1
|
Veysari SK, Asghari M, Farshad F, Hodjat M. Epigenetic changes underlie the association between diabetes mellitus and oral diseases. Mol Biol Rep 2023; 50:6987-6996. [PMID: 37378745 DOI: 10.1007/s11033-023-08574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
Patients with diabetes mellitus (DM) suffer from oral complications related to oral infections, periodontal diseases, and endodontic lesions. Emerging evidence has revealed the contribution of the epigenetic process as the underlying mechanism of DM complications. DNA methylation, histone modifications, and non-coding RNAs are epigenetic regulators that directly affect gene expression. The present review elaborated on the role of epigenetic dysregulation in the etiology of diabetes-related periodontal and endodontic diseases. The narrative review study was prepared using databases such as PubMed, Google Scholar, Science Direct, and Scopus. The formation of glycation products as a result of hyperglycemic condition increases oxidative stress, and elevates chronic inflammatory mediators that could in turn adversely change the cellular environment and alter the epigenetic status. This process contributes to the alteration of regulatory genes expression, leading to the development of diabetes-induced bone complications and impaired odontogenic capacity of pulp. Indeed, epigenetic mechanisms mediate the interaction between gene expression and DM cellular environment. Further investigations on epigenetic factors involved in DM oral complications may provide novel therapeutic targets.
Collapse
Affiliation(s)
- Setareh Kazemi Veysari
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, 1417614411, Iran
| | - Mona Asghari
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, 1417614411, Iran
| | - Fatemeh Farshad
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, 1417614411, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, 1417614411, Iran.
| |
Collapse
|
2
|
Cheng AS, Li X. The Potential Biotherapeutic Targets of Contrast-Induced Acute Kidney Injury. Int J Mol Sci 2023; 24:8254. [PMID: 37175958 PMCID: PMC10178966 DOI: 10.3390/ijms24098254] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Contrast-induced acute kidney injury (CI-AKI) is manifested by an abrupt decline in kidney function as a consequence of intravascular exposure to contrast media. With the increased applicability of medical imaging and interventional procedures that utilize contrast media for clinical diagnosis, CI-AKI is becoming the leading cause of renal dysfunction. The pathophysiological mechanism associated with CI-AKI involves renal medullary hypoxia, the direct toxicity of contrast agents, oxidative stress, apoptosis, inflammation, and epigenetic regulation. To date, there is no effective therapy for CI-AKI, except for the development of strategies that could reduce the toxicity profiles of contrast media. While most of these strategies have failed, evidence has shown that the proper use of personalized hydration, contrast medium, and high-dose statins may reduce the occurrence of CI-AKI. However, adequate risk predication and attempts to develop preventive strategies can be considered as the key determinants that can help eliminate CI-AKI. Additionally, a deeper understanding of the pathophysiological mechanism of CI-AKI is crucial to uncover molecular targets for the prevention of CI-AKI. This review has taken a step further to solidify the current known molecular mechanisms of CI-AKI and elaborate the biomarkers that are used to detect early-stage CI-AKI. On this foundation, this review will analyze the molecular targets relating to apoptosis, inflammation, oxidative stress, and epigenetics, and, thus, provide a strong rationale for therapeutic intervention in the prevention of CI-AKI.
Collapse
Affiliation(s)
- Alice Shasha Cheng
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Parker DC, Wan M, Lohman K, Hou L, Nguyen AT, Ding J, Bertoni A, Shea S, Burke GL, Jacobs DR, Post W, Corcoran D, Hoeschele I, Parks JS, Liu Y. Monocyte miRNAs Are Associated With Type 2 Diabetes. Diabetes 2022; 71:853-861. [PMID: 35073575 PMCID: PMC8965663 DOI: 10.2337/db21-0704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022]
Abstract
miRNAs are small noncoding RNAs that may contribute to common diseases through epigenetic regulation of gene expression. Little is known regarding the role of miRNAs in type 2 diabetes (T2D). We performed miRNA sequencing and transcriptomic profiling of peripheral monocytes from the longitudinal Multi-Ethnic Study of Atherosclerosis (MESA) (N = 1,154). We examined associations between miRNAs and prevalent impaired fasting glucose and T2D and evaluated the T2D-associated miRNA effect on incident T2D. Of 774 detected miRNAs, 6 (miR-22-3p, miR-33a-5p, miR-181c-5p, miR-92b-3p, miR-222-3p, and miR-944) were associated with prevalent T2D. For five of the six miRNAs (all but miR-222-3p), our findings suggest a dose-response relationship with impaired fasting glucose and T2D. Two of the six miRNAs were associated with incident T2D (miR-92b-3p: hazard ratio [HR] 1.64, P = 1.30E-03; miR-222-3p: HR 1.97, P = 9.10E-03) in the highest versus lowest tertile of expression. Most of the T2D-associated miRNAs were also associated with HDL cholesterol concentrations. The genes targeted by these miRNAs belong to key nodes of a cholesterol metabolism transcriptomic network. Higher levels of miRNA expression expected to increase intracellular cholesterol accumulation in monocytes are linked to an increase in T2D risk.
Collapse
Affiliation(s)
- Daniel C. Parker
- Division of Geriatrics, Department of Medicine, Duke University School of Medicine, Durham, NC
- Duke University Center for the Study of Aging and Human Development, Durham, NC
| | - Ma Wan
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| | - Kurt Lohman
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| | - Li Hou
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| | - Anh Tram Nguyen
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| | - Jingzhong Ding
- Wake Forest University School of Medicine, Winston-Salem, NC
| | - Alain Bertoni
- Wake Forest University School of Medicine, Winston-Salem, NC
| | - Steve Shea
- Columbia University School of Medicine, New York, NY
| | | | - David R. Jacobs
- University of Minnesota School of Public Health, Minneapolis, MN
| | - Wendy Post
- Johns Hopkins University School of Medicine, Baltimore, MD
| | - David Corcoran
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC
| | - Ina Hoeschele
- Department of Statistics and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA
| | - John S. Parks
- Wake Forest University School of Medicine, Winston-Salem, NC
| | - Yongmei Liu
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| |
Collapse
|
4
|
Abstract
Pyroptosis is a recently identified mechanism of programmed cell death related to Caspase-1 that triggers a series of inflammatory reactions by releasing several proinflammatory factors such as IL-1β and IL-18. The process is characterised by the rupture of cell membranes and the release of cell contents through the mediation of gasdermin (GSDM) proteins. GSDMD is an important member of the GSDM family and plays a critical role in the two pathways of pyroptosis. Diabetic nephropathy (DN) is a microvascular complication of diabetes and a major cause of end-stage renal disease. Recently, it was revealed that GSDMD-mediated pyroptosis plays an important role in the occurrence and development of DN. In this review, we focus on two types of kidney cells, tubular epithelial cells and renal podocytes, to illustrate the mechanism of pyroptosis in DN and provide new ideas for the prevention, early diagnosis and molecular therapy of DN.
Collapse
|
5
|
Shao BY, Zhang SF, Li HD, Meng XM, Chen HY. Epigenetics and Inflammation in Diabetic Nephropathy. Front Physiol 2021; 12:649587. [PMID: 34025445 PMCID: PMC8131683 DOI: 10.3389/fphys.2021.649587] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN) leads to high morbidity and disability. Inflammation plays a critical role in the pathogenesis of DN, which involves renal cells and immune cells, the microenvironment, as well as extrinsic factors, such as hyperglycemia, chemokines, cytokines, and growth factors. Epigenetic modifications usually regulate gene expression via DNA methylation, histone modification, and non-coding RNAs without altering the DNA sequence. During the past years, numerous studies have been published to reveal the mechanisms of epigenetic modifications that regulate inflammation in DN. This review aimed to summarize the latest evidence on the interplay of epigenetics and inflammation in DN, and highlight the potential targets for treatment and diagnosis of DN.
Collapse
Affiliation(s)
- Bao-Yi Shao
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shao-Fei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Yong Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
6
|
SMADS-Mediate Molecular Mechanisms in Sjögren's Syndrome. Int J Mol Sci 2021; 22:ijms22063203. [PMID: 33801157 PMCID: PMC8004153 DOI: 10.3390/ijms22063203] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
There is considerable interest in delineating the molecular mechanisms of action of transforming growth factor-β (TGF-β), considered as central player in a plethora of human conditions, including cancer, fibrosis and autoimmune disease. TGF-β elicits its biological effects through membrane bound serine/threonine kinase receptors which transmit their signals via downstream signalling molecules, SMADs, which regulate the transcription of target genes in collaboration with various co-activators and co-repressors. Until now, therapeutic strategy for primary Sjögren’s syndrome (pSS) has been focused on inflammation, but, recently, the involvement of TGF-β/SMADs signalling has been demonstrated in pSS salivary glands (SGs) as mediator of the epithelial-mesenchymal transition (EMT) activation. Although EMT seems to cause pSS SG fibrosis, TGF-β family members have ambiguous effects on the function of pSS SGs. Based on these premises, this review highlights recent advances in unravelling the molecular basis for the multi-faceted functions of TGF-β in pSS that are dictated by orchestrations of SMADs, and describe TGF-β/SMADs value as both disease markers and/or therapeutic target for pSS.
Collapse
|
7
|
Alcazar O, Hernandez LF, Nakayasu ES, Nicora CD, Ansong C, Muehlbauer MJ, Bain JR, Myer CJ, Bhattacharya SK, Buchwald P, Abdulreda MH. Parallel Multi-Omics in High-Risk Subjects for the Identification of Integrated Biomarker Signatures of Type 1 Diabetes. Biomolecules 2021; 11:383. [PMID: 33806609 PMCID: PMC7999903 DOI: 10.3390/biom11030383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Biomarkers are crucial for detecting early type-1 diabetes (T1D) and preventing significant β-cell loss before the onset of clinical symptoms. Here, we present proof-of-concept studies to demonstrate the potential for identifying integrated biomarker signature(s) of T1D using parallel multi-omics. METHODS Blood from human subjects at high risk for T1D (and healthy controls; n = 4 + 4) was subjected to parallel unlabeled proteomics, metabolomics, lipidomics, and transcriptomics. The integrated dataset was analyzed using Ingenuity Pathway Analysis (IPA) software for disturbances in the at-risk subjects compared to controls. RESULTS The final quadra-omics dataset contained 2292 proteins, 328 miRNAs, 75 metabolites, and 41 lipids that were detected in all samples without exception. Disease/function enrichment analyses consistently indicated increased activation, proliferation, and migration of CD4 T-lymphocytes and macrophages. Integrated molecular network predictions highlighted central involvement and activation of NF-κB, TGF-β, VEGF, arachidonic acid, and arginase, and inhibition of miRNA Let-7a-5p. IPA-predicted candidate biomarkers were used to construct a putative integrated signature containing several miRNAs and metabolite/lipid features in the at-risk subjects. CONCLUSIONS Preliminary parallel quadra-omics provided a comprehensive picture of disturbances in high-risk T1D subjects and highlighted the potential for identifying associated integrated biomarker signatures. With further development and validation in larger cohorts, parallel multi-omics could ultimately facilitate the classification of T1D progressors from non-progressors.
Collapse
Affiliation(s)
- Oscar Alcazar
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
| | - Luis F. Hernandez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (E.S.N.); (C.D.N.); (C.A.)
| | - Carrie D. Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (E.S.N.); (C.D.N.); (C.A.)
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (E.S.N.); (C.D.N.); (C.A.)
| | - Michael J. Muehlbauer
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; (M.J.M.); (J.R.B.)
| | - James R. Bain
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; (M.J.M.); (J.R.B.)
| | - Ciara J. Myer
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.M.); (S.K.B.)
- Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sanjoy K. Bhattacharya
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.M.); (S.K.B.)
- Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Peter Buchwald
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Midhat H. Abdulreda
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.M.); (S.K.B.)
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
8
|
Gu YY, Lu FH, Huang XR, Zhang L, Mao W, Yu XQ, Liu XS, Lan HY. Non-Coding RNAs as Biomarkers and Therapeutic Targets for Diabetic Kidney Disease. Front Pharmacol 2021; 11:583528. [PMID: 33574750 PMCID: PMC7870688 DOI: 10.3389/fphar.2020.583528] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic kidney disease (DKD) is the most common diabetic complication and is a leading cause of end-stage kidney disease. Increasing evidence shows that DKD is regulated not only by many classical signaling pathways but also by epigenetic mechanisms involving chromatin histone modifications, DNA methylation, and non-coding RNA (ncRNAs). In this review, we focus on our current understanding of the role and mechanisms of ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the pathogenesis of DKD. Of them, the regulatory role of TGF-β/Smad3-dependent miRNAs and lncRNAs in DKD is highlighted. Importantly, miRNAs and lncRNAs as biomarkers and therapeutic targets for DKD are also described, and the perspective of ncRNAs as a novel therapeutic approach for combating diabetic nephropathy is also discussed.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Fu-Hua Lu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Lei Zhang
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Mao
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Qing Yu
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Xu-Sheng Liu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Meerson A, Najjar A, Saad E, Sbeit W, Barhoum M, Assy N. Sex Differences in Plasma MicroRNA Biomarkers of Early and Complicated Diabetes Mellitus in Israeli Arab and Jewish Patients. Noncoding RNA 2019; 5:E32. [PMID: 30959814 PMCID: PMC6631160 DOI: 10.3390/ncrna5020032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs play functional roles in the etiology of type 2 diabetes mellitus (T2DM) and complications, and extracellular microRNAs have attracted interest as potential biomarkers of these conditions. We aimed to identify a set of plasma microRNAs, which could serve as biomarkers of T2DM and complications in a mixed Israeli Arab/Jewish patient sample. Subjects included 30 healthy volunteers, 29 early-stage T2DM patients, and 29 late-stage T2DM patients with renal and/or vascular complications. RNA was isolated from plasma, and the levels of 12 candidate microRNAs were measured by quantitative reverse transcription and polymerase chain reaction (qRT-PCR). MicroRNA levels were compared between the groups and correlated to clinical measurements, followed by stepwise regression analysis and discriminant analysis. Plasma miR-486-3p and miR-423 were respectively up- and down-regulated in T2DM patients compared to healthy controls. MiR-28-3p and miR-423 were up-regulated in patients with complicated T2DM compared to early T2DM, while miR-486-3p was down-regulated. Combined, four microRNAs (miR-146a-5p, miR-16-2-3p, miR-126-5p, and miR-30d) could distinguish early from complicated T2DM with 77% accuracy and 79% sensitivity. In male patients only, the same microRNAs, with the addition of miR-423, could distinguish early from complicated T2DM with 83.3% accuracy. Furthermore, plasma microRNA levels showed significant correlations with clinical measurements, and these differed between men and women. Additionally, miR-183-5p levels differed significantly between the ethnic groups. Our study identified a panel of specific plasma microRNAs which can serve as biomarkers of T2DM and its complications and emphasizes the importance of sex differences in their clinical application.
Collapse
Affiliation(s)
- Ari Meerson
- MIGAL Galilee Research Institute, Kiryat Shmona 1101602, Israel.
- Tel Hai Academic College, Upper Galilee 1220800, Israel.
| | - Azwar Najjar
- Department of Internal Medicine A, Galilee Medical Center, Nahariya, Israel.
| | - Elias Saad
- Department of Internal Medicine A, Galilee Medical Center, Nahariya, Israel.
| | - Wisam Sbeit
- Department of Gastroenterology, Galilee Medical Center, Nahariya, Israel.
| | | | - Nimer Assy
- Department of Internal Medicine A, Galilee Medical Center, Nahariya, Israel.
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
| |
Collapse
|
10
|
Liu Y, Liu B, Liu Y, Chen S, Yang J, Liu J, Sun G, Bei WJ, Wang K, Chen Z, Tan N, Chen J. MicroRNA expression profile by next-generation sequencing in a novel rat model of contrast-induced acute kidney injury. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:178. [PMID: 31168459 DOI: 10.21037/atm.2019.04.44] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background MicroRNAs (miRNAs) are known to regulate most biological processes including contrast-induced acute kidney injury (CI-AKI). Few studies have investigated microRNA (miRNAs) expressions in a novel rat model of CI-AKI using nonionic low-osmolar iodic contrast medium Ultravist, and performed gene ontology (GO) categories analysis. Methods In this study, kidney tissues were collected from Sprague-Dawley rats at 24 h after contrast-exposure (CI-AKI) and saline-administration (control). MiRNAs microarray assays were used to detect miRNAs in the kidney tissue by next-generation sequencing. Real-time PCR was performed to verify the microarray assays results. All significant differently expressed miRNAs were analyzed by GO categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Results Of the 173 detected miRNAs, 22 were down-regulated (miR-328a-5p, miR-31a-5p, miR-377-3p, et al.) and 19 were up-regulated (miR-3558-5p, miR-34c-3p, miR-384-5p, et al.) in the kidneys of CI-AKI rats according to log2 (fold change, control) >1, P<0.001 as significant differently expressed miRNAs, which included new differently expressed miRNAs, such as miRNA-1949 and miR-3558. The results showed that a large set of genes involved in essential biological processes were targeted by these miRNAs, such as dysfunction metabolic process, apoptotic process, and endoplasmic reticulum stress, in addition to genes implicated in signaling pathways involved in inflammation and dysfunctional metabolism, including AGE-RAGE signaling pathway and glycerophospholipid metabolism. Conclusions The 41 miRNAs identified were differentially expressed in the kidneys of a novel rat model of CI-AKI, and thus possess the potential to serve as novel biological markers and new molecular targets for CI-AKI.
Collapse
Affiliation(s)
- Yong Liu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Bowen Liu
- Guangdong Provincial People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510630, China
| | - Yuanhui Liu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Shiqun Chen
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China.,Department of Cardiology, Guangdong Provincial People's Hospital Zhuhai Hospital (Zhuhai Golden Bay Center Hospital), Zhuhai 519000, China
| | - Junqing Yang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Jin Liu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Guoli Sun
- Guangdong Provincial People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510630, China
| | - Wei-Jie Bei
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Kun Wang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Zhujun Chen
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Ning Tan
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China.,Guangdong Provincial People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510630, China
| | - Jiyan Chen
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China.,Guangdong Provincial People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510630, China
| |
Collapse
|
11
|
Chen X, Zhao L, Xing Y, Lin B. RETRACTED: Down-regulation of microRNA-21 reduces inflammation and podocyte apoptosis in diabetic nephropathy by relieving the repression of TIMP3 expression. Biomed Pharmacother 2018; 108:7-14. [PMID: 30212710 DOI: 10.1016/j.biopha.2018.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 01/25/2023] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concerns were raised about suspected duplicated features between the 'DN' and 'DN+anti-miR-NC' groups within Figure 2I, as detailed here: https://pubpeer.com/publications/FB14889727E5CF2651E012EEA10225#1. A journal investigation confirmed the presence of these suspected duplicated features. The journal asked the authors to provide an explanation to these concerns and the associated raw data. All authors were contacted on several occasions, but the journal did not receive a response. The Editor-in-Chief assessed the case and decided to retract the article.
Collapse
Affiliation(s)
- Xiaoping Chen
- Department of Endocrinology, The First Affiliated Hospital of Henan University, Kaifeng, 475000, China
| | - Lei Zhao
- Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Yanwei Xing
- Department of Pediatric, Kaifeng Hospital of TCM, Kaifeng, 475000, China
| | - Bo Lin
- Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
12
|
Sessa F, Salerno M, Di Mizio G, Bertozzi G, Messina G, Tomaiuolo B, Pisanelli D, Maglietta F, Ricci P, Pomara C. Anabolic Androgenic Steroids: Searching New Molecular Biomarkers. Front Pharmacol 2018; 9:1321. [PMID: 30524281 PMCID: PMC6256094 DOI: 10.3389/fphar.2018.01321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
Even if anabolic androgenic steroid (AAS) abuse is clearly associated with a wide spectrum of collateral effects, adolescents and athletes frequently use a large group of synthetic derivatives of testosterone, both for aesthetic uses and for improving performance. Over the last few years, the development of MicroRNA (miRNA) technologies has become an essential part of research projects and their role as potential molecular biomarkers is being investigated by the scientific community. The circulating miRNAs detection as a diagnostic or prognostic tool for the diagnosis and treatment of several diseases is very useful, because with a minimal quantity of sample (peripheral blood), miRNAs are very sensitive. Even more, miRNAs remain stable both at room temperature and during freeze-thaw cycles. These characteristics highlight the important role of miRNAs in the near future as new tools for anti-doping. The article provides a systematic review and meta-analysis on the role of miRNAs as new potential molecular biomarkers of AAS use/abuse. Particularly, this paper analyzed the “miRNA signature” use as biomarkers for health disorders, focusing on the organ damages which are related to ASS use/abuse. Moreover, this review aims to provide a future prospect for less invasive or non-invasive procedures for the detection of circulating miRNA biomarkers as doping assumption signaling.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Monica Salerno
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giulio Di Mizio
- Department of Legal, Historical, Economic and Social Sciences, University of Catanzaro, Catanzaro, Italy
| | - Giuseppe Bertozzi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Benedetta Tomaiuolo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Daniela Pisanelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Francesca Maglietta
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Pietrantonio Ricci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.,Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Cristoforo Pomara
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| |
Collapse
|
13
|
Biogenesis, Stabilization, and Transport of microRNAs in Kidney Health and Disease. Noncoding RNA 2018; 4:ncrna4040030. [PMID: 30400314 PMCID: PMC6315559 DOI: 10.3390/ncrna4040030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 01/04/2023] Open
Abstract
The kidneys play key roles in the maintenance of homeostasis, including fluid balance, blood filtration, erythropoiesis and hormone production. Disease-driven perturbation of renal function therefore has profound pathological effects, and chronic kidney disease is a leading cause of morbidity and mortality worldwide. Successive annual increases in global chronic kidney disease patient numbers in part reflect upward trends for predisposing factors, including diabetes, obesity, hypertension, cardiovascular disease and population age. Each kidney typically possesses more than one million functional units called nephrons, and each nephron is divided into several discrete domains with distinct cellular and functional characteristics. A number of recent analyses have suggested that signaling between these nephron regions may be mediated by microRNAs. For this to be the case, several conditions must be fulfilled: (i) microRNAs must be released by upstream cells into the ultrafiltrate; (ii) these microRNAs must be packaged protectively to reach downstream cells intact; (iii) these packaged microRNAs must be taken up by downstream recipient cells without functional inhibition. This review will examine the evidence for each of these hypotheses and discuss the possibility that this signaling process might mediate pathological effects.
Collapse
|
14
|
Fan B, Luk AOY, Chan JCN, Ma RCW. MicroRNA and Diabetic Complications: A Clinical Perspective. Antioxid Redox Signal 2018; 29:1041-1063. [PMID: 28950710 DOI: 10.1089/ars.2017.7318] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE The rising global prevalence of diabetes and its debilitating complications give rise to significant disability and premature mortality. Due to the silent nature of diabetes and its vascular complications, and limitations in current methods for detection, there is a need for novel biomarkers for early detection and prognosis. Recent Advances: Metabolic memory and epigenetic factors are important in the pathogenesis of diabetic complications and interact with genetic variants, metabolic factors, and clinical risk factors. Micro(mi)RNAs interact with epigenetic mechanisms and pleiotropically mediate the effects of hyperglycemia on the vasculature. Utilizing mature profiling techniques and platforms, an increasing number of miRNA signatures and interaction networks have been identified for diabetes and its related cardiorenal complications. As a result, these short, single-stranded molecules are emerging as potential diagnostic and predictive tools in human studies, and may function as disease biomarkers, as well as treatment targets. CRITICAL ISSUES However, there is complex interaction between the genome and epigenome. The regulation of miRNAs may differ across species and tissues. Most profiling studies to date lack validation, often requiring large, well-characterized cohorts and reliable normalization strategies. Furthermore, the incremental benefits of miRNAs as biomarkers, beyond prediction provided by traditional risk factors, are critical issues to consider, yet often neglected in published studies. FUTURE DIRECTIONS All in all, the future for miRNA-based diagnostics and therapeutics for diabetic complications appears promising. Improved understanding of the complex mechanisms underlying miRNA dysregulation, and more well-designed studies utilizing prospective samples would facilitate the translation to clinical use.
Collapse
Affiliation(s)
- Baoqi Fan
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Shatin, China
| | - Andrea On Yan Luk
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Shatin, China .,2 Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong , Shatin, China
| | - Juliana Chung Ngor Chan
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Shatin, China .,2 Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong , Shatin, China .,3 Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Prince of Wales Hospital, Shatin, China .,4 The Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine , Shatin, China
| | - Ronald Ching Wan Ma
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Shatin, China .,2 Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong , Shatin, China .,3 Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Prince of Wales Hospital, Shatin, China .,4 The Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine , Shatin, China
| |
Collapse
|
15
|
Ma Z, Wei Q, Zhang M, Chen JK, Dong Z. Dicer deficiency in proximal tubules exacerbates renal injury and tubulointerstitial fibrosis and upregulates Smad2/3. Am J Physiol Renal Physiol 2018; 315:F1822-F1832. [PMID: 30280598 DOI: 10.1152/ajprenal.00402.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Renal fibrosis is a common pathological feature in chronic kidney disease (CKD), including diabetic kidney disease (DKD) and obstructive nephropathy. Multiple microRNAs have been implicated in the pathogenesis of both DKD and obstructive nephropathy, although the overall role of microRNAs in tubular injury and renal fibrosis in CKD is unclear. Dicer (a key RNase III enzyme for microRNA biogenesis) was specifically ablated from kidney proximal tubules in mice via the Cre-lox system to deplete micoRNAs. Proximal tubular Dicer knockout (PT- Dicer KO) mice and wild-type (WT) littermates were subjected to streptozotocin (STZ) treatment to induce DKD or unilateral ureteral obstruction (UUO) to induce obstructive nephropathy. Renal hypertrophy, renal tubular apoptosis, kidney inflammation, and tubulointerstitial fibrosis were examined. Compared with WT mice, PT- Dicer KO mice showed more severe tubular injury and renal inflammation following STZ treatment. These mice also developed higher levels of tubolointerstitial fibrosis. Meanwhile, PT- Dicer KO mice had a significantly higher Smad2/3 expression in kidneys than WT mice (at 6 mo of age) in both control and STZ-treated mice. Similarly, UUO induced more severe renal injury, inflammation, and interstitial fibrosis in PT- Dicer KO mice than WT. Although we did not detect obvious Smad2/3 expression in sham-operated mice (2-3 mo old), significantly more Smad2/3 was induced in obstructed PT- Dicer KO kidneys. These results supported a protective role of Dicer-dependent microRNA synthesis in renal injury and fibrosis development in CKD, specifically in DKD and obstructive nephropathy. Depletion of Dicer and microRNAs may upregulate Smad2/3-related signaling pathway to enhance the progression of CKD.
Collapse
Affiliation(s)
- Zhengwei Ma
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood Veterans Affairs Medical Center , Augusta, Georgia
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood Veterans Affairs Medical Center , Augusta, Georgia
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood Veterans Affairs Medical Center , Augusta, Georgia
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood Veterans Affairs Medical Center , Augusta, Georgia
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood Veterans Affairs Medical Center , Augusta, Georgia
| |
Collapse
|
16
|
Wu J, He Y, Luo Y, Zhang L, Lin H, Liu X, Liu B, Liang C, Zhou Y, Zhou J. MiR-145-5p inhibits proliferation and inflammatory responses of RMC through regulating AKT/GSK pathway by targeting CXCL16. J Cell Physiol 2017; 233:3648-3659. [PMID: 29030988 DOI: 10.1002/jcp.26228] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Junbiao Wu
- Department of Clinical Pharmacy; The Second Affiliated Hospital; Guangzhou University of Chinese Medicine; Guangzhou Guangdong P.R. China
- Postdoctoral Scientific Research of Guangzhou University of Chinese Medicine; Guangzhou; Guangdong P.R. China
| | - Yu He
- School of Pharmaceutical Sciences; Guangzhou University of Chinese Medicine; Guangzhou Guangdong P.R. China
| | - Yining Luo
- Department of Clinical Pharmacy; The Second Affiliated Hospital; Guangzhou University of Chinese Medicine; Guangzhou Guangdong P.R. China
| | - Lei Zhang
- Department of Nephrology; The Second Affiliated Hospital; Guangzhou University of Chinese Medicine; Guangzhou Guangdong P.R. China
| | - Hua Lin
- Department of Clinical Pharmacy; The Second Affiliated Hospital; Guangzhou University of Chinese Medicine; Guangzhou Guangdong P.R. China
| | - Xusheng Liu
- Department of Nephrology; The Second Affiliated Hospital; Guangzhou University of Chinese Medicine; Guangzhou Guangdong P.R. China
| | - Bihao Liu
- School of Pharmaceutical Sciences; Guangzhou University of Chinese Medicine; Guangzhou Guangdong P.R. China
| | - Chunling Liang
- Section of Immunology & Chinese Medicine; The Second Affiliated Hospital of Guangzhou University of Chinese; Guangzhou Guangdong P.R. China
| | - Yuan Zhou
- School of Pharmaceutical Sciences; Guangzhou University of Chinese Medicine; Guangzhou Guangdong P.R. China
| | - Jiuyao Zhou
- School of Pharmaceutical Sciences; Guangzhou University of Chinese Medicine; Guangzhou Guangdong P.R. China
| |
Collapse
|
17
|
Du G, Xiao M, Zhang X, Wen M, Pang C, Jiang S, Sang S, Xie Y. Alpinia oxyphylla Miq. extract changes miRNA expression profiles in db-/db- mouse kidney. Biol Res 2017; 50:9. [PMID: 28249617 PMCID: PMC5331689 DOI: 10.1186/s40659-017-0111-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 02/06/2017] [Indexed: 12/16/2022] Open
Abstract
Background A number of dysregulated miRNAs have been identified and are proposed to have significant roles in the pathogenesis of type 2 diabetes mellitus or renal pathology. Alpinia oxyphylla has shown significant anti-inflammatory properties and play an anti-diabetes role. The objective of this study was to detect the alteration of miRNAs underlying the anti-diabetes effects of A. oxyphylla extract (AOE) in a type II diabetic animal model (C57BIKsj db-/db-). Results Treatment with AOE for 8 weeks led to lower concentrations of blood glucose, urine albumin, and urine creatinine. 17 and 13 miRNAs were statistically identified as differentially regulated in the DB/DB and db-/db- AOE mice, respectively, compared to the untreated db-/db- mice. Of these, 7 miRNAs were identified in both comparison groups, and these 7 miRNAs were verified by quantitative real-time PCR. Functional bioinformatics showed that the putative target genes of 7 miRNAs were associated with several diabetes effects and signaling pathways. Conclusions These founding suggest that the potential of AOE as a medicinal anti-diabetes treatment through changes in the expressions of specific miRNAs. The results provide a useful resource for future investigation of the role of AOE-regulated miRNAs in diabetes mellitus. Electronic supplementary material The online version of this article (doi:10.1186/s40659-017-0111-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guankui Du
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 571101, China
| | - Man Xiao
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 571101, China
| | - Xuezi Zhang
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 571101, China
| | - Maoyu Wen
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 571101, China
| | - Chi Pang
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 571101, China
| | - Shangfei Jiang
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 571101, China
| | - Shenggang Sang
- Affiliated Hospital of Hainan Medical College, Haikou, 571199, China. .,Clinical Laboratory, Hainan Medical College Affiliated Hospital, Haikou, 571199, China.
| | - Yiqiang Xie
- Affiliated Hospital of Hainan Medical College, Haikou, 571199, China. .,College of Chinese Traditional Medicine, Hainan Medical College, Haikou, 571199, China.
| |
Collapse
|
18
|
Cytoplasmic Localization of WT1 and Decrease of miRNA-16-1 in Nephrotic Syndrome. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9531074. [PMID: 28299339 PMCID: PMC5337320 DOI: 10.1155/2017/9531074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/09/2017] [Accepted: 01/23/2017] [Indexed: 12/27/2022]
Abstract
Nephrotic syndrome (NS) is a glomerular disease that is defined by the leakage of protein into the urine and is associated with hypoalbuminemia, hyperlipidemia, and edema. Steroid-resistant NS (SRNS) patients do not respond to treatment with corticosteroids and show decreased Wilms tumor 1 (WT1) expression in podocytes. Downregulation of WT1 has been shown to be affected by certain microRNAs (miRNAs). Twenty-one patients with idiopathic NS (68.75% were SSNS and 31.25% SRNS) and 10 healthy controls were enrolled in the study. Podocyte number and WT1 location were determined by immunofluorescence, and the serum levels of miR-15a, miR-16-1, and miR-193a were quantified by RT-qPCR. Low expression and delocalization of WT1 protein from the nucleus to the cytoplasm were found in kidney biopsies of patients with SRNS and both nuclear and cytoplasmic localization were found in steroid-sensitive NS (SSNS) patients. In sera from NS patients, low expression levels of miR-15a and miR-16-1 were found compared with healthy controls, but only the miR-16-1 expression levels showed statistically significant decrease (p = 0.019). The miR-193a expression levels only slightly increased in NS patients. We concluded that low expression and delocalization from the WT1 protein in NS patients contribute to loss of podocytes while modulation from WT1 protein is not associated with the miRNAs analyzed in sera from the patients.
Collapse
|
19
|
Salem ESB, Fan GC. Pathological Effects of Exosomes in Mediating Diabetic Cardiomyopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 998:113-138. [PMID: 28936736 DOI: 10.1007/978-981-10-4397-0_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetic subjects are at risk of developing cardiovascular disease, which accounts for 60-80% of diabetes-related mortality. Atherosclerosis is still considered as a leading cause of heart failure in diabetic patients, but it could also be an intrinsic and long-term effect of contractile cardiac cells malfunction, known as diabetic cardiomyopathy (DCM). Pathologically, this cardiac dysfunction is manifested by inflammation, apoptosis, fibrosis, hypertrophy and altered cardiomyocytes metabolism. However, the underlying molecular mechanisms of DCM pathophysiology are not clearly understood. Recent and several studies have suggested that exosomes are contributed to the regulation of cell-to-cell communication. Therefore, their in-depth investigation can interpret the complex pathophysiology of DCM. Structurally, exosomes are membrane-bounded vesicles (10-200 nm in diameter), which are actively released from all types of cells and detected in all biological fluids. They carry a wide array of bioactive molecules, including mRNAs, none-coding RNAs (e.g., microRNAs, lncRNAs, circRNAs, etc), proteins and lipids. Importantly, the abundance and nature of loaded molecules inside exosomes fluctuate with cell types and pathological conditions. This chapter summarizes currently available studies on the exosomes' role in the regulation of diabetic cardiomyopathy. Specifically, the advances on the pathological effects of exosomes in diabetic cardiomyopathy as well as the therapeutic potentials and perspectives are also discussed.
Collapse
Affiliation(s)
- Esam S B Salem
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, 5872 Care Mail Loc-0575, Cincinnati, OH, 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, 5872 Care Mail Loc-0575, Cincinnati, OH, 45267, USA.
| |
Collapse
|
20
|
Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy. Exp Cell Res 2017; 350:327-335. [DOI: 10.1016/j.yexcr.2016.12.006] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/23/2016] [Accepted: 12/07/2016] [Indexed: 11/22/2022]
|
21
|
Jaswani P, Prakash S, Dhar A, Sharma RK, Prasad N, Agrawal S. MicroRNAs Involvement in Renal Pathophysiology: A Bird's Eye View. Indian J Nephrol 2017; 27:337-341. [PMID: 28904427 PMCID: PMC5590408 DOI: 10.4103/ijn.ijn_264_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are known to suppress gene expression by binding to messenger RNAs and in turn regulate different pathophysiological processes. Transforming growth factor-β, mitogen-activated protein kinase signaling, and Wnt signaling-like major pathways associated with miRNAs are involved with kidney diseases. The discovery of miRNAs has provided new insights into kidney pathologies and may provide effective therapeutic strategies. Research has demonstrated the role of miRNAs in a variety of kidney diseases including diabetic nephropathy, lupus nephritis, hypertension, nephritic syndrome, acute kidney injury, renal cell carcinoma, and renal fibrosis. miRNAs are implicated as playing a role in these diseases due to their role in apoptosis, cell proliferation, differentiation, and development. As miRNAs have been detected in a stable condition in different biological fluids, they have the potential to be tools to study the pathogenesis of human diseases with a great potential to be used in disease diagnosis and prognosis. The purpose of this review is to examine the role of miRNA in kidney disease.
Collapse
Affiliation(s)
- P Jaswani
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - S Prakash
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - A Dhar
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - R K Sharma
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - N Prasad
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - S Agrawal
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
22
|
Nephron segment specific microRNA biomarkers of pre-clinical drug-induced renal toxicity: Opportunities and challenges. Toxicol Appl Pharmacol 2016; 312:34-41. [DOI: 10.1016/j.taap.2016.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/19/2016] [Accepted: 01/27/2016] [Indexed: 12/11/2022]
|
23
|
Matz M, Lorkowski C, Fabritius K, Durek P, Wu K, Rudolph B, Neumayer HH, Mashreghi MF, Budde K. Free microRNA levels in plasma distinguish T-cell mediated rejection from stable graft function after kidney transplantation. Transpl Immunol 2016; 39:52-59. [PMID: 27663089 DOI: 10.1016/j.trim.2016.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/07/2016] [Accepted: 09/17/2016] [Indexed: 12/20/2022]
Abstract
The potential diagnostic value of circulating free miRNAs in plasma compared to miRNA expression in blood cells for rejection processes after kidney transplantation is largely unknown, but offers the potential for better and timely diagnosis of acute rejection. Free microRNA expression of specific blood cell markers was measured in 160 plasma samples from kidney transplant patients under standard immunosuppressive therapy (steroids±mycophenolic acid±calcineurin inhibitor) with stable graft function, urinary tract infection, interstitial fibrosis and tubular atrophy, antibody-mediated rejection (ABMR), Borderline (Banff3), tubulo-interstitial (Banff4-I) and vascular rejection (Banff4-II/III) applying RT-PCR. The expression levels of specific microRNAs miR-15B, miR-103A and miR-106A discriminated patients with stable graft function significantly (p-values 0.001996, 0.0054 and 0.0019 resp.) from patients with T-cell mediated rejection (TCMR) and from patients with urinary tract infection (p-values 0.0001, <0.0001 and 0.0001, resp.). A combined measurement of several microRNAs after multivariate logistic regression improved the diagnostic value supported by subsequent cross-validation. In conclusion, the measurement of circulating microRNAs in plasma from patients with renal transplants distinguishes TCMR and urinary tract infection from stable graft function. In contrast to miRNA expression measurement in blood cells it does not allow a discrimination from ABMR or interstitial fibrosis and tubular atrophy.
Collapse
Affiliation(s)
- Mareen Matz
- Department of Nephrology, Universitätsmedizin Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany.
| | - Christine Lorkowski
- Department of Nephrology, Universitätsmedizin Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Katharina Fabritius
- Department of Nephrology, Universitätsmedizin Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Pawel Durek
- Deutsches Rheumaforschungszentrum, Charitéplatz 1, 10117 Berlin, Germany
| | - Kaiyin Wu
- Department of Pathology, Universitätsmedizin Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Birgit Rudolph
- Department of Pathology, Universitätsmedizin Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Hans-H Neumayer
- Department of Nephrology, Universitätsmedizin Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Klemens Budde
- Department of Nephrology, Universitätsmedizin Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
24
|
Radcliffe NJ, Seah JM, Clarke M, MacIsaac RJ, Jerums G, Ekinci EI. Clinical predictive factors in diabetic kidney disease progression. J Diabetes Investig 2016; 8:6-18. [PMID: 27181363 PMCID: PMC5217935 DOI: 10.1111/jdi.12533] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Diabetic kidney disease (DKD) represents a major component of the health burden associated with type 1 and type 2 diabetes. Recent advances have produced an explosion of ‘novel’ assay‐based risk markers for DKD, though clinical use remains restricted. Although many patients with progressive DKD follow a classical albuminuria‐based pathway, non‐albuminuric DKD progression is now well recognized. In general, the following clinical and biochemical characteristics have been associated with progressive DKD in both type 1 and type 2 diabetes: increased hemoglobin A1c, systolic blood pressure, albuminuria grade, early glomerular filtration rate decline, duration of diabetes, age (including pubertal onset) and serum uric acid; the presence of concomitant microvascular complications; and positive family history. The same is true in type 2 diabetes for male sex category, in patients following an albuminuric pathway to DKD, and also true for the presence of increased pulse wave velocity. The following baseline clinical characteristics have been proposed as risk factors for DKD progression, but with further research required to assess the nature of any relationship: dyslipidemia (including low‐density lipoprotein, total and high‐density lipoprotein cholesterol); elevated body mass index; smoking status; hyperfiltration; decreases in vitamin D, hemoglobin and uric acid excretion (all known consequences of advanced DKD); and patient test result visit‐to‐visit variability (hemoglobin A1c, blood pressure and high‐density lipoprotein cholesterol). The development of multifactorial ‘renal risk equations’ for type 2 diabetes has the potential to simplify the task of DKD prognostication; however, there are currently none for type 1 diabetes‐specific populations. Significant progress has been made in the prediction of DKD progression using readily available clinical data, though further work is required to elicit the role of several variables, and to consolidate data to facilitate clinical implementation.
Collapse
Affiliation(s)
- Nicholas J Radcliffe
- Austin Clinical School, Melbourne, Victoria, Australia.,The University of Melbourne, Melbourne, Victoria, Australia
| | - Jas-Mine Seah
- Austin Health Endocrine Center, Melbourne, Victoria, Australia
| | - Michele Clarke
- The University of Melbourne, Melbourne, Victoria, Australia.,Austin Health Endocrine Center, Melbourne, Victoria, Australia
| | - Richard J MacIsaac
- The University of Melbourne, Melbourne, Victoria, Australia.,Department of Endocrinology & Diabetes, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - George Jerums
- The University of Melbourne, Melbourne, Victoria, Australia.,Austin Health Endocrine Center, Melbourne, Victoria, Australia
| | - Elif I Ekinci
- The University of Melbourne, Melbourne, Victoria, Australia.,Austin Health Endocrine Center, Melbourne, Victoria, Australia.,Menzies School of Health, Darwin, Northern Territory, Australia
| |
Collapse
|
25
|
Identification of T Cell–Mediated Vascular Rejection After Kidney Transplantation by the Combined Measurement of 5 Specific MicroRNAs in Blood. Transplantation 2016; 100:898-907. [DOI: 10.1097/tp.0000000000000873] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Nassar W, El-Ansary M, Fayyad T, Aziz MA. Extracellular Micro-RNAs in Health and Disease: Basic Science, Biogenesis and Release. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ajmb.2016.61001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Bhatt K, Lanting LL, Jia Y, Yadav S, Reddy MA, Magilnick N, Boldin M, Natarajan R. Anti-Inflammatory Role of MicroRNA-146a in the Pathogenesis of Diabetic Nephropathy. J Am Soc Nephrol 2015; 27:2277-88. [PMID: 26647423 DOI: 10.1681/asn.2015010111] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022] Open
Abstract
Inflammation has a critical role in the pathogenesis of diabetic complications, including diabetic nephropathy (DN). MicroRNAs have recently emerged as important regulators of DN. However, the role of microRNAs in the regulation of inflammation during DN is poorly understood. Here, we examined the in vivo role of microRNA-146a (miR-146a), a known anti-inflammatory microRNA, in the pathogenesis of DN. In a model of streptozotocin-induced diabetes, miR-146a(-/-) mice showed significantly exacerbated proteinuria, renal macrophage infiltration, glomerular hypertrophy, and fibrosis relative to the respective levels in control wild-type mice. Diabetes-induced upregulation of proinflammatory and profibrotic genes was significantly greater in the kidneys of miR-146a(-/-) than in the kidneys of wild-type mice. Notably, miR-146a expression increased in both peritoneal and intrarenal macrophages in diabetic wild-type mice. Mechanistically, miR-146a deficiency during diabetes led to increased expression of M1 activation markers and suppression of M2 markers in macrophages. Concomitant with increased expression of proinflammatory cytokines, such as IL-1β and IL-18, markers of inflammasome activation also increased in the macrophages of diabetic miR-146a(-/-) mice. These studies suggest that in early DN, miR-146a upregulation exerts a protective effect by downregulating target inflammation-related genes, resulting in suppression of proinflammatory and inflammasome gene activation. Loss of this protective mechanism in miR-146a(-/-) mice leads to accelerated DN. Taken together, these results identify miR-146a as a novel anti-inflammatory noncoding RNA modulator of DN.
Collapse
Affiliation(s)
| | | | - Ye Jia
- Department of Diabetes Complications
| | | | | | - Nathaniel Magilnick
- Department of Molecular and Cellular Biology, and Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope National Medical Center, Duarte, California
| | - Mark Boldin
- Department of Molecular and Cellular Biology, and
| | | |
Collapse
|
28
|
Muñoz-Félix JM, González-Núñez M, Martínez-Salgado C, López-Novoa JM. TGF-β/BMP proteins as therapeutic targets in renal fibrosis. Where have we arrived after 25 years of trials and tribulations? Pharmacol Ther 2015; 156:44-58. [PMID: 26493350 DOI: 10.1016/j.pharmthera.2015.10.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The understanding of renal fibrosis in chronic kidney disease (CKD) remains as a challenge. More than 10% of the population of developed countries suffer from CKD. Proliferation and activation of myofibroblasts and accumulation of extracellular matrix proteins are the main features of kidney fibrosis, a process in which a large number of cytokines are involved. Targeting cytokines responsible for kidney fibrosis development might be an important strategy to face the problem of CKD. The increasing knowledge of the signaling pathway network of the transforming growth factor beta (TGF-β) superfamily members, such as the profibrotic cytokine TGF-β1 or the bone morphogenetic proteins (BMPs), and their involvement in the regulation of kidney fibrosis, has stimulated numerous research teams to look for potential strategies to inhibit profibrotic cytokines or to enhance the anti-fibrotic actions of other cytokines. The consequence of all these studies is a better understanding of all these canonical (Smad-mediated) and non-canonical signaling pathways. In addition, the different receptors involved for signaling of each cytokine, the different combinations of type I-type II receptors, and the presence and function of co-receptors that can influence the biological response have been also described. However, are these studies leading to suitable strategies to block the appearance and progression of kidney fibrosis? In this review, we offer a critical perspective analyzing the achievements using the most important strategies developed up till now: TGF-β antibodies, chemical inhibitors of TGF-β receptors, miRNAs and signaling pathways and BMP agonists with a potential role as therapeutic molecules against kidney fibrosis.
Collapse
Affiliation(s)
- José M Muñoz-Félix
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - María González-Núñez
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Carlos Martínez-Salgado
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - José M López-Novoa
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
29
|
Bhatia P, Raina S, Chugh J, Sharma S. miRNAs: early prognostic biomarkers for Type 2 diabetes mellitus? Biomark Med 2015; 9:1025-40. [DOI: 10.2217/bmm.15.69] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) has reached epidemic proportions and is associated with peripheral insulin resistance. The currently used therapies aim to delay progression of T2DM. Their efficacy could drastically be improved if implemented at earlier stages. Classical diagnostic markers (blood glucose and HbA1C) are generally detected once metabolic imbalance has already set in. Therefore, development of biomarkers for early diagnosis would help identify individuals at risk for developing T2DM. Along with genetic predisposition, epigenetics also plays a major role in T2DM development. In this review, we discuss the potential role of early diagnostic markers such as circulating miRNAs, studies done so far and challenges to be considered while taking into account the novel role of miRNAs as prognostic biomarkers.
Collapse
Affiliation(s)
- Parnika Bhatia
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| | - Shikha Raina
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education & Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| |
Collapse
|
30
|
Dey N, Bera A, Das F, Ghosh-Choudhury N, Kasinath BS, Choudhury GG. High glucose enhances microRNA-26a to activate mTORC1 for mesangial cell hypertrophy and matrix protein expression. Cell Signal 2015; 27:1276-85. [PMID: 25797045 PMCID: PMC4437875 DOI: 10.1016/j.cellsig.2015.03.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/06/2015] [Accepted: 03/15/2015] [Indexed: 02/06/2023]
Abstract
High glucose milieu inhibits PTEN expression to activate Akt kinase and induces glomerular mesangial cell hypertrophy and matrix protein expression in diabetic nephropathy. Specific mechanism by which high glucose inhibits PTEN expression is not clear. We found that high glucose increased the expression of the microRNA-26a (miR-26a) in mesangial cells. Using a sensor plasmid with 3'UTR-driven luciferase, we showed PTEN as a target of miR-26a in response to high glucose. Overexpression of miR-26a reduced the PTEN protein levels resulting in increased Akt kinase activity similar to high glucose treatment. In contrast, anti-miR-26a reversed high glucose-induced suppression of PTEN with concomitant inhibition of Akt kinase activity. Akt-mediated phosphorylation of tuberin and PRAS40 regulates mTORC1, which is necessary for mesangial cell hypertrophy and matrix protein expression. Inhibition of high glucose-induced miR-26a blocked phosphorylation of tuberin and PRAS40, which lead to suppression of phosphorylation of S6 kinase and 4EBP-1, two substrates of mTORC1. Furthermore, we show that expression of miR-26a induced mesangial cell hypertrophy and increased fibronectin and collagen I (α2) expression similar to that observed with the cells incubated with high glucose. Anti-miR-26a inhibited these phenomena in response to high glucose. Together our results provide the first evidence for the involvement of miR-26a in high glucose-induced mesangial cell hypertrophy and matrix protein expression. These data indicate the potential therapeutic utility of anti-miR-26a for the complications of diabetic kidney disease.
Collapse
Affiliation(s)
- Nirmalya Dey
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States
| | - Amit Bera
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States
| | - Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States
| | - Nandini Ghosh-Choudhury
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Pathology, University of Texas Health Science Center at San Antonio, Texas, United States
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States; VA Research, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States; VA Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, United States.
| |
Collapse
|
31
|
Higuchi C, Nakatsuka A, Eguchi J, Teshigawara S, Kanzaki M, Katayama A, Yamaguchi S, Takahashi N, Murakami K, Ogawa D, Sasaki S, Makino H, Wada J. Identification of circulating miR-101, miR-375 and miR-802 as biomarkers for type 2 diabetes. Metabolism 2015; 64:489-97. [PMID: 25726255 DOI: 10.1016/j.metabol.2014.12.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 11/18/2022]
Abstract
PURPOSE The unique circulating microRNAs (miRNAs) observed in patients with type 2 diabetes (T2D) are candidates as new biomarkers and therapeutic targets. In order to identify circulating miRNAs relevant to the disease process in case of type 2 diabetes, we performed the Illumina sequencing of miRNAs derived from the serum, liver and epididymal white adipose tissue (WAT) of diet-induced obese male C57BL/6J mice. BASIC PROCEDURES We selected four miRNAs, miR-101, miR-335, miR-375, and miR-802, which are increased in the sera and tissues of obese mice, and measured the serum levels of miRNAs in T2D and subjects with normal glucose tolerance (NGT). MAIN FINDINGS The serum concentrations of miRNAs, log(10)miR-101, log(10)miR-375, and log(10)miR-802, were significantly increased in the T2D patients compared with NGT subjects (1.41±2.01 v.s. -0.57±1.05 (P=1.36×10(-5)), 0.20±0.58 v.s. 0.038±1.00 (P=3.06×10(-6)), and 2.45±1.27 v.s. 0.97±0.98 (P=0.014), respectively). The log(10)miR-335 values did not demonstrate any significant differences between the T2D and NGT groups (-1.08±1.35 v.s. -0.38±1.21 (P=0.25)). According to the stepwise regression analysis, the HbA1c was an independent predictor of miR-101. Regarding the serum miR-802 levels, eGFR, HbA1c and HDL-C values were identified as significant determinants. PRINCIPAL CONCLUSIONS The present findings demonstrated that the circulating miR-101, miR-375 and miR-802 levels are significantly increased in T2D patients versus NGT subjects and they may become the new biomarkers for type 2 diabetes.
Collapse
Affiliation(s)
- Chigusa Higuchi
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Atsuko Nakatsuka
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Jun Eguchi
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Sanae Teshigawara
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Motoko Kanzaki
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Akihiro Katayama
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Satoshi Yamaguchi
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Naoto Takahashi
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Kazutoshi Murakami
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan; Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Daisuke Ogawa
- Department of Diabetic Nephropathy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Sakiko Sasaki
- Okayama Southern Institute of Health, Kita-ku, Okayama, Japan
| | - Hirofumi Makino
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Jun Wada
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan.
| |
Collapse
|
32
|
Feng R, Sang Q, Zhu Y, Fu W, Liu M, Xu Y, Shi H, Xu Y, Qu R, Chai R, Shao R, Jin L, He L, Sun X, Wang L. MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro. Sci Rep 2015; 5:8689. [PMID: 25732513 PMCID: PMC4346788 DOI: 10.1038/srep08689] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/29/2015] [Indexed: 12/29/2022] Open
Abstract
Previous work from our laboratory demonstrated the existence of miRNAs in human follicular fluid. In the current study, we have sought to identify miRNAs that might affect oocyte/embryo quality in patients undergoing intracytoplasmic sperm injection and to investigate their roles in in vitro fertilization outcomes in mouse oocytes. 53 samples were classified as Group 1 (high quality) if the day-3 embryos had seven and more cells or as Group 2 (low quality) if the embryos had six and fewer cells. TaqMan Human microRNAs cards and qRT-PCR were performed to verify differently expressed miRNAs. The function of the corresponding miRNA was investigated in mouse oocytes by injecting them with miRNA-inhibitor oligonucleotides. We found that hsa-miR-320a and hsa-miR-197 had significantly higher expression levels in the Group 1 follicular fluids than in Group 2 (p = 0.0073 and p = 0.008, respectively). Knockdown of mmu-miR-320 in mouse oocytes strongly decreased the proportions of MII oocytes that developed into two-cell and blastocyst stage embryos (p = 0.0048 and p = 0.0069, respectively). Wnt signaling pathway components had abnormal expression level in miR-320 inhibitor-injected oocytes. This study provides the first evidence that miRNAs in human follicular fluid are indicative of and can influence embryo quality.
Collapse
Affiliation(s)
- Ruizhi Feng
- 1] State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China [2] Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qing Sang
- 1] State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China [2] Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yan Zhu
- Guangdong No.2 provincial people's hospital, Guangzhou, China
| | - Wei Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Miao Liu
- Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Yan Xu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Huijuan Shi
- Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Yao Xu
- 1] State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China [2] Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ronggui Qu
- 1] State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China [2] Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Ruijin Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Li Jin
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Lin He
- 1] Institutes of Biomedical Sciences, Fudan University, Shanghai, China [2] Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lei Wang
- 1] State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China [2] Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Abstract
MicroRNAs (miRNAs) are endogenous short non-coding RNAs that regulate most of important cellular processes by inhibiting gene expression through the post-transcriptional repression of their target mRNAs. In kidneys, miRNAs have been associated in renal development, homeostasis, and physiological functions. Results from clinical and experimental animal studies demonstrate that miRNAs play essential roles in the pathogenesis of various renal diseases. Chronic kidney diseases (CKD) is characterized by renal fibrosis. Transforming growth factor beta (TGF-β) is recognized as a major mediator of renal fibrosis because it is able to stimulate the accumulation of extracellular matrix (ECM) proteins to impair normal kidney function. Recently, emerging evidence demonstrate the relationship between TGF-β signaling and miRNAs expression during renal diseases. TGF-β regulates expression of several microRNAs, such as miR-21, miR-192, miR-200, miR-433, and miR-29. MiR-21, miR-192, and miR-433 which are positively induced by TGF-β signaling play a pathological role in kidney diseases. In contrast, members in both miR-29 and miR-200 families which are inhibited by TGF-β signaling protect kidneys from renal fibrosis by suppressing the deposition of ECM and preventing epithelial-to-mesenchymal transition, respectively. Clinically, the presence of miRNAs in blood and urine has been examined to be early biomarkers for detecting renal diseases. From experimental animal studies of CKD, targeting microRNAs also provides evidence about therapeutic potential of miRNAs during renal diseases. Now, it comes to the stage to examine the exact mechanisms of miRNAs during the initiation and progression of renal diseases. Therefore, determining the function of miRNAs in renal fibrosis may facilitate the development of both early diagnosis and treatment of renal diseases.
Collapse
Affiliation(s)
- Arthur C-K Chung
- Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University Hong Kong, China ; HKBU Institute for Research and Continuing Education Shenzhen, China
| | - Hui Y Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
34
|
Kwekel JC, Vijay V, Desai VG, Moland CL, Fuscoe JC. Age and sex differences in kidney microRNA expression during the life span of F344 rats. Biol Sex Differ 2015; 6:1. [PMID: 25653823 PMCID: PMC4316605 DOI: 10.1186/s13293-014-0019-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/29/2014] [Indexed: 02/08/2023] Open
Abstract
Background Growing evidence suggests that epigenetic mechanisms of gene regulation may play a role in susceptibilities to specific toxicities and adverse drug reactions. MiRNAs in particular have been shown to be important regulators in cancer and other diseases and show promise as predictive biomarkers for diagnosis and prognosis. In this study, we characterized the global kidney miRNA expression profile in untreated male and female F344 rats throughout the life span. These findings were correlated with sex-specific susceptibilities to adverse renal events, such as male-biased renal fibrosis and inflammation in old age. Methods Kidney miRNA expression was examined in F344 rats at 2, 5, 6, 8, 15, 21, 78, and 104 weeks of age in both sexes using Agilent miRNA microarrays. Differential expression was determined using filtering criteria of ≥1.5 fold change and ANOVA or pairwise t-test (FDR <5%) to determine significant age and sex effects, respectively. Pathway analysis software was used to investigate the possible roles of these target genes in age- and sex-specific differences. Results Three hundred eleven miRNAs were found to be expressed in at least one age and sex. Filtering criteria revealed 174 differentially expressed miRNAs in the kidney; 173 and 34 miRNAs exhibiting age and sex effects, respectively. Principal component analysis revealed age effects predominated over sex effects, with 2-week miRNA expression being much different from other ages. No significant sexually dimorphic miRNA expression was observed from 5 to 8 weeks, while the most differential expression (13 miRNAs) was observed at 21 weeks. Potential target genes of these differentially expressed miRNAs were identified. Conclusions The expression of 56% of detected renal miRNAs was found to vary significantly with age and/or sex during the life span of F344 rats. Pathway analysis suggested that 2-week-expressed miRNAs may be related to organ and cellular development and proliferation pathways. Male-biased miRNA expression at older ages correlated with male-biased renal fibrosis and mononuclear cell infiltration. These miRNAs showed high representation in renal inflammation and nephritis pathways, and included miR-214, miR-130b, miR-150, miR-223, miR-142-5p, miR-185, and miR-296*. Analysis of kidney miRNA expression throughout the rat life span will improve the use of current and future renal biomarkers and inform our assessments of kidney injury and disease. Electronic supplementary material The online version of this article (doi:10.1186/s13293-014-0019-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joshua C Kwekel
- Division of Systems Biology, Personalized Medicine Branch, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 USA
| | - Vikrant Vijay
- Division of Systems Biology, Personalized Medicine Branch, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 USA
| | - Varsha G Desai
- Division of Systems Biology, Personalized Medicine Branch, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 USA
| | - Carrie L Moland
- Division of Systems Biology, Personalized Medicine Branch, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 USA
| | - James C Fuscoe
- Division of Systems Biology, Personalized Medicine Branch, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 USA
| |
Collapse
|
35
|
Bhatt K, Wei Q, Pabla N, Dong G, Mi QS, Liang M, Mei C, Dong Z. MicroRNA-687 Induced by Hypoxia-Inducible Factor-1 Targets Phosphatase and Tensin Homolog in Renal Ischemia-Reperfusion Injury. J Am Soc Nephrol 2015; 26:1588-96. [PMID: 25587068 DOI: 10.1681/asn.2014050463] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/12/2014] [Indexed: 01/08/2023] Open
Abstract
Ischemia-reperfusion injury contributes to tissue damage and organ failure in clinical settings, but the underlying mechanism remains elusive and effective therapies are still lacking. Here, we identified microRNA 687 (miR-687) as a key regulator and therapeutic target in renal ischemia-reperfusion injury. We show that miR-687 is markedly upregulated in the kidney during renal ischemia-reperfusion in mice and in cultured kidney cells during hypoxia. MiR-687 induction under these conditions was mediated by hypoxia-inducible factor-1 (HIF-1). Upon induction in vitro, miR-687 repressed the expression of phosphatase and tensin homolog (PTEN) and facilitated cell cycle progression and apoptosis. Blockade of miR-687 preserved PTEN expression and attenuated cell cycle activation and renal apoptosis, resulting in protection against kidney injury in mice. Collectively, these results unveil a novel HIF-1/miR-687/PTEN signaling pathway in ischemia-reperfusion injury that may be targeted for therapy.
Collapse
Affiliation(s)
- Kirti Bhatt
- Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Navjotsingh Pabla
- Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Qing-Sheng Mi
- Departments of Dermatology and Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Changlin Mei
- Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, China; and
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia; Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
36
|
Comparisons of microRNA expression profiles in vitreous humor between eyes with macular hole and eyes with proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2014; 253:335-42. [PMID: 24970617 DOI: 10.1007/s00417-014-2692-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022] Open
Abstract
PURPOSE MicroRNAs (miRNAs) are small noncoding RNAs which regulate the activities of target mRNAs. We compared the expression profiles of the miRNAs in the vitreous of eyes with macular hole (MH) to that in eyes with proliferative diabetic retinopathy (PDR). METHODS Vitreous and whole blood samples were collected from four patients with MH and from four patients with PDR. We assayed for 168 miRNAs in the vitreous and serum samples by the microRNA PCR Panel method. RESULTS The mean number of miRNAs expressed in the vitreous was 63 (55-69) in eyes with MH and 86 (65-117) in eyes with PDR. The mean number of miRNAs expressed in the serum was 162 (159-167) in the MH patients and 142 (115-160) in the PDR patients. Twenty-six miRNAs were expressed in the vitreous of both MH and PDR eyes. Although there was no significant difference in the levels of 20 of the 26 (73 %) miRNAs expressed in both MH and PDR eyes, six of 26 miRNAs (24 %) (hsa-miR-15a, hsa-miR320a, hsa-miR-320b, hsa-miR-93, hsa-miR-29a, and hsa-miR-423-5p) were expressed significantly more highly in PDR eyes. In addition, the mean fold changes of three miRNAs, hsa-miR-23a, hsa-miR-320a, and hsa-miR-320b, in the vitreous to serum were significantly higher in the PDR group than in the MH group. CONCLUSIONS The expression of several miRNAs related to angiogenesis and fibrosis was expressed significantly higher in the vitreous of eyes with PDR. Further studies are needed to understand the role played by the miRNAs in the biological function of the eye.
Collapse
|