1
|
Altynova N, Khamdiyeva O, Garshin A, Baratzhanova G, Amirgaliyeva A, Seisenbayeva A, Abylkassymova G, Yergali K, Tolebaeva A, Skvortsova L, Zhunussova G, Bekmanov B, Cakir-Kiefer C, Djansugurova L. Case-Control Study of the Association between Single Nucleotide Polymorphisms of Genes Involved in Xenobiotic Detoxification and Antioxidant Protection with the Long-Term Influence of Organochlorine Pesticides on the Population of the Almaty Region. TOXICS 2023; 11:948. [PMID: 38133349 PMCID: PMC10747153 DOI: 10.3390/toxics11120948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
The association of genetic polymorphisms with the individual sensitivity of humans to the action of pesticide pollution is being actively studied in the world. The aim of this study was a molecular epidemiological analysis of candidate polymorphisms of genes involved in pesticide metabolism, detoxification, and antioxidant protection. Some of the selected polymorphisms also relate to susceptibility to cancer and cardiovascular, respiratory, and immune system diseases in individuals exposed to pesticides for a long time. For a case-control study of a unique cohort of people exposed to organochlorine pesticides for 10 years or more were chosen, a control cohort was selected that matched with the experimental group by the main population characteristics. PCR-PRLF and genome-wide microarray genotyping (GWAS) methods were used. We identified 17 polymorphisms of xenobiotic detoxification genes and 27 polymorphisms of antioxidant defense genes, which had a significantly high statistical association with the negative impact of chronic pesticide intoxication on human health. We also found 17 polymorphisms of xenobiotic detoxification genes and 12 polymorphisms of antioxidant defense genes that have a protective effect. Data obtained added to the list of potential polymorphisms that define a group at high risk or resistant to the negative effects of pesticides.
Collapse
Affiliation(s)
- Nazym Altynova
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan
| | - Ozada Khamdiyeva
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Aleksandr Garshin
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan
| | - Gulminyam Baratzhanova
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan
- INRAE, UR AFPA, USC 340, University of Lorraine, Nancy F-54000, France;
| | - Almira Amirgaliyeva
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Akerke Seisenbayeva
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Gulnar Abylkassymova
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Kanagat Yergali
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Anar Tolebaeva
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Liliya Skvortsova
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Gulnur Zhunussova
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Bakhytzhan Bekmanov
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan
| | | | - Leyla Djansugurova
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan
| |
Collapse
|
2
|
Th2 Cytokines (Interleukin-5 and -9) Polymorphism Affects the Response to Anti-TNF Treatment in Polish Patients with Ankylosing Spondylitis. Int J Mol Sci 2022; 23:ijms232113177. [PMID: 36361964 PMCID: PMC9657232 DOI: 10.3390/ijms232113177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Ankylosing spondylitis (AS) is an inflammatory disease that belongs to the spondyloarthritis family. IL-5 and IL-9 belong to the group of Th2 cytokines of anti-inflammatory nature. Polymorphisms in their coding genes have been so far associated with various inflammatory diseases, but there are no reports regarding their involvement in AS pathogenesis to date. The purpose of the study was to investigate relationships between IL5 and IL9 genetic variants with AS susceptibility, clinical parameters as well as response to therapy with TNF inhibitors. In total 170 patients receiving anti-TNF therapy and 218 healthy controls were enrolled in the study. The genotyping of IL5 rs2069812 (A > G) and IL9 rs2069885 (G > A) single nucleotide polymorphisms was performed using the Real-Time PCR method based on LightSNiP kits assays. The present study demonstrated significant relationships between IL5 rs2069812 and IL9 rs2069885 polymorphisms and response to anti-TNF therapy. Presence of the IL5 rs2069812 A allele in patients positively correlated with better response to treatment (p = 0.022). With regard to IL9 rs2069885, patients carrying the A allele displayed better outcomes in anti-TNF therapy (p = 0.046). In addition, IL5 rs2069812 A and IL9 rs2069885 A alleles were associated with lower CRP and VAS values. The obtained results may indicate a significant role for IL-5 and IL-9 in the course of AS and response to anti-TNF therapy.
Collapse
|
3
|
Development and validation of an RNA-seq-based transcriptomic risk score for asthma. Sci Rep 2022; 12:8643. [PMID: 35606385 PMCID: PMC9126925 DOI: 10.1038/s41598-022-12199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Recent progress in RNA sequencing (RNA-seq) allows us to explore whole-genome gene expression profiles and to develop predictive model for disease risk. The objective of this study was to develop and validate an RNA-seq-based transcriptomic risk score (RSRS) for disease risk prediction that can simultaneously accommodate demographic information. We analyzed RNA-seq gene expression data from 441 asthmatic and 254 non-asthmatic samples. Logistic least absolute shrinkage and selection operator (Lasso) regression analysis in the training set identified 73 differentially expressed genes (DEG) to form a weighted RSRS that discriminated asthmatics from healthy subjects with area under the curve (AUC) of 0.80 in the testing set after adjustment for age and gender. The 73-gene RSRS was validated in three independent RNA-seq datasets and achieved AUCs of 0.70, 0.77 and 0.60, respectively. To explore their biological and molecular functions in asthma phenotype, we examined the 73 genes by enrichment pathway analysis and found that these genes were significantly (p < 0.0001) enriched for DNA replication, recombination, and repair, cell-to-cell signaling and interaction, and eumelanin biosynthesis and developmental disorder. Further in-silico analyses of the 73 genes using Connectivity map shows that drugs (mepacrine, dactolisib) and genetic perturbagens (PAK1, GSR, RBM15 and TNFRSF12A) were identified and could potentially be repurposed for treating asthma. These findings show the promise for RNA-seq risk scores to stratify and predict disease risk.
Collapse
|
4
|
Azarova IE, Klyosova EY, Polonikov AV. Polymorphic variants of glutathione reductase – new genetic markers of predisposition to type 2 diabetes mellitus. TERAPEVT ARKH 2021; 93:1164-1170. [PMID: 36286817 DOI: 10.26442/00403660.2021.10.201101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022]
Abstract
Aim. To study the associations of three common single nucleotide variants of the gene encoding antioxidant system enzyme, glutathione reductase GSR with a predisposition to type 2 diabetes (T2D).
Materials and methods. The observational mono-center transverse controlled study involved 1032 type 2 diabetics (640 women, 392 men; mean age 61.14.8 years) and 1056 healthy volunteers (676 women, 380 men; mean age 60.96.2 years). Eating habits were evaluated retrospectively according to questionnaire data. A 10 ml blood sample was drawn from all participants in the study for genetic and biochemical tests. Genotyping was done with the use of the iPLEX technology on MassArray System.
Results. We first identified the relationship of the polymorphisms rs2551715, rs2911678, rs3757918 of the GSR gene with a reduced risk of developing T2D in the Russian population. At the same time, the protective effects of the variants of the glutathione reductase gene manifested only in individuals with normal body weight provided they consumed fresh vegetables and fruits, whereas in those with insufficient consumption of plant foods, as well as in all overweight and obese patients, the protective effect of GSR was not observed. In patients with T2D, the plasma levels of hydrogen peroxide and the glutathione dimer were sharply increased compared with the controls. We also found that the rs2551715 polymorphism was associated with a lower concentration of hydrogen peroxide in the blood plasma of patients with T2D, while SNP rs2911678 was associated with a decrease in the concentration of the oxidized form of glutathione. Bioinformatical analysis confirmed the positive effect of alternative alleles on GSR expression and revealed the closest protein partners of the enzyme and their joint participation in the metabolism of acetyl-CoA, the catabolism of hydrogen peroxide and the control of cellular redox homeostasis.
Conclusion. Polymorphic variants of the GSR gene rs2551715, rs2911678, rs3757918 are associated with a predisposition to T2D, but their relationship with the disease is modulated by the consumption of fresh vegetables and fruits and depends on body mass index.
Collapse
|
5
|
Zolotareva O, Saik OV, Königs C, Bragina EY, Goncharova IA, Freidin MB, Dosenko VE, Ivanisenko VA, Hofestädt R. Comorbidity of asthma and hypertension may be mediated by shared genetic dysregulation and drug side effects. Sci Rep 2019; 9:16302. [PMID: 31705029 PMCID: PMC6841742 DOI: 10.1038/s41598-019-52762-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Asthma and hypertension are complex diseases coinciding more frequently than expected by chance. Unraveling the mechanisms of comorbidity of asthma and hypertension is necessary for choosing the most appropriate treatment plan for patients with this comorbidity. Since both diseases have a strong genetic component in this article we aimed to find and study genes simultaneously associated with asthma and hypertension. We identified 330 shared genes and found that they form six modules on the interaction network. A strong overlap between genes associated with asthma and hypertension was found on the level of eQTL regulated genes and between targets of drugs relevant for asthma and hypertension. This suggests that the phenomenon of comorbidity of asthma and hypertension may be explained by altered genetic regulation or result from drug side effects. In this work we also demonstrate that not only drug indications but also contraindications provide an important source of molecular evidence helpful to uncover disease mechanisms. These findings give a clue to the possible mechanisms of comorbidity and highlight the direction for future research.
Collapse
Affiliation(s)
- Olga Zolotareva
- Bielefeld University, International Research Training Group "Computational Methods for the Analysis of the Diversity and Dynamics of Genomes" and Genome Informatics, Faculty of Technology and Center for Biotechnology, Bielefeld, Germany.
| | - Olga V Saik
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Cassandra Königs
- Bielefeld University, Bioinformatics and Medical Informatics Department, Bielefeld, Germany
| | - Elena Yu Bragina
- Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia
| | | | - Maxim B Freidin
- Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia
| | | | - Vladimir A Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Ralf Hofestädt
- Bielefeld University, Bioinformatics and Medical Informatics Department, Bielefeld, Germany
| |
Collapse
|
6
|
Zhang J, Chen J, Robinson C. Cellular and Molecular Events in the Airway Epithelium Defining the Interaction Between House Dust Mite Group 1 Allergens and Innate Defences. Int J Mol Sci 2018; 19:E3549. [PMID: 30423826 PMCID: PMC6274810 DOI: 10.3390/ijms19113549] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 12/26/2022] Open
Abstract
Serodominant group 1 allergens of house dust mites (HDMs) are cysteine protease digestive enzymes. By increasing the detection of any allergen by dendritic antigen presenting cells, upregulating inflammatory signalling molecules, and activating cells crucial to the transition from innate to acquired immune responses, the proteolytic activity of these HDM allergens also underlies their behaviour as inhalant allergens. The significance of this property is underlined by the attenuation of allergic responses to HDMs by novel inhibitors in experimental models. The group 1 HDM allergens act as prothrombinases, enabling them to operate the canonical stimulation of protease activated receptors 1 and 4. This leads to the ligation of Toll-like receptor 4, which is an indispensable component in HDM allergy development, and reactive oxidant-regulated gene expression. Intermediate steps involve epidermal growth factor receptor ligation, activation of a disintegrin and metalloproteases, and the opening of pannexons. Elements of this transduction pathway are shared with downstream signalling from biosensors which bind viral RNA, suggesting a mechanistic linkage between allergens and respiratory viruses in disease exacerbations. This review describes recent progress in the characterisation of an arterial route which links innate responses to inhaled allergens to events underpinning the progression of allergy to unrelated allergens.
Collapse
Affiliation(s)
- Jihui Zhang
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jie Chen
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom.
| | - Clive Robinson
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom.
| |
Collapse
|
7
|
Jesenak M, Zelieskova M, Babusikova E. Oxidative Stress and Bronchial Asthma in Children-Causes or Consequences? Front Pediatr 2017; 5:162. [PMID: 28791280 PMCID: PMC5523023 DOI: 10.3389/fped.2017.00162] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
Bronchial asthma is one of the most common chronic inflammatory diseases of the airways. In the pathogenesis of this disease, the interplay among the genes, intrinsic, and extrinsic factors are crucial. Various combinations of the involved factors determine and modify the final clinical phenotype/endotype of asthma. Oxidative stress results from an imbalance between the production of reactive oxygen species and reactive nitrogen species and the capacity of antioxidant defense mechanisms. It was shown that oxidative damage of biomolecules is strongly involved in the asthmatic inflammation. It is evident that asthma is accompanied by oxidative stress in the airways and in the systemic circulation. The oxidative stress is more pronounced during the acute exacerbation or allergen challenge. On the other hand, the genetic variations in the genes for anti-oxidative and pro-oxidative enzymes are variably associated with various asthmatic subtypes. Whether oxidative stress is the consequence of, or the cause for, chronic changes in asthmatic airways is still being discussed. Contribution of oxidative stress to asthma pathology remains at least partially controversial, since antioxidant interventions have proven rather unsuccessful. According to current knowledge, the relationship between oxidative stress and asthmatic inflammation is bidirectional, and genetic predisposition could modify the balance between these two positions-oxidative stress as a cause for or consequence of asthmatic inflammation.
Collapse
Affiliation(s)
- Milos Jesenak
- Jessenius Faculty of Medicine, Department of Pediatrics, Comenius University in Bratislava, University Hospital, Martin, Slovakia
| | - Maria Zelieskova
- Jessenius Faculty of Medicine, Department of Pediatrics, Comenius University in Bratislava, University Hospital, Martin, Slovakia
| | - Eva Babusikova
- Jessenius Faculty of Medicine, Department of Medical Biochemistry, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
8
|
Basharat Z, Messaoudi A, Ruba S, Yasmin A. NQO1 rs1800566 polymorph is more prone to NOx induced lung injury: Endorsing deleterious functionality through informatics approach. Gene 2016; 591:14-20. [DOI: 10.1016/j.gene.2016.06.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 06/12/2016] [Accepted: 06/23/2016] [Indexed: 02/06/2023]
|
9
|
"Cumulative Stress": The Effects of Maternal and Neonatal Oxidative Stress and Oxidative Stress-Inducible Genes on Programming of Atopy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8651820. [PMID: 27504149 PMCID: PMC4967692 DOI: 10.1155/2016/8651820] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/27/2016] [Accepted: 06/22/2016] [Indexed: 12/16/2022]
Abstract
Although extensive epidemiological and laboratory studies have been performed to identify the environmental and immunological causes of atopy, genetic predisposition seems to be the biggest risk factor for allergic diseases. The onset of atopic diseases may be the result of heritable changes of gene expression, without any alteration in DNA sequences occurring in response to early environmental stimuli. Findings suggest that the establishment of a peculiar epigenetic pattern may also be generated by oxidative stress (OS) and perpetuated by the activation of OS-related genes. Analyzing the role of maternal and neonatal oxidative stress and oxidative stress-inducible genes, the purpose of this review was to summarize what is known about the relationship between maternal and neonatal OS-related genes and the development of atopic diseases.
Collapse
|
10
|
Kukurba KR, Parsana P, Balliu B, Smith KS, Zappala Z, Knowles DA, Favé MJ, Davis JR, Li X, Zhu X, Potash JB, Weissman MM, Shi J, Kundaje A, Levinson DF, Awadalla P, Mostafavi S, Battle A, Montgomery SB. Impact of the X Chromosome and sex on regulatory variation. Genome Res 2016; 26:768-77. [PMID: 27197214 PMCID: PMC4889977 DOI: 10.1101/gr.197897.115] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 04/18/2016] [Indexed: 02/07/2023]
Abstract
The X Chromosome, with its unique mode of inheritance, contributes to differences between the sexes at a molecular level, including sex-specific gene expression and sex-specific impact of genetic variation. Improving our understanding of these differences offers to elucidate the molecular mechanisms underlying sex-specific traits and diseases. However, to date, most studies have either ignored the X Chromosome or had insufficient power to test for the sex-specific impact of genetic variation. By analyzing whole blood transcriptomes of 922 individuals, we have conducted the first large-scale, genome-wide analysis of the impact of both sex and genetic variation on patterns of gene expression, including comparison between the X Chromosome and autosomes. We identified a depletion of expression quantitative trait loci (eQTL) on the X Chromosome, especially among genes under high selective constraint. In contrast, we discovered an enrichment of sex-specific regulatory variants on the X Chromosome. To resolve the molecular mechanisms underlying such effects, we generated chromatin accessibility data through ATAC-sequencing to connect sex-specific chromatin accessibility to sex-specific patterns of expression and regulatory variation. As sex-specific regulatory variants discovered in our study can inform sex differences in heritable disease prevalence, we integrated our data with genome-wide association study data for multiple immune traits identifying several traits with significant sex biases in genetic susceptibilities. Together, our study provides genome-wide insight into how genetic variation, the X Chromosome, and sex shape human gene regulation and disease.
Collapse
Affiliation(s)
- Kimberly R Kukurba
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Princy Parsana
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Brunilda Balliu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kevin S Smith
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Zachary Zappala
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - David A Knowles
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Marie-Julie Favé
- Sainte-Justine University Hospital Research Centre, Department of Pediatrics, University of Montreal, Montreal, Québec H3T 1J4, Canada
| | - Joe R Davis
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Xin Li
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Xiaowei Zhu
- Department of Psychiatry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - James B Potash
- Department of Psychiatry, University of Iowa Hospitals & Clinics, Iowa City, Iowa 52242, USA
| | - Myrna M Weissman
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, New York 10032, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | - Douglas F Levinson
- Department of Psychiatry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Philip Awadalla
- Sainte-Justine University Hospital Research Centre, Department of Pediatrics, University of Montreal, Montreal, Québec H3T 1J4, Canada
| | - Sara Mostafavi
- Department of Statistics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Alexis Battle
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| | - Stephen B Montgomery
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Computer Science, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
11
|
Polonikov AV, Ivanov VP, Bogomazov AD, Solodilova MA. [Genetic and biochemical mechanisms of involvement of antioxidant defense enzymes in the development of bronchial asthma]. BIOMEDITSINSKAIA KHIMIIA 2015; 61:427-39. [PMID: 26350733 DOI: 10.18097/pbmc20156104427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the present review we have analyzed and summarized recent literature data on genetic and biochemical mechanisms responsible for involvement of antioxidant defense enzymes in the etiology and pathogenesis of bronchial asthma. It has been shown that the mechanisms of asthma development are linked with genetically determined abnormalities in the functioning of antioxidant defense enzymes. These alterations are accompanied by a systemic imbalance between oxidative and anti-oxidative reactions with the shift of the redox state toward increased free radical production and oxidative stress, a key element in the pathogenesis of bronchial asthma.
Collapse
Affiliation(s)
| | - V P Ivanov
- Kursk State Medical University, Kursk, Russia
| | | | | |
Collapse
|
12
|
Yarosh SL, Kokhtenko EV, Churnosov MI, Solodilova MA, Polonikov AV. Joint effect of glutathione S-transferase genotypes and cigarette smoking on idiopathic male infertility. Andrologia 2014; 47:980-6. [PMID: 25348056 DOI: 10.1111/and.12367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2014] [Indexed: 01/01/2023] Open
Abstract
Inconsistent results of association studies investigated the role of glutathione S-transferase genes in idiopathic male infertility may be explained by ethnical differences in gene-gene and gene-environment interactions. In this study, we investigated a joint contribution of GSTM1, GSTT1 and GSTP1 gene polymorphisms and cigarette smoking to the risk of idiopathic infertility in Russian men. DNA samples from 203 infertile and 227 fertile men were genotyped by a multiplex polymerase chain reaction (GSTM1 and GSTT1 deletions) and PCR-restriction fragment length polymorphism (GSTP1 I105V) methods. The GSTP1 genotype 105IV was associated with increased risk of male infertility (OR = 1.50 95% CI 1.02-2.20 P = 0.04). Genotype combinations GSTP1 105II/GSTT1 del (G1), GSTM1 del/GSTT1 del (G2) and GSTM1 + /GSTT1 del (G3) were associated with decreased risk of male infertility (P ≤ 0.003), whereas a genotype combination GSTP1 105IV/GSTT1 + (G4) was associated with increased disease risk (P = 0.001). The genotype combinations G3 and G4 showed a significant association with infertility in smokers; however, nonsmokers carriers did show the disease risk. In conclusion, GSTM1, GSTT1 and GSTP1 genes are collectively involved in the development of idiopathic male infertility and their phenotypic effects on the disease risk are potentiated by cigarette smoking.
Collapse
Affiliation(s)
- S L Yarosh
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia.,Family Planning and Reproductive Health Clinic, Regional Perinatal Center, Kursk, Russia
| | - E V Kokhtenko
- Department of Zoology and Theory of Evolution, Kursk State University, Kursk, Russia
| | - M I Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, Belgorod, Russia
| | - M A Solodilova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| | - A V Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| |
Collapse
|
13
|
Abstract
Treatment of asthma lends itself to an integrative medicine approach due to the multifactorial nature of the disease. It is well established that asthma has a neuromuscular component (bronchospasm), an immunological component (inflammation), and a psychological component. This encourages the use of diverse approaches to address all avenues of pathophysiology, aiming for the most effective blend of treatment approaches possible. Integrative medicine is defined by NIH NCCAM ( http://nccam.nih.gov ) as medicine that blends the use of evidence-based complementary therapies with conventional medicine. Statistics from the 2007 National Health Interview Survey (NHIS), conducted by the Centers for Disease Control and Prevention's (CDC) National Center for Health Statistics (NCHS), showed that approximately four out of 10 adults and approximately one in nine children and more than 50 % of children living with chronic illness, including asthma, used complementary therapies in the USA in 2007. Asthma and allergies rank among the top 15 most common medical conditions in which integrative therapies are used in both children and adults. To date, integrative treatment approaches with some evidence for benefit in asthma treatment include the following: nutrition modification, mind-body medicine, physical activity, and certain dietary supplement interventions.
Collapse
|
14
|
Polonikov AV, Ivanov VP, Bogomazov AD, Solodilova MA. Genetic and biochemical mechanisms of involvement of antioxidant defense enzymes in the development of bronchial asthma: A review. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2014; 8:273-285. [DOI: 10.1134/s1990750814040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
15
|
Parsanejad M, Bourquard N, Qu D, Zhang Y, Huang E, Rousseaux MWC, Aleyasin H, Irrcher I, Callaghan S, Vaillant DC, Kim RH, Slack RS, Mak TW, Reddy ST, Figeys D, Park DS. DJ-1 interacts with and regulates paraoxonase-2, an enzyme critical for neuronal survival in response to oxidative stress. PLoS One 2014; 9:e106601. [PMID: 25210784 PMCID: PMC4161380 DOI: 10.1371/journal.pone.0106601] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 08/05/2014] [Indexed: 11/18/2022] Open
Abstract
Loss-of-function mutations in DJ-1 (PARK7) gene account for about 1% of all familial Parkinson's disease (PD). While its physiological function(s) are not completely clear, DJ-1 protects neurons against oxidative stress in both in vitro and in vivo models of PD. The molecular mechanism(s) through which DJ-1 alleviates oxidative stress-mediated damage remains elusive. In this study, we identified Paraoxonase-2 (PON2) as an interacting target of DJ-1. PON2 activity is elevated in response to oxidative stress and DJ-1 is crucial for this response. Importantly, we showed that PON2 deficiency hypersensitizes neurons to oxidative stress induced by MPP+ (1-methyl-4-phenylpyridinium). Conversely, over-expression of PON2 protects neurons in this death paradigm. Interestingly, PON2 effectively rescues DJ-1 deficiency-mediated hypersensitivity to oxidative stress. Taken together, our data suggest a model by which DJ-1 exerts its antioxidant activities, at least partly through regulation of PON2.
Collapse
Affiliation(s)
- Mohammad Parsanejad
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Noam Bourquard
- Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at Univeristy of California Los Angeles, Los Angeles, California, United States of America
| | - Dianbo Qu
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yi Zhang
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - En Huang
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Maxime W. C. Rousseaux
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hossein Aleyasin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Isabella Irrcher
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Ophthalmology, Queen's University, Kingston, Ontario, Canada
| | - Steve Callaghan
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Dominique C. Vaillant
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Raymond H. Kim
- The Campbell Family Institute for Breast Cancer Research, Toronto, Ontario, Canada
| | - Ruth S. Slack
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Tak W. Mak
- The Campbell Family Institute for Breast Cancer Research, Toronto, Ontario, Canada
| | - Srinivasa T. Reddy
- Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at Univeristy of California Los Angeles, Los Angeles, California, United States of America
| | - Daniel Figeys
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada
| | - David S. Park
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Korea
- * E-mail:
| |
Collapse
|