as in induction of the self-renewal capacity of PDAC cancer stem cells. These effects are achieved via promoter hypermethylation of tumor suppressor genes, including cyclin-dependent kinase inhibitors (e.g., p14, p15, p16, p21 and p27), suppressors of epithelial-mesenchymal transition (e.g., E-cadherin) and tumor suppressor miRNAs (e.g., miR-148a, miR-152 and miR-17-92 cluster). Pre-clinical investigations have shown the potency of novel non-nucleoside DNMT1 inhibitors against PDAC cells. Finally, phase I/II clinical trials of DNMT1 inhibitors (azacitidine, decitabine and guadecitabine) in PDAC patients are currently underway, where these inhibitors have the potential to sensitize PDACs to chemotherapy and immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
22
|
Coyne GO'S, Wang L, Zlott J, Juwara L, Covey JM, Beumer JH, Cristea MC, Newman EM, Koehler S, Nieva JJ, Garcia AA, Gandara DR, Miller B, Khin S, Miller SB, Steinberg SM, Rubinstein L, Parchment RE, Kinders RJ, Piekarz RL, Kummar S, Chen AP, Doroshow JH. Intravenous 5-fluoro-2'-deoxycytidine administered with tetrahydrouridine increases the proportion of p16-expressing circulating tumor cells in patients with advanced solid tumors. Cancer Chemother Pharmacol 2020; 85:979-993. [PMID: 32314030 PMCID: PMC7188725 DOI: 10.1007/s00280-020-04073-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Following promising responses to the DNA methyltransferase (DNMT) inhibitor 5-fluoro-2'-deoxycytidine (FdCyd) combined with tetrahydrouridine (THU) in phase 1 testing, we initiated a non-randomized phase 2 study to assess response to this combination in patients with advanced solid tumor types for which tumor suppressor gene methylation is potentially prognostic. To obtain pharmacodynamic evidence for DNMT inhibition by FdCyd, we developed a novel method for detecting expression of tumor suppressor protein p16/INK4A in circulating tumor cells (CTCs). METHODS Patients in histology-specific strata (breast, head and neck [H&N], or non-small cell lung cancers [NSCLC] or urothelial transitional cell carcinoma) were administered FdCyd (100 mg/m2) and THU (350 mg/m2) intravenously 5 days/week for 2 weeks, in 28-day cycles, and progression-free survival (PFS) rate and objective response rate (ORR) were evaluated. Blood specimens were collected for CTC analysis. RESULTS Ninety-three eligible patients were enrolled (29 breast, 21 H&N, 25 NSCLC, and 18 urothelial). There were three partial responses. All strata were terminated early due to insufficient responses (H&N, NSCLC) or slow accrual (breast, urothelial). However, the preliminary 4-month PFS rate (42%) in the urothelial stratum exceeded the predefined goal-though the ORR (5.6%) did not. An increase in the proportion of p16-expressing cytokeratin-positive CTCs was detected in 69% of patients evaluable for clinical and CTC response, but was not significantly associated with clinical response. CONCLUSION Further study of FdCyd + THU is potentially warranted in urothelial carcinoma but not NSCLC or breast or H&N cancer. Increase in the proportion of p16-expressing cytokeratin-positive CTCs is a pharmacodynamic marker of FdCyd target engagement.
Collapse
Affiliation(s)
- Geraldine O 'Sullivan Coyne
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, 31 Center Drive, Bldg. 31 Room 3A-44, Bethesda, MD, 20892, USA
| | - Lihua Wang
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jennifer Zlott
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, 31 Center Drive, Bldg. 31 Room 3A-44, Bethesda, MD, 20892, USA
| | - Lamin Juwara
- Clinical Monitoring Research Program, Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joseph M Covey
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, 31 Center Drive, Bldg. 31 Room 3A-44, Bethesda, MD, 20892, USA
| | - Jan H Beumer
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Mihaela C Cristea
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Edward M Newman
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | | | - Jorge J Nieva
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Agustin A Garcia
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
- Louisiana State University, New Orleans, LA, 70112, USA
| | - David R Gandara
- University of California Davis Cancer Center, Sacramento, CA, USA
| | - Brandon Miller
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sonny Khin
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sarah B Miller
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, 31 Center Drive, Bldg. 31 Room 3A-44, Bethesda, MD, 20892, USA
| | - Seth M Steinberg
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Larry Rubinstein
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, 31 Center Drive, Bldg. 31 Room 3A-44, Bethesda, MD, 20892, USA
| | - Ralph E Parchment
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert J Kinders
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Richard L Piekarz
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, 31 Center Drive, Bldg. 31 Room 3A-44, Bethesda, MD, 20892, USA
| | - Shivaani Kummar
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, 31 Center Drive, Bldg. 31 Room 3A-44, Bethesda, MD, 20892, USA
| | - Alice P Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, 31 Center Drive, Bldg. 31 Room 3A-44, Bethesda, MD, 20892, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, 31 Center Drive, Bldg. 31 Room 3A-44, Bethesda, MD, 20892, USA.
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
23
|
Sermer D, Pasqualucci L, Wendel HG, Melnick A, Younes A. Emerging epigenetic-modulating therapies in lymphoma. Nat Rev Clin Oncol 2019; 16:494-507. [PMID: 30837715 DOI: 10.1038/s41571-019-0190-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite considerable advances in the treatment of lymphoma, the prognosis of patients with relapsed and/or refractory disease continues to be poor; thus, a continued need exists for the development of novel approaches and therapies. Epigenetic dysregulation might drive and/or promote tumorigenesis in various types of malignancies and is prevalent in both B cell and T cell lymphomas. Over the past decade, a large number of epigenetic-modifying agents have been developed and introduced into the clinical management of patients with haematological malignancies. In this Review, we provide a concise overview of the most promising epigenetic therapies for the treatment of lymphomas, including inhibitors of histone deacetylases (HDACs), DNA methyltransferases (DNMTs), enhancer of zeste homologue 2 (EZH2), bromodomain and extra-terminal domain proteins (BETs), protein arginine N-methyltransferases (PRMTs) and isocitrate dehydrogenases (IDHs), and highlight the most promising future directions of research in this area.
Collapse
Affiliation(s)
- David Sermer
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ari Melnick
- Weill-Cornell Medical College, New York, NY, USA
| | - Anas Younes
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
24
|
Toh TB, Lim JJ, Chow EKH. Epigenetics of hepatocellular carcinoma. Clin Transl Med 2019; 8:13. [PMID: 31056726 PMCID: PMC6500786 DOI: 10.1186/s40169-019-0230-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
In recent years, large scale genomics and genome-wide studies using comprehensive genomic tools have reshaped our understanding of cancer evolution and heterogeneity. Hepatocellular carcinoma, being one of the most deadly cancers in the world has been well established as a disease of the genome that harbours a multitude of genetic and epigenetic aberrations during the process of liver carcinogenesis. As such, in depth understanding of the cancer epigenetics in cancer specimens and biopsy can be useful in clinical settings for molecular subclassification, prognosis, and prediction of therapeutic responses. In this review, we present a concise discussion on recent progress in the field of liver cancer epigenetics and some of the current works that contribute to the progress of liver cancer therapeutics.
Collapse
Affiliation(s)
- Tan Boon Toh
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, MD6 #12-01, Singapore, 117599, Singapore
| | - Jhin Jieh Lim
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, MD6 #12-01, Singapore, 117599, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, MD6 #12-01, Singapore, 117599, Singapore. .,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Level 5, Singapore, 117597, Singapore.
| |
Collapse
|
25
|
Zang L, Kondengaden SM, Che F, Wang L, Heng X. Potential Epigenetic-Based Therapeutic Targets for Glioma. Front Mol Neurosci 2018; 11:408. [PMID: 30498431 PMCID: PMC6249994 DOI: 10.3389/fnmol.2018.00408] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Glioma is characterized by a high recurrence rate, short survival times, high rates of mortality and treatment difficulties. Surgery, chemotherapy and radiation (RT) are the standard treatments, but outcomes rarely improve even after treatment. With the advancement of molecular pathology, recent studies have found that the development of glioma is closely related to various epigenetic phenomena, including DNA methylation, abnormal microRNA (miRNA), chromatin remodeling and histone modifications. Owing to the reversibility of epigenetic modifications, the proteins and genes that regulate these changes have become new targets in the treatment of glioma. In this review, we present a summary of the potential therapeutic targets of glioma and related effective treating drugs from the four aspects mentioned above. We further illustrate how epigenetic mechanisms dynamically regulate the pathogenesis and discuss the challenges of glioma treatment. Currently, among the epigenetic treatments, DNA methyltransferase (DNMT) inhibitors and histone deacetylase inhibitors (HDACIs) can be used for the treatment of tumors, either individually or in combination. In the treatment of glioma, only HDACIs remain a good option and they provide new directions for the treatment. Due to the complicated pathogenesis of glioma, epigenetic applications to glioma clinical treatment are still limited.
Collapse
Affiliation(s)
- Lanlan Zang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shukkoor Muhammed Kondengaden
- Chemistry Department and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Fengyuan Che
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Lijuan Wang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Xueyuan Heng
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| |
Collapse
|
26
|
Chen M, Nie J, Liu Y, Li X, Zhang Y, Brock MV, Feng K, Wu Z, Li X, Shi L, Li S, Guo M, Mei Q, Han W. Phase Ib/II study of safety and efficacy of low-dose decitabine-primed chemoimmunotherapy in patients with drug-resistant relapsed/refractory alimentary tract cancer. Int J Cancer 2018; 143:1530-1540. [PMID: 29663379 PMCID: PMC6099263 DOI: 10.1002/ijc.31531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/19/2018] [Accepted: 03/29/2018] [Indexed: 12/15/2022]
Abstract
The pressing need for improved therapeutic outcomes provides a good rationale for identifying effective strategies for alimentary tract (AT) cancer treatment. The potential re-sensitivity property to chemo- and immunotherapy of low-dose decitabine has been evident both preclinically and in previous phase I trials. We conducted a phase Ib/II trial evaluating low-dose decitabine-primed chemoimmunotherapy in patients with drug-resistant relapsed/refractory (R/R) esophageal, gastric or colorectal cancers. Forty-five patients received either the 5-day decitabine treatment with subsequent readministration of the previously resistant chemotherapy (decitabine-primed chemotherapy, D-C cohort) or the aforementioned regimen followed by cytokine-induced killer cells therapy (D-C and cytokine-induced killer [CIK] cell treatment, D-C + CIK cohort) based on their treatment history. Grade 3 to 4 adverse events (AEs) were reported in 11 (24.4%) of 45 patients. All AEs were controllable, and no patient experienced a treatment-related death. The objective response rate (ORR) and disease control rate (DCR) were 24.44% and 82.22%, respectively, including two patients who achieved durable complete responses. Clinical response could be associated with treatment-free interval and initial surgical resection history. ORR and DCR reached 28% and 92%, respectively, in the D-C + CIK cohort. Consistently, the progression-free survival (PFS) of the D-C + CIK cohort compared favorably to the best PFS of the pre-resistant unprimed therapy (p = 0.0001). The toxicity and ORRs exhibited were non-significantly different between cancer types and treatment cohort. The safety and efficacy of decitabine-primed re-sensitization to chemoimmunotherapy is attractive and promising. These data warrant further large-scale evaluation of drug-resistant R/R AT cancer patients with advanced stage disease.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/immunology
- Adenocarcinoma/secondary
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/secondary
- Cells, Cultured
- Cohort Studies
- Cytokine-Induced Killer Cells/drug effects
- Cytokine-Induced Killer Cells/immunology
- Cytokine-Induced Killer Cells/pathology
- Decitabine/therapeutic use
- Digestive System/drug effects
- Digestive System/immunology
- Digestive System/pathology
- Digestive System Neoplasms/drug therapy
- Digestive System Neoplasms/immunology
- Digestive System Neoplasms/pathology
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm
- Female
- Follow-Up Studies
- Humans
- Immunotherapy
- Lymphatic Metastasis
- Male
- Middle Aged
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/pathology
- Prognosis
- Salvage Therapy
- Survival Rate
Collapse
Affiliation(s)
- Meixia Chen
- Department of Molecular Biology and Bio‐therapeuticInstitute of Basic Medicine, Chinese PLA General HospitalBeijingPeople's Republic of China
| | - Jing Nie
- Department of Molecular Biology and Bio‐therapeuticInstitute of Basic Medicine, Chinese PLA General HospitalBeijingPeople's Republic of China
| | - Yang Liu
- Department of Molecular Biology and Bio‐therapeuticInstitute of Basic Medicine, Chinese PLA General HospitalBeijingPeople's Republic of China
| | - Xiang Li
- Department of Molecular Biology and Bio‐therapeuticInstitute of Basic Medicine, Chinese PLA General HospitalBeijingPeople's Republic of China
| | - Yan Zhang
- Department of Molecular Biology and Bio‐therapeuticInstitute of Basic Medicine, Chinese PLA General HospitalBeijingPeople's Republic of China
| | | | - Kaichao Feng
- Department of Molecular Biology and Bio‐therapeuticInstitute of Basic Medicine, Chinese PLA General HospitalBeijingPeople's Republic of China
| | - Zhiqiang Wu
- Department of Molecular Biology and Bio‐therapeuticInstitute of Basic Medicine, Chinese PLA General HospitalBeijingPeople's Republic of China
| | - Xiaolei Li
- Department of Molecular Biology and Bio‐therapeuticInstitute of Basic Medicine, Chinese PLA General HospitalBeijingPeople's Republic of China
| | - Lu Shi
- Department of Molecular Biology and Bio‐therapeuticInstitute of Basic Medicine, Chinese PLA General HospitalBeijingPeople's Republic of China
| | - Suxia Li
- Department of Molecular Biology and Bio‐therapeuticInstitute of Basic Medicine, Chinese PLA General HospitalBeijingPeople's Republic of China
| | - Mingzhou Guo
- Department of Gastroenterology and HepatologyChinese PLA General HospitalBeijingPeople's Republic of China
| | - Qian Mei
- Department of Molecular Biology and Bio‐therapeuticInstitute of Basic Medicine, Chinese PLA General HospitalBeijingPeople's Republic of China
| | - Weidong Han
- Department of Molecular Biology and Bio‐therapeuticInstitute of Basic Medicine, Chinese PLA General HospitalBeijingPeople's Republic of China
| |
Collapse
|
27
|
Chromatin dynamics at the core of kidney fibrosis. Matrix Biol 2018; 68-69:194-229. [DOI: 10.1016/j.matbio.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023]
|
28
|
Nucleosidic DNA demethylating epigenetic drugs – A comprehensive review from discovery to clinic. Pharmacol Ther 2018; 188:45-79. [DOI: 10.1016/j.pharmthera.2018.02.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Niu C, Li M, Zhu S, Chen Y, Zhou L, Xu D, Li W, Cui J, Liu Y, Chen J. Decitabine Inhibits Gamma Delta T Cell Cytotoxicity by Promoting KIR2DL2/3 Expression. Front Immunol 2018; 9:617. [PMID: 29632540 PMCID: PMC5879086 DOI: 10.3389/fimmu.2018.00617] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Gamma delta (γδ) T cells, which possess potent cytotoxicity against a wide range of cancer cells, have become a potential avenue for adoptive immunotherapy. Decitabine (DAC) has been reported to enhance the immunogenicity of tumor cells, thereby reinstating endogenous immune recognition and tumor lysis. However, DAC has also been demonstrated to have direct effects on immune cells. In this study, we report that DAC inhibits γδ T cell proliferation. In addition, DAC increases the number of KIR2DL2/3-positive γδ T cells, which are less cytotoxic than the KIR2DL2/3-negative γδ T cells. We found that DAC upregulated KIR2DL2/3 expression in KIR2DL2/3-negative γδ T cells by inhibiting KIR2DL2/3 promoter methylation, which enhances the binding of KIR2DL2/3 promoter to Sp-1 and activates KIR2DL2/3 gene expression. Our data demonstrated that DAC can inhibit the function of human γδ T cells at both cellular and molecular levels, which confirms and extrapolates the results of previous studies showing that DAC can negatively regulate the function of NK cells and αβ T cells of the immune system.
Collapse
Affiliation(s)
- Chao Niu
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Min Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Shan Zhu
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yongchong Chen
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Zhou
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Dongsheng Xu
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jiuwei Cui
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yongjun Liu
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Sanofi Research and Development, Cambridge, MA, United States
| | - Jingtao Chen
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system. Oncotarget 2018; 7:60535-60554. [PMID: 27528034 PMCID: PMC5312401 DOI: 10.18632/oncotarget.11142] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022] Open
Abstract
The aberrant epigenetic silencing of tumor suppressor genes (TSGs) plays a major role during carcinogenesis and regaining these dormant functions by engineering of sequence-specific epigenome editing tools offers a unique opportunity for targeted therapies. However, effectively normalizing the expression and regaining tumor suppressive functions of silenced TSGs by artificial transcription factors (ATFs) still remains a major challenge. Herein we describe novel combinatorial strategies for the potent reactivation of two class II TSGs, MASPIN and REPRIMO, in cell lines with varying epigenetic states, using the CRISPR/dCas9 associated system linked to a panel of effector domains (VP64, p300, VPR and SAM complex), as well as with protein-based ATFs, Zinc Fingers and TALEs. We found that co-delivery of multiple effector domains using a combination of CRISPR/dCas9 and TALEs or SAM complex maximized activation in highly methylated promoters. In particular, CRISPR/dCas9 VPR with SAM upregulated MASPIN mRNA (22,145-fold change) in H157 lung cancer cells, with accompanying re-expression of MASPIN protein, which led to a concomitant inhibition of cell proliferation and induction of apoptotic cell death. Consistently, CRISPR/dCas9 VP64 with SAM upregulated REPRIMO (680-fold change), which led to phenotypic reprogramming in AGS gastric cancer cells. Altogether, our results outlined novel sequence-specific, combinatorial epigenome editing approaches to reactivate highly methylated TSGs as a promising therapy for cancer and other diseases.
Collapse
|
31
|
Nie J, Zhang Y, Li X, Chen M, Liu C, Han W. DNA demethylating agent decitabine broadens the peripheral T cell receptor repertoire. Oncotarget 2018; 7:37882-37892. [PMID: 27191266 PMCID: PMC5122357 DOI: 10.18632/oncotarget.9352] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/28/2016] [Indexed: 01/08/2023] Open
Abstract
Purpose Decitabine, a promising epi-immunotherapeutic agent has shown clinical responses in solid tumor patients, while the anti-tumor mechanisms were unclear. We aimed to investigate the immunomodulatory effect of decitabine in peripheral T cells. Experimental design We applied next-generation sequencing to investigate the complementarity-determining region 3 (CDR3) of the TCRβ gene, the diversity of which acts as the prerequisite for the host immune system to recognize the universal foreign antigens. We collected the peripheral blood mononuclear cells (PBMCs) from 4 patients, at baseline and after 2 cycles of low-dose decitabine therapy. Results An increase of the unique productive sequences of the CDR3 of TCRβ was observed in all of the 4 patients after decitabine treatment, which was characterized by a lower abundance of expanded clones and increased TCR diversity compared with before decitabine treatment. Further analysis showed a tendency for CD4 T cells with an increased CD4/CD8 ratio in response to decitabine therapy. In addition, the genome-wide expression alterations confirmed the effects of decitabine on immune reconstitution, and the increase of TCR excision circles (TRECs) was validated. Conclusions The low-dose DNMT inhibitor decitabine broadens the peripheral T cell repertoire, providing a novel role for the epigenetic modifying agent in anti-tumor immune enhancement.
Collapse
Affiliation(s)
- Jing Nie
- Department of Immunology, Institute of Basic Medical Science, PLA General Hospital, Beijing, 100853, China
| | - Yan Zhang
- Department of Biological Therapy, PLA General Hospital, Beijing, 100853, China
| | - Xiang Li
- Department of Immunology, Institute of Basic Medical Science, PLA General Hospital, Beijing, 100853, China
| | - Meixia Chen
- Department of Biological Therapy, PLA General Hospital, Beijing, 100853, China
| | - Chuanjie Liu
- Department of Immunology, Institute of Basic Medical Science, PLA General Hospital, Beijing, 100853, China
| | - Weidong Han
- Department of Immunology, Institute of Basic Medical Science, PLA General Hospital, Beijing, 100853, China.,Department of Biological Therapy, PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
32
|
Hochnadel I, Kossatz-Boehlert U, Jedicke N, Lenzen H, Manns MP, Yevsa T. Cancer vaccines and immunotherapeutic approaches in hepatobiliary and pancreatic cancers. Hum Vaccin Immunother 2017; 13:2931-2952. [PMID: 29112462 PMCID: PMC5718787 DOI: 10.1080/21645515.2017.1359362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatobiliary and pancreatic cancers along with other gastrointestinal malignancies remain the leading cause of cancer-related deaths worldwide. Strategies developed in the recent years on immunotherapy and cancer vaccines in the setting of primary liver cancer as well as in pancreatic cancer are the scope of this review. Significance of orthotopic and autochthonous animal models which mimic and/or closely reflect human malignancies allowing for a prompt and trustworthy analysis of new therapeutics is underlined. Combinational approaches that on one hand, specifically target a defined cancer-driving pathway, and on the other hand, restore the functions of immune cells, which effector functions are often suppressed by a tumor milieu, are shown to have the strongest perspectives and future directions. Among combinational immunotherapeutic approaches a personalized- and individual cancer case-based therapy is of special importance.
Collapse
Affiliation(s)
- Inga Hochnadel
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Uta Kossatz-Boehlert
- b Institute for Neuroanatomy, Eberhard-Karls University Tuebingen , Tuebingen , Germany
| | - Nils Jedicke
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Henrike Lenzen
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Michael P Manns
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Tetyana Yevsa
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| |
Collapse
|
33
|
Li X, Zhang Y, Chen M, Mei Q, Liu Y, Feng K, Jia H, Dong L, Shi L, Liu L, Nie J, Han W. Increased IFNγ + T Cells Are Responsible for the Clinical Responses of Low-Dose DNA-Demethylating Agent Decitabine Antitumor Therapy. Clin Cancer Res 2017; 23:6031-6043. [PMID: 28706011 DOI: 10.1158/1078-0432.ccr-17-1201] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/05/2017] [Accepted: 07/10/2017] [Indexed: 01/31/2023]
Abstract
Purpose: Low-dose DNA-demethylating agent decitabine therapy is effective in a subgroup of cancer patients. It remains largely elusive for the biomarker to predict therapeutic response and the underlying antitumor mechanisms, especially the impact on host antitumor immunity.Experimental Design: The influence of low-dose decitabine on T cells was detected both in vitro and in vivo Moreover, a test cohort and a validation cohort of advanced solid tumor patients with low-dose decitabine-based treatment were involved. The activation, proliferation, polarization, and cytolysis capacity of CD3+ T cells were analyzed by FACS and CCK8 assay. Kaplan-Meier and Cox proportional hazard regression analysis were performed to investigate the prognostic value of enhanced T-cell activity following decitabine epigenetic therapy.Results: Low-dose decitabine therapy enhanced the activation and proliferation of human IFNγ+ T cells, promoted Th1 polarization and activity of cytotoxic T cells both in vivo and in vitro, which in turn inhibited cancer progression and augmented the clinical effects of patients. In clinical trials, increased IFNγ+ T cells and increased T-cell cytotoxicity predicted improved therapeutic responses and survival in the test cohort and validation cohort.Conclusions: We find that low-dose decitabine therapy promotes antitumor T-cell responses by promoting T-cell proliferation and the increased IFNγ+ T cells may act as a potential prognostic biomarker for the response to decitabine-based antitumor therapy. Clin Cancer Res; 23(20); 6031-43. ©2017 AACR.
Collapse
Affiliation(s)
- Xiang Li
- Department of Immunology and Biological Therapy, Institute of Basic Medical Science, PLA General Hospital, Beijing, China
| | - Yan Zhang
- Department of Immunology and Biological Therapy, Institute of Basic Medical Science, PLA General Hospital, Beijing, China
| | - Meixia Chen
- Department of Immunology and Biological Therapy, Institute of Basic Medical Science, PLA General Hospital, Beijing, China
| | - Qian Mei
- Department of Immunology and Biological Therapy, Institute of Basic Medical Science, PLA General Hospital, Beijing, China
| | - Yang Liu
- Department of Immunology and Biological Therapy, Institute of Basic Medical Science, PLA General Hospital, Beijing, China
| | - Kaichao Feng
- Department of Immunology and Biological Therapy, Institute of Basic Medical Science, PLA General Hospital, Beijing, China
| | - Hejin Jia
- Department of Immunology and Biological Therapy, Institute of Basic Medical Science, PLA General Hospital, Beijing, China
| | - Liang Dong
- Department of Immunology and Biological Therapy, Institute of Basic Medical Science, PLA General Hospital, Beijing, China
| | - Lu Shi
- Department of Immunology and Biological Therapy, Institute of Basic Medical Science, PLA General Hospital, Beijing, China
| | - Lin Liu
- Department of General Surgery, PLA General Hospital, Beijing, China
| | - Jing Nie
- Department of Immunology and Biological Therapy, Institute of Basic Medical Science, PLA General Hospital, Beijing, China.
| | - Weidong Han
- Department of Immunology and Biological Therapy, Institute of Basic Medical Science, PLA General Hospital, Beijing, China.
| |
Collapse
|
34
|
Linnekamp JF, Butter R, Spijker R, Medema JP, van Laarhoven HWM. Clinical and biological effects of demethylating agents on solid tumours - A systematic review. Cancer Treat Rev 2017; 54:10-23. [PMID: 28189913 DOI: 10.1016/j.ctrv.2017.01.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND It is assumed that DNA methylation plays a key role in both tumour development and therapy resistance. Demethylating agents have been shown to be effective in the treatment of haematological malignancies. Based on encouraging preclinical results, demethylating agents may also be effective in solid tumours. This systematic review summarizes the evidence of the effect of demethylating agents on clinical response, methylation and the immune system in solid tumours. METHODS We conducted a systematic literature search from 1949 to December 2016, according to the PRISMA guidelines. Studies which evaluated treatment with azacitidine, decitabine, guadecitabine, hydralazine, procaine, MG98 and/or zebularine in patients with solid tumours were included. Data on clinical response, effects on methylation and immune response were extracted. RESULTS Fifty-eight studies were included: in 13 studies complete responses (CR) were observed, 35 studies showed partial responses (PR), 47 studies stable disease (SD) and all studies except two showed progressive disease (PD). Effects on global methylation were observed in 11/15 studies and demethylation/re-expression of tumour specific genes was seen in 15/17 studies. No clear correlation between (de)methylation and clinical response was observed. In 14 studies immune-related responses were reported, such as re-expression of cancer-testis antigens and upregulation of interferon genes. CONCLUSION Demethylating agents are able to improve clinical outcome and alter methylation status in patients with solid tumours. Although beneficial effect has been shown in individual patients, overall response is limited. Further research on biomarker predicting therapy efficacy is indicated, particularly in earlier stage and highly methylated tumours.
Collapse
Affiliation(s)
- J F Linnekamp
- Laboratory of Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Cancer Center Amsterdam and Cancer Genomics Center, Amsterdam, The Netherlands
| | - R Butter
- Laboratory of Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Cancer Center Amsterdam and Cancer Genomics Center, Amsterdam, The Netherlands
| | - R Spijker
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands; Medical Library, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - J P Medema
- Laboratory of Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Cancer Center Amsterdam and Cancer Genomics Center, Amsterdam, The Netherlands
| | - H W M van Laarhoven
- Laboratory of Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Cancer Center Amsterdam and Cancer Genomics Center, Amsterdam, The Netherlands; Department of Medical Oncology, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Graça I, Pereira-Silva E, Henrique R, Packham G, Crabb SJ, Jerónimo C. Epigenetic modulators as therapeutic targets in prostate cancer. Clin Epigenetics 2016; 8:98. [PMID: 27651838 PMCID: PMC5025578 DOI: 10.1186/s13148-016-0264-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/07/2016] [Indexed: 01/24/2023] Open
Abstract
Prostate cancer is one of the most common non-cutaneous malignancies among men worldwide. Epigenetic aberrations, including changes in DNA methylation patterns and/or histone modifications, are key drivers of prostate carcinogenesis. These epigenetic defects might be due to deregulated function and/or expression of the epigenetic machinery, affecting the expression of several important genes. Remarkably, epigenetic modifications are reversible and numerous compounds that target the epigenetic enzymes and regulatory proteins were reported to be effective in cancer growth control. In fact, some of these drugs are already being tested in clinical trials. This review discusses the most important epigenetic alterations in prostate cancer, highlighting the role of epigenetic modulating compounds in pre-clinical and clinical trials as potential therapeutic agents for prostate cancer management.
Collapse
Affiliation(s)
- Inês Graça
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; School of Allied Health Sciences (ESTSP), Polytechnic of Porto, Porto, Portugal
| | - Eva Pereira-Silva
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences, The Somers Cancer Research Building, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, S016 6YD UK
| | - Simon J Crabb
- Cancer Research UK Centre, Cancer Sciences, The Somers Cancer Research Building, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, S016 6YD UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
36
|
Saleh MH, Wang L, Goldberg MS. Improving cancer immunotherapy with DNA methyltransferase inhibitors. Cancer Immunol Immunother 2016; 65:787-96. [PMID: 26646852 PMCID: PMC11028536 DOI: 10.1007/s00262-015-1776-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022]
Abstract
Immunotherapy confers durable clinical benefit to melanoma, lung, and kidney cancer patients. Challengingly, most other solid tumors, including ovarian carcinoma, are not particularly responsive to immunotherapy, so combination with a complementary therapy may be beneficial. Recent findings suggest that epigenetic modifying drugs can prime antitumor immunity by increasing expression of tumor-associated antigens, chemokines, and activating ligands by cancer cells as well as cytokines by immune cells. This review, drawing from both preclinical and clinical data, describes some of the mechanisms of action that enable DNA methyltransferase inhibitors to facilitate the establishment of antitumor immunity.
Collapse
Affiliation(s)
- Mohammad H Saleh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael S Goldberg
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
37
|
Diesch J, Zwick A, Garz AK, Palau A, Buschbeck M, Götze KS. A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers. Clin Epigenetics 2016; 8:71. [PMID: 27330573 PMCID: PMC4915187 DOI: 10.1186/s13148-016-0237-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/12/2016] [Indexed: 01/08/2023] Open
Abstract
The azanucleosides azacitidine and decitabine are currently used for the treatment of acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) in patients not only eligible for intensive chemotherapy but are also being explored in other hematologic and solid cancers. Based on their capacity to interfere with the DNA methylation machinery, these drugs are also referred to as hypomethylating agents (HMAs). As DNA methylation contributes to epigenetic regulation, azanucleosides are further considered to be among the first true “epigenetic drugs” that have reached clinical application. However, intriguing new evidence suggests that DNA hypomethylation is not the only mechanism of action for these drugs. This review summarizes the experience from more than 10 years of clinical practice with azanucleosides and discusses their molecular actions, including several not related to DNA methylation. A particular focus is placed on possible causes of primary and acquired resistances to azanucleoside treatment. We highlight current limitations for the success and durability of azanucleoside-based therapy and illustrate that a better understanding of the molecular determinants of drug response holds great potential to overcome resistance.
Collapse
Affiliation(s)
- Jeannine Diesch
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Anabel Zwick
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, Munich, Germany
| | - Anne-Kathrin Garz
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, Munich, Germany ; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Palau
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Marcus Buschbeck
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Katharina S Götze
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, Munich, Germany ; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
38
|
Mei Q, Chen M, Lu X, Li X, Duan F, Wang M, Luo G, Han W. An open-label, single-arm, phase I/II study of lower-dose decitabine based therapy in patients with advanced hepatocellular carcinoma. Oncotarget 2016; 6:16698-711. [PMID: 25895027 PMCID: PMC4599300 DOI: 10.18632/oncotarget.3677] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 03/04/2015] [Indexed: 12/14/2022] Open
Abstract
Purpose We conducted this phase I/II clinical trial to determine the safety and efficacy of lower-dose decitabine based therapy in pretreated patients with advanced HCC. Experimental Design Patients with advanced HCC were eligible. The administered dose of decitabine was 6 mg/m2/d intravenously on days 1 to 5 of a 28-day cycle. Additional therapies were given based on their disease progression status. The endpoint was to ensure the safety, hepatotoxicity, clinical responses, progression-free survival (PFS) and pharmacodynamics assay of lower-dose decitabine. Results Fifteen patients were enrolled. The favorable adverse events and liver function profiles were observed. The most beneficial responses were 1 complete response (CR), 6 stable disease (SD) and 8 progressive disease (PD). MRI liver scans post-treatment indicated a unique and specific characteristic. The immunohistochemistry result from the liver biopsy exhibited noteworthy CTL responses. Median PFS was 4 months (95% CI 1.7, 7), comparing favorably with existing therapeutic options. Expression decrement of DNMT1 and global DNA hypomethylation were observed in PBMCs after lower-dose decitabine treatment. Conclusion The lower-dose decitabine based treatment resulted in beneficial clinical response and favorable toxicity profiles in patients with advanced HCC. The prospective evaluations of decitabine administration schemes and tumor tissue-based pharmacodynamics effect are warranted in future trials.
Collapse
Affiliation(s)
- Qian Mei
- Department of Molecular Biology, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China.,Department of Bio-therapeutic, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China
| | - Meixia Chen
- Department of Molecular Biology, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China.,Department of Bio-therapeutic, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China
| | - Xuechun Lu
- Department of Molecular Biology, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China.,Department of Bio-therapeutic, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China
| | - Xiang Li
- Department of Molecular Biology, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China.,Department of Bio-therapeutic, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China
| | - Feng Duan
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, P. R. China
| | - Maoqiang Wang
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, P. R. China
| | - Guangbin Luo
- Department of Molecular Biology, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China.,Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Weidong Han
- Department of Molecular Biology, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China.,Department of Bio-therapeutic, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China
| |
Collapse
|
39
|
Liu L, Chen L, Wu X, Li X, Song Y, Mei Q, Nie J, Han W. Low-dose DNA-demethylating agent enhances the chemosensitivity of cancer cells by targeting cancer stem cells via the upregulation of microRNA-497. J Cancer Res Clin Oncol 2016; 142:1431-9. [PMID: 27075177 DOI: 10.1007/s00432-016-2157-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 04/05/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE The DNA-demethylating agent decitabine has shown clinical response for the treatment of hematological malignancies and solid tumors, while the mechanisms underlying its antitumor capacity are not fully understood. METHODS The sensitivities of cancer cells to different chemotherapeutic drugs, such as cisplatin, paclitaxel, and 5-FU, were detected. The tumor sphere formation assay was used to evaluate the effects of low-dose decitabine on cancer-initiating stem cells. RESULTS We observed that the chemotherapy sensitivity of various cancer cells was enhanced following non-toxic low-dose decitabine treatment. Moreover, low-dose decitabine treatment suppressed the self-renewal of cancer-initiating cells and inhibited the expression of pluripotency markers. Strikingly, low-dose decitabine was able to augment chemosensitivity in cancer stem cells, likely by the upregulation of miRNA-497, which was reported to be downregulated and to have promoted cell apoptosis in multiple cancers. CONCLUSIONS These results indicated that the DNA-demethylating agent could target cancer stem cells and reverse their chemotherapeutic resistance by regulating the endogenous expression of microRNAs.
Collapse
Affiliation(s)
- Lin Liu
- Department of General Surgery, PLA General Hospital, Beijing, 100853, China
| | - Lin Chen
- Department of General Surgery, PLA General Hospital, Beijing, 100853, China
| | - Xuan Wu
- Department of Immunology, Institute of Basic Medicine, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Xiang Li
- Department of Immunology, Institute of Basic Medicine, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Yang Song
- Department of Microbiology, PLA General Hospital, Beijing, 100853, China
| | - Qian Mei
- Department of Immunology, Institute of Basic Medicine, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Jing Nie
- Department of Immunology, Institute of Basic Medicine, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Weidong Han
- Department of Immunology, Institute of Basic Medicine, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
40
|
Pixberg CF, Schulz WA, Stoecklein NH, Neves RPL. Characterization of DNA Methylation in Circulating Tumor Cells. Genes (Basel) 2015; 6:1053-75. [PMID: 26506390 PMCID: PMC4690028 DOI: 10.3390/genes6041053] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 02/07/2023] Open
Abstract
Epigenetics contributes to molecular mechanisms leading to tumor cell transformation and systemic progression of cancer. However, the dynamics of epigenetic remodeling during metastasis remains unexplored. In this context, circulating tumor cells (CTCs) might enable a direct insight into epigenetic mechanisms relevant for metastasis by providing direct access to systemic cancer. CTCs can be used as prognostic markers in cancer patients and are regarded as potential metastatic precursor cells. However, despite substantial technical progress, the detection and molecular characterization of CTCs remain challenging, in particular the analysis of DNA methylation. As recent studies have started to address the epigenetic state of CTCs, we discuss here the potential of such investigations to elucidate mechanisms of metastasis and to develop tumor biomarkers.
Collapse
Affiliation(s)
- Constantin F Pixberg
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Wolfgang A Schulz
- Department of Urology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Rui P L Neves
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
41
|
Kuang Y, El-Khoueiry A, Taverna P, Ljungman M, Neamati N. Guadecitabine (SGI-110) priming sensitizes hepatocellular carcinoma cells to oxaliplatin. Mol Oncol 2015; 9:1799-814. [PMID: 26160429 DOI: 10.1016/j.molonc.2015.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 05/10/2015] [Accepted: 06/05/2015] [Indexed: 12/14/2022] Open
Abstract
Promoter DNA hypermethylation is an important biomarker of hepatocellular carcinoma (HCC), supporting the potential utility of demethylating agents in this disease. Guadecitabine (SGI-110) is a second-generation hypomethylating agent formulated as a dinucleotide of decitabine and deoxyguanosine that yields longer half-life and more extended decitabine exposure than decitabine IV infusion. Here we performed preclinical evaluation of SGI-110 in HCC models to guide the design of a phase I/II clinical trial. HCC cell lines and xenograft models were used to determine the antitumor activity of SGI-110 as a single agent and in combination with oxaliplatin. Pretreatment with low doses of SGI-110 significantly synergized with oxaliplatin yielding enhanced cytotoxicity. The combination of SGI-110 and oxaliplatin was well tolerated and significantly delayed tumor growth in mice compared to oxaliplatin alone. Bromouridine-labeled RNA sequencing (Bru-seq) was employed to elucidate the effects of SGI-110 and/or oxaliplatin on genome-wide transcription. SGI-110 and the combination treatment inhibited the expression of genes involved in WNT/EGF/IGF signaling. DNMT1 and survivin were identified as novel PD markers to monitor the efficacy of the combination treatment. In conclusion, SGI-110 priming sensitizes HCC cells to oxaliplatin by inhibiting distinct signaling pathways. We expect that this combination treatment will show low toxicity and high efficacy in patients. Our study supports the use of the combination of low doses of SGI-110 and oxaliplatin in HCC patients.
Collapse
Affiliation(s)
- Yuting Kuang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA; Department of Medicinal Chemistry, College of Pharmacy, Translational Oncology Program, University of Michigan, Ann Arbor, MI, USA
| | - Anthony El-Khoueiry
- Keck School of Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | - Mats Ljungman
- Department of Radiation Oncology, Translational Oncology Program, University of Michigan, Ann Arbor, MI, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Translational Oncology Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
42
|
Wongtrakoongate P. Epigenetic therapy of cancer stem and progenitor cells by targeting DNA methylation machineries. World J Stem Cells 2015; 7:137-148. [PMID: 25621113 PMCID: PMC4300924 DOI: 10.4252/wjsc.v7.i1.137] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/01/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
Recent advances in stem cell biology have shed light on how normal stem and progenitor cells can evolve to acquire malignant characteristics during tumorigenesis. The cancer counterparts of normal stem and progenitor cells might be occurred through alterations of stem cell fates including an increase in self-renewal capability and a decrease in differentiation and/or apoptosis. This oncogenic evolution of cancer stem and progenitor cells, which often associates with aggressive phenotypes of the tumorigenic cells, is controlled in part by dysregulated epigenetic mechanisms including aberrant DNA methylation leading to abnormal epigenetic memory. Epigenetic therapy by targeting DNA methyltransferases (DNMT) 1, DNMT3A and DNMT3B via 5-Azacytidine (Aza) and 5-Aza-2’-deoxycytidine (Aza-dC) has proved to be successful toward treatment of hematologic neoplasms especially for patients with myelodysplastic syndrome. In this review, I summarize the current knowledge of mechanisms underlying the inhibition of DNA methylation by Aza and Aza-dC, and of their apoptotic- and differentiation-inducing effects on cancer stem and progenitor cells in leukemia, medulloblastoma, glioblastoma, neuroblastoma, prostate cancer, pancreatic cancer and testicular germ cell tumors. Since cancer stem and progenitor cells are implicated in cancer aggressiveness such as tumor formation, progression, metastasis and recurrence, I propose that effective therapeutic strategies might be achieved through eradication of cancer stem and progenitor cells by targeting the DNA methylation machineries to interfere their “malignant memory”.
Collapse
|
43
|
Brown R, Curry E, Magnani L, Wilhelm-Benartzi CS, Borley J. Poised epigenetic states and acquired drug resistance in cancer. Nat Rev Cancer 2014; 14:747-53. [PMID: 25253389 DOI: 10.1038/nrc3819] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epigenetic events, which are somatically inherited through cell division, are potential drivers of acquired drug resistance in cancer. The high rate of epigenetic change in tumours generates diversity in gene expression patterns that can rapidly evolve through drug selection during treatment, leading to the development of acquired resistance. This will potentially confound stratified chemotherapy decisions that are solely based on mutation biomarkers. Poised epigenetic states in tumour cells may drive multistep epigenetic fixation of gene expression during the acquisition of drug resistance, which has implications for clinical strategies to prevent the emergence of drug resistance.
Collapse
Affiliation(s)
- Robert Brown
- Department of Surgery &Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Edward Curry
- Department of Surgery &Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Luca Magnani
- Department of Surgery &Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | | | - Jane Borley
- Department of Surgery &Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| |
Collapse
|
44
|
Decitabine, a new star in epigenetic therapy: the clinical application and biological mechanism in solid tumors. Cancer Lett 2014; 354:12-20. [DOI: 10.1016/j.canlet.2014.08.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 11/23/2022]
|