1
|
Oduro-Kwateng E, Soliman ME. DON/DRP-104 as potent serine protease inhibitors implicated in SARS-CoV-2 infection: Comparative binding modes with human TMPRSS2 and novel therapeutic approach. J Cell Biochem 2024; 125:e30528. [PMID: 38284235 DOI: 10.1002/jcb.30528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Human transmembrane serine protease 2 (TMPRSS2) is an important member of the type 2 transmembrane serine protease (TTSP) family with significant therapeutic markings. The search for potent TMPRSS2 inhibitors against severe acute respiratory syndrome coronavirus 2 infection with favorable tissue specificity and off-site toxicity profiles remains limited. Therefore, probing the anti-TMPRSS2 potential of enhanced drug delivery systems, such as nanotechnology and prodrug systems, has become compelling. We report the first in silico study of TMPRSS2 against a prodrug, [isopropyl(S)-2-((S)-2-acetamido-3-(1H-indol-3-yl)-propanamido)-6-diazo-5-oxo-hexanoate] also known as DRP-104 synthesized from 6-Diazo-5-oxo-l-norleucine (DON). We performed comparative studies on DON and DRP-104 against a clinically potent TMPRSS2 inhibitor, nafamostat, and a standard serine protease inhibitor, 4-(2-Aminoethyl) benzenesulfonyl fluoride (AEBSF) against TMPRSS2 and found improved TMPRSS2 inhibition through synergistic binding of the S1/S1' subdomains. Both DON and DRP-104 had better thermodynamic profiles than AEBSF and nafamostat. DON was found to confer structural stability with strong positive correlated inter-residue motions, whereas DRP-104 was found to confer kinetic stability with restricted residue displacements and reduced loop flexibility. Interestingly, the Scavenger Receptor Cysteine-Rich (SRCR) domain of TMPRSS2 may be involved in its inhibition mechanics. Two previously unidentified loops, designated X (270-275) and Y (293-296) underwent minimal and major structural transitions, respectively. In addition, residues 273-277 consistently transitioned to a turn conformation in all ligated systems, whereas unique transitions were identified for other transitioning residue groups in each TMPRSS2-inhibitor complex. Intriguingly, while both DON and DRP-104 showed similar loop transition patterns, DRP-104 preserved loop structural integrity. As evident from our systematic comparative study using experimentally/clinically validated inhibitors, DRP-104 may serve as a potent and novel TMPRSS2 inhibitor and warrants further clinical investigation.
Collapse
Affiliation(s)
- Ernest Oduro-Kwateng
- School of Health Sciences, Molecular Bio-Computation and Drug Design Research Group, Westville Campus, University of KwaZulu Natal, Durban, South Africa
| | - Mahmoud E Soliman
- School of Health Sciences, Molecular Bio-Computation and Drug Design Research Group, Westville Campus, University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
2
|
Abugri J, Ayariga J, Sunwiale SS, Wezena CA, Gyamfi JA, Adu-Frimpong M, Agongo G, Dongdem JT, Abugri D, Dinko B. Targeting the Plasmodium falciparum proteome and organelles for potential antimalarial drug candidates. Heliyon 2022; 8:e10390. [PMID: 36033316 PMCID: PMC9398786 DOI: 10.1016/j.heliyon.2022.e10390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/12/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
There is an unmet need to unearth alternative treatment options for malaria, wherein this quest is more pressing in recent times due to high morbidity and mortality data arising mostly from the endemic countries coupled with partial diversion of attention from the disease in view of the SARS-Cov-2 pandemic. Available therapeutic options for malaria have been severely threatened with the emergence of resistance to almost all the antimalarial drugs by the Plasmodium falciparum parasite in humans, which is a worrying situation. Artemisinin combination therapies (ACT) that have so far been the mainstay of malaria have encountered resistance by malaria parasite in South East Asia, which is regarded as a notorious ground zero for the emergence of resistance to antimalarial drugs. This review analyzes a few key druggable targets for the parasite and the potential of specific inhibitors to mitigate the emerging antimalarial drug resistance problem by providing a concise assessment of the essential proteins of the malaria parasite that could serve as targets. Moreover, this work provides a summary of the advances made in malaria parasite biology and the potential to leverage these findings for antimalarial drug production.
Collapse
Affiliation(s)
- James Abugri
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Joseph Ayariga
- The Biomedical Engineering Programme, Alabama State University, Montgomery, AL, 36104, USA
| | - Samuel Sunyazi Sunwiale
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Cletus Adiyaga Wezena
- Department of Microbiology, School of Biosciences, University for Development Studies (UDS), Nyankpala Campus, Tamale, Ghana
| | - Julien Agyemang Gyamfi
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Godfred Agongo
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Julius Tieroyaare Dongdem
- Department of Biochemistry and Molecular Medicine. School of Medicine. University for Development Studies (UDS), Tamale-Campus, Ghana
| | - Daniel Abugri
- Department of Biological Sciences, Microbiology PhD Programme, Laboratory of Ethnomedicine, Parasitology, and Drug Discovery, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, USA
| | - Bismarck Dinko
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho. Ghana
| |
Collapse
|
3
|
Machado PDA, Gomes PS, Carneiro MPD, Midlej V, Coimbra ES, de Matos Guedes HL. Effects of a Serine Protease Inhibitor N-p-Tosyl-L-phenylalanine Chloromethyl Ketone (TPCK) on Leishmania amazonensis and Leishmania infantum. Pharmaceutics 2022; 14:pharmaceutics14071373. [PMID: 35890269 PMCID: PMC9320531 DOI: 10.3390/pharmaceutics14071373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Studies have previously demonstrated the importance of serine proteases in Leishmania. A well-known serine protease inhibitor, TPCK, was used in the present study to evaluate its in vitro and in vivo antileishmanial effects and determine its mechanism of action. Despite slight toxicity against mammalian cells (CC50 = 138.8 µM), TPCK was selective for the parasite due to significant activity against L. amazonensis and L. infantum promastigote forms (IC50 = 14.6 and 31.7 µM for L. amazonensis PH8 and Josefa strains, respectively, and 11.3 µM for L. infantum) and intracellular amastigotes (IC50 values = 14.2 and 16.6 µM for PH8 and Josefa strains, respectively, and 21.7 µM for L. infantum). Leishmania parasites treated with TPCK presented mitochondrial alterations, oxidative stress, modifications in lipid content, flagellar alterations, and cytoplasmic vacuoles, all of which are factors that could be considered as contributing to the death of the parasites. Furthermore, BALB/c mice infected with L. amazonensis and treated with TPCK had a reduction in lesion size and parasite loads in the footpad and spleen. In BALB/c mice infected with L. infantum, TPCK also caused a reduction in the parasite loads in the liver and spleen. Therefore, we highlight the antileishmanial effect of the assessed serine protease inhibitor, proposing a potential therapeutic target in Leishmania as well as a possible new alternative treatment for leishmaniasis.
Collapse
Affiliation(s)
- Patrícia de A. Machado
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (P.d.A.M.); (P.S.G.)
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Núcleo de Pesquisas em Parasitologia (NUPEP), Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil
| | - Pollyanna S. Gomes
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (P.d.A.M.); (P.S.G.)
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Monique P. D. Carneiro
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Victor Midlej
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Elaine S. Coimbra
- Núcleo de Pesquisas em Parasitologia (NUPEP), Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil
- Correspondence: (E.S.C.); or (H.L.d.M.G.)
| | - Herbert L. de Matos Guedes
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (P.d.A.M.); (P.S.G.)
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (E.S.C.); or (H.L.d.M.G.)
| |
Collapse
|
4
|
Tougan T, Edula JR, Morita M, Takashima E, Honma H, Tsuboi T, Horii T. The malaria parasite Plasmodium falciparum in red blood cells selectively takes up serum proteins that affect host pathogenicity. Malar J 2020; 19:155. [PMID: 32295584 PMCID: PMC7161009 DOI: 10.1186/s12936-020-03229-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/07/2020] [Indexed: 11/12/2022] Open
Abstract
Background The malaria parasite Plasmodium falciparum is a protozoan that develops in red blood cells (RBCs) and requires various host factors. For its development in RBCs, nutrients not only from the RBC cytosol but also from the extracellular milieu must be acquired. Although the utilization of host nutrients by P. falciparum has been extensively analysed, only a few studies have reported its utilization of host serum proteins. Hence, the aim of the current study was to comprehensively identify host serum proteins taken up by P. falciparum parasites and to elucidate their role in pathogenesis. Methods Plasmodium falciparum was cultured with human serum in vitro. Uptake of serum proteins by parasites was comprehensively determined via shotgun liquid chromatography–mass spectrometry/mass spectrometry and western blotting. The calcium ion concentration in serum was also evaluated, and coagulation activity of the parasite lysate was assessed. Results Three proteins, vitamin K-dependent protein S, prothrombin, and vitronectin, were selectively internalized under sufficient Ca2+ levels in the culture medium. The uptake of these proteins was initiated before DNA replication, and increased during the trophozoite and schizont stages, irrespective of the assembly/disassembly of actin filaments. Coagulation assay revealed that prothrombin was activated and thereby induced blood coagulation. Conclusions Serum proteins were taken up by parasites under culture conditions with sufficient Ca2+ levels. This uptake phenomenon was associated with their pathogenicity.
Collapse
Affiliation(s)
- Takahiro Tougan
- Research Centre for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Jyotheeswara R Edula
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Centre, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Centre, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Hajime Honma
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Centre, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Musyoka TM, Njuguna JN, Tastan Bishop Ö. Comparing sequence and structure of falcipains and human homologs at prodomain and catalytic active site for malarial peptide based inhibitor design. Malar J 2019; 18:159. [PMID: 31053072 PMCID: PMC6500056 DOI: 10.1186/s12936-019-2790-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Falcipains are major cysteine proteases of Plasmodium falciparum involved in haemoglobin degradation and remain attractive anti-malarial drug targets. Several inhibitors against these proteases have been identified, yet none of them has been approved for malaria treatment. Other Plasmodium species also possess highly homologous proteins to falcipains. For selective therapeutic targeting, identification of sequence and structure differences with homologous human cathepsins is necessary. The substrate processing activity of these proteins is tightly controlled via a prodomain segment occluding the active site which is chopped under low pH conditions exposing the catalytic site. Current work characterizes these proteases to identify residues mediating the prodomain regulatory function for the design of peptide based anti-malarial inhibitors. METHODS Sequence and structure variations between prodomain regions of plasmodial proteins and human cathepsins were determined using in silico approaches. Additionally, evolutionary clustering of these proteins was evaluated using phylogenetic analysis. High quality partial zymogen protein structures were modelled using homology modelling and residue interaction analysis performed between the prodomain segment and mature domain to identify key interacting residues between these two domains. The resulting information was used to determine short peptide sequences which could mimic the inherent regulatory function of the prodomain regions. Through flexible docking, the binding affinity of proposed peptides on the proteins studied was evaluated. RESULTS Sequence, evolutionary and motif analyses showed important differences between plasmodial and human proteins. Residue interaction analysis identified important residues crucial for maintaining prodomain integrity across the different proteins as well as the pro-segment responsible for inhibitory mechanism. Binding affinity of suggested peptides was highly dependent on their residue composition and length. CONCLUSIONS Despite the conserved structural and catalytic mechanism between human cathepsins and plasmodial proteases, current work revealed significant differences between the two protein groups which may provide valuable information for selective anti-malarial inhibitor development. Part of this study aimed to design peptide inhibitors based on endogenous inhibitory portions of protease prodomains as a novel aspect. Even though peptide inhibitors may not be practical solutions to malaria at this stage, the approach followed and results offer a promising means to find new malarial inhibitors.
Collapse
Affiliation(s)
- Thommas Mutemi Musyoka
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
| | - Joyce Njoki Njuguna
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa.
| |
Collapse
|
6
|
Mogire RM, Akala HM, Macharia RW, Juma DW, Cheruiyot AC, Andagalu B, Brown ML, El-Shemy HA, Nyanjom SG. Target-similarity search using Plasmodium falciparum proteome identifies approved drugs with anti-malarial activity and their possible targets. PLoS One 2017; 12:e0186364. [PMID: 29088219 PMCID: PMC5663372 DOI: 10.1371/journal.pone.0186364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 10/01/2017] [Indexed: 11/23/2022] Open
Abstract
Malaria causes about half a million deaths annually, with Plasmodium falciparum being responsible for 90% of all the cases. Recent reports on artemisinin resistance in Southeast Asia warrant urgent discovery of novel drugs for the treatment of malaria. However, most bioactive compounds fail to progress to treatments due to safety concerns. Drug repositioning offers an alternative strategy where drugs that have already been approved as safe for other diseases could be used to treat malaria. This study screened approved drugs for antimalarial activity using an in silico chemogenomics approach prior to in vitro verification. All the P. falciparum proteins sequences available in NCBI RefSeq were mined and used to perform a similarity search against DrugBank, TTD and STITCH databases to identify similar putative drug targets. Druggability indices of the potential P. falciparum drug targets were obtained from TDR targets database. Functional amino acid residues of the drug targets were determined using ConSurf server which was used to fine tune the similarity search. This study predicted 133 approved drugs that could target 34 P. falciparum proteins. A literature search done at PubMed and Google Scholar showed 105 out of the 133 drugs to have been previously tested against malaria, with most showing activity. For further validation, drug susceptibility assays using SYBR Green I method were done on a representative group of 10 predicted drugs, eight of which did show activity against P. falciparum 3D7 clone. Seven had IC50 values ranging from 1 μM to 50 μM. This study also suggests drug-target association and hence possible mechanisms of action of drugs that did show antiplasmodial activity. The study results validate the use of proteome-wide target similarity approach in identifying approved drugs with activity against P. falciparum and could be adapted for other pathogens.
Collapse
Affiliation(s)
- Reagan M. Mogire
- Department of Molecular Biology and Biotechnology, Pan African University Institute of Science, Technology and Innovation, Nairobi, Kenya
| | - Hoseah M. Akala
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)—Walter Reed Project, Kisumu, Kenya
| | - Rosaline W. Macharia
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Dennis W. Juma
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)—Walter Reed Project, Kisumu, Kenya
| | - Agnes C. Cheruiyot
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)—Walter Reed Project, Kisumu, Kenya
| | - Ben Andagalu
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)—Walter Reed Project, Kisumu, Kenya
| | - Mathew L. Brown
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)—Walter Reed Project, Kisumu, Kenya
| | - Hany A. El-Shemy
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Steven G. Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| |
Collapse
|
7
|
Jin X, Li G, Zhang X, Gong P, Yu Y, Li J. Activation of a Neospora caninum EGFR-Like Kinase Facilitates Intracellular Parasite Proliferation. Front Microbiol 2017; 8:1980. [PMID: 29075245 PMCID: PMC5643468 DOI: 10.3389/fmicb.2017.01980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/25/2017] [Indexed: 11/13/2022] Open
Abstract
The Apicomplexan parasite Neospora caninum, an obligate intracellular protozoan, causes serious diseases in a number of mammalian species, especially in cattle. Infection with N. caninum is associated with abortions in both dairy and beef cattle worldwide which have a major economic impact on the cattle industry. However, the mechanism by which N. caninum proliferates within host cells is poorly understood. Epidermal growth factor receptor (EGFR) is a protein kinase ubiquitously expressed, present on cell surfaces in numerous species, which has been confirmed to be essential in signal transduction involved in cell growth, proliferation, survival, and many other intracellular processes. However, the presence of EGFR in N. caninum and its role in N. caninum proliferation remain unclear. In the present study, we identified a putative EGFR-like kinase in N. caninum, which could be activated in tachyzoites by infection or treatment with rNcMIC3 [containing four epidermal growth factor (EGF) domains] or human EGF. Blockade of EGFR-like in tachyzoites by AG1478 significantly reduced parasite proliferation in host cells. Our data suggested that the activation of tachyzoite EGFR-like might facilitate the intracellular proliferation of N. caninum.
Collapse
Affiliation(s)
- Xiaoxia Jin
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guojiang Li
- Jilin Agricultural Science and Technology University, Jilin, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanhui Yu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.,Jilin Agricultural Science and Technology University, Jilin, China
| |
Collapse
|
8
|
The p38 MAPK inhibitor, SB203580, inhibits cell invasion by Neospora caninum. Parasitol Res 2016; 116:813-819. [DOI: 10.1007/s00436-016-5346-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/07/2016] [Indexed: 12/11/2022]
|
9
|
Sulaiman I, Lim JCW, Soo HL, Stanslas J. Molecularly targeted therapies for asthma: Current development, challenges and potential clinical translation. Pulm Pharmacol Ther 2016; 40:52-68. [PMID: 27453494 DOI: 10.1016/j.pupt.2016.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/14/2016] [Accepted: 07/20/2016] [Indexed: 12/15/2022]
Abstract
Extensive research into the therapeutics of asthma has yielded numerous effective interventions over the past few decades. However, adverse effects and ineffectiveness of most of these medications especially in the management of steroid resistant severe asthma necessitate the development of better medications. Numerous drug targets with inherent airway smooth muscle tone modulatory role have been identified for asthma therapy. This article reviews the latest understanding of underlying molecular aetiology of asthma towards design and development of better antiasthma drugs. New drug candidates with their putative targets that have shown promising results in the preclinical and/or clinical trials are summarised. Examples of these interventions include restoration of Th1/Th2 balance by the use of newly developed immunomodulators such as toll-like receptor-9 activators (CYT003-QbG10 and QAX-935). Clinical trials revealed the safety and effectiveness of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) antagonists such as OC0000459, BI-671800 and ARRY-502 in the restoration of Th1/Th2 balance. Regulation of cytokine activity by the use of newly developed biologics such as benralizumab, reslizumab, mepolizumab, lebrikizumab, tralokinumab, dupilumab and brodalumab are at the stage of clinical development. Transcription factors are potential targets for asthma therapy, for example SB010, a GATA-3 DNAzyme is at its early stage of clinical trial. Other candidates such as inhibitors of Rho kinases (Fasudil and Y-27632), phosphodiesterase inhibitors (GSK256066, CHF 6001, roflumilast, RPL 554) and proteinase of activated receptor-2 (ENMD-1068) are also discussed. Preclinical results of blockade of calcium sensing receptor by the use of calcilytics such as calcitriol abrogates cardinal signs of asthma. Nevertheless, successful translation of promising preclinical data into clinically viable interventions remains a major challenge to the development of novel anti-asthmatics.
Collapse
Affiliation(s)
- Ibrahim Sulaiman
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Jonathan Chee Woei Lim
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hon Liong Soo
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
10
|
González L, Sánchez RE, Rojas L, Pascual I, García-Fernández R, Chávez MA, Betzel C. Screening of Protease Inhibitory Activity in Aqueous Extracts of Marine Invertebrates from Cuban Coast. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ajac.2016.74030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
McConville M, Fernández J, Angulo-Barturen Í, Bahamontes-Rosa N, Ballell-Pages L, Castañeda P, de Cózar C, Crespo B, Guijarro L, Jiménez-Díaz MB, Martínez-Martínez MS, de Mercado J, Santos-Villarejo Á, Sanz LM, Frigerio M, Washbourn G, Ward SA, Nixon GL, Biagini GA, Berry NG, Blackman MJ, Calderón F, O'Neill PM. Carbamoyl Triazoles, Known Serine Protease Inhibitors, Are a Potent New Class of Antimalarials. J Med Chem 2015. [PMID: 26222445 DOI: 10.1021/acs.jmedchem.5b00434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Screening of the GSK corporate collection, some 1.9 million compounds, against Plasmodium falciparum (Pf), revealed almost 14000 active hits that are now known as the Tres Cantos Antimalarial Set (TCAMS). Followup work by Calderon et al. clustered and computationally filtered the TCAMS through a variety of criteria and reported 47 series containing a total of 522 compounds. From this enhanced set, we identified the carbamoyl triazole TCMDC-134379 (1), a known serine protease inhibitor, as an excellent starting point for SAR profiling. Lead optimization of 1 led to several molecules with improved antimalarial potency, metabolic stabilities in mouse and human liver microsomes, along with acceptable cytotoxicity profiles. Analogue 44 displayed potent in vitro activity (IC50 = 10 nM) and oral activity in a SCID mouse model of Pf infection with an ED50 of 100 and ED90 of between 100 and 150 mg kg(-1), respectively. The results presented encourage further investigations to identify the target of these highly active compounds.
Collapse
Affiliation(s)
- Matthew McConville
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Jorge Fernández
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Íñigo Angulo-Barturen
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Noemi Bahamontes-Rosa
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Lluis Ballell-Pages
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Pablo Castañeda
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Cristina de Cózar
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Benigno Crespo
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Laura Guijarro
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - María Belén Jiménez-Díaz
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Maria S Martínez-Martínez
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Jaime de Mercado
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Ángel Santos-Villarejo
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Laura M Sanz
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Micol Frigerio
- Department of Chemistry, University of Liverpool , Liverpool L69 7ZD, United Kingdom
| | - Gina Washbourn
- Department of Chemistry, University of Liverpool , Liverpool L69 7ZD, United Kingdom
| | - Stephen A Ward
- Liverpool School of Tropical Medicine , Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Gemma L Nixon
- Department of Chemistry, University of Liverpool , Liverpool L69 7ZD, United Kingdom
| | - Giancarlo A Biagini
- Liverpool School of Tropical Medicine , Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Neil G Berry
- Department of Chemistry, University of Liverpool , Liverpool L69 7ZD, United Kingdom
| | - Michael J Blackman
- Division of Parasitology, MRC National Institute for Medical Research , Mill Hill, London NW7 1AA, United Kingdom
| | - Félix Calderón
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool , Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
12
|
Exploiting Unique Structural and Functional Properties of Malarial Glycolytic Enzymes for Antimalarial Drug Development. Malar Res Treat 2014; 2014:451065. [PMID: 25580350 PMCID: PMC4280493 DOI: 10.1155/2014/451065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/30/2014] [Indexed: 01/10/2023] Open
Abstract
Metabolic enzymes have been known to carry out a variety of functions besides their normal housekeeping roles known as “moonlighting functions.” These functionalities arise from structural changes induced by posttranslational modifications and/or binding of interacting proteins. Glycolysis is the sole source of energy generation for malaria parasite Plasmodium falciparum, hence a potential pathway for therapeutic intervention. Crystal structures of several P. falciparum glycolytic enzymes have been solved, revealing that they exhibit unique structural differences from the respective host enzymes, which could be exploited for their selective targeting. In addition, these enzymes carry out many parasite-specific functions, which could be of potential interest to control parasite development and transmission. This review focuses on the moonlighting functions of P. falciparum glycolytic enzymes and unique structural differences and functional features of the parasite enzymes, which could be exploited for therapeutic and transmission blocking interventions against malaria.
Collapse
|