1
|
Kumar A, Mishra S, Singh NK, Yadav M, Padhiyar H, Christian J, Kumar R. Ensuring carbon neutrality via algae-based wastewater treatment systems: Progress and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121182. [PMID: 38772237 DOI: 10.1016/j.jenvman.2024.121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
The emergence of algal biorefineries has garnered considerable attention to researchers owing to their potential to ensure carbon neutrality via mitigation of atmospheric greenhouse gases. Algae-derived biofuels, characterized by their carbon-neutral nature, stand poised to play a pivotal role in advancing sustainable development initiatives aimed at enhancing environmental and societal well-being. In this context, algae-based wastewater treatment systems are greatly appreciated for their efficacy in nutrient removal and simultaneous bioenergy generation. These systems leverage the growth of algae species on wastewater nutrients-including carbon, nitrogen, and phosphorus-alongside carbon dioxide, thus facilitating a multifaceted approach to pollution remediation. This review seeks to delve into the realization of carbon neutrality through algae-mediated wastewater treatment approaches. Through a comprehensive analysis, this review scrutinizes the trajectory of algae-based wastewater treatment via bibliometric analysis. It subsequently examines the case studies and empirical insights pertaining to algae cultivation, treatment performance analysis, cost and life cycle analyses, and the implementation of optimization methodologies rooted in artificial intelligence and machine learning algorithms for algae-based wastewater treatment systems. By synthesizing these diverse perspectives, this study aims to offer valuable insights for the development of future engineering applications predicated on an in-depth understanding of carbon neutrality within the framework of circular economy paradigms.
Collapse
Affiliation(s)
- Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Saurabh Mishra
- Institute of Water Science and Technology, Hohai University, Nanjing China, 210098, China.
| | - Nitin Kumar Singh
- Department of Chemical Engineering, Marwadi University, Rajkot, Gujarat, India.
| | - Manish Yadav
- Central Mine Planning and Design Institute Limite, Bhubaneswar, India.
| | | | - Johnson Christian
- Environment Audit Cell, R. D. Gardi Educational Campus, Rajkot, Gujarat, India.
| | - Rupesh Kumar
- Jindal Global Business School (JGBS), O P Jindal Global University, Sonipat, 131001, Haryana, India.
| |
Collapse
|
2
|
Hamed SM, Mohamed MYA, Alammari BS, AbdElgawad H. Insights into the growth and biochemical defense responses associated with fenitrothion toxicity and uptake by freshwater cyanobacteria. CHEMOSPHERE 2024; 358:141909. [PMID: 38593960 DOI: 10.1016/j.chemosphere.2024.141909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
The extensive use of fenitrothion (FNT) in agricultural practices induces its persistence in soil and waterways. Therefore, it is essential to implement effective management practices such as using cyanobacteria for FNT removal and accumulation, particularly under accidental contamination. To this end, we evaluated the responses of two freshwater cyanobacteria taxa, Nostoc muscorum and Anabaena laxa to mild (7.5 mg L-1) and high (15 mg L-1) levels of FNT over a period of 7 d. Compared to N. muscorum, A. laxa was more tolerant to FNT, exhibiting higher FNT uptake and removal efficiencies at mild (16.3%) and high (17.5%) levels. FNT induced a dose-dependent decrease in cell growth, Chl a, phosphoenolpyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase/oxygenase activities, which were more pronounced in N. muscorum. Moreover, FNT significantly increased oxidative damage markers i.e., increased lipid peroxidation (MDA), protein oxidation, H2O2 levels and NADPH oxidase enzyme activity, to more extent in N. muscorum. Compared to N. muscorum, A. laxa had high antioxidant capacity (FRAP), glutathione and increased activities of glutathione-S-transferase, glutathione reductase, glutathione peroxidase and superoxide dismutase, suggesting a robust antioxidant defense mechanism to mitigate FNT toxicity. However, N. muscorum devoted the induction of ascorbate content and the activity of catalase, peroxidase, monodehydroascorbate reductase, ascorbate peroxidase, and dehydroascorbate reductase enzymes. Although A. laxa had greater intracellular FNT, it experienced less FNT-induced oxidative stress, likely due to over production of antioxidants. Consequently, A. laxa is considered as a promising candidate for FNT phycoremediation. Our findings provide fundamental information on species-specific toxicity of FNT among cyanobacteria and the environmental risk of FNT toxicity in aquatic environments.
Collapse
Affiliation(s)
- Seham M Hamed
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P. O. Box: 90950, Riyadh 11623, Kingdom of Saudi Arabia; Soil Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, P.O. 175 El‒Orman, Egypt.
| | - Marwa Yousry A Mohamed
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P. O. Box: 90950, Riyadh 11623, Kingdom of Saudi Arabia
| | - Badriah Saleh Alammari
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P. O. Box: 90950, Riyadh 11623, Kingdom of Saudi Arabia
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Swain BB, Mishra S, Samal S, Adak T, Mohapatra PK, Ayyamperumal R. Chlorpyrifos enrichment enhances tolerance of Anabaena sp. PCC 7119 to dimethoate. ENVIRONMENTAL RESEARCH 2024; 249:118310. [PMID: 38331154 DOI: 10.1016/j.envres.2024.118310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Organophosphorus (OP) insecticides are widely used for on-field pest control, constituting about 38% of global pesticide consumption. Insecticide tolerance has been recorded in microorganisms isolated from the contaminated soil. However, the cross-tolerance of laboratory-enriched cultures remains poorly understood. A chlorpyrifos tolerant (T) strain of Anabaena sp. PCC 7119 was developed through continuous enrichment of the wild strain (W). The cross-tolerance of the T strain to the OP insecticide dimethoate was assessed by measuring photosynthetic performance, key enzyme activities and degradation potential. The presence of dimethoate led to a significant reduction in the growth and pigment content of the W strain. In contrast, the T strain demonstrated improved growth and metabolic performance. Chl a and carotenoids were degraded faster than phycobiliproteins in both strains. The T strain exhibited superior photosynthetic performance, metabolic efficiency and photosystem functions, than of W strain, at both the tested dimethoate concentrations (100 and 200 μM). The treated T strain had more or less a normal OJIP fluorescence transient and bioenergetic functions, while the W strain showed a greater fluorescence rise at ≤ 300 μs indicating the inhibition of electron donation to PS II, and at 2 ms due to reduced electron release beyond QA. The T strain had significantly higher levels of esterase and phosphatases, further enhanced by insecticide treatment. Dimethoate degradation efficiency of the T strain was significantly higher than of the W strain. T strain also removed chlorpyrifos more efficiently than W strain at both the tested concentrations. The BCFs of both chlorpyrifos and dimethoate were lower in the T strain compared to the W strain. These findings suggest that the enriched strain exhibits promising results in withstanding dimethoate toxicity and could be explored for its potential as a bioremediating organism for OP degradation.
Collapse
Affiliation(s)
| | | | - Subhashree Samal
- Department of Botany, Ravenshaw University, Cuttack, 753003, India.
| | - Totan Adak
- Crop Protection Division, ICAR- National Rice Research Institute, Cuttack, 753006, India.
| | | | - Ramamoorthy Ayyamperumal
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China; SIMATS Saveetha University, Chennai, Tamilnadu, 600077, India.
| |
Collapse
|
4
|
Pan Q, Li Y, Zhang J, Hu T, Hou Y, Tang S. Mechanisms of oxidative response during biodegradation of malathion by S. oneidensis MR-1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16832-16845. [PMID: 38326681 PMCID: PMC10894118 DOI: 10.1007/s11356-024-32283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Malathion, an extensively used organophosphorus pesticide, poses a high potential risk of toxicity to humans and the environment. Shewanella (S.) oneidensis MR-1 has been proposed as a strain with excellent bioremediation capabilities, capable of efficiently removing a wide range of hard-to-degrade pollutants. However, the physiological and biochemical response of S. oneidensis MR-1 to malathion is unknown. Therefore, this study aimed to examine how S. oneidensis MR-1 responds physiologically and biochemically to malathion while also investigating the biodegradation properties of the pesticide. The results showed that the 7-day degradation rates of S. oneidensis MR-1 were 84.1, 91.6, and 94.0% at malathion concentrations of 10, 20, and 30 mg/L, respectively. As the concentration of malathion increased, superoxide dismutase and catalase activities were inhibited, leading to a significant rise in malondialdehyde content. This outcome can be attributed to the excessive production of reactive oxygen species (ROS) triggered by malathion stress. In addition, ROS production stimulates the secretion of soluble polysaccharides, which alleviates oxidative stress caused by malathion. Malathion-induced oxidative damage further exacerbated the changes in the cellular properties of S. oneidensis MR-1. During the initial stages of degradation, the cell density and total intracellular protein increased significantly with increasing malathion exposure. This can be attributed to the remarkable resistance of S. oneidensis MR-1 to malathion. Based on scanning electron microscopy observations, continuous exposure to contaminants led to a reduction in biomass and protein content, resulting in reduced cell activity and ultimately leading to cell rupture. In addition, this was accompanied by a decrease in Na+/K+- ATPase and Ca2+/Mg2+-ATPase levels, suggesting that malathion-mediated oxidative stress interfered with energy metabolism in S. oneidensis MR-1. The findings of this study provide new insights into the environmental risks associated with organophosphorus pesticides, specifically malathion, and their potential for bioremediation.
Collapse
Affiliation(s)
- Qiaodong Pan
- College of Environmental Science and Engineering, Guilin University of Technology, Jiangan Road 12, Guilin, 541004, Guangxi, China
| | - Yanhong Li
- College of Environmental Science and Engineering, Guilin University of Technology, Jiangan Road 12, Guilin, 541004, Guangxi, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Jing Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Jiangan Road 12, Guilin, 541004, Guangxi, China
| | - Ting Hu
- College of Environmental Science and Engineering, Guilin University of Technology, Jiangan Road 12, Guilin, 541004, Guangxi, China
| | - Yu Hou
- College of Environmental Science and Engineering, Guilin University of Technology, Jiangan Road 12, Guilin, 541004, Guangxi, China
| | - Shen Tang
- College of Environmental Science and Engineering, Guilin University of Technology, Jiangan Road 12, Guilin, 541004, Guangxi, China.
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
5
|
Kilonzi JM, Otieno S. Degradation kinetics and physiological studies of organophosphates degrading microorganisms for soil bioremediation. STRESS BIOLOGY 2024; 4:11. [PMID: 38319394 PMCID: PMC10847075 DOI: 10.1007/s44154-023-00138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/15/2023] [Indexed: 02/07/2024]
Abstract
Organophosphate compounds are widely used in agricultural activities to optimize food production. Contamination of field soil by these compounds may result in detrimental effects on soil biota. The aim of the present study was to isolate microorganisms from field soils and evaluate the strains on ability to degrade organophosphates as single isolate and as a consortium. Isolated strains were identified using both biochemical and molecular techniques. Results revealed that, out of the 46 isolated strains, three isolates herein referred to as S6, S36 and S37 showed an average diazinon degradation rate of 76.4%, 76.7% and 76.8% respectively, of the initial dose (50 ppm) within 11 days of incubation in mineral medium. Notably, isolates S36 and S37 were more effective than S6 in degrading diazinon by 40% in soil aliquot after 11 days and therefore were evaluated on biochemical reactions and molecular identification. The isolates showed variable biochemical characteristics. However, both isolates possessed catalase enzyme, but lacked oxidase enzyme. Molecular characterization showed that, the closest species for S36 and S37 were Priestia megaterium and P. arybattia, respectively, based on 16S rRNA gene similarity (> 99%). Combination of the strains increased diazinon degradation ability by 45% compared to single strain treatment. Chlorpyrifos was the most highly degraded organophosphate, compared to phorate and cadusafos. Therefore it is expected that the pesticide-degrading bacteria could be a solution to soil health improvement and contribution to the production of safe agricultural products.
Collapse
Affiliation(s)
- J M Kilonzi
- Kenya Agricultural and Livestock Research Organization Tigoni, Limuru, P.O BOX 338-0217, Kenya.
| | - S Otieno
- Kenya Agricultural and Livestock Research Organization Tigoni, Limuru, P.O BOX 338-0217, Kenya
| |
Collapse
|
6
|
Ghaffar I, Hussain A, Hasan A, Deepanraj B. Microalgal-induced remediation of wastewaters loaded with organic and inorganic pollutants: An overview. CHEMOSPHERE 2023; 320:137921. [PMID: 36682632 DOI: 10.1016/j.chemosphere.2023.137921] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/26/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
The recent surge in industrialization has intensified the accumulation of various types of organic and inorganic pollutants due to the illegal dumping of partially and/or untreated wastewater effluents in the environment. The pollutants emitted by several industries pose serious risk to the environment, animals and human beings. Management and diminution of these hazardous organic pollutants have become an incipient research interest. Traditional physiochemical methods are energy intensive and produce secondary pollutants. So, bioremediation via microalgae has appeared to be an eco-friendly and sustainable technique to curb the adverse effects of organic and inorganic contaminants because microalgae can degrade complex organic compounds and convert them into simpler and non-toxic substances without the release of secondary pollutants. Even some of the organic pollutants can be exploited by microalgae as a source of carbon in mixotrophic cultivation. Literature survey has revealed that use of the latest modification techniques for microalgae such as immobilization (on alginate, carrageena and agar), pigment-extraction, and pretreatment (with acids) have enhaced their bioremedial potential. Moreover, microalgal components i.e., biopolymers and extracellular polymeric substances (EPS) can potentially be exploited in the biosorption of pollutants. Though bioremediation of wastewaters by microalgae is quite well-studied realm but some aspects like structural and functional responses of microalgae toward pollutant derivatives/by-products (formed during biodegradation), use of genetic engineering to improve the tolerance of microalgae against higher concentrations of polluatans, and harvesting cost reduction, and monitoring of parameters at large-scale still need more focus. This review discusses the accumulation of different types of pollutants into the environment through various sources and the mechanisms used by microalgae to degrade commonly occurring organic and inorganic pollutants.
Collapse
Affiliation(s)
- Imania Ghaffar
- Applied and Environmental Microbiology Laboratory, Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Hussain
- Applied and Environmental Microbiology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Ali Hasan
- Applied and Environmental Microbiology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Balakrishnan Deepanraj
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia.
| |
Collapse
|
7
|
Chaudhari YS, Kumar P, Soni S, Gacem A, Kumar V, Singh S, Yadav VK, Dawane V, Piplode S, Jeon BH, Ibrahium HA, Hakami RA, Alotaibi MT, Abdellattif MH, Cabral-Pinto MMS, Yadav P, Yadav KK. An inclusive outlook on the fate and persistence of pesticides in the environment and integrated eco-technologies for their degradation. Toxicol Appl Pharmacol 2023; 466:116449. [PMID: 36924898 DOI: 10.1016/j.taap.2023.116449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023]
Abstract
Intensive and inefficient exploitation of pesticides through modernized agricultural practices has caused severe pesticide contamination problems to the environment and become a crucial problem over a few decades. Due to their highly toxic and persistent properties, they affect and get accumulated in non-target organisms, including microbes, algae, invertebrates, plants as well as humans, and cause severe issues. Considering pesticide problems as a significant issue, researchers have investigated several approaches to rectify the pesticide contamination problems. Several analyses have provided an extensive discussion on pesticide degradation but using specific technology for specific pesticides. However, in the middle of this time, cleaner techniques are essential for reducing pesticide contamination problems safely and environmentally friendly. As per the research findings, no single research finding provides concrete discussion on cleaner tactics for the remediation of contaminated sites. Therefore, in this review paper, we have critically discussed cleaner options for dealing with pesticide contamination problems as well as their advantages and disadvantages have also been reviewed. As evident from the literature, microbial remediation, phytoremediation, composting, and photocatalytic degradation methods are efficient and sustainable and can be used for treatment at a large scale in engineered systems and in situ. However, more study on the bio-integrated system is required which may be more effective than existing technologies.
Collapse
Affiliation(s)
- Yogesh S Chaudhari
- Department of Microbiology, K. J. Somaiya College of Arts, Commerce, and Science, Kopargaon, Maharashtra 423601, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India.
| | - Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Vinay Kumar
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Snigdha Singh
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Virendra Kumar Yadav
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University, Lakshmangarh, Sikar 332311, Rajasthan, India
| | - Vinars Dawane
- Department of Microbiology and Biotechnology, Sardar Vallabh Bhai Patel College Mandleshwar, Madhya Pradesh 451221, India
| | - Satish Piplode
- Department of Chemistry, SBS Government PG College, Pipariya, Hoshangabad, Madhya Pradesh 461775, India
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; Department of Semi Pilot Plant, Nuclear Materials Authority, P.O. Bo x 530, El Maadi, Egypt
| | - Rabab A Hakami
- Chemistry Department, Faculty of Science, King Khalid University, Postal Code 61413, Box number 9044, Saudi Arabia
| | - Mohammed T Alotaibi
- Department of Chemistry, Turabah University Collage, Taif University, Turabah, Saudi Arabia
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Taif University, Al-Haweiah, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Marina M S Cabral-Pinto
- Geobiotec Research Centre, Department of Geoscience, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Priyanka Yadav
- Department of Zoology, Mohammad Hasan P. G. College, Shahganj road, Jaunpur 222001, India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India; Department of Civil and Environmental Engineering, Faculty of Engineering, PSU Energy Systems Research Institute, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
8
|
Wang X, Yin Y, Yu Z, Shen G, Cheng H, Tao S. Distinct distribution patterns of the abundant and rare bacteria in high plateau hot spring sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160832. [PMID: 36521602 DOI: 10.1016/j.scitotenv.2022.160832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The diversity and distribution patterns of the abundant and rare microbial sub-communities in hot spring ecosystems and their assembly mechanisms are poorly understood. The present study investigated the diversity and distribution patterns of the total, abundant, conditionally rare, and always rare taxa in the low- and moderate-temperature hot spring sediments on the Tibetan Plateau based on high-throughput 16S rRNA gene sequencing, and explored their major environmental drivers. The diversity of these four bacterial taxa showed no significant change between the low-temperature and moderate-temperature hot spring sediments, whereas the bacterial compositions were obviously different. Stochasticity dominated the bacterial sub-community assemblages, while heterogeneous selection also played an important role in shaping the abundant and conditionally rare taxa between the low-temperature and moderate-temperature hot spring sediments. No significant difference in the topological properties of co-occurrence networks was found between the conditionally rare and abundant taxa, and the connections between the paired operational taxonomic units (OTUs) were almost positive. The diversity of the total, abundant, and conditionally rare taxa was governed by the salinity of hot spring sediments, while that of the always rare taxa was determined by the content of S element. In contrast, temperature had significant direct effect on the composition of the total, abundant, and conditionally rare taxa, but relatively weak influence on that of the always rare taxa. Besides, salinity was another major environmental factor driving the composition of the abundant and rare sub-communities in the hot spring sediments. These results reveal the assembly processes and major environmental drivers that shaped different bacterial sub-communities in the hot spring sediments on the Tibetan Plateau, and indicate the importance of conditionally rare taxa in constructing bacterial communities. These findings enhance the current understanding of the ecological mechanisms maintaining the ecosystem stability and services in extreme environment.
Collapse
Affiliation(s)
- Xiaojie Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yue Yin
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guofeng Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Shu Tao
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Dubey S, Chen CW, Haldar D, Tambat VS, Kumar P, Tiwari A, Singhania RR, Dong CD, Patel AK. Advancement in algal bioremediation for organic, inorganic, and emerging pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120840. [PMID: 36496067 DOI: 10.1016/j.envpol.2022.120840] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Rapidly changing bioremediation prospects are key drive to develop sustainable options that can offer extra benefits rather than only environmental remediation. Algal remediating is gaining utmost attention due to its mesmerising sustainable features, removing odour and toxicity, co-remediating numerous common and emerging inorganic and organic pollutants from gaseous and aqueous environments, and yielding biomass for a range of valuable products refining. Moreover, it also improves carbon footprint via carbon-capturing offers a better option than any other non-algal process for several high CO2-emitting industries. Bio-uptake, bioadsorption, photodegradation, and biodegradation are the main mechanisms to remediate a range of common and emerging pollutants by various algae species. Bioadsorption was a dominant remediation mechanism among others implicating surface properties of pollutants and algal cell walls. Photodegradable pollutants were photodegraded by microalgae by adsorbing photons on the surface and intracellularly via stepwise photodissociation and breakdown. Biodegradation involves the transportation of selective pollutants intracellularly, and enzymes help to convert them into simpler non-toxic forms. Robust models are from the green microalgae group and are dominated by Chlorella species. This article compiles the advancements in microalgae-assisted pollutants remediation and value-addition under sustainable biorefinery prospects. Moreover, filling the knowledge gaps, and recommendations for developing an effective platform for emerging pollutants remediation and realization of commercial-scale algal bioremediation.
Collapse
Affiliation(s)
- Siddhant Dubey
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Vaibhav Sunil Tambat
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Prashant Kumar
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Ashutosh Tiwari
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Reeta Rani Singhania
- Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
10
|
Dhuldhaj UP, Singh R, Singh VK. Pesticide contamination in agro-ecosystems: toxicity, impacts, and bio-based management strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9243-9270. [PMID: 36456675 DOI: 10.1007/s11356-022-24381-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Continuous rise in application of pesticides in the agro-ecosystems in order to ensure food supply to the ever-growing population is of greater concern to the human health and the environment. Once entered into the agro-ecosystem, the fate and transport of pesticides is determined largely by the nature of pesticides and the soil attributes, in addition to the soil-inhabiting microbes, fauna, and flora. Changes in the soil microbiological actions, soil properties, and enzymatic activities resulting from pesticide applications are the important factors substantially affecting the soil productivity. Disturbances in the microbial community composition may lead to the considerable perturbations in cycling of major nutrients, metals, and subsequent uptake by plants. Indiscriminate applications are linked with the accumulation of pesticides in plant-based foods, feeds, and animal products. Furthermore, rapid increase in the application of pesticides having long half-life has also been reported to contaminate the nearby aquatic environments and accumulation in the plants, animals, and microbes surviving there. To circumvent the negative consequences of pesticide application, multitude of techniques falling in physical, chemical, and biological categories are presented by different investigators. In the present study, important findings pertaining to the pesticide contamination in cultivated agricultural soils; toxicity on soil microbes, plants, invertebrates, and vertebrates; effects on soil characteristics; and alleviation of toxicity by bio-based management approaches have been thoroughly reviewed. With the help of bibliometric analysis, thematic evolution and research trends on the bioremediation of pesticides in the agro-ecosystems have also been highlighted.
Collapse
Affiliation(s)
- Umesh Pravin Dhuldhaj
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded, 431606, India
| | - Rishikesh Singh
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Vipin Kumar Singh
- Department of Botany, K. S. Saket P. G. College, (Affiliated to Dr. Ram Manohar Lohia Avadh University), Ayodhya, 224123, India.
| |
Collapse
|
11
|
Babu AR, Sharma NK, Manickam M. Carbon dissipation from surgical cotton production wastewater using macroalgae, microalgae, and activated sludge microbes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86192-86201. [PMID: 34746986 DOI: 10.1007/s11356-021-17345-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Surgical cotton production has drastically been increased in the past few years due to excessive use by medical health professionals especially in countries like India, which is among the top three exporters of cotton worldwide. The effluent generated from surgical cotton industries differ from textile effluents by the conspicuous absence of dyeing chemicals. This wastewater has a high concentration of suspended particles, COD, dissolved ions, organic carbon, and alkaline pH. Several studies have been published on the treatment of textile effluents and the degradation of dyeing chemicals, while the treatment studies on surgical cotton wastewater have been rarely reported in spite of their potential to cause pollution in receiving land/water bodies. Activated sludge microbes have been extensively studied and well documented in the treatment of several industrial effluent but does not match to the production of valuable biomass from algae. The global energy demand has prompted the scientific community to investigate and explore the possibility of using algae for energy production with simultaneous wastewater treatment. To the best of the authors' knowledge, no research articles have been published which compare the effectiveness of activated sludge microorganisms, microalgae, and macroalgae in removing contaminants from real wastewater. To date, there is a knowledge gap in understanding and selecting the right choice of biological system for effective and economical effluent treatment. In an attempt to minimize this gap, carbon removal by microalgae, macroalgae, and activated sludge microbes were investigated on real effluent from surgical cotton industries. It was observed that the strain of Chlorella vulgaris could dissipate 83% of COD from real wastewater, while consortia of macroalgae (consisting predominantly of Ulvaceae and Chaetomorpha) and activated sludge microbes could remove 81% and 69% of the carbon, respectively. The microalgal growth (in terms of wet weight) increased from 0.15 to 0.3 g, whereas the macroalgal wet weight increased from 1.5 to 3 g in over 7 days of batch experiments conducted in triplicates. This indicated the superlative performance of microalgae over activated sludge microbes in carbon dissipation.
Collapse
Affiliation(s)
- Arun Robin Babu
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnan Kovil, Srivilliputhur, Tamil Nadu, 626126, India
| | - Naresh Kumar Sharma
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnan Kovil, Srivilliputhur, Tamil Nadu, 626126, India.
| | - Matheswaran Manickam
- Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, Tamil Nadu, Tiruchirappalli, 620015, India
| |
Collapse
|
12
|
Bhatt P, Bhandari G, Turco RF, Aminikhoei Z, Bhatt K, Simsek H. Algae in wastewater treatment, mechanism, and application of biomass for production of value-added product. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119688. [PMID: 35793713 DOI: 10.1016/j.envpol.2022.119688] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/21/2022] [Accepted: 06/24/2022] [Indexed: 05/16/2023]
Abstract
The pollutants can enter water bodies at various point and non-point sources, and wastewater discharge remains a major pathway. Wastewater treatment effectively reduces contaminants, it is expensive and requires an eco-friendly and sustainable alternative approach to reduce treatment costs. Algae have recently emerged as a potentially cost-effective method to remediate toxic pollutants through the mechanism of biosorption, bioaccumulation, and intracellular degradation. Hence, before discharging the wastewater into the natural environment better solutions for environmental resource recovery and sustainable developments can be applied. More importantly, algae are a potential feedstock material for various industrial applications such as biofuel production. Currently, researchers are developing algae as a source for pharmaceuticals, biofuels, food additives, and bio-fertilizers. This review mainly focused on the potential of algae and their specific mechanisms involved in wastewater treatment and energy recovery systems leading to important industrial precursors. The review is highly beneficial for scientists, wastewater treatment plant operators, freshwater managers, and industrial communities to support the sustainable development of natural resources.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| | - Geeta Bhandari
- Department of Biosciences, Swami Rama Himalayan University, Dehradun, 248016, Uttarakhand, India
| | - Ronald F Turco
- Department of Agronomy, Purdue University, West Lafayette, IN, 47906, USA
| | - Zahra Aminikhoei
- Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute (IFSRI), Offshore Fisheries Research Center, Chabahar, Iran
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
13
|
Keshari N, Zhao Y, Das SK, Zhu T, Lu X. Cyanobacterial Community Structure and Isolates From Representative Hot Springs of Yunnan Province, China Using an Integrative Approach. Front Microbiol 2022; 13:872598. [PMID: 35547135 PMCID: PMC9083006 DOI: 10.3389/fmicb.2022.872598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 11/15/2022] Open
Abstract
Cyanobacteria from the representative hot springs of Yunnan Province, China are explored for their diversity and community composition following an integrative approach of cultivation-independent and -dependent studies and further isolation of potential taxa for future biotechnological perspective. 16S rRNA amplicon sequencing of microbial mats in these hot springs with temperature ranging from 38 to 90°C revealed Cyanobacteria and Proteobacteria constituting a bounteous portion of the bacterial community. The combined approach of 16S rRNA amplicon sequencing and phenotypic analysis revealed the diversity of cyanobacteria (a total of 45 genera). Out of these, a total of 19 cyanobacterial taxa belonging to 6 genera and 10 species were isolated as individuals with the possibility of biotechnological utilization. These isolates were subjected to a thorough morphological study and molecular characterization using 16S rRNA gene sequencing for identification and understanding their phylogeny. The identity and phenotypic and genotypic characteristics of 7 cyanobacterial isolates are not identical to any known cyanobacterial species, generating scope for future taxonomic novelties. Preliminary experiments based on high-temperature (50°C) cultivation showed that most of the isolates were thermotolerant and suggested for their high biotechnological usage potential.
Collapse
Affiliation(s)
- Nitin Keshari
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Energy Institute, Qingdao, China.,Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Yang Zhao
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Energy Institute, Qingdao, China.,Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Sudipta Kumar Das
- Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar, India
| | - Tao Zhu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Energy Institute, Qingdao, China.,Qingdao New Energy Shandong Laboratory, Qingdao, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xuefeng Lu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Energy Institute, Qingdao, China.,Qingdao New Energy Shandong Laboratory, Qingdao, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
14
|
Sharma P, Gujjala LKS, Varjani S, Kumar S. Emerging microalgae-based technologies in biorefinery and risk assessment issues: Bioeconomy for sustainable development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152417. [PMID: 34923013 DOI: 10.1016/j.scitotenv.2021.152417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Industrial wastewater treatment is of paramount importance considering the safety of the aquatic ecosystem and its associated health risk to humankind inhabiting near the water bodies. Microalgae-based technologies for remediation of environmental pollutants present avenues for bioenergy applications and production of value-added biochemicals having pharmaceutical, nutraceutical, antioxidants, carbohydrate, phenolics, long-chain multi-faceted fatty acids, enzymes, and proteins which are considered healthy supplements for human health. Such a wide range of products put up a good case for the biorefinery concept. Microalgae play a pivotal role in degrading complex pollutants, such as organic and inorganic contaminants thereby efficiently removing them from the environment. In addition, microalgal species, such as Botryococcus braunii, Tetraselmis suecica, Phaeodactylum tricornutum, Neochloris oleoabundans, Chlorella vulgaris, Arthrospira, Chlorella, and Tetraselmis sp., etc., are also reported for generation of value-added products. This review presents a holistic view of microalgae based biorefinery starting from cultivation and harvesting of microalgae, the potential for remediation of environmental pollutants, bioenergy application, and production of value-added biomolecules. Further, it summarizes the current understanding of microalgae-based technologies and discusses the risks involved, potential for bioeconomy, and outlines future research directions.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | | | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India.
| |
Collapse
|
15
|
Saket P, Kashyap M, Bala K, Joshi A. Microalgae and bio-polymeric adsorbents: an integrative approach giving new directions to wastewater treatment. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:536-556. [PMID: 34340616 DOI: 10.1080/15226514.2021.1952925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This review analyses the account of biological (microalgae) and synthetic (bio-polymeric adsorbents) elements to compass the treatment efficiencies of various water pollutants and mechanisms behind them. While considering pollutant removal, both techniques have their own merits and demerits. Microalgal-based methods have been dominantly used as a biological method for pollutant removal. The main limitations of microalgal methods are capacity, scale, dependence on variables of environment and duration of the process. Biopolymers on the other hand are naturally produced, abundant in nature, environmentally safe and biocompatible with cells and many times biodegradable. Algal immobilization in biopolymers has promoted the reuse of cells for further treatment and protected cells from toxic environment monitoring and controlling the external factors like pH, temperature and salinity can promote the removal process while working with the mentioned technologies. In this review, a mechanistic view of both these techniques along with integrated approaches emphasizing on their loopholes and possibilities of improvement in these techniques is represented. In addition to these, the review also discusses the post-treatment effect on algal cells which are specifically dependent on pollutant type and their concentration. All these insights will aid in developing integrated solutions to improve removal efficiencies in an environmentally safe and cost-effective manner.Novelty statement The main objective of this review is to thoroughly understand the role of micro-algal cells and synthetic adsorbents individually as well as their integrative effect in the removal of pollutants from wastewater. Many reviews have been published containing information related to either removal mechanism by algae or synthetic adsorbents. While in this review we have discussed the agents, algae and synthetic adsorbents along with their limitations and explained how these limitations can be overcome with the integration of both the moieties together in process of immobilization. We have covered both the analytical and mechanistic parts of these technologies. Along with this, the post-treatment effects on algae have been discussed which can give us a critical understanding of algal response to pollutants and by-products obtained after treatment. This review contains three different sections, their importance and also explained how these technologies can be improved in the future aspects.
Collapse
Affiliation(s)
- Palak Saket
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore
| | - Mrinal Kashyap
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore
| | - Kiran Bala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore
| |
Collapse
|
16
|
Hamed SM, Hozzein WN, Selim S, Mohamed HS, AbdElgawad H. Dissipation of pyridaphenthion by cyanobacteria: Insights into cellular degradation, detoxification and metabolic regulation. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123787. [PMID: 33254796 DOI: 10.1016/j.jhazmat.2020.123787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 06/12/2023]
Abstract
Excessive use of organophosphorus pesticides such as pyridaphenthion (PY) to constrain insects induced crop loss, results in soil and water sources contamination. Cyanobacteria are sensitive biological indicators and promising tools for bioremediation of soil and water pollutants. To understand PY toxicity, detoxification and degradation in cyanobacteria, we performed a comparative study in the two diazotrophic cyanobacteria; Anabaena laxa and Nostoc muscorum. They were exposed to mild (5 mg/L) and high (10 mg/L) concentrations of PY for 7 days. Compared to A. laxa, N. muscorum efficiently showed high PY accumulation and degradation to a safe environmentally product; 6-hydroxy-2-phenylpyridazin-3(2 H)-one. PY inhibited cell growth and reduced Chl a content and photosynthesis related enzymes (PEPC and RuBisCo) activities in both species, but to less extend in N. muscorum. It also induced oxidative damage, particularly in A. laxa, as indicated by high H2O2, lipid peroxidation and protein oxidation levels and increased NADPH oxidase enzyme activity. N. muscorum invested more in antioxidants induction, i.e., induced ascorbate and glutathione cycle, however, these antioxidants increments in A. laxa were less pronounced. Overall, this study provides more in-deep insights into the PY toxicity and the role of N. muscorum as a promising PY remediator.
Collapse
Affiliation(s)
- Seham M Hamed
- Soil Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, P.O. 175, El‒Orman, Egypt.
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Samy Selim
- Microbiology and Botany Department, Faculty of Science, Suez Canal University, Ismailia, P.O. Box 41522, Egypt
| | - Hussein S Mohamed
- Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni, Suef City, Egypt
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
17
|
Correlating the influence of biochemical parameters in environment with pesticide tolerance of non-target algae. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00568-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Liu R, Deng Y, Zhang W, Zhang L, Wang Z, Li B, Diao J, Zhou Z. Enantioselective mechanism of toxic effects of triticonazole against Chlorella pyrenoidosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109691. [PMID: 31563746 DOI: 10.1016/j.ecoenv.2019.109691] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
The rational use and the environmental safety of chiral pesticides have attracted significant research interest. Here, enantioselective toxic effects and the selective toxic mechanism of triticonazole (TRZ) against the aquatic microalgae Chlorella pyrenoidosa were studied. The 96h-EC50 values of rac-, (R)-(-)-, and (S)-(+)-TRZ were 1.939, 0.853, and 22.002 mg/L, respectively. At a concentration of 1 mg/L, the contents of photosynthetic pigments of C. pyrenoidosa exposed to (R)-(-)-TRZ were lower than if exposed to S-(+)-form and racemate. Transmission electron microscopic images showed that the R-(-)-form compromised the integrity of cells and disrupted the chloroplast structure. R-(-)-TRZ stimulated vast reactive oxygen species (ROS) and significantly increased superoxide dismutase (SOD) and catalase (CAT) activities, as well as malondialdehyde (MDA) content. For lipid accumulation experiments, nicotinamide adenine dinucleotide (NADH) and triacylglycerol (TAG) accumulations in algal cells treated with R-(-)-TRZ were 171.50% and 280.76%, respectively, compared with the control group. This far exceeded levels of algal cells treated with S-(+)- and rac-TRZ. Based on these data, R-(-)-TRZ was concluded to selectively affect the photosynthetic system, antioxidant system, and lipid synthesis of algal cells, thus causing enantioselective toxic effects of TRZ against C. pyrenoidosa, which indicating that the use of racemate may cause unpredictable environmental harm. Therefore, to reduce the hidden dangers of chiral pesticides for the ecological environment, the environmental risk of TRZ should be evaluated at the stereoselective level.
Collapse
Affiliation(s)
- Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Yue Deng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Wenjun Zhang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Luyao Zhang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Bingyan Li
- College of Agronomy, Shanxi Agricultural University, Mingxian South Road 1, Shanxi, 030800, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China.
| |
Collapse
|
19
|
Kumar SS, Ghosh P, Malyan SK, Sharma J, Kumar V. A comprehensive review on enzymatic degradation of the organophosphate pesticide malathion in the environment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:288-329. [PMID: 31566482 DOI: 10.1080/10590501.2019.1654809] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A comprehensive review of available bioremediation technologies for the pesticide malathion is presented. This review article describes the usage and consequences of malathion in the environment, along with a critical discussion on modes of metabolism of malathion as a sole source of carbon, phosphorus, and sulfur for bacteria, and fungi along with the biochemical and molecular aspects involved in its biodegradation. Additionally, the recent approaches of genetic engineering are discussed for the manipulation of important enzymes and microorganisms for enhanced malathion degradation along with the challenges that lie ahead.
Collapse
Affiliation(s)
- Smita S Kumar
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Pooja Ghosh
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Sandeep K Malyan
- Institute of Soil, Water, and Environmental Sciences, Agricultural Research Organization (ARO), Volcani Research Centre, Bet Dagan, Israel
| | - Jyoti Sharma
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Vivek Kumar
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
20
|
Samoylova YV, Sorokina KN, Piligaev AV, Parmon VN. Application of Bacterial Thermostable Lipolytic Enzymes in the Modern Biotechnological Processes: A Review. CATALYSIS IN INDUSTRY 2019. [DOI: 10.1134/s2070050419020107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Nanda M, Kumar V, Fatima N, Pruthi V, Verma M, Chauhan PK, Vlaskin MS, Grigorenko AV. Detoxification mechanism of organophosphorus pesticide via carboxylestrase pathway that triggers de novo TAG biosynthesis in oleaginous microalgae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 209:49-55. [PMID: 30711855 DOI: 10.1016/j.aquatox.2019.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Organophosphorus compounds exhibit a wide range of toxicity to mammals. In this study the effect of malathion on the growth and biochemical parameters of microalgae was evaluated. Three microalgae (Micractinium pusillum UUIND2, Chlorella singulari UUIND5 and Chlorella sorokiniana UUIND6) were used in this study. Among the three algal strains tested, Chlorella sorokiniana UUIND6 was able to tolerate 100 ppm of malathion. The photosynthetic pigments, the protein, carbohydrate and lipid contents of microalgal cells were also analyzed. About 90% degradation was recorded in 25 ppm, 50 ppm and 70% was recorded in 100 ppm of malathion by Chlorella sorokiniana. A mechanism of degradation of malathion by Chlorella sorokiniana is proposed in this study. Activity of carboxylesterase was increased in algal cells cultivated in malathion containing medium which confirmed that malathion degraded into phosphate. Increased amount of Malondialdehye (MDA) indicate the development of free radicals under the stress of malathion which substantialy increase de novo TAG biosynthesis, while increased level of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) suggested their association in scavenging of free radical.
Collapse
Affiliation(s)
- Manisha Nanda
- Department of Biotechnology, Dolphin (PG) Institute of Biomedical and Natural Sciences, Dehradun-248007, India
| | - Vinod Kumar
- Department of Chemistry, UCALS, Uttaranchal University, Dehradun-248007, India.
| | - Nighat Fatima
- Department of Chemistry, UCALS, Uttaranchal University, Dehradun-248007, India
| | - Vikas Pruthi
- Molecular Microbiology Laboratory (Department of Biotechnology), Indian Institute of Technology Roorkee, 247667, Uttarakhand, India; Biofuel Laborartory, Centre for Transportation Systems (CTRANS), Indian Institute of Technology Roorkee, 247667, Uttarakhand, India
| | - Monu Verma
- Deptt. of Chemistry, Amity School of Applied Sciences (ASAS), Amity University, Gurgaon, Haryana-122413, India
| | - P K Chauhan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan-173229, HP, India
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures, 13/2 Izhorskaya St, Moscow, 125412, Russia
| | - Anatoly V Grigorenko
- Joint Institute for High Temperatures, 13/2 Izhorskaya St, Moscow, 125412, Russia
| |
Collapse
|
22
|
Carbofuran, Malathion and 2,4-D Degradation by Bacterial Activity. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.3.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Singh DP, Prabha R, Gupta VK, Verma MK. Metatranscriptome Analysis Deciphers Multifunctional Genes and Enzymes Linked With the Degradation of Aromatic Compounds and Pesticides in the Wheat Rhizosphere. Front Microbiol 2018; 9:1331. [PMID: 30034370 PMCID: PMC6043799 DOI: 10.3389/fmicb.2018.01331] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/31/2018] [Indexed: 11/19/2022] Open
Abstract
Agricultural soils are becoming contaminated with synthetic chemicals like polyaromatic compounds, petroleum hydrocarbons, polychlorinated biphenyls (PCBs), phenols, herbicides, insecticides and fungicides due to excessive dependency of crop production systems on the chemical inputs. Microbial degradation of organic pollutants in the agricultural soils is a continuous process due to the metabolic multifunctionalities and enzymatic capabilities of the soil associated communities. The plant rhizosphere with its complex microbial inhabitants and their multiple functions, is amongst the most live and dynamic component of agricultural soils. We analyzed the metatranscriptome data of 20 wheat rhizosphere samples to decipher the taxonomic microbial communities and their multifunctionalities linked with the degradation of organic soil contaminants. The analysis revealed a total of 21 different metabolic pathways for the degradation of aromatic compounds and 06 for the xenobiotics degradation. Taxonomic annotation of wheat rhizosphere revealed bacteria, especially the Proteobacteria, actinobacteria, firmicutes, bacteroidetes, and cyanobacteria, which are shown to be linked with the degradation of aromatic compounds as the dominant communities. Abundance of the transcripts related to the degradation of aromatic amin compounds, carbazoles, benzoates, naphthalene, ketoadipate pathway, phenols, biphenyls and xenobiotics indicated abundant degradation capabilities in the soils. The results highlighted a potentially dominant role of crop rhizosphere associated microbial communities in the remediation of contaminant aromatic compounds.
Collapse
Affiliation(s)
- Dhananjaya P. Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Ratna Prabha
- Department of Bio-Medical Engineering and Bio-Informatics, Chhattisgarh Swami Vivekanand Technical University, Bhilai, India
| | - Vijai K. Gupta
- ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Mukesh K. Verma
- Department of Bio-Medical Engineering and Bio-Informatics, Chhattisgarh Swami Vivekanand Technical University, Bhilai, India
| |
Collapse
|
24
|
Preparation of Stable Cross-Linked Enzyme Aggregates (CLEAs) of a Ureibacillus thermosphaericus Esterase for Application in Malathion Removal from Wastewater. Catalysts 2018. [DOI: 10.3390/catal8040154] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, the active and stable cross-linked enzyme aggregates (CLEAs) of the thermostable esterase estUT1 of the bacterium Ureibacillus thermosphaericus were prepared for application in malathion removal from municipal wastewater. Co-expression of esterase with an E. coli chaperone team (KJE, ClpB, and ELS) increased the activity of the soluble enzyme fraction up to 200.7 ± 15.5 U mg−1. Response surface methodology (RSM) was used to optimize the preparation of the CLEA-estUT1 biocatalyst to maximize its activity and minimize enzyme loss. CLEA-estUT1 with the highest activity of 29.4 ± 0.5 U mg−1 (90.6 ± 2.7% of the recovered activity) was prepared with 65.1% (w/v) ammonium sulfate, 120.6 mM glutaraldehyde, and 0.2 mM bovine serum albumin at 5.1 h of cross-linking. The biocatalyst has maximal activity at 80 °С and pH 8.0. Analysis of the properties of CLEA-estUT1 and free enzyme at 50–80 °C and pH 5.0–10.0 showed higher stability of the biocatalyst. CLEA-estUT1 showed marked tolerance against a number of chemicals and high operational stability and activity in the reaction of malathion hydrolysis in wastewater (up to 99.5 ± 1.4%). After 25 cycles of malathion hydrolysis at 37 °С, it retained 55.2 ± 1.1% of the initial activity. The high stability and reusability of CLEA-estUT1 make it applicable for the degradation of insecticides.
Collapse
|
25
|
Tang J, Jiang D, Luo Y, Liang Y, Li L, Shah MMR, Daroch M. Potential new genera of cyanobacterial strains isolated from thermal springs of western Sichuan, China. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Tiwari B, Singh S, Chakraborty S, Verma E, Mishra AK. Sequential role of biosorption and biodegradation in rapid removal degradation and utilization of methyl parathion as a phosphate source by a new cyanobacterial isolate Scytonema sp. BHUS-5. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:884-893. [PMID: 28318304 DOI: 10.1080/15226514.2017.1303807] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A new isolate of genus Scytonema distinct from its closest relative cyanobacterium, Scytonema hofmanni was found efficient in the removal and degradation of organophosphorus (OP) pesticide, methyl parathion (MP). The cyanobacterial isolate was also capable of utilizing the phosphorus present in the MP following its degradation, which was evident from the increase in growth (chlorophyll content), biomass, protein content, and total phosphorus in comparison to cyanobacterium grown in phosphate-deficient cultures. The rapid removal of MP by the cyanobacterium during initial 6 hours of incubation was defined by the pseudo-second-order biosorption kinetics model, which indicated the involvement of chemosorption in initial removal of pesticide. Further, degradation of MP was also confirmed by the appearance of p-nitrophenol in the medium after 24 hours of incubation. Thus, the cyanobacterial isolate of Scytonema sp. BHUS-5 seems to be a potential bioremediation agent for the removal of OP pesticide, MP from the habitat.
Collapse
Affiliation(s)
- Balkrishna Tiwari
- a Laboratory of Microbial Genetics, Department of Botany , Banaras Hindu University , Varanasi , India
| | - Savita Singh
- a Laboratory of Microbial Genetics, Department of Botany , Banaras Hindu University , Varanasi , India
| | - Sindhunath Chakraborty
- a Laboratory of Microbial Genetics, Department of Botany , Banaras Hindu University , Varanasi , India
| | - Ekta Verma
- a Laboratory of Microbial Genetics, Department of Botany , Banaras Hindu University , Varanasi , India
| | - Arun Kumar Mishra
- a Laboratory of Microbial Genetics, Department of Botany , Banaras Hindu University , Varanasi , India
| |
Collapse
|
27
|
Differential physiological, oxidative and antioxidative responses of cyanobacterium Anabaena sphaerica to attenuate malathion pesticide toxicity. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Tiwari B, Chakraborty S, Srivastava AK, Mishra AK. Biodegradation and rapid removal of methyl parathion by the paddy field cyanobacterium Fischerella sp. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.05.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Nahhal YE. Biochemical Changes Associated with Long Term Exposure to Pesticide among Farmers in the Gaza Strip. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/odem.2016.43009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Lau NS, Matsui M, Abdullah AAA. Cyanobacteria: Photoautotrophic Microbial Factories for the Sustainable Synthesis of Industrial Products. BIOMED RESEARCH INTERNATIONAL 2015; 2015:754934. [PMID: 26199945 PMCID: PMC4496466 DOI: 10.1155/2015/754934] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/16/2015] [Indexed: 11/17/2022]
Abstract
Cyanobacteria are widely distributed Gram-negative bacteria with a long evolutionary history and the only prokaryotes that perform plant-like oxygenic photosynthesis. Cyanobacteria possess several advantages as hosts for biotechnological applications, including simple growth requirements, ease of genetic manipulation, and attractive platforms for carbon neutral production process. The use of photosynthetic cyanobacteria to directly convert carbon dioxide to biofuels is an emerging area of interest. Equipped with the ability to degrade environmental pollutants and remove heavy metals, cyanobacteria are promising tools for bioremediation and wastewater treatment. Cyanobacteria are characterized by the ability to produce a spectrum of bioactive compounds with antibacterial, antifungal, antiviral, and antialgal properties that are of pharmaceutical and agricultural significance. Several strains of cyanobacteria are also sources of high-value chemicals, for example, pigments, vitamins, and enzymes. Recent advances in biotechnological approaches have facilitated researches directed towards maximizing the production of desired products in cyanobacteria and realizing the potential of these bacteria for various industrial applications. In this review, the potential of cyanobacteria as sources of energy, bioactive compounds, high-value chemicals, and tools for aquatic bioremediation and recent progress in engineering cyanobacteria for these bioindustrial applications are discussed.
Collapse
Affiliation(s)
- Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
| | - Minami Matsui
- Synthetic Genomics Research Team, RIKEN Centre for Sustainable Resource Science, Biomass Engineering Research Division, Yokohama, Kanagawa 230-0045, Japan
| | - Amirul Al-Ashraf Abdullah
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|