1
|
Lohani A, Saxena R, Khan S, Mascarenhas-Melo F. pH-responsive IPN beads of carboxymethyl konjac glucomannan and sodium carboxymethyl cellulose as a controlled release carrier for ibuprofen. Int J Biol Macromol 2024; 278:134676. [PMID: 39137855 DOI: 10.1016/j.ijbiomac.2024.134676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
The convergence of polymer and pharmaceutical sciences has advanced drug delivery systems significantly. Carbohydrate polymers, especially carboxymethylated ones, offer versatile benefits for pharmaceuticals. Interpenetrating polymer networks (IPNs) combine synthetic and natural polymers to enhance drug delivery. The study aims to develop IPN beads using sodium carboxymethyl cellulose (SCMC) and carboxymethyl konjac glucomannan (CMKGM) for controlled release of ibuprofen (IB) after oral administration. Objectives include formulation optimization, characterization of physicochemical properties, evaluation of pH-dependent swelling and drug release behaviors to advance biocompatible and efficient oral drug delivery systems. The beads were analyzed using SEM, FTIR, DSC, and XRD techniques. Different ratio of polymers (CMKGM:SCMS) and crosslinker concentrations (2&4 %w/v) were used, significantly impacting bead size, swelling, drug encapsulation, and release characteristics. DSC results indicated higher thermal stability in IPN beads compared to native polymers. XRD revealed IB dispersion within the polymer matrix. IPN beads size ranged from 580 ± 0.56 to 324 ± 0.27 μm, with a nearly spherical shape. IPN beads exhibited continuous release in alkaline conditions (pH 7.4) and minimal release in acidic media (pH 1.2). These findings suggest that the formulated IPN beads can modulate drug release in both acidic and alkaline environments, potentially mitigating the gastric adverse effects often associated with oral administration of IB.
Collapse
Affiliation(s)
- Alka Lohani
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida 201313, India.
| | - Ritika Saxena
- Pharmacy Academy, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Shahbaz Khan
- Pharmacy Academy, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Filipa Mascarenhas-Melo
- Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300-307 Guarda, Portugal; REQUIMTE/LAQV, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
2
|
Bejenaru C, Radu A, Segneanu AE, Biţă A, Ciocîlteu MV, Mogoşanu GD, Bradu IA, Vlase T, Vlase G, Bejenaru LE. Pharmaceutical Applications of Biomass Polymers: Review of Current Research and Perspectives. Polymers (Basel) 2024; 16:1182. [PMID: 38732651 PMCID: PMC11085205 DOI: 10.3390/polym16091182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Polymers derived from natural biomass have emerged as a valuable resource in the field of biomedicine due to their versatility. Polysaccharides, peptides, proteins, and lignin have demonstrated promising results in various applications, including drug delivery design. However, several challenges need to be addressed to realize the full potential of these polymers. The current paper provides a comprehensive overview of the latest research and perspectives in this area, with a particular focus on developing effective methods and efficient drug delivery systems. This review aims to offer insights into the opportunities and challenges associated with the use of natural polymers in biomedicine and to provide a roadmap for future research in this field.
Collapse
Affiliation(s)
- Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (C.B.); (A.R.)
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (C.B.); (A.R.)
| | - Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| | - Maria Viorica Ciocîlteu
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania;
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| | - Ionela Amalia Bradu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
| | - Titus Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş, Romania
| | - Gabriela Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş, Romania
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| |
Collapse
|
3
|
Wu J, Xue W, Yun Z, Liu Q, Sun X. Biomedical applications of stimuli-responsive "smart" interpenetrating polymer network hydrogels. Mater Today Bio 2024; 25:100998. [PMID: 38390342 PMCID: PMC10882133 DOI: 10.1016/j.mtbio.2024.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
In recent years, owing to the ongoing advancements in polymer materials, hydrogels have found increasing applications in the biomedical domain, notably in the realm of stimuli-responsive "smart" hydrogels. Nonetheless, conventional single-network stimuli-responsive "smart" hydrogels frequently exhibit deficiencies, including low mechanical strength, limited biocompatibility, and extended response times. In response, researchers have addressed these challenges by introducing a second network to create stimuli-responsive "smart" Interpenetrating Polymer Network (IPN) hydrogels. The mechanical strength of the material can be significantly improved due to the topological entanglement and physical interactions within the interpenetrating structure. Simultaneously, combining different network structures enhances the biocompatibility and stimulus responsiveness of the gel, endowing it with unique properties such as cell adhesion, conductivity, hemostasis/antioxidation, and color-changing capabilities. This article primarily aims to elucidate the stimulus-inducing factors in stimuli-responsive "smart" IPN hydrogels, the impact of the gels on cell behaviors and their biomedical application range. Additionally, we also offer an in-depth exposition of their categorization, mechanisms, performance characteristics, and related aspects. This review furnishes a comprehensive assessment and outlook for the advancement of stimuli-responsive "smart" IPN hydrogels within the biomedical arena. We believe that, as the biomedical field increasingly demands novel materials featuring improved mechanical properties, robust biocompatibility, and heightened stimulus responsiveness, stimuli-responsive "smart" IPN hydrogels will hold substantial promise for wide-ranging applications in this domain.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wu Xue
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhihe Yun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xinzhi Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
4
|
Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur P. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers (Basel) 2024; 16:206. [PMID: 38257005 PMCID: PMC10818796 DOI: 10.3390/polym16020206] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Degradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided. The various approaches for the transformation of these polymers by physical/chemical means viz. cross-linking, as polyblends, nanocomposites/hybrid composites, interpenetrating complexes, interpolymer/polyion complexes, functionalization, polymer conjugates, and block and graft copolymers, are described. The degradation mechanism, drug loading profiles, and toxicological aspects of polymeric nanoparticles formed are also defined. Biomedical applications of these degradable polymer-based biomaterials in and as wound dressing/healing, biosensors, drug delivery systems, tissue engineering, and regenerative medicine, etc., are highlighted. In addition, the use of such nano systems to solve current drug delivery problems is briefly reviewed.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Piplod, Surat 395007, Gujarat, India;
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Anita Bahadur
- Department of Zoology, Sir PT Sarvajanik College of Science, Surat 395001, Gujarat, India;
| | - Ioana Cristina Crivei
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700449 Iasi, Romania;
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395007, Gujarat, India;
| |
Collapse
|
5
|
Das IJ, Bal T. Evaluation of Opuntia-carrageenan superporous hydrogel (OPM-CRG SPH) as an effective biomaterial for drug release and tissue scaffold. Int J Biol Macromol 2024; 256:128503. [PMID: 38040152 DOI: 10.1016/j.ijbiomac.2023.128503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The process of wound healing involves complex interplay of systems biology, dependent on coordination of various cell types, both intra and extracellular mechanisms, proteins, and signaling pathways. To enhance these interactions, drugs must be administered precisely and continuously, effectively regulating the intricate mechanisms involved in the body's response to injury. Controlled drug delivery systems (DDS) play a pivotal role in achieving this objective. A proficient DDS shields the wound from mechanical, oxidative, and enzymatic stress, against bacterial contamination ensuring an adequate oxygen supply while optimizing the localized and sustained delivery of drugs to target tissue. A pH-sensitive SPH was designed by blending two natural polysaccharides, Opuntia mucilage and carrageenan, using microwave irradiation and optimized according to swelling index at pH 1.2, 7.0, and 8.0 and % porosity. Optimized grade was analyzed for surface hydrophilicity-hydrophobicity using OCA. Analytical characterizations were performed using FTIR, TGA, XRD, DSC, reflecting semicrystalline behavior. Mechanical property confirmed adequate strength. In vitro drug release study with ciprofloxacin-HCL as model drug showed 97.8 % release within 10 h, fitting to the Korsmeyer-Peppas model following diffusion and erosion mechanism. In vitro antimicrobial, anti-inflammatory assays, zebrafish toxicity, and animal studies in mice with SPH concluded it as a novel biomaterial.
Collapse
Affiliation(s)
- Itishree Jogamaya Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
6
|
Browne D, Briggs F, Asuri P. Role of Polymer Concentration on the Release Rates of Proteins from Single- and Double-Network Hydrogels. Int J Mol Sci 2023; 24:16970. [PMID: 38069293 PMCID: PMC10707672 DOI: 10.3390/ijms242316970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Controlled delivery of proteins has immense potential for the treatment of various human diseases, but effective strategies for their delivery are required before this potential can be fully realized. Recent research has identified hydrogels as a promising option for the controlled delivery of therapeutic proteins, owing to their ability to respond to diverse chemical and biological stimuli, as well as their customizable properties that allow for desired delivery rates. This study utilized alginate and chitosan as model polymers to investigate the effects of hydrogel properties on protein release rates. The results demonstrated that polymer properties, concentration, and crosslinking density, as well as their responses to pH, can be tailored to regulate protein release rates. The study also revealed that hydrogels may be combined to create double-network hydrogels to provide an additional metric to control protein release rates. Furthermore, the hydrogel scaffolds were also found to preserve the long-term function and structure of encapsulated proteins before their release from the hydrogels. In conclusion, this research demonstrates the significance of integrating porosity and response to stimuli as orthogonal control parameters when designing hydrogel-based scaffolds for therapeutic protein release.
Collapse
Affiliation(s)
| | | | - Prashanth Asuri
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA; (D.B.); (F.B.)
| |
Collapse
|
7
|
Grønnemose RB, Tornby DR, Riber SS, Hjelmager JS, Riber LPS, Lindholt JS, Andersen TE. An Antibiotic-Loaded Silicone-Hydrogel Interpenetrating Polymer Network for the Prevention of Surgical Site Infections. Gels 2023; 9:826. [PMID: 37888399 PMCID: PMC10606314 DOI: 10.3390/gels9100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Surgical site infections (SSIs) are among the most frequent healthcare-associated infections, resulting in high morbidity, mortality, and cost. While correct hygiene measures and prophylactic antibiotics are effective in preventing SSIs, even in modern healthcare settings where recommended guidelines are strictly followed, SSIs persist as a considerable problem that has proven hard to solve. Surgical procedures involving the implantation of foreign bodies are particularly problematic due to the ability of microorganisms to adhere to and colonize the implanted material and form resilient biofilms. In these cases, SSIs may develop even months after implantation and can be difficult to treat once established. Locally applied antibiotics or specifically engineered implant materials with built-in antibiotic-release properties may prevent these complications and, ultimately, require fewer antibiotics compared to those that are systemically administered. In this study, we demonstrated an antimicrobial material concept with intended use in artificial vascular grafts. The material is a silicone-hydrogel interpenetrating polymer network developed earlier for drug-release catheters. In this study, we designed the material for permanent implantation and tested the drug-loading and drug-release properties of the material to prevent the growth of a typical causative pathogen of SSIs, Staphylococcus aureus. The novelty of this study is demonstrated through the antimicrobial properties of the material in vitro after loading it with an advantageous combination, minocycline and rifampicin, which subsequently showed superiority over the state-of-the-art (Propaten) artificial graft material in a large-animal study, using a novel porcine tissue-implantation model.
Collapse
Affiliation(s)
- Rasmus Birkholm Grønnemose
- Department of Clinical Microbiology, Odense University Hospital, 5000 Odense, Denmark; (R.B.G.); (D.R.T.)
- Research Unit of Clinical Microbiology, University of Southern Denmark, 5000 Odense, Denmark;
| | - Ditte Rask Tornby
- Department of Clinical Microbiology, Odense University Hospital, 5000 Odense, Denmark; (R.B.G.); (D.R.T.)
- Research Unit of Clinical Microbiology, University of Southern Denmark, 5000 Odense, Denmark;
| | - Sara Schødt Riber
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, 5000 Odense, Denmark; (S.S.R.); (L.P.S.R.); (J.S.L.)
- Research Unit of Cardiothoracic and Vascular Surgery, University of Southern Denmark, 5000 Odense, Denmark
| | - Janni Søvsø Hjelmager
- Research Unit of Clinical Microbiology, University of Southern Denmark, 5000 Odense, Denmark;
| | - Lars Peter Schødt Riber
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, 5000 Odense, Denmark; (S.S.R.); (L.P.S.R.); (J.S.L.)
- Research Unit of Cardiothoracic and Vascular Surgery, University of Southern Denmark, 5000 Odense, Denmark
| | - Jes Sanddal Lindholt
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, 5000 Odense, Denmark; (S.S.R.); (L.P.S.R.); (J.S.L.)
- Research Unit of Cardiothoracic and Vascular Surgery, University of Southern Denmark, 5000 Odense, Denmark
| | - Thomas Emil Andersen
- Department of Clinical Microbiology, Odense University Hospital, 5000 Odense, Denmark; (R.B.G.); (D.R.T.)
- Research Unit of Clinical Microbiology, University of Southern Denmark, 5000 Odense, Denmark;
| |
Collapse
|
8
|
Simeonov M, Kostova B, Vassileva E. Interpenetrating Polymer Networks of Poly(2-hydroxyethyl methacrylate) and Poly(N, N-dimethylacrylamide) as Potential Systems for Dermal Delivery of Dexamethasone Phosphate. Pharmaceutics 2023; 15:2328. [PMID: 37765296 PMCID: PMC10538039 DOI: 10.3390/pharmaceutics15092328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, a series of novel poly(2-hydroxyethyl methacrylate) (PHEMA)/poly(N,N'-dimethylacrylamide) (PDMAM) interpenetrating polymer networks (IPNs) were synthesized and studied as potential drug delivery systems of dexamethasone sodium phosphate (DXP) for dermal application. The IPN composition allows for control over its swelling ability as the incorporation of the highly hydrophilic PDMAM increases more than twice the IPN swelling ratio as compared to the PHEMA single networks, namely from ~0.5 to ~1.1. The increased swelling ratio of the IPNs results in an increased entrapment efficiency up to ~30% as well as an increased drug loading capacity of DXP up to 4.5%. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) show the formation of a solid dispersion between the drug DXP and the polymer (IPNs) matrix. Energy-dispersive X-ray (EDX) spectroscopy shows an even distribution of DXP within the IPN structure. The DXP release follows Fickian diffusion with ~70% of DXP released in 24 h. This study demonstrates the potential of the newly developed IPNs for the dermal delivery of DXP.
Collapse
Affiliation(s)
- Marin Simeonov
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, J. Bourchier blvd., 1164 Sofia, Bulgaria;
| | - Bistra Kostova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 2, Dunav str., 1000 Sofia, Bulgaria
| | - Elena Vassileva
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, J. Bourchier blvd., 1164 Sofia, Bulgaria;
| |
Collapse
|
9
|
Toader G, Podaru AI, Diacon A, Rusen E, Mocanu A, Brincoveanu O, Alexandru M, Zorila FL, Bacalum M, Albota F, Gavrila AM, Trica B, Rotariu T, Ionita M, Istrate M. Nanocomposite Hydrogel Films Based on Sequential Interpenetrating Polymeric Networks as Drug Delivery Platforms. Polymers (Basel) 2023; 15:3176. [PMID: 37571071 PMCID: PMC10420953 DOI: 10.3390/polym15153176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, novel materials have been obtained via a dual covalent and ionic crosslinking strategies, leading to the formation of a fully interpenetrated polymeric network with remarkable mechanical performances as drug delivery platforms for dermal patches. The polymeric network was obtained by the free-radical photopolymerization of N-vinylpyrrolidone using tri(ethylene glycol) divinyl ether as crosslinker in the presence of sodium alginate (1%, weight%). The ionic crosslinking was achieved by the addition of Zn2+, ions which were coordinated by the alginate chains. Bentonite nanoclay was incorporated in hydrogel formulations to capitalize on its mechanical reinforcement and adsorptive capacity. TiO2 and ZnO nanoparticles were also included in two of the samples to evaluate their influence on the morphology, mechanical properties and/or the antimicrobial activity of the hydrogels. The double-crosslinked nanocomposite hydrogels presented a good tensile resistance (1.5 MPa at 70% strain) and compression resistance (12.5 MPa at a strain of 70%). Nafcillin was loaded into nanocomposite hydrogel films with a loading efficiency of up to 30%. The drug release characteristics were evaluated, and the profile was fitted by mathematical models that describe the physical processes taking place during the drug transfer from the polymer to a PBS (phosphate-buffered saline) solution. Depending on the design of the polymeric network and the nanofillers included, it was demonstrated that the nafcillin loaded into the nanocomposite hydrogel films ensured a high to moderate activity against S. aureus and S. pyogenes and no activity against E. coli. Furthermore, it was demonstrated that the presence of zinc ions in these polymeric matrices can be correlated with the inactivation of E. coli.
Collapse
Affiliation(s)
- Gabriela Toader
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.I.P.); (T.R.)
| | - Alice Ionela Podaru
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.I.P.); (T.R.)
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania;
| | - Aurel Diacon
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.I.P.); (T.R.)
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania;
| | - Edina Rusen
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania;
| | - Alexandra Mocanu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania;
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
| | - Oana Brincoveanu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
- Research Institute of the University of Bucharest, University of Bucharest, Soseaua Panduri, nr. 90, Sector 5, 050663 Bucharest, Romania
| | - Mioara Alexandru
- Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Magurele, Romania; (M.A.); (F.L.Z.); (M.B.); (F.A.)
| | - Florina Lucica Zorila
- Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Magurele, Romania; (M.A.); (F.L.Z.); (M.B.); (F.A.)
- Department of Genetics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Indepententei, 050095 Bucharest, Romania
| | - Mihaela Bacalum
- Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Magurele, Romania; (M.A.); (F.L.Z.); (M.B.); (F.A.)
| | - Florin Albota
- Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Magurele, Romania; (M.A.); (F.L.Z.); (M.B.); (F.A.)
| | - Ana Mihaela Gavrila
- National Institute of Research and Development for Chemistry and Petrochemistry, 202 Splaiul Independentei, 060041 Bucharest, Romania; (A.M.G.); (B.T.)
| | - Bogdan Trica
- National Institute of Research and Development for Chemistry and Petrochemistry, 202 Splaiul Independentei, 060041 Bucharest, Romania; (A.M.G.); (B.T.)
| | - Traian Rotariu
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.I.P.); (T.R.)
| | - Mariana Ionita
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania;
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
- eBio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania
| | - Marcel Istrate
- S.C. Stimpex S.A., 46-48 Nicolae Teclu Street, 032368 Bucharest, Romania;
| |
Collapse
|
10
|
Budală DG, Luchian I, Tatarciuc M, Butnaru O, Armencia AO, Virvescu DI, Scutariu MM, Rusu D. Are Local Drug Delivery Systems a Challenge in Clinical Periodontology? J Clin Med 2023; 12:4137. [PMID: 37373830 PMCID: PMC10298898 DOI: 10.3390/jcm12124137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Placing antimicrobial treatments directly in periodontal pockets is an example of the local administration of antimicrobial drugs to treat periodontitis. This method of therapy is advantageous since the drug concentration after application far surpasses the minimum inhibitory concentration (MIC) and lasts for a number of weeks. As a result, numerous local drug delivery systems (LDDSs) utilizing various antibiotics or antiseptics have been created. There is constant effort to develop novel formulations for the localized administration of periodontitis treatments, some of which have failed to show any efficacy while others show promise. Thus, future research should focus on the way LDDSs can be personalized in order to optimize future clinical protocols in periodontal therapy.
Collapse
Affiliation(s)
- Dana Gabriela Budală
- Department of Implantology, Removable Prostheses, Dental Prostheses Technology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania; (D.G.B.)
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Monica Tatarciuc
- Department of Implantology, Removable Prostheses, Dental Prostheses Technology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania; (D.G.B.)
| | - Oana Butnaru
- Department of Biophysics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
| | - Adina Oana Armencia
- Department of Surgery and Oral Health, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Dragoș Ioan Virvescu
- Department of Fixed Prosthodontics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
| | - Monica Mihaela Scutariu
- Department of Implantology, Removable Prostheses, Dental Prostheses Technology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania; (D.G.B.)
| | - Darian Rusu
- Department of Periodontology, Faculty of Dental Medicine, “Anton Sculean” Research Center for Periodontal and Peri-Implant Diseases, “Victor Babes” University of Medicine and Pharmacy, Piața Eftimie Murgu 2, 300041 Timisoara, Romania
| |
Collapse
|
11
|
Ferreira I, Marques AC, Costa PC, Amaral MH. Effects of Steam Sterilization on the Properties of Stimuli-Responsive Polymer-Based Hydrogels. Gels 2023; 9:385. [PMID: 37232977 PMCID: PMC10217074 DOI: 10.3390/gels9050385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels based on stimuli-responsive polymers can change their characteristics in response to small variations in environmental conditions, such as temperature, pH, and ionic strength, among others. In the case of some routes of administration, such as ophthalmic and parenteral, the formulations must meet specific requirements, namely sterility. Therefore, it is essential to study the effect of the sterilization method on the integrity of smart gel systems. Thus, this work aimed to study the effect of steam sterilization (121 °C, 15 min) on the properties of hydrogels based on the following stimuli-responsive polymers: Carbopol® 940, Pluronic® F-127, and sodium alginate. The properties of the prepared hydrogels-pH, texture, rheological behavior, and sol-gel phase transition-were evaluated to compare and identify the differences between sterilized and non-sterilized hydrogels. The influence of steam sterilization on physicochemical stability was also investigated by Fourier-transform infrared spectroscopy and differential scanning calorimetry. The results of this study showed that the Carbopol® 940 hydrogel was the one that suffered fewer changes in the studied properties after sterilization. By contrast, sterilization was found to cause slight changes in the Pluronic® F-127 hydrogel regarding gelation temperature/time, as well as a considerable decrease in the viscosity of the sodium alginate hydrogel. There were no considerable differences in the chemical and physical characteristics of the hydrogels after steam sterilization. It is possible to conclude that steam sterilization is suitable for Carbopol® 940 hydrogels. Contrarily, this technique does not seem adequate for the sterilization of alginate or Pluronic® F-127 hydrogels, as it could considerably alter their properties.
Collapse
Affiliation(s)
- Inês Ferreira
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH-Medicines and Healthcare Products, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (I.F.); (P.C.C.)
- Associate Laboratory Institute for Health and Bioeconomy—i4HB, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana Camila Marques
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH-Medicines and Healthcare Products, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (I.F.); (P.C.C.)
- Associate Laboratory Institute for Health and Bioeconomy—i4HB, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo Cardoso Costa
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH-Medicines and Healthcare Products, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (I.F.); (P.C.C.)
- Associate Laboratory Institute for Health and Bioeconomy—i4HB, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH-Medicines and Healthcare Products, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (I.F.); (P.C.C.)
- Associate Laboratory Institute for Health and Bioeconomy—i4HB, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
12
|
Aldaais EA. A comprehensive review on the COVID-19 vaccine and drug delivery applications of interpenetrating polymer networks. Drug Deliv Transl Res 2023; 13:738-756. [PMID: 36443634 PMCID: PMC9707272 DOI: 10.1007/s13346-022-01254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/30/2022]
Abstract
An interpenetrating polymer network (IPNs) is a concoction of two or more polymers (natural, synthetic, and/or a combination of both) in which at least one polymer is synthesized or crosslinked in the intimate presence of the other. These three-dimensional networked systems have gained prominence in a series of biomedical applications, especially in the last two decades. The last decades witnessed a surge in the meaningful applications of interpenetrating polymer networks, especially in drug delivery as simple IPN systems advanced and resulted in the formation of highly efficient microspheres, nanoparticles, nanogels, and hydrogels, intelligent enough to sense and respond to changes in external stimuli such as temperature, pH, and ionic strength. The structure of the polymers, crosslinking agents, crosslinking density, and polymerization method play an integral role in determining the properties and application of IPNs in drug delivery. This review article is a modest effort to highlight the importance and applications of different types of interpenetrating polymer networks for the sustained, site-specific drug delivery of various therapeutic formulations, as witnessed in scientific research literature over the past 22 years (2000-2022). A special section of the manuscript is devoted to studying the efficacy of network polymers in vaccine delivery and highlighting the future scope (if any) of incorporating the IPN system in COVID-related vaccine/drug delivery. Four key focus areas in this review article [1, 2].
Collapse
Affiliation(s)
- Ebtisam A Aldaais
- Department of Radiological Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 2435, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
13
|
IPN beads prepared by tailoring of cassia tora gum and sodium carboxymethyl cellulose using Al+++ for controlled drug delivery. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
14
|
Uthumansha U, Prabahar K, Gajapathy DB, El-Sherbiny M, Elsherbiny N, Qushawy M. Optimization and In Vitro Characterization of Telmisartan Loaded Sodium Alginate Beads and Its In Vivo Efficacy Investigation in Hypertensive Induced Animal Model. Pharmaceutics 2023; 15:pharmaceutics15020709. [PMID: 36840031 PMCID: PMC9959044 DOI: 10.3390/pharmaceutics15020709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Antihypertensive drug telmisartan (TEL) belongs to BCS class II, which is characterized by low water solubility and, consequently, low oral bioavailability. Gastroretentive systems may overcome the problems associated with low solubility of TEL and incomplete absorption by localizing the drug release in the stomach. The purpose of this study was to prepare TEL-loaded, oil-entrapped, floating alginate beads with the intent of enhancing the oral bioavailability of TEL for the treatment of hypertension. METHODS For the formulation and optimization of seventeen formulations of TEL-loaded oil-entrapped floating alginate beads, a central composite design was utilized. The concentration of sodium alginate (X1), the concentration of cross-linker (X2), and the concentration of sesame oil (X3) served as independent variables, whereas the entrapment efficiency (Y1), in vitro buoyancy (Y2), and drug release Q6h (Y3) served as dependent variables. Using the emulsion gelation method and calcium chloride as the cross-linking agent, different formulations of TEL alginate beads were produced. All formulations were evaluated for their entrapment efficiency percentage, in vitro buoyancy, and in vitro drug release. The optimal formulation of TEL alginate beads was prepared with and without oil and evaluated for entrapment efficiency percentage, in vitro buoyancy, swelling ratio, average size, and in vitro drug release. Using scanning electron microscopes, the surface morphology was determined. Using IR spectroscopy, the compatibility between the ingredients was determined. In vivo evaluation of the optimized formulation in comparison to the free TEL was done in hypertension-induced rats, and the systolic blood pressure and all pharmacokinetic parameters were measured. RESULTS The prepared beads exhibited a high entrapment efficiency percentage, in vitro buoyancy, and prolonged drug release. TEL was compatible with other ingredients, as approved by IR spectroscopy. The prepared TEL beads were spherical, as shown by the SEM. The relative bioavailability of TEL-loaded oil-entrapped beads was 222.52%, which was higher than that of the pure TEL suspension. The prepared TEL beads formulation exhibited a higher antihypertensive effect for a prolonged time compared to pure TEL suspension. CONCLUSIONS It can be concluded that this innovative delivery method of TEL-loaded oil-entrapped beads is a promising tool for enhancing drug solubility and, thus, oral bioavailability and therapeutic efficacy, resulting in enhanced patient compliance. Furthermore, the in vivo study confirmed the formulation's extended anti-hypertensive activity in animal models.
Collapse
Affiliation(s)
- Ubaidulla Uthumansha
- Department of Pharmaceutics, Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
- Correspondence: or ; Tel.: +91-9677781834
| | - Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyadh 13713, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Dakahlia, Egypt
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Dakahlia, Egypt
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish 45511, North Sinai, Egypt
| |
Collapse
|
15
|
Li W, Guan Q, Li M, Saiz E, Hou X. Nature's strategy to construct tough responsive hydrogel actuators and their applications. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
16
|
Conductive double-network hydrogel composed of sodium alginate, Polyacrylamide, and reduced graphene oxide. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Liu L, Rambarran T, Fitzpatrick S, Sheardown H. Phase separation control of PDMS/PNIPAAm IPNs and the effect on drug release. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Rathod S. Interpenetrating polymeric network (IPNs) in ophthalmic drug delivery: Breaking the barriers. Int Ophthalmol 2022; 43:1063-1074. [PMID: 36053474 DOI: 10.1007/s10792-022-02482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 08/20/2022] [Indexed: 10/14/2022]
Abstract
To maintain the therapeutic drug concentration for a prolonged period of time in aqueous and vitreous humor is primary challenge for ophthalmic drug delivery. Majority of the locally administered drug into the eye is lost as to natural reflexes like blinking and lacrimation resulting in the short span of drug residence. Consequently, less than 5% of the applied drug penetrate through the cornea and reaches the intraocular tissues. The major targets for optimal ophthalmic drug delivery are increasing drug residence time in cul-de-sac of the eye, prolonging intraocular exposure, modulating drug release from the delivery system, and minimizing pre-corneal drug loss. Development of in situ gel, contact lens, intraocular lens, inserts, artificial cornea, scaffold, etc., for ophthalmic drug delivery are few approaches to achieve these major targeted objectives for delivering the drug optimally. Interpenetrating polymeric network (IPN) or smart hydrogels or stimuli sensitive hydrogels are the class of polymers that can help to achieve the targets in ophthalmic drug delivery due to their versatility, biocompatibility and biodegradability. These novel ''smart" materials can alter their molecular configuration and result in volume phase transition in response to environmental stimuli, such as temperature, pH, ionic strength, electric and magnetic field. Hydrogel and tissue interaction, mechanical/tensile properties, pore size and surface chemistry of IPNs can also be modulated for tuning the drug release kinetics. Stimuli sensitive IPNs has been widely exploited to prepare in situ gelling formulations for ophthalmic drug delivery. Low refractive index hydrogel biomaterials with high water content, soft tissue-like physical properties, wettability, oxygen, glucose permeability and desired biocompatibility makes IPNs versatile candidate for contact lenses and corneal implants. This review article focuses on the exploration of these smart polymeric networks/IPNs for therapeutically improved ophthalmic drug delivery that has unfastened novel arenas in ophthalmic drug delivery.
Collapse
Affiliation(s)
- Sachin Rathod
- Maliba Pharmacy College, UKA Tarsadia University, Gopal-Vidyanagar Campus, Surat, 394350, India. .,Parul Institute of Pharmacy and Research, Parul University, Waghodia, Vadodara, 391760, India.
| |
Collapse
|
19
|
NANOCOMPOSITES BASED ON SINGLECOMPONENT AND MULTICOMPONENT POLYMER MATRICES FOR BIOMEDICAL APPLICATIONS. Polym J 2022. [DOI: 10.15407/polymerj.44.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The review is devoted to analysis of the publications in the area of polymers of biomedical applications. Different types of the polymer matrices for drug delivery are analyzed, including polyurethanes, hydroxyacrylates, and multicomponent polymer matrices, which created by method of interpenetrating polymer networks. Particular attention is paid to description of synthesized and investigated nanocomposites based on polyurethane / poly (2-hydroxyethyl methacrylate) polymer matrix and nanooxides modified by biologically active compounds.
Collapse
|
20
|
Vaid V, Jindal R. RSM-CCD optimized in air synthesis of novel kappa-carrageenan/tamarind kernel powder hybrid polymer network incorporated with inclusion complex of (2-hydroxypropyl)-β-cyclodextrin and adenosine for controlled drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Shaikh MAJ, Gilhotra R, Pathak S, Mathur M, Iqbal HMN, Joshi N, Gupta G. Current update on psyllium and alginate incorporate for interpenetrating polymer network (IPN) and their biomedical applications. Int J Biol Macromol 2021; 191:432-444. [PMID: 34560150 DOI: 10.1016/j.ijbiomac.2021.09.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023]
Abstract
Natural polysaccharides and their designed structures are extremely valuable due to their intrinsic pharmacological properties and are also used as pharmaceutical aids. These naturally occurring polysaccharides (e.g., psyllium and alginate) are gaining popularity for their use in the preparation of interpenetrating polymer network (IPN) materials with improved swelling ability, biodegradability, stability, non-cytotoxic, biocompatibility, and cost-effectiveness. IPN is prepared sequentially or simultaneously by microwave irradiation, casting evaporation, emulsification cross-linking, miniemulsion/inverse miniemulsion technique, and radiation polymerization methods. In addition, the prepared IPNs have has been extensively characterized using various analytical and imaging techniques before sustainable deployment for multiple applications. Regardless of these multi-characteristic attributes, the current literature lacks a detailed overview of the biomedical aspects of psyllium, alginate, and their engineered IPN structures. Herein, we highlight the unique synthesis, structural, and biomedical considerations of psyllium, alginate, and engineered IPN structures. In this review, a wide range of biomedical applications, such as role as a drug carrier for sustain delivery, wound dressing, tissue engineering, and related miscellaneous application of psyllium, alginate, and their IPN structures described with appropriate examples. Further research will be carried out for the development of IPN using psyllium and alginate, which will be a smart and active carrier for drugs used in the treatment of life-threatening diseases due to their inherent pharmacological potential such as hypoglycemic, immunomodulatory, antineoplastic, and antimicrobial.
Collapse
Affiliation(s)
| | - Ritu Gilhotra
- School of Pharmacy, Suresh GyanVihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Sachchidanand Pathak
- School of Pharmacy, Suresh GyanVihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Manas Mathur
- School of Agriculture, Suresh GyanVihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | - Navneet Joshi
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh-332311, District-Sikar, Rajasthan, India.
| | - Gaurav Gupta
- School of Pharmacy, Suresh GyanVihar University, Jagatpura 302017, Mahal Road, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha University, Chennai, India.
| |
Collapse
|
22
|
Biswas A, Mondal S, Das SK, Bose A, Thomas S, Ghosal K, Roy S, Provaznik I. Development and Characterization of Natural Product Derived Macromolecules Based Interpenetrating Polymer Network for Therapeutic Drug Targeting. ACS OMEGA 2021; 6:28699-28709. [PMID: 34746564 PMCID: PMC8567264 DOI: 10.1021/acsomega.1c03363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/24/2021] [Indexed: 05/12/2023]
Abstract
Interpenetrating polymer network (IPN)-based bead formulations were exploited by cross-linking different hydrophilic polymers in different combinations and at different ratios. Polyvinyl alcohol, xanthan gum, guar gum, gellan gum, and sodium alginate (Na-alginate) were used in this work as hydrophilic polymers to enhance the solubility of diclofenac sodium and also to target the delivery at preferred locations. IPN beads based on polysaccharides were prepared by the ionic gelation method. Differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy data showed that the IPN microbeads solubilized and encapsulated the drug within the network. We found over 83% encapsulation efficiency of the drug delivery system for the drug, and this efficiency increased with the concentration of the polymer. Ex vivo experiments using the goat intestine revealed that the IPN microbeads were able to adhere to the intestinal epithelium, a mucoadhesive behavior that could be beneficial to the drug pharmacokinetics, while in vitro experiments in phosphate buffer showed that the IPN enabled significant drug release. We believe that these IPN microbeads are an excellent drug delivery system to solubilize drug molecules and ensure adhesion to the intestinal wall, thereby localizing the drug release to enhance bioavailability of poorly soluble drugs.
Collapse
Affiliation(s)
- Avirup Biswas
- Pharmaceutical
Biotechnology, Manipal College of Pharmaceutical
Sciences, Madhav Nagar, Manipal, Manipal, Karnataka 576104, India
| | - Sancharee Mondal
- Dr.
B. C. Roy College of Pharmacy and AHS, Durgapur 713206, India
| | | | - Anindya Bose
- School
of Pharmaceutical Sciences (SPS), Siksha
O Anusandhan University, Kalinganagar, Bhubaneswar, Odisha 751003, India
| | - Sabu Thomas
- IIUCNN, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Kajal Ghosal
- Division
of Pharmaceutics, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Sudeep Roy
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno 61600, Czech Republic
| | - Ivo Provaznik
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno 61600, Czech Republic
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Brno 62500, Czech Republic
| |
Collapse
|
23
|
Barty‐King CH, Chan CLC, Parker RM, Bay MM, Vadrucci R, De Volder M, Vignolini S. Mechanochromic, Structurally Colored, and Edible Hydrogels Prepared from Hydroxypropyl Cellulose and Gelatin. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102112. [PMID: 34323315 PMCID: PMC11468689 DOI: 10.1002/adma.202102112] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Hydroxypropyl cellulose (HPC) is an edible, cost-effective and widely used derivative of cellulose. Under lyotropic conditions in water, HPC forms a photonic, liquid crystalline mesophase with an exceptional mechanochromic response. However, due to insufficient physical cross-linking photonic HPC can flow freely as a viscous liquid, preventing the exploitation of this mechanochromic material in the absence of any external encapsulation or structural confinement. Here this challenge is addressed by mixing HPC and gelatin in water to form a self-supporting, viscoelastic, and edible supramolecular photonic hydrogel. It is demonstrated that the structural coloration, mechanochromism and non-Newtonian shear-thinning behavior of the lyotropic HPC solutions can all be retained into the gel state. Moreover, the rigidity of the HPC-gel provides a 69% shorter mechanochromic relaxation time back to its initial color when compared to the liquid HPC-water only system, broadening the dynamic color range of HPC by approximately 2.5× in response to a compressive pressure. Finally, the ability to formulate the HPC-gels in a scalable fashion from only water and "food-grade" constituents unlocks a wide range of potential applications, from response-tunable mechanochromic materials and colorant-free food decoration, to short-term sensors in, for example, biodegradable "smart labels" for food packaging.
Collapse
Affiliation(s)
- Charles H. Barty‐King
- Department of EngineeringUniversity of Cambridge17 Charles Babbage RoadCambridgeCB3 0FSUK
| | - Chun Lam Clement Chan
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Richard M. Parker
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Mélanie M. Bay
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Roberto Vadrucci
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Michael De Volder
- Department of EngineeringUniversity of Cambridge17 Charles Babbage RoadCambridgeCB3 0FSUK
| | - Silvia Vignolini
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
24
|
Da Silva K, Kumar P, van Vuuren SF, Pillay V, Choonara YE. Three-Dimensional Printability of an ECM-Based Gelatin Methacryloyl (GelMA) Biomaterial for Potential Neuroregeneration. ACS OMEGA 2021; 6:21368-21383. [PMID: 34471741 PMCID: PMC8388000 DOI: 10.1021/acsomega.1c01903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/30/2021] [Indexed: 05/03/2023]
Abstract
The current study introduces two novel, smart polymer three-dimensional (3D)-printable interpenetrating polymer network (IPN) hydrogel biomaterials with favorable chemical, mechanical, and morphological properties for potential applications in traumatic brain injury (TBI) such as potentially assisting in the restoration of neurological function through closure of the wound deficit and neural tissue regeneration. Additionally, removal of injury matter to allow for the appropriate scaffold grafting may assist in providing a TBI treatment. Furthermore, due to the 3D printability of the IPN biomaterials, complex structures can be designed and fabricated to mimic the native shape and structure of the injury sight, which can potentially assist with neural tissue regeneration after TBI. In this study, a peptide-only approach was employed, wherein collagen and elastin in a blend with gelatin methacryloyl were prepared and crosslinked using either Irgacure or Irgacure and Genipin to form either a semi or full IPN hydrogel 3D-printable neuromimicking platform system, respectively. The scaffolds displayed favorable thermal stability and were amorphous in nature with high full width at half-maximum values. Furthermore, no alteration to the peptide secondary structure was noted using Fourier transform infrared spectroscopy. The IPN biomaterials have a stiffness of around 600 Pa and are suitable for softer tissue engineering applications-that is, the brain. Scanning electron micrographs indicated that the IPN biomaterials had a morphological structure with a significant resemblance to the native rat cortex. Both biomaterial scaffolds were shown to support the growth of PC12 cells over a 72 h period. Furthermore, the increased nuclear eccentricity and nuclear area were shown to support the postulation that the IPN biomaterials maintain the cells in a healthy state encouraging cellular mitosis and proliferation. The Genipin component of the full IPN was further shown to exhibit antimicrobial properties and this suggests that Genipin can prevent the growth of pathogens associated with postsurgical brain infections. In addition to these findings, the study presents an anomaly, wherein the full IPN is found to be more brittle than the semi IPN, a finding that is in contradiction with the literature. This research, therefore, contributes to the collection of potential biomaterials for TBI applications coupled with 3D printing and can assist in the progression of neural treatments toward patient-specific scaffolds through the development of custom scaffolds.
Collapse
Affiliation(s)
- Kate Da Silva
- Wits
Advanced Drug Delivery Platform Research Unit, Department of Pharmacy
and Pharmacology, School of Therapeutic Sciences, Faculty of Health
Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South
Africa
| | - Pradeep Kumar
- Wits
Advanced Drug Delivery Platform Research Unit, Department of Pharmacy
and Pharmacology, School of Therapeutic Sciences, Faculty of Health
Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South
Africa
| | - Sandy F. van Vuuren
- Department
of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty
of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South
Africa
| | - Viness Pillay
- Wits
Advanced Drug Delivery Platform Research Unit, Department of Pharmacy
and Pharmacology, School of Therapeutic Sciences, Faculty of Health
Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South
Africa
| | - Yahya E. Choonara
- Wits
Advanced Drug Delivery Platform Research Unit, Department of Pharmacy
and Pharmacology, School of Therapeutic Sciences, Faculty of Health
Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South
Africa
- .
Phone: +27-11-717-2052. Fax: +27-11-642-4355, +27-86-553-4733
| |
Collapse
|
25
|
Stærk K, Grønnemose RB, Palarasah Y, Kolmos HJ, Lund L, Alm M, Thomsen P, Andersen TE. A Novel Device-Integrated Drug Delivery System for Local Inhibition of Urinary Tract Infection. Front Microbiol 2021; 12:685698. [PMID: 34248906 PMCID: PMC8267894 DOI: 10.3389/fmicb.2021.685698] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/26/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Catheter-associated urinary tract infection (CAUTI) is a frequent community-acquired infection and the most common nosocomial infection. Here, we developed a novel antimicrobial catheter concept that utilizes a silicone-based interpenetrating polymer network (IPN) as balloon material to facilitate a topical slow-release prophylaxis of antibacterial agents across the balloon to the urinary bladder. Methods: The balloon material was achieved by modifying low shore hardness silicone tubes with a hydrogel interpenetrating polymer in supercritical CO2 using the sequential method. Release properties and antibacterial efficacy of the IPN balloon treatment concept was investigated in vitro and in a porcine CAUTI model developed for the study. In the latter, Bactiguard Infection Protection (BIP) Foley catheters were also assessed to enable benchmark with the traditional antimicrobial coating principle. Results: Uropathogenic Escherichia coli was undetectable in urinary bladders and on retrieved catheters in the IPN treatment group as compared to control that revealed significant bacteriuria (>105 colony forming units/ml) as well as catheter-associated biofilm. The BIP catheters failed to prevent E. coli colonization of the bladder but significantly reduced catheter biofilm formation compared to the control. Conclusion: The IPN-catheter concept provides a novel, promising delivery route for local treatment in the urinary tract.
Collapse
Affiliation(s)
- Kristian Stærk
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Rasmus Birkholm Grønnemose
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Yaseelan Palarasah
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Hans Jørn Kolmos
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Lars Lund
- Research Unit of Urology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | | | - Thomas Emil Andersen
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| |
Collapse
|
26
|
Gsib O, Eggermont LJ, Egles C, Bencherif SA. Engineering a macroporous fibrin-based sequential interpenetrating polymer network for dermal tissue engineering. Biomater Sci 2021; 8:7106-7116. [PMID: 33089849 DOI: 10.1039/d0bm01161d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The success of skin tissue engineering for deep wound healing relies predominantly on the design of innovative and effective biomaterials. This study reports the synthesis and characterization of a new type of naturally-derived and macroporous interpenetrating polymer network (IPN) for skin repair. These biomaterials consist of a biologically active fibrous fibrin network polymerized within a mechanically robust and macroporous construct made of polyethylene glycol and biodegradable serum albumin (PEGDM-co-SAM). First, mesoporous PEGDM-co-SAM hydrogels were synthesized and subjected to cryotreatment to introduce an interconnected macroporous network. Subsequently, fibrin precursors were incorporated within the cryotreated PEG-based network and then allowed to spontaneously polymerize and form a sequential IPN. Rheological measurements indicated that fibrin-based sequential IPN hydrogels exhibited improved and tunable mechanical properties when compared to fibrin hydrogels alone. In vitro data showed that human dermal fibroblasts adhere, infiltrate and proliferate within the IPN constructs, and were able to secrete endogenous extracellular matrix proteins, namely collagen I and fibronectin. Furthermore, a preclinical study in mice demonstrated that IPNs were stable over 1-month following subcutaneous implantation, induced a minimal host inflammatory response, and displayed a substantial cellular infiltration and tissue remodeling within the constructs. Collectively, these data suggest that macroporous and mechanically reinforced fibrin-based sequential IPN hydrogels are promising three-dimensional platforms for dermal tissue regeneration.
Collapse
Affiliation(s)
- Olfat Gsib
- Laboratoire de BioMécanique et BioIngénierie (BMBI), UMR CNRS 7388, Sorbonne Universités, Université de Technologie of Compiègne (UTC), Compiègne, France.
| | - Loek J Eggermont
- Departments of Chemical Engineering and Bioengineering, Northeastern University, Boston, MA, USA
| | - Christophe Egles
- Laboratoire de BioMécanique et BioIngénierie (BMBI), UMR CNRS 7388, Sorbonne Universités, Université de Technologie of Compiègne (UTC), Compiègne, France.
| | - Sidi A Bencherif
- Laboratoire de BioMécanique et BioIngénierie (BMBI), UMR CNRS 7388, Sorbonne Universités, Université de Technologie of Compiègne (UTC), Compiègne, France. and Departments of Chemical Engineering and Bioengineering, Northeastern University, Boston, MA, USA and Department of Bioengineering, Northeastern University, Boston, MA, USA and Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
27
|
Xu W, Su W, Xue Z, Pu F, Xie Z, Jin K, Polyakov NE, Dushkin AV, Su W. Research on Preparation of 5-ASA Colon-Specific Hydrogel Delivery System without Crosslinking Agent by Mechanochemical Method. Pharm Res 2021; 38:693-706. [PMID: 33754258 DOI: 10.1007/s11095-021-02993-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE This study aims to overcome the challenges of the current oral targeted drug delivery system, such as the complex preparation process, poor biocompatibility, and delayed drug release. METHODS Here, a non-covalent polymer hydrogel was prepared using the mechanochemical method, and the solid phase loading of 5-amino salicylic acid (5-ASA) was realized. RESULTS The results obtained from the thermodynamics study, particle size analysis, and electron microscopy show that chitosan (CS) and sodium alginate (SA) form a pH-sensitive hydrogel under the mechanochemical force and also maintain good stability in aqueous solution. Fluorescent tracers study showed that the pH-sensitive hydrogel could achieve the targeted drug release in the colon and the retention time was over 12 h. Next, in vivo efficacy studies, change in mice body weight, DAI (disease activity index) score, thymus, and spleen index, and the diseased state of the mice colon revealed that the pH-sensitive hydrogel is an improved drug delivery system over 5-ASA API commercial preparations as observed in the efficacy and toxicological studies. CONCLUSION This method uses an innovative preparation technology that without the need of cross-linking agent to produce an efficient colon-targeted drug delivery system for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Wenhao Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Wenjing Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhencheng Xue
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Faxiang Pu
- Zhejiang Suichang Limin Pharmaceutical Co. Ltd., Suichang, People's Republic of China
| | - Zhangfu Xie
- Zhejiang Suichang Limin Pharmaceutical Co. Ltd., Suichang, People's Republic of China
| | - Kongliang Jin
- Zhejiang Suichang Limin Pharmaceutical Co. Ltd., Suichang, People's Republic of China
| | | | - Alexander V Dushkin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, Russia
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
28
|
Cai MH, Chen XY, Fu LQ, Du WL, Yang X, Mou XZ, Hu PY. Design and Development of Hybrid Hydrogels for Biomedical Applications: Recent Trends in Anticancer Drug Delivery and Tissue Engineering. Front Bioeng Biotechnol 2021; 9:630943. [PMID: 33681168 PMCID: PMC7925894 DOI: 10.3389/fbioe.2021.630943] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
The applications of hydrogels in biomedical field has been since multiple decades. Discoveries in biology and chemistry render this platform endowed with much engineering potentials and growing continuously. Novel approaches in constructing these materials have led to the production of complex hybrid hydrogels systems that can incorporate both natural and synthetic polymers and other functional moieties for mediated cell response, tunable release kinetic profiles, thus they are used and research for diverse biomedical applications. Recent advancement in this field has established promising techniques for the development of biorelevant materials for construction of hybrid hydrogels with potential applications in the delivery of cancer therapeutics, drug discovery, and re-generative medicines. In this review, recent trends in advanced hybrid hydrogels systems incorporating nano/microstructures, their synthesis, and their potential applications in tissue engineering and anticancer drug delivery has been discussed. Examples of some new approaches including click reactions implementation, 3D printing, and photopatterning for the development of these materials has been briefly discussed. In addition, the application of biomolecules and motifs for desired outcomes, and tailoring of their transport and kinetic behavior for achieving desired outcomes in hybrid nanogels has also been reviewed.
Collapse
Affiliation(s)
- Mao-Hua Cai
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch), Hangzhou, China
| | - Xiao-Yi Chen
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital of Hangzhou Medical College, People's Hospital, Hangzhou, China
| | - Luo-Qin Fu
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch), Hangzhou, China
| | - Wen-Lin Du
- Clinical Research Institute, Zhejiang Provincial People's Hospital of Hangzhou Medical College, People's Hospital, Hangzhou, China
| | - Xue Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital of Hangzhou Medical College, People's Hospital, Hangzhou, China
| | - Xiao-Zhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital of Hangzhou Medical College, People's Hospital, Hangzhou, China
| | - Pei-Yang Hu
- Department of Traumatology, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People's Hospital), Taizhou, China
| |
Collapse
|
29
|
Ibeanu N, Egbu R, Onyekuru L, Javaheri H, Tee Khaw P, R. Williams G, Brocchini S, Awwad S. Injectables and Depots to Prolong Drug Action of Proteins and Peptides. Pharmaceutics 2020; 12:E999. [PMID: 33096803 PMCID: PMC7589296 DOI: 10.3390/pharmaceutics12100999] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Proteins and peptides have emerged in recent years to treat a wide range of multifaceted diseases such as cancer, diabetes and inflammation. The emergence of polypeptides has yielded advancements in the fields of biopharmaceutical production and formulation. Polypeptides often display poor pharmacokinetics, limited permeability across biological barriers, suboptimal biodistribution, and some proclivity for immunogenicity. Frequent administration of polypeptides is generally required to maintain adequate therapeutic levels, which can limit efficacy and compliance while increasing adverse reactions. Many strategies to increase the duration of action of therapeutic polypeptides have been described with many clinical products having been developed. This review describes approaches to optimise polypeptide delivery organised by the commonly used routes of administration. Future innovations in formulation may hold the key to the continued successful development of proteins and peptides with optimal clinical properties.
Collapse
Affiliation(s)
- Nkiruka Ibeanu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Raphael Egbu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Lesley Onyekuru
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Hoda Javaheri
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Peng Tee Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Gareth R. Williams
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Steve Brocchini
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Sahar Awwad
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| |
Collapse
|
30
|
Mohammadi M, Arabi L, Alibolandi M. Doxorubicin-loaded composite nanogels for cancer treatment. J Control Release 2020; 328:171-191. [PMID: 32866591 DOI: 10.1016/j.jconrel.2020.08.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023]
Abstract
Nanogels as a versatile vehicle for doxorubicin have attracted great attention during the last decade. Since a nanogel composite device transport encapsulated drugs to the site of action and release them in a desirable time-frame, it could provide higher therapeutic effect. By implementation of different polymers, polymer/inorganic NPs and various crosslinking chemistry, it is possible to fabricate novel composite nanogel systems with favorable characteristics such as smart intelligent systems or multipurpose platforms. Due to high stability, good drug loading capacity for hydrophobic and hydrophilic agents, nanogels introduce great opportunity in pharmaceutical innovations. Composite nanogels show capability in gene, drug and diagnostic agents' delivery while providing an ideal platform for theranostic purposes as multifunctional systems. Doxorubicin as an anticancer agent is widely used against numerous cancers. Due to high systemic toxicity of doxorubicin, there is still need for its safe and specific delivery to the site of action. In this regard, so many efforts have been put in by the researchers for preparation of different nanogel formulations of doxorubicin in order to produce more efficient formulations. This review focuses on design, fabrication, advantages and disadvantages of composite nanogel-based doxorubicin formulations.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Vasile C, Pamfil D, Stoleru E, Baican M. New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules 2020; 25:E1539. [PMID: 32230990 PMCID: PMC7180755 DOI: 10.3390/molecules25071539] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023] Open
Abstract
New trends in biomedical applications of the hybrid polymeric hydrogels, obtained by combining natural polymers with synthetic ones, have been reviewed. Homopolysaccharides, heteropolysaccharides, as well as polypeptides, proteins and nucleic acids, are presented from the point of view of their ability to form hydrogels with synthetic polymers, the preparation procedures for polymeric organic hybrid hydrogels, general physico-chemical properties and main biomedical applications (i.e., tissue engineering, wound dressing, drug delivery, etc.).
Collapse
Affiliation(s)
- Cornelia Vasile
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Daniela Pamfil
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Elena Stoleru
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Mihaela Baican
- Pharmaceutical Physics Department, “Grigore T. Popa” Medicine and Pharmacy University, 16, University Str., Iaşi 700115, Romania
| |
Collapse
|
32
|
Boudraa KE, Bouchaour T, Beyens C, Maschke U. Novel interpenetrating polymer network composed of poly(butyl acrylates) and poly(ethyl-hexyl acrylate). INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2020. [DOI: 10.1080/1023666x.2020.1737467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Kamel Eddine Boudraa
- Biology Department, Faculty of Sciences, University of Saida, Saida, Algeria
- Laboratoire de Recherche sur les Macromolécules, Département de Physique, Faculté des Sciences, Université Abou Bakr Belkaïd, Tlemcen, Algeria
| | - Tewfik Bouchaour
- Laboratoire de Recherche sur les Macromolécules, Département de Physique, Faculté des Sciences, Université Abou Bakr Belkaïd, Tlemcen, Algeria
| | - Christophe Beyens
- Unité de Matériaux et de Transformations UMET (UMR CNRS N°8207), Université des Sciences et Technologies de Lille, Villeneuve d’Ascq Cedex, France
| | - Ulrich Maschke
- Unité de Matériaux et de Transformations UMET (UMR CNRS N°8207), Université des Sciences et Technologies de Lille, Villeneuve d’Ascq Cedex, France
| |
Collapse
|
33
|
Fuchs S, Shariati K, Ma M. Specialty Tough Hydrogels and Their Biomedical Applications. Adv Healthc Mater 2020; 9:e1901396. [PMID: 31846228 PMCID: PMC7586320 DOI: 10.1002/adhm.201901396] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Hydrogels have long been explored as attractive materials for biomedical applications given their outstanding biocompatibility, high water content, and versatile fabrication platforms into materials with different physiochemical properties and geometries. Nonetheless, conventional hydrogels suffer from weak mechanical properties, restricting their use in persistent load-bearing applications often required of materials used in medical settings. Thus, the fabrication of mechanically robust hydrogels that can prolong the lifetime of clinically suitable materials under uncompromising in vivo conditions is of great interest. This review focuses on design considerations and strategies to construct such tough hydrogels. Several promising advances in the proposed use of specialty tough hydrogels for soft actuators, drug delivery vehicles, adhesives, coatings, and in tissue engineering settings are highlighted. While challenges remain before these specialty tough hydrogels will be deemed translationally acceptable for clinical applications, promising preliminary results undoubtedly spur great hope in the potential impact this embryonic research field can have on the biomedical community.
Collapse
Affiliation(s)
- Stephanie Fuchs
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| |
Collapse
|
34
|
Dragan ES, Dinu MV. Polysaccharides constructed hydrogels as vehicles for proteins and peptides. A review. Carbohydr Polym 2019; 225:115210. [DOI: 10.1016/j.carbpol.2019.115210] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
|
35
|
Raina N, Rani R, Khan A, Nagpal K, Gupta M. Interpenetrating polymer network as a pioneer drug delivery system: a review. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02996-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Theune LE, Buchmann J, Wedepohl S, Molina M, Laufer J, Calderón M. NIR- and thermo-responsive semi-interpenetrated polypyrrole nanogels for imaging guided combinational photothermal and chemotherapy. J Control Release 2019; 311-312:147-161. [DOI: 10.1016/j.jconrel.2019.08.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 01/06/2023]
|
37
|
Sohail M, Mudassir, Minhas MU, Khan S, Hussain Z, de Matas M, Shah SA, Khan S, Kousar M, Ullah K. Natural and synthetic polymer-based smart biomaterials for management of ulcerative colitis: a review of recent developments and future prospects. Drug Deliv Transl Res 2019; 9:595-614. [PMID: 29611113 DOI: 10.1007/s13346-018-0512-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ulcerative colitis (UC) is an inflammatory disease of the colon that severely affects the quality of life of patients and usually responds well to anti-inflammatory agents for symptomatic relief; however, many patients need colectomy, a surgical procedure to remove whole or part of the colon. Though various types of pharmacological agents have been employed for the management of UC, the lack of effectiveness is usually predisposed to various reasons including lack of target-specific delivery of drugs and insufficient drug accumulation at the target site. To overcome these glitches, many researchers have designed and characterized various types of versatile polymeric biomaterials to achieve target-specific delivery of drugs via oral route to optimize their targeting efficiency to the colon, to improve drug accumulation at the target site, as well as to ameliorate off-target effects of chemotherapy. Therefore, the aim of this review was to summarize and critically discuss the pharmaceutical significance and therapeutic feasibility of a wide range of natural and synthetic biomaterials for efficient drug targeting to colon and rationalized treatment of UC. Among various types of biomaterials, natural and synthetic polymer-based hydrogels have shown promising targeting potential due to their innate pH responsiveness, sustained and controlled release characteristics, and microbial degradation in the colon to release the encapsulated drug moieties. These characteristic features make natural and synthetic polymer-based hydrogels superior to conventional pharmacological strategies for the management of UC.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan.
| | - Mudassir
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan
| | - Muhammad Usman Minhas
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Lower Dir, KPK, Pakistan
| | - Zahid Hussain
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia
| | - Marcel de Matas
- SEDA Pharmaceutical Development Services, The BioHub at Alderley Park, Cheshire, UK
| | - Syed Ahmed Shah
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan
| | - Samiullah Khan
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan
| | - Kaleem Ullah
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan
| |
Collapse
|
38
|
Kaur K, Jindal R, Saini D. Synthesis, optimization and characterization of PVA-co-poly(methacrylic acid) green adsorbents and applications in environmental remediation. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02900-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Rusu AG, Chiriac AP, Nita LE, Bercea M, Tudorachi N, Ghilan A, Pamfil D, Rusu D, Cojocaru FD. Interpenetrated polymer network with modified chitosan in composition and self-healing properties. Int J Biol Macromol 2019; 132:374-384. [DOI: 10.1016/j.ijbiomac.2019.03.136] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 11/26/2022]
|
40
|
Cao H, Lee MKH, Yang H, Sze SK, Tan NS, Tay CY. Mechanoregulation of Cancer-Associated Fibroblast Phenotype in Three-Dimensional Interpenetrating Hydrogel Networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7487-7495. [PMID: 30480453 DOI: 10.1021/acs.langmuir.8b02649] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tumor stromal residing cancer-associated fibroblasts (CAFs) are significant accomplices in the growth and development of malignant neoplasms. As cancer progresses, the stroma undergoes a dramatic remodeling and stiffening of its extracellular matrix (ECM). However, exactly how these biomechanical changes influence the CAF behavior and the functional paracrine crosstalk with the neighboring tumor cells in a 3-dimensional (3D) microenvironment remains elusive. Herein, a collagen and alginate interpenetrating network (CoAl-IPN) hydrogel system was employed as a 3D in vitro surrogate of the cancerous breast tissue stromal niche. In this study, the mechanical properties of CoAl-IPN were precisely fine-tuned with Young's modulus ( E) values of ∼108 and 898 Pa. The results revealed that the 3D polymeric network mechanics and microstructure are critical biophysical determinants of the human breast CAF (b-CAF) morphology, phenotype, and paracrine dialogue with MDA-MB-231 tumoroids. A compliant hydrogel network favors b-CAF spreading, nuclear translocation of the YAP/TAZ mechanosignaling protein, and upregulation of CAF hallmark transcripts. Conversely, a rigid and highly cross-linked hydrogel network imposed a physical entrapment effect on the b-CAFs that limited their spreading and phenotype in a manner that effectively muted their pro-tumorigenic paracrine activity. Collectively, the CoAl-IPN 3D culture system has proven to be a versatile platform in defining the 3D biophysical parameters that could either promote or restrain the protumorigenic activity of b-CAFs and sheds critical mechano-mediated light onto the phenotypic plasticity and corresponding specific bioactivity of b-CAFs in the 3D microenvironment.
Collapse
Affiliation(s)
- Huan Cao
- School of Materials Science and Engineering , Nanyang Technological University , N4.1, 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Melissa Kao Hui Lee
- School of Materials Science and Engineering , Nanyang Technological University , N4.1, 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Haibo Yang
- School of Materials Science and Engineering , Nanyang Technological University , N4.1, 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Siu Kwan Sze
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551 , Singapore
| | - Nguan Soon Tan
- School of Materials Science and Engineering , Nanyang Technological University , N4.1, 50 Nanyang Avenue , Singapore 639798 , Singapore
- Lee Kong Chian School of Medicine , Nanyang Technological University , 59 Nanyang Drive , Singapore 636921 , Singapore
| | - Chor Yong Tay
- School of Materials Science and Engineering , Nanyang Technological University , N4.1, 50 Nanyang Avenue , Singapore 639798 , Singapore
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551 , Singapore
| |
Collapse
|
41
|
Novel biodegradable pH-sensitive hydrogels: An efficient controlled release system to manage ulcerative colitis. Int J Biol Macromol 2019; 136:83-96. [PMID: 31195039 DOI: 10.1016/j.ijbiomac.2019.06.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/20/2019] [Accepted: 06/07/2019] [Indexed: 01/31/2023]
Abstract
The aim of this study was to develop and characterize a pH sensitive, biodegradable, interpenetrating polymeric network (IPNs) for colon specific delivery of sulfasalazine in ulcerative colitis. It also entailed in-vitro and in-vivo evaluations to optimize colon targeting efficiency, improve drug accumulation at the target site, and ameliorate the off-target effects of chemotherapy. Pectin was grafted with polyethylene glycol (PEG) and methacrylic acid (MAA) by free radical polymerization. Fourier transformed infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), energy dispersion X-ray (EDX) and powder X-ray diffraction (XRD) results confirmed the development of stable pectin-g-(PEG-co-MAA) hydrogels. The swelling and release studies exhibited that the hydrogels were capable of releasing drug specifically at colonic pH (pH 7.4). The toxicological potential of polymers, monomers and hydrogel was investigated using the Balb/c animal model, that confirmed the safety of the hydrogels. In vitro degradation of the hydrogel was evaluated using pectinase enzyme in various simulated fluids and the results showed that the hydrogels were susceptible to biodegradation by the natural microflora of the colon. In-vivo study was performed using Dextran sulphate sodium (DSS) rat model proved the hydrogels to be effective in the management of UC.
Collapse
|
42
|
Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Fares MM, Shirzaei Sani E, Portillo Lara R, Oliveira RB, Khademhosseini A, Annabi N. Interpenetrating network gelatin methacryloyl (GelMA) and pectin-g-PCL hydrogels with tunable properties for tissue engineering. Biomater Sci 2018; 6:2938-2950. [PMID: 30246835 PMCID: PMC11110880 DOI: 10.1039/c8bm00474a] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The design of new hydrogel-based biomaterials with tunable physical and biological properties is essential for the advancement of applications related to tissue engineering and regenerative medicine. For instance, interpenetrating polymer network (IPN) and semi-IPN hydrogels have been widely explored to engineer functional tissues due to their characteristic microstructural and mechanical properties. Here, we engineered IPN and semi-IPN hydrogels comprised of a tough pectin grafted polycaprolactone (pectin-g-PCL) component to provide mechanical stability, and a highly cytocompatible gelatin methacryloyl (GelMA) component to support cellular growth and proliferation. IPN hydrogels were formed by calcium ion (Ca2+)-crosslinking of pectin-g-PCL chains, followed by photocrosslinking of the GelMA precursor. Conversely, semi-IPN networks were formed by photocrosslinking of the pectin-g-PCL and GelMA mixture, in the absence of Ca2+ crosslinking. IPN and semi-IPN hydrogels synthesized with varying ratios of pectin-g-PCL to GelMA, with and without Ca2+-crosslinking, exhibited a broad range of mechanical properties. For semi-IPN hydrogels, the aggregation of microcrystalline cores led to formation of hydrogels with compressive moduli ranging from 3.1 to 10.4 kPa. For IPN hydrogels, the mechanistic optimization of pectin-g-PCL, GelMA, and Ca2+ concentrations resulted in hydrogels with comparatively higher compressive modulus, in the range of 39 kPa-5029 kPa. Our results also showed that IPN hydrogels were cytocompatible in vitro and could support the growth of three-dimensionally (3D) encapsulated MC3T3-E1 preosteoblasts in vitro. The simplicity, technical feasibility, low cost, tunable mechanical properties, and cytocompatibility of the engineered semi-IPN and IPN hydrogels highlight their potential for different tissue engineering and biomedical applications.
Collapse
Affiliation(s)
- Mohammad M Fares
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Exploring RSM-CCD-optimized chitosan-/gelatin-based hybrid polymer network containing CPM–β-CD inclusion complexes as controlled drug delivery systems. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2555-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Jimenez-Rosales A, Flores-Merino MV. A Brief Review of the Pathophysiology of Non-melanoma Skin Cancer and Applications of Interpenetrating and Semi-interpenetrating Polymer Networks in Its Treatment. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0061-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Preparation and Evaluation of a Bio-Erodible Bio-Adhesive Drug Delivery System Designed for Intraoral Extended Release of Flurbiprofen: In Vitro and In Vivo Assessments. J Pharm Innov 2018. [DOI: 10.1007/s12247-018-9327-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
47
|
Gilbert T, Alsop RJ, Babi M, Moran-Mirabal J, Rheinstädter MC, Hoare T. Nanostructure of Fully Injectable Hydrazone-Thiosuccinimide Interpenetrating Polymer Network Hydrogels Assessed by Small-Angle Neutron Scattering and dSTORM Single-Molecule Fluorescence Microscopy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42179-42191. [PMID: 29131571 DOI: 10.1021/acsami.7b11637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein, we comprehensively investigate the internal morphology of fully injectable interpenetrating networks (IPNs) prepared via coextrusion of functionalized precursor polymer solutions based on thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and nonthermoresponsive poly(vinyl pyrrolidone) (PVP) by reactive mixing using kinetically orthogonal hydrazone and thiosuccinimide cross-linking mechanisms. Small-angle neutron scattering, probing both the full IPN as well as the individual constituent networks of the IPN using index-matching, suggests a partially mixed internal structure characterized by PNIPAM-rich domains entrapped in a clustered PVP-rich phase. This interpretation is supported by super-resolution fluorescence microscopy (direct stochastic optical reconstruction microscopy) measurements on the same gels on a different length scale, which show both the overall phase segregation typical of an IPN as well as moderate mixing of PNIPAM into the PVP-rich phase. Such a morphology is consistent with the kinetics of both gelation and phase separation in this in situ gelling system, in which gelation effectively traps a fraction of the PNIPAM in the PVP phase prior to full phase separation; by contrast, such interphase mixing is not observed in semi-IPN control hydrogels. This knowledge has significant potential for the design of an injectable hydrogel with internal morphologies optimized for particular biomedical applications.
Collapse
Affiliation(s)
- Trevor Gilbert
- Department of Chemical Engineering, McMaster University , 1280 Main St. W, Hamilton, Ontario L8S 4L7, Canada
| | | | | | | | | | - Todd Hoare
- Department of Chemical Engineering, McMaster University , 1280 Main St. W, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
48
|
Chivers PRA, Smith DK. Spatially-resolved soft materials for controlled release - hybrid hydrogels combining a robust photo-activated polymer gel with an interactive supramolecular gel. Chem Sci 2017; 8:7218-7227. [PMID: 29081954 PMCID: PMC5633784 DOI: 10.1039/c7sc02210g] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Hybrid hydrogels based on self-assembling low-molecular-weight gelator (LMWG) DBS-CONHNH2 (DBS = 1,3;2,4-dibenzylidene-d-sorbitol) and crosslinked polymer gelator (PG) PEGDM (poly(ethyleneglycol) dimethacrylate) are reported, and an active pharmaceutical ingredient (naproxen, NPX) is incorporated. The use of PEGDM as PG enhances the mechanical stiffness of the hybrid gel (G' increases from 400 to 4500 Pa) - the LMWG enhances its stability to very high frequency. Use of DBS-CONHNH2 as LMWG enables interactions with NPX and hence allows pH-mediated NPX release - the PG network is largely orthogonal and only interferes to a limited extent. Use of photo-activated PEGDM as PG enables spatially-resolved photo-patterning of robust hybrid gel domains within a preformed LMWG network - the presence of the LMWG enhances the spatial resolution. The photo-patterned multi-domain gel retains pH-mediated NPX release properties and directionally releases NPX into a compartment of higher pH. The two components within these hybrid PG/LMWG hydrogels therefore act largely independently of one another, although they do modify each others properties in subtle ways. Hybrid hydrogels capable of spatially controlled unidirectional release have potential applications in tissue engineering and drug-delivery.
Collapse
Affiliation(s)
- Phillip R A Chivers
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK . ; http://www.york.ac.uk/chemistry/staff/academic/o-s/dsmith/
| | - David K Smith
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK . ; http://www.york.ac.uk/chemistry/staff/academic/o-s/dsmith/
| |
Collapse
|
49
|
Anwar H, Ahmad M, Minhas MU, Rehmani S. Alginate-polyvinyl alcohol based interpenetrating polymer network for prolonged drug therapy, Optimization and in-vitro characterization. Carbohydr Polym 2017; 166:183-194. [DOI: 10.1016/j.carbpol.2017.02.080] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/05/2017] [Accepted: 02/20/2017] [Indexed: 02/02/2023]
|
50
|
Zia KM, Tabasum S, Nasif M, Sultan N, Aslam N, Noreen A, Zuber M. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int J Biol Macromol 2017; 96:282-301. [DOI: 10.1016/j.ijbiomac.2016.11.095] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/10/2016] [Accepted: 11/23/2016] [Indexed: 01/05/2023]
|