1
|
Sharma G, Kumar N, Sharma CS, Mishra SS. In silico guided screening of active components of C. lanceolata as 3-chymotrypsin-like protease inhibitors of novel coronavirus. 3 Biotech 2023; 13:324. [PMID: 37663751 PMCID: PMC10471561 DOI: 10.1007/s13205-023-03745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Despite the intense worldwide efforts towards the identification of potential anti-CoV therapeutics, no antiviral drugs have yet been discovered. Numerous vaccines are now approved for use, but they all serve as preventative measures. To effectively treat viral infections, it is crucial to find new antiviral drugs that are derived from natural sources. Various compounds with potential activity against 3 chymotrypsin-like protease (3CLpro) were reported and some are validated by bioassay studies. Therefore, we performed the computational screening of phytoconstituents of Codonopsis lanceolata to search for potential antiviral hit candidates. The curated compounds of the plant C. lanceolata were collected and downloaded from the literature. The binding affinity of the curated datasets was predicted for the target 3CLpro. Stigmasterol exhibits the highest docking score for the 3CLpro target. In addition, molecular dynamics (MD) simulations were conducted for the validation of docking results using root mean square deviation and root mean square fluctuation plots. The MD results indicated that the docked complex was stable and retained hydrogen bonding and non-bonding interactions. Furthermore, the calculation of pharmacokinetic parameters and Lipinski's rule of five suggest that C. lanceolata has the potential for drug-likeness. In order to develop new medicines for this debilitating disease, we will focus on the primary virus-based and host-based targets that can direct medicinal chemists to identify novel treatments to produce new drugs for it. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03745-2.
Collapse
Affiliation(s)
- Ganesh Sharma
- Department of Pharmaceutical Chemistry, Bhupal Nobles’ College of Pharmacy, Bhupal Nobles’ University, Udaipur, 313002 India
| | - Neeraj Kumar
- Department of Pharmaceutical Chemistry, Bhupal Nobles’ College of Pharmacy, Bhupal Nobles’ University, Udaipur, 313002 India
| | - Chandra Shekhar Sharma
- Department of Pharmaceutical Chemistry, Bhupal Nobles’ College of Pharmacy, Bhupal Nobles’ University, Udaipur, 313002 India
| | - Shashank Shekher Mishra
- Faculty of Pharmacy, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun, 248009 India
| |
Collapse
|
2
|
Zhang J, Zhang R, Li W, Ma XC, Qiu F, Sun CP. IκB kinase β (IKKβ): Structure, transduction mechanism, biological function, and discovery of its inhibitors. Int J Biol Sci 2023; 19:4181-4203. [PMID: 37705738 PMCID: PMC10496512 DOI: 10.7150/ijbs.85158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023] Open
Abstract
The effective approach to discover innovative drugs will ask natural products for answers because of their complex and changeable structures and multiple biological activities. Inhibitory kappa B kinase beta (IKKβ), known as IKK2, is a key regulatory kinase responsible for the activation of NF-κB through its phosphorylation at Ser177 and Ser181 to promote the phosphorylation of inhibitors of kappa B (IκBs), triggering their ubiquitination and degradation to active the nuclear factor kappa-B (NF-κB) cascade. Chemical inhibition of IKKβ or its genetic knockout has become an effective method to block NF-κB-mediated proliferation and migration of tumor cells and inflammatory response. In this review, we summarized the structural feature and transduction mechanism of IKKβ and the discovery of inhibitors from natural resources (e.g. sesquiterpenoids, diterpenoids, triterpenoids, flavonoids, and alkaloids) and chemical synthesis (e.g. pyrimidines, pyridines, pyrazines, quinoxalines, thiophenes, and thiazolidines). In addition, the biosynthetic pathway of novel natural IKKβ inhibitors and their biological potentials were discussed. This review will provide inspiration for the structural modification of IKKβ inhibitors based on the skeleton of natural products or chemical synthesis and further phytochemistry investigations.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518061, China
| | - Rui Zhang
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Li
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Xiao-Chi Ma
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Feng Qiu
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Cheng-Peng Sun
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
3
|
Choi SH, Kim SY, Kim KM, Mony TJ, Bae HJ, Kim MS, Lee CH, Choi SE, Lee SH, Park SJ. Fermented Sprouts of Codonopsis lanceolata Suppress LPS-Induced Inflammatory Responses by Inhibiting NF-κB Signaling Pathway in RAW 264.7 Macrophages and CD1 Mice. Pharmaceutics 2023; 15:1793. [PMID: 37513980 PMCID: PMC10384864 DOI: 10.3390/pharmaceutics15071793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The interest in bioconversion through fermentation of sprouts produced in smart farms is increasing due to their potential health benefits. Codonopsis lanceolata (CL) is reported to alleviate inflammatory conditions, but much research is still needed to determine which types and parts of CL are most effective. This study investigated the anti-inflammatory effects of a fermented extract of CL sprouts' aerial part (F-CSA) against LPS-stimulated RAW 264.7 macrophages and mice. In the screening test, F-CSA showed the most substantial anti-inflammatory effect among several samples, containing the highest total flavonoids, tannins, and polyphenols. UPLC-ESI-Q/TOF-MS and HPLC analysis revealed that F-CSA had the highest amount of luteolin among all the CL samples analyzed. F-CSA reduced the release of inflammatory cytokines and mediators such as NO and PGE2 by inhibiting the expression levels of iNOS and COX-2 in LPS-stimulated macrophages. Further, we found that the anti-inflammatory effects of F-CSA were mediated by inhibiting the JNK/NF-κB signaling pathway. Moreover, F-CSA improved survival rates and reduced plasma levels of NO and IL-6 in CD1 mice stimulated with LPS. These findings suggest that F-CSA, which contains luteolin, can alleviate inflammation in LPS-induced RAW 264.7 cells and a CD1 mouse model by inhibiting the JNK/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Seung-Hyuk Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - So-Yeon Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyeong-Min Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tamanna Jahan Mony
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Min Seok Kim
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chan Ho Lee
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sun-Eun Choi
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang Ho Lee
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Se Jin Park
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
4
|
Oral hydrogel microspheres were used for highly specific delivery of Steamed Codonopsis lanceolata to exert the protective effects on cisplatin-induced acute kidney injury in mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
5
|
Oesch F, Oesch-Bartlomowicz B, Efferth T. Toxicity as prime selection criterion among SARS-active herbal medications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153476. [PMID: 33593628 PMCID: PMC7840405 DOI: 10.1016/j.phymed.2021.153476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 05/06/2023]
Abstract
We present here a new selection criterion for prioritizing research on efficacious drugs for the fight against COVID-19: the relative toxicity versus safety of herbal medications, which were effective against SARS in the 2002/2003 epidemic. We rank these medicines according to their toxicity versus safety as basis for preferential rapid research on their potential in the treatment of COVID-19. The data demonstrate that from toxicological information nothing speaks against immediate investigation on, followed by rapid implementation of Lonicera japonica, Morus alba, Forsythia suspensa, and Codonopsis spec. for treatment of COVID-19 patients. Glycyrrhiza spec. and Panax ginseng are ranked in second priority and ephedrine-free Herba Ephedrae extract in third priority (followed by several drugs in lower preferences). Rapid research on their efficacy in the therapy - as well as safety under the specific circumstances of COVID-19 - followed by equally rapid implementation will provide substantial advantages to Public Health including immediate availability, enlargement of medicinal possibilities, in cases where other means are not successful (non-responders), not tolerated (sensitive individuals) or just not available (as is presently the case) and thus minimize sufferings and save lives. Moreover, their moderate costs and convenient oral application are especially advantageous for underprivileged populations in developing countries.
Collapse
Affiliation(s)
- Franz Oesch
- Institute of Toxicology, Johannes Gutenberg University, 55131 Mainz, Germany.
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128, Mainz, Germany
| |
Collapse
|
6
|
Liu F, Geng C, Qu YK, Cheng BX, Zhang Y, Wang AM, Zhang JH, Liu B, Tian HY, Yang WP, Yu YB, Chen ZB. The feeding of dietary Codonopsis pilosula polysaccharide enhances the immune responses, the expression of immune-related genes and the growth performance of red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2020; 103:321-331. [PMID: 32446966 DOI: 10.1016/j.fsi.2020.05.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Polysaccharides have many functions in aquatic animals and are widely used as immunopotentiators. However, despite the emergence of serious diseases, few studies have explored the effects of Codonopsis pilosula polysaccharide (CPP) on crustaceans. We studied the effects of CPP on the growth performance, nonspecific immunity, antioxidant activity and disease resistance of red swamp crayfish (Procambarus clarkii). Healthy crayfish (5.80 ± 0.1 g) were fed diets supplemented with 0% (control), 0.05%, 0.1%, 0.15%, 0.20%, and 0.30% CPP for 8 weeks. At the end of the 8-week feeding trial, the optimal final body weight (FBW), weight gain (WG), specific growth rate (SGR), and feed conversion ratio (FCR) were observed in the crayfish fed the diets with 0.15% and 0.20% CPP, followed by those fed the diet with 0.30% CPP and then those fed the diet with 0.10% CPP, whereas the values of these parameters were obtained with the control crayfish (P < 0.05). The crayfish fed the diets with 0.15% and 0.20% CPP exhibited a significantly higher total hemocyte count (THC) and significantly increased phenoloxidase (PO), lysozyme (LZM), hemocyte (Hc), acid phosphatase (ACP) and alkaline phosphatase (AKP) compared with those belonging to the other groups (P < 0.05). The crayfish fed the diets with 0.15% and 0.2% CPP exhibited significantly higher total superoxide dismutase (T-SOD) and glutathione peroxidase (GPx) activities, a significantly increased total antioxidant capacity (T-AOC) and a significantly lower malondialdehyde (MDA) content compared with the other groups (P < 0.05), which indicated that antioxidant capacity was significantly induced by the CPP-supplemented diets. Significantly upregulated expression of immune-related genes (anti-lipopolysaccharide factors (alf), peroxiredoxin (prx5), cathepsin B (ctsb), mitochondrial manganese superoxide dismutase (mtMnsod), cyclophilin A (cypa), glutathione peroxidase (gpx), Toll-like receptor 3 (tlr3), and heat shock protein 70 (hsp70)) was detected in the crayfish fed the diets supplemented with 0.15% and 0.20% CPP diet compared with the levels observed in the control crayfish. These results showed that dietary CPP supplementation greatly improved the growth, immunity and antioxidant capacities of crayfish, and according to the observed results, 0.15%-0.2% is the recommended optimal level of CPP dietary supplementation for crayfish.
Collapse
Affiliation(s)
- Fei Liu
- Department of Marine Science and Technology, School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, PR China; Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, PR China.
| | - Chao Geng
- Department of Marine Science and Technology, School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Yun-Kun Qu
- Department of Marine Science and Technology, School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Bo-Xing Cheng
- School of Biological Sciences, Guizhou Education University, Guiyang, China
| | - Yao Zhang
- Department of Marine Science and Technology, School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Ai-Ming Wang
- Department of Marine Science and Technology, School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, PR China.
| | - Jia-Hong Zhang
- Agricultural Science Institute of Lixiahe District, Jiangsu Province, Yangzhou, 225007, PR China
| | - Bo Liu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China
| | - Hong-Yan Tian
- Department of Marine Science and Technology, School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Wen-Ping Yang
- Department of Marine Science and Technology, School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Ye-Bing Yu
- Department of Marine Science and Technology, School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Zhong-Bing Chen
- Jiangsu Zhengyuan Chuanghui Agricultural Technology Development Co., Ltd, Jianhu, 224763, PR China
| |
Collapse
|
7
|
Ahn JH, Jang DS, Choi JH. Lancemaside A Isolated from the Root of Codonopsis lanceolata Inhibits Ovarian Cancer Cell Invasion via the Reactive Oxygen Species (ROS)-Mediated p38 Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1021-1034. [PMID: 32471314 DOI: 10.1142/s0192415x20500494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Codonopsis lanceolata roots have been widely used in Korean cuisine and traditional medicine. This study aimed to investigate the antimetastatic effects of lancemaside A, a major triterpenoid saponin, isolated from the roots of C. lanceolata, in human ovarian cancer cells. Lancemaside A significantly suppressed the migration and invasion and the expression of matrix metalloproteinases (MMPs)-2 and -9 in ovarian cancer A2780 and SKOV3 cells. Treatment with lancemaside A generated reactive oxygen species (ROS) in ovarian cancer cells. However, treatment with anti-oxidant N-acetyl-L-cysteine (NAC) significantly negated the anti-invasive activity of lancemaside A. Additionally, lancemaside A activated p38 MAP kinase, which is mediated by ROS generation. This is the first study, to our knowledge, to reveal that lancemaside A isolated from the roots of C. lanceolata exerts antimetastatic activity through inhibition of MMP expression and cancer cell invasion via activation of the ROS-mediated p38 pathway.
Collapse
Affiliation(s)
- Ji-Hye Ahn
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea.,Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Pinn Hall 1232, Charlottesville, VA, 22908, USA.,Department of Oriental Pharmacy, College of Pharmacy, Woosuk University, Jeonbuk 55338, South Korea
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, South Korea
| | - Jung-Hye Choi
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea.,Department of Oriental Pharmacy, College of Pharmacy, Woosuk University, Jeonbuk 55338, South Korea
| |
Collapse
|
8
|
Kim E, Han SY, Hwang K, Kim D, Kim EM, Hossain MA, Kim JH, Cho JY. Antioxidant and Cytoprotective Effects of (-)-Epigallocatechin-3-(3″- O-methyl) Gallate. Int J Mol Sci 2019; 20:ijms20163993. [PMID: 31426336 PMCID: PMC6719974 DOI: 10.3390/ijms20163993] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 01/23/2023] Open
Abstract
Reactive oxygen species (ROS) are generated from diverse cellular processes or external sources such as chemicals, pollutants, or ultraviolet (UV) irradiation. Accumulation of radicals causes cell damage that can result in degenerative diseases. Antioxidants remove radicals by eliminating unpaired electrons from other molecules. In skin health, antioxidants are essential to protect cells from the environment and prevent skin aging. (-)-Epigallocatechin-3-(3″-O-methyl) gallate (3″Me-EGCG) has been found in limited oolong teas or green teas with distinctive methylated form, but its precise activities have not been fully elucidated. In this study, we examined the antioxidant roles of 3″Me-EGCG in keratinocytes (HaCaT cells). 3″Me-EGCG showed scavenging effects in cell and cell-free systems. Under H2O2 exposure, 3″Me-EGCG recovered cell viability and increased the expression of heme oxygenase 1 (HO-1). Under ultraviolet B (UVB) and sodium nitroprusside (SNP) exposure, 3″Me-EGCG protected keratinocytes and regulated the survival protein AKT1. By regulating the AKT1/NF-κB pathway, 3″Me-EGCG augmented cell survival and proliferation in HaCaT cells. These results indicate that 3″Me-EGCG exhibits antioxidant properties, resulting in cytoprotection against various external stimuli. In conclusion, our findings suggest that 3″Me-EGCG can be used as an ingredient of cosmetic products or health supplements.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Sang Yun Han
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
- Daewoong Pharmaceutical Co., Yongin 17028, Korea
| | - Kyeonghwan Hwang
- Basic Research & Innovation vision, R&D Center, AmorePacific Corporation, Yongin 17074, Korea
| | - Donghyun Kim
- Basic Research & Innovation vision, R&D Center, AmorePacific Corporation, Yongin 17074, Korea
| | - Eun-Mi Kim
- Basic Research & Innovation vision, R&D Center, AmorePacific Corporation, Yongin 17074, Korea
| | | | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
9
|
Shin YK, Han AY, Hsieh YS, Kwon S, Kim J, Lee KW, Seol GH. Lancemaside A from Codonopsis lanceolata prevents hypertension by inhibiting NADPH oxidase 2-mediated MAPK signalling and improving NO bioavailability in rats. ACTA ACUST UNITED AC 2019; 71:1458-1468. [PMID: 31350796 DOI: 10.1111/jphp.13140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/30/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES This study investigated whether lancemaside A (LMA) can prevent hypertension and assessed the mechanisms of action of LMA in rats. METHODS Hypertension was induced by chronic immobilization stress and nicotine administration. Hypertensive vehicle rats were treated with LMA (1, 20, or 40 mg/kg) or nifedipine (10 mg/kg) as a positive control daily for 3 weeks. KEY FINDINGS In hypertensive vehicle rats, LMA dose-dependently reduced systolic blood pressure. LMA doses of 20 and 40 mg/kg reduced the aortic expression of nicotinamide adenine dinucleotide phosphate oxidase (NOX)2 (both P < 0.01), and 40 mg/kg LMA reduced serum malondialdehyde (P < 0.01). Serum nitrite levels were significantly higher in LMA treated rats than in hypertensive vehicle rats, with LMA doses of 20 and 40 mg/kg reducing the expression of endothelial nitric oxide synthase in rat aortas (P < 0.001 and P < 0.01, respectively). LMA also reduced the aortic levels of nuclear factor kappa B and the activation of the three isoforms of mitogen-activated protein kinase (MAPK). CONCLUSIONS Lancemaside A prevents hypertension in rats by inhibiting the activation of MAPK signalling and the impairment in nitric oxide bioavailability due to NOX2-mediated oxidative stress. Thus, LMA may act as a preventive agent for hypertension.
Collapse
Affiliation(s)
- You Kyoung Shin
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| | - A Young Han
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| | - Yu Shan Hsieh
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| | - Soonho Kwon
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| | - Jinhye Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Lee YS, Kim H, Kim J, Seol GH, Lee KW. Lancemaside A, a major triterpene saponin of Codonopsis lanceolata enhances regulation of nitric oxide synthesis via eNOS activation. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:110. [PMID: 31126276 PMCID: PMC6534936 DOI: 10.1186/s12906-019-2516-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/30/2019] [Indexed: 02/08/2023]
Abstract
Background Many studies on the effect of saponin-rich Codonopsis lanceolata as a bioactive source for improving physical health have been performed. C. lanceolata contains triterpenoid saponins, including lancemasides. These saponins are known to be particularly involved in the regulation of blood pressure or hypertension. This study investigated whether lancemaside A (LA), a major triterpenoid saponin from C. lanceolata, regulates nitric oxide (NO) production via the activation of endothelial NO synthase (eNOS) in human umbilical vein endothelial cells. Methods Upon separation with petroleum ether, ethyl acetate, and n-butanol, LA was found to be abundant in the n-butanol-soluble portion. For further purification of LA, HPLC was performed to collect fraction, and LA was identified using analysis of LC/MSMS and 13C-NMR values. In in vitro, the effects of LA on NO release mechanism in HUVECs were investigated by Griess assay, quantitative real-time reverse-transcription PCR, and Western blotting. Results Our results showed that NO production was efficiently improved by treatment with LA in a dose-dependent manner. In addition, the LA treatment resulted in extensive recovery of the NO production suppressed by the eNOS inhibitor, L-NAME, compared with that in the control group. Additionally, the level of eNOS mRNA was increased by this treatment in a dose-dependent manner. These results suggested that LA is an inducer of NO synthesis via eNOS mRNA expression. Also, the study indicated that LA is involved in activating the PI3K/Akt/eNOS signaling pathway. Conclusion These results suggested that LA is an inducer of NO synthesis via eNOS mRNA expression. Also, the study indicated that LA is involved in activating the PI3K/Akt/eNOS signaling pathway. These findings suggest the value of using LA as a component of functional foods and natural pharmaceuticals. Electronic supplementary material The online version of this article (10.1186/s12906-019-2516-6) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Seo YS, Kim HS, Lee AY, Chun JM, Kim SB, Moon BC, Kwon BI. Codonopsis lanceolata attenuates allergic lung inflammation by inhibiting Th2 cell activation and augmenting mitochondrial ROS dismutase (SOD2) expression. Sci Rep 2019; 9:2312. [PMID: 30783201 PMCID: PMC6381190 DOI: 10.1038/s41598-019-38782-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/24/2018] [Indexed: 01/14/2023] Open
Abstract
Allergic asthma is a chronic inflammatory disease induced by the inhalation of allergens, which trigger the activation of T helper type 2 (Th2) cells that release Th2 cytokines. Recently, herbal medicines are being considered a major source of novel agents to treat various diseases. In the present study, we evaluated the anti-asthmatic effects of a Codonopsis lanceolata extract (CLE) and the mechanisms involved in its anti-inflammatory effects. Treatment with CLE reduced infiltration of inflammatory cells, especially eosinophils, and the production of mucus in lung tissues. Levels of Th2 cytokines, such as IL-4, IL-5, and IL-13, and chemokines were also decreased following treatment with CLE. Moreover, Th2 cell proportion in vivo and differentiation in vitro were reduced as evidenced by the decreased expression of GATA3+. Furthermore, the expression of superoxide dismutase (SOD)2, a mitochondrial ROS (mROS) scavenger, was increased, which was related to Th2 cell regulation. Interestingly, treatment with CLE increased the number of macrophages in the lungs and enhanced the immune-suppressive property of macrophages. Our findings indicate that CLE has potential as a novel therapeutic agent to inhibit Th2 cell differentiation by regulating mROS scavenging.
Collapse
Affiliation(s)
- Yun-Soo Seo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Hyo Seon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - A Yeong Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Jin Mi Chun
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Sung Bae Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Byeong Cheol Moon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Bo-In Kwon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea. .,Department of Pathology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do, 26339, Republic of Korea.
| |
Collapse
|
12
|
Kim BR, Cho YC, Cho S. Anti-inflammatory effects of a novel compound, MPQP, through the inhibition of IRAK1 signaling pathways in LPS-stimulated RAW 264.7 macrophages. BMB Rep 2018; 51:308-313. [PMID: 29804558 PMCID: PMC6033069 DOI: 10.5483/bmbrep.2018.51.6.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Indexed: 12/12/2022] Open
Abstract
Small-molecule inhibitors are widely used to treat a variety of inflammatory diseases. In this study, we found a novel anti-inflammatory compound, 1-[(2R,4S)-2-methyl-4-(phenylamino)-1,2,3,4-tetrahydroquinolin-1-yl]prop-2-en-1-one (MPQP). It showed strong anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. These effects were exerted through the inhibition of the production of NO and pro-inflammatory cytokines, such as interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α). Furthermore, MPQP decreased the expression levels of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2). Additionally, it mediated the inhibition of the phosphorylation of p38, c-Jun N-terminal kinase (JNK), the inhibitor of κBα (IκBα), and their upstream kinases, IκB kinase (IKK) α/β, mitogen-activated protein kinase kinase (MKK) 3/6, and MKK4. Furthermore, the expression of IL-1 receptor-associated kinase 1 (IRAK1) that regulates NF-κB, p38, and the JNK signaling pathways, was also increased by MPQP. These results indicate that MPQP regulates the IRAK1-mediated inflammatory signaling pathways by targeting IRAK1 or its upstream factors.
Collapse
Affiliation(s)
- Ba Reum Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
13
|
Kim E, Yoon JY, Lee J, Jeong D, Park JG, Hong YH, Kim JH, Aravinthan A, Kim JH, Cho JY. TANK-binding kinase 1 and Janus kinase 2 play important roles in the regulation of mitogen-activated protein kinase phosphatase-1 expression after toll-like receptor 4 activation. J Cell Physiol 2018; 233:8790-8801. [PMID: 29797567 DOI: 10.1002/jcp.26787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 04/30/2018] [Indexed: 12/13/2022]
Abstract
Inflammation is a response that protects the body from pathogens. Through several inflammatory signaling pathways mediated by various families of transcription factors, such as nuclear factor-κB (NF-κB), activator protein-1 (AP-1), interferon regulatory factors (IRFs), and signal transducers and activators of transcription (STATs), various inflammatory cytokines and chemokines are induced and inflammatory responses are boosted. Simultaneously, inhibitory systems are activated and provide negative feedback. A typical mechanism by which this process occurs is that inflammatory signaling molecules upregulate mitogen-activated protein kinase phosphatase-1 (MKP1) expression. Here, we investigated how kinases regulate MKP1 expression in lipopolysaccharide-triggered cascades. We found that p38 and c-Jun N-terminal kinase (JNK) inhibitors decreased MKP1 expression. Using specific inhibitors, gene knockouts, and gene knockdowns, we also found that tumor necrosis factor receptor-associated factor family member-associated nuclear factor κB activator (TANK)-binding kinase 1 (TBK1) and Janus kinase 2 (JAK2) are involved in the induction of MKP1 expression. By analyzing JAK2-induced activation of STATs, STAT3-specific inhibitors, promoter binding sites, and STAT3-/- cells, we found that STAT3 is directly linked to TBK1-mediated and JAK2-mediated induction of MKP1 expression. Our data suggest that MKP1 expression can be differentially regulated by p38, JNK, and the TBK1-JAK2-STAT3 pathway after activation of toll-like receptor 4 (TLR4). These data also imply crosstalk between the AP-1 pathway and the IRF3 and STAT3 pathways.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Ju Y Yoon
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea.,Central Research Institute, Dongkwang Pharmaceutical Company, Seoul, Korea
| | - Jongsung Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Deok Jeong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Jae G Park
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Yo H Hong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Ji H Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Adithan Aravinthan
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Jong-Hoon Kim
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Jae Y Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
14
|
Cytoprotective Effect of Epigallocatechin Gallate (EGCG)-5'-O-α-Glucopyranoside, a Novel EGCG Derivative. Int J Mol Sci 2018; 19:ijms19051466. [PMID: 29762498 PMCID: PMC5983637 DOI: 10.3390/ijms19051466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022] Open
Abstract
Epigallocatechin gallate (EGCG) is a well-studied polyphenol with antioxidant effects. Since EGCG has low solubility and stability, many researchers have modified EGCG residues to ameliorate these problems. A novel EGCG derivative, EGCG-5′-O-α-glucopyranoside (EGCG-5′Glu), was synthesized, and its characteristics were investigated. EGCG-5′Glu showed antioxidant effects in cell and cell-free systems. Under SNP-derived radical exposure, EGCG-5′Glu decreased nitric oxide (NO) production, and recovered ROS-mediated cell viability. Moreover, EGCG-5′Glu regulated apoptotic pathways (caspases) and cell survival molecules (phosphoinositide 3-kinase (PI3K) and phosphoinositide-dependent kinase 1 (PDK1)). In another radical-induced condition, ultraviolet B (UVB) irradiation, EGCG-5′Glu protected cells from UVB and regulated the PI3K/PDK1/AKT pathway. Next, the proliferative effect of EGCG-5′Glu was examined. EGCG-5′Glu increased cell proliferation by modulating nuclear factor (NF)-κB activity. EGCG-5′Glu protects and repairs cells from external damage via its antioxidant effects. These results suggest that EGCG-5′Glu could be used as a cosmetics ingredient or dietary supplement.
Collapse
|
15
|
Han AY, Lee YS, Kwon S, Lee HS, Lee KW, Seol GH. Codonopsis lanceolata extract prevents hypertension in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 39:119-124. [PMID: 29433673 DOI: 10.1016/j.phymed.2017.12.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/07/2017] [Accepted: 12/25/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Codonopsis lanceolata, a plant with antioxidant, anti-cancer, anti-inflammatory and blood lipid improving effects, has been widely used as a therapeutic agent in traditional medicine. PURPOSE The present study investigated the ability of an ethanol extract of Codonopsis lanceolata (ECL) to prevent hypertension in hypertensive rats. METHODS Rats were orally administered daily doses of 0 mg/kg, 200 mg/kg and 400 mg/kg ECL for 3 weeks. As a positive control, rats were orally administered 10 mg/kg/day nifedipine. Hypertension was induced by immobilization stress for 2 h/day and by administration of 0.8 mg/kg/day nicotine for 3 weeks, followed by injection of 3 mg/kg nicotine on the day of sacrifice. Blood pressure and heart rate were measured using a volume pressure recording system. Vasoconstriction and vasodilation of aortic cross sections were measured with a physiological recorder. Neutrophil counts in bronchoalveolar lavage fluid were estimated with an automated cell counter. RESULTS Treatment with both dosages of ECL significantly reduced systolic blood pressure (SBP) in hypertensive rats. Both doses of ECL tended to increase ACh- and SNP-induced vascular relaxation in hypertensive rats. Treatment with 200 mg/kg ECL significantly reduced neutrophil in hypertensive rats. CONCLUSIONS These results suggest that ECL is effective in reducing SBP and inflammation in hypertensive conditions.
Collapse
Affiliation(s)
- A Young Han
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Young Seok Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Soonho Kwon
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Hui Su Lee
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Geun Hee Seol
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
16
|
Kim E, Hwang K, Lee J, Han SY, Kim EM, Park J, Cho JY. Skin Protective Effect of Epigallocatechin Gallate. Int J Mol Sci 2018; 19:E173. [PMID: 29316635 PMCID: PMC5796122 DOI: 10.3390/ijms19010173] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 02/06/2023] Open
Abstract
Epigallocatechin gallate (EGCG) is a catechin and an abundant polyphenol in green tea. Although several papers have evaluated EGCG as a cosmetic constituent, the skin hydration effect of EGCG is poorly understood. We aimed to investigate the mechanism by which EGCG promotes skin hydration by measuring hyaluronic acid synthase (HAS) and hyaluronidase (HYAL) gene expression and antioxidant and anti-pigmentation properties using cell proliferation assay, Western blotting analysis, luciferase assay, 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, and reverse transcription polymerase chain reaction (RT-PCR) analysis. RT-PCR showed that EGCG increased the expression of natural moisturizing factor-related genes filaggrin (FLG), transglutaminase-1, HAS-1, and HAS-2. Under UVB irradiation conditions, the expression level of HYAL was decreased in HaCaT cells. Furthermore, we confirmed the antioxidant activity of EGCG and also showed a preventive effect against radical-evoked apoptosis by downregulation of caspase-8 and -3 in HaCaT cells. EGCG reduced melanin secretion and production in melanoma cells. Together, these results suggest that EGCG might be used as a cosmetic ingredient with positive effects on skin hydration, moisture retention, and wrinkle formation, in addition to radical scavenging activity and reduction of melanin generation.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Kyeonghwan Hwang
- Heritage Material Research Team, Amorepacific Research and Development Unit, Yongin 17074, Korea.
| | - Jongsung Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Sang Yun Han
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Eun-Mi Kim
- Heritage Material Research Team, Amorepacific Research and Development Unit, Yongin 17074, Korea.
| | - Junseong Park
- Heritage Material Research Team, Amorepacific Research and Development Unit, Yongin 17074, Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
17
|
Kim MY, Cho JY. Molecular association of CD98, CD29, and CD147 critically mediates monocytic U937 cell adhesion. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:515-23. [PMID: 27610038 PMCID: PMC5014998 DOI: 10.4196/kjpp.2016.20.5.515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/05/2016] [Accepted: 07/25/2016] [Indexed: 12/15/2022]
Abstract
Adhesion events of monocytes represent an important step in inflammatory responses induced by chemokines. The β1-integrin CD29 is a major adhesion molecule regulating leukocyte migration and extravasation. Although several adhesion molecules have been known as regulators of CD29, the molecular interactions between CD29 and its regulatory adhesion molecules (such as CD98 and CD147) have not been fully elucidated. Therefore, in this study, we examined whether these molecules are functionally, biochemically, and cell-biologically associated using monocytic U937 cells treated with aggregation-stimulating and blocking antibodies, as well as enzyme inhibitors. The surface levels of CD29, CD98, and CD147 (but not CD43, CD44, and CD82) were increased. The activation of CD29, CD98, and CD147 by ligation of them with aggregation-activating antibodies triggered the induction of cell-cell adhesion, and sensitivity to various enzyme inhibitors and aggregation-blocking antibodies was similar for CD29-, CD98-, and CD147-induced U937 cell aggregation. Molecular association between these molecules and the actin cytoskeleton was confirmed by confocal microscopy and immunoprecipitation. These results strongly suggest that CD29 might be modulated by its biochemical and cellular regulators, including CD98 and CD147, via the actin cytoskeleton.
Collapse
Affiliation(s)
- Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Jae Youl Cho
- Depatment of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
18
|
1-(2,3-Dibenzimidazol-2-ylpropyl)-2-methoxybenzene Is a Syk Inhibitor with Anti-Inflammatory Properties. Molecules 2016; 21:508. [PMID: 27096863 PMCID: PMC6274291 DOI: 10.3390/molecules21040508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 01/15/2023] Open
Abstract
Inflammation is the protective action of our bodies against external pathogens by recognition of pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs). Proper regulation of inflammatory responses is required to maintain our body’s homeostasis, as well as there are demands to develop proper acute or chronic inflammation. In this study, we elucidated the regulatory mechanism of NF-κB-mediated inflammatory responses by a novel compound, 1-(2,3-dibenzimidazol-2-ylpropyl)-2-methoxybenzene (DBMB). We found that DBMB suppressed inflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2), reacted to exposure to a number of toll like receptor (TLR) ligands. Such observations occurred following to decreased mRNA expression of several pro-inflammatory mediators, and such diminished mRNA levels were caused by inhibited transcriptional factor nuclear factor (NF)-κB, as evaluated by luciferase reporter assay and molecular biological approaches. To find the potential targets of DBMB, we screened phosphorylated forms of NF-κB signal molecules: inhibitor of κBα (IκBα), IκB kinase (IKK)α/β, Akt, 3-phosphoinositide dependent protein kinase-1 (PDK1), p85, and spleen tyrosine kinase (Syk). We found that DBMB treatment could suppress signal transduction through these molecules. Additionally, we conducted in vitro kinase assays using immunoprecipitated Syk and its substrate, p85. Consequently, we could say that DBMB clearly suppressed the kinase activity of Syk kinase activity. Together, our results demonstrate that synthetic DBMB has an effect on the inflammatory NF-κB signaling pathway and suggest the potential for clinical use in the treatment of inflammatory diseases.
Collapse
|
19
|
Hossen MJ, Kim MY, Kim JH, Cho JY. Codonopsis lanceolata
: A Review of Its Therapeutic Potentials. Phytother Res 2015; 30:347-56. [DOI: 10.1002/ptr.5553] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 11/05/2015] [Accepted: 11/26/2015] [Indexed: 01/31/2023]
Affiliation(s)
- Muhammad Jahangir Hossen
- Department of Genetic Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
- Department of Animal Science; Patuakhali Science and Technology University, Dumki; Patuakhali 8602 Bangladesh
| | - Mi-Yeon Kim
- School of Systems Biomedical Science; Soongsil University; Seoul 07027 Republic of Korea
| | - Jong-Hoon Kim
- Department of Physiology, College of Veterinary Medicine; Chonbuk National University; Iksan 54596 Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| |
Collapse
|
20
|
He JY, Ma N, Zhu S, Komatsu K, Li ZY, Fu WM. The genus Codonopsis (Campanulaceae): a review of phytochemistry, bioactivity and quality control. J Nat Med 2015; 69:1-21. [PMID: 25099952 PMCID: PMC4287686 DOI: 10.1007/s11418-014-0861-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/18/2014] [Indexed: 11/29/2022]
Abstract
Codonopsis, in the family Campanulaceae, is a genus containing 42 species of dicotyledonous herbaceous perennial plants, predominantly found in Central, East and South Asia. Several Codonopsis species are widely used in traditional medicine and are considered to have multiple medicinal properties. Among the Codonopsis species, Codonopsis pilosula (Franch.) Nannf. and C. lanceolata (Sieb. et Zucc.) Benth. & Hook. f. ex Trautv. are more popular than others according to the findings, especially phytochemical and bioactive studies. Phytochemical research shows that Codonopsis species contain mainly polyacetylenes, phenylpropanoids, alkaloids, triterpenoids and polysaccharides, which contribute to multiple bioactivities. However, the mechanisms of their bioactivities need to be further elucidated. The less popular Codonopsis species remain to be studied and exploited. In addition, although a series of methods for the quality evaluation of Codonopsis species have been developed, a feasible and reliable approach to the efficacious and safe use of various Codonopsis species is still needed, with considering botanical origin, chemical constituents and bioactive effects. This review aims to provide up-to-date and comprehensive information on the phytochemistry, bioactivity and quality control of medicinal plants in the genus Codonopsis and to highlight current gaps in knowledge, which is useful for the wider development of the Codonopsis genus.
Collapse
Affiliation(s)
- Jing-Yu He
- />Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, 1121 Haibin Rd., Nansha Dist., 511-458 Guangzhou, People’s Republic of China
| | - Na Ma
- />Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, 1121 Haibin Rd., Nansha Dist., 511-458 Guangzhou, People’s Republic of China
| | - Shu Zhu
- />Division of Pharmacognosy, Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Katsuko Komatsu
- />Division of Pharmacognosy, Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Zhi-Yuan Li
- />Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, 1121 Haibin Rd., Nansha Dist., 511-458 Guangzhou, People’s Republic of China
| | - Wei-Ming Fu
- />Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, 1121 Haibin Rd., Nansha Dist., 511-458 Guangzhou, People’s Republic of China
| |
Collapse
|
21
|
21-O-angeloyltheasapogenol E3, a novel triterpenoid saponin from the seeds of tea plants, inhibits macrophage-mediated inflammatory responses in a NF-κB-dependent manner. Mediators Inflamm 2014; 2014:658351. [PMID: 25477714 PMCID: PMC4245502 DOI: 10.1155/2014/658351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 12/29/2022] Open
Abstract
21-O-Angeloyltheasapogenol E3 (ATS-E3) is a triterpenoid saponin recently isolated from the seeds of the tea tree Camellia sinensis (L.) O. Kuntze. ATS-E3 has several beneficial properties including anti-inflammatory, antidiabetic, antiatherosclerotic, and anticancer effects. Unlike other phenolic compounds isolated from tea plants, there are no studies reporting the pharmacological action of ATS-E3. In this study, we therefore aimed to explore the cellular and molecular inhibitory activities of ATS-E3 in macrophage-mediated inflammatory responses. ATS-E3 remarkably diminished cellular responses of macrophages such as FITC-dextran-induced phagocytic uptake, sodium nitroprusside- (SNP-) induced radical generation, and LPS-induced nitric oxide (NO) production. Analysis of its molecular activity showed that this compound significantly suppressed the expression of inducible NO synthase (iNOS), nuclear translocation of nuclear factor- (NF-) κB subunits (p50 and p65), phosphorylation of inhibitor of κB kinase (IKK), and the enzyme activity of AKT1. Taken together, the novel triterpenoid saponin compound ATS-E3 contributes to the beneficial effects of tea plants by exerting anti-inflammatory and antioxidative activities in an AKT/IKK/NF-κB-dependent manner.
Collapse
|
22
|
NF-κB/AP-1-targeted inhibition of macrophage-mediated inflammatory responses by depigmenting compound AP736 derived from natural 1,3-diphenylpropane skeleton. Mediators Inflamm 2014; 2014:354843. [PMID: 25386046 PMCID: PMC4217328 DOI: 10.1155/2014/354843] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/30/2014] [Accepted: 09/30/2014] [Indexed: 12/25/2022] Open
Abstract
AP736 was identified as an antimelanogenic drug that can be used for the prevention of melasma, freckles, and dark spots in skin by acting as a suppressor of melanin synthesis and tyrosinase expression. Since macrophage-mediated inflammatory responses are critical for skin health, here we investigated the potential anti-inflammatory activity of AP736. The effects of AP736 on various inflammatory events such as nitric oxide (NO)/prostaglandin (PG) E2 production, inflammatory gene expression, phagocytic uptake, and morphological changes were examined in RAW264.7 cells. AP736 was found to strongly inhibit the production of both NO and PGE2 in lipopolysaccharide- (LPS-) treated RAW264.7 cells. In addition, AP736 strongly inhibited both LPS-induced morphological changes and FITC-dextran-induced phagocytic uptake. Furthermore, AP736 also downregulated the expression of multiple inflammatory genes, such as inducible NO synthase (iNOS), cyclooxygenase- (COX-) 2, and interleukin- (IL-) 1β in LPS-treated RAW264.7 cells. Transcription factor analysis, including upstream signalling events, revealed that both NF-κB and AP-1 were targeted by AP736 via inhibition of the IKK/IκBα and IRAK1/TAK1 pathways. Therefore, our results strongly suggest that AP736 is a potential anti-inflammatory drug due to its suppression of NF-κB-IKK/IκBα and AP-1-IRAK1/TAK1 signalling, which may make AP736 useful for the treatment of macrophage-mediated skin inflammation.
Collapse
|