1
|
Rampino A, Garofalo M, Nuzzo T, Favia M, Saltarelli S, Masellis R, Asselti MG, Pennacchio TC, Bruzzese D, Errico F, Vidali M, Bertolino A, Usiello A. Variations of blood D-serine and D-aspartate homeostasis track psychosis stages. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:115. [PMID: 39702391 DOI: 10.1038/s41537-024-00537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
Schizophrenia (SCZ) is a severe psychotic disorder characterized by a disruption in glutamatergic NMDA receptor (NMDAR)-mediated neurotransmission. Compelling evidence has revealed that NMDAR activation is not limited to L-glutamate, L-aspartate, and glycine since other free amino acids (AAs) in the atypical D-configuration, such as D-aspartate and D-serine, also modulate this class of glutamatergic receptors. Although dysregulation of AAs modulating NMDARs has been previously reported in SCZ, it remains unclear whether distinct variations of these biomolecules occur during illness progression from at-risk premorbid to clinically manifest stage. To probe this issue, we used High-Performance Liquid Chromatography (HPLC) to measure serum levels of D- and L-AAs that stimulate NMDARs across four groups of individuals diagnosed with (a) At-Risk Mental State (ARMS) for psychosis, (b) First Episode of Psychosis (FEP), (c) full-blown SCZ and (d) Healthy Donors (HD). We examined how diagnosis, demographic features, and antipsychotic treatment influence the variation of AA levels throughout psychosis progression. Finally, we explored the potential association between AA blood concentrations and clinical and cognitive measures related to psychosis. Our findings identified inter-group differences in serum AA composition, highlighting that the upregulation of D-serine/total serine and D-aspartate/total aspartate ratios represent a peculiar blood biochemical signature of early stages of psychosis progression, while increased L-glutamate, L-aspartate and glycine associate with chronic SCZ diagnosis. The present findings provide direct evidence for early dysregulation of D-AA metabolism and have potential implications for the identification of biomarkers for the early detection and staging of psychosis.
Collapse
Grants
- PE0000006 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- P2022ZEMZF Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PE0000006 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 2017M42834 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- #F/200044/01-03/X45 Ministero dello Sviluppo Economico (Ministry of Economic Development)
- #F/200044/01-03/X45 Ministero dello Sviluppo Economico (Ministry of Economic Development)
- 2015 NARSAD Young Investigator Grant, no. 23968 Brain and Behavior Research Foundation (Brain & Behavior Research Foundation)
- 2013 NARSAD Independent Investigator Grant, no. 20353 Brain and Behavior Research Foundation (Brain & Behavior Research Foundation)
- 2013 NARSAD Independent Investigator Grant, no. 20353 Brain and Behavior Research Foundation (Brain & Behavior Research Foundation)
Collapse
Affiliation(s)
- Antonio Rampino
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy.
- U.O.C. Psichiatria Universitaria, Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy.
| | - Martina Garofalo
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Tommaso Nuzzo
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maria Favia
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Silvia Saltarelli
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Rita Masellis
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Martina Grazia Asselti
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Teresa Claudia Pennacchio
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Dario Bruzzese
- Medical Statistics, Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Francesco Errico
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | - Matteo Vidali
- Clinical Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Bertolino
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
- U.O.C. Psichiatria Universitaria, Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Alessandro Usiello
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
2
|
Uzun Uysal E, Tomruk NB, Çakır Şen C, Yıldızhan E. D-serine and D-amino acid oxidase levels in patients with schizophrenia spectrum disorders in the first episode and 6-month follow-up. J Psychiatr Res 2024; 175:123-130. [PMID: 38728915 DOI: 10.1016/j.jpsychires.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND D-serine and the D-amino acid oxidase (DAO) enzyme, which breaks down d-amino acids, may be involved in the pathophysiology of schizophrenia by affecting the N-methyl-D-aspartate (NMDA) receptor. The exact role of D-serine and DAO, as well as the consequences of increased DAO activity in patients with schizophrenia, remain unclear. We aimed to investigate D-serine and DAO levels in patients with first-episode schizophrenia spectrum disorders before treatment and after six months of treatment. METHOD Comparisons for the serum levels of D-serine and DAO were made between 81 healthy controls and 89 patients with first-episode schizophrenia spectrum disorders without a history of treatment. Further comparisons were made after 6 months for changes in these levels in the 41 patients in follow-up. The Positive and Negative Syndrome Scale (PANNS), Calgary Scale for Depression in Schizophrenia (CDSS), Montreal Cognitive Assessment Scale (MoCA), Global Assessment Scale (GAS), and Clinical Global Impression Scale (CGI) were used to evaluate the symptom severity and functionality. Secondary results included comparisons related to antipsychotic equivalent doses. RESULTS Before treatment, patients had significantly lower levels of D-serine, DAO, and D-serine/DAO ratio compared to healthy individuals (p < 0.001; p < 0.001; p = 0.004). DAO and D-serine levels of the patients were higher after six months of treatment (p = 0.025; p = 0.001). There was correlation of DAO levels with antipsychotic dosage and with PANSS negative and total subscale scores (rho = 0.421, p = 0.01; rho = 0.280, p = 0.008; rho = 0.371, p = 0.000). No correlation was found between serum D-serine level, DAO level, and the D-serine/DAO ratio with cognitive function. CONCLUSIONS The results suggest that D-serine and DAO may play a role that is sensitive to treatment effects in schizophrenia spectrum disorders. To gain a more comprehensive understanding of the impact antipsychotic drugs have on NMDA receptor dysfunction, there is a requirement for studies that directly evaluates the activity of the DAO enzyme.
Collapse
Affiliation(s)
- Eda Uzun Uysal
- Arnavutkoy State Hospital, Department of Psychiatry, Istanbul, Turkey.
| | - Nesrin Buket Tomruk
- Bakırköy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Department of Psychiatry, Istanbul, Turkey
| | - Cansu Çakır Şen
- Bakırköy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Department of Psychiatry, Istanbul, Turkey
| | - Eren Yıldızhan
- Bakırköy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Department of Psychiatry, Istanbul, Turkey
| |
Collapse
|
3
|
Heresco-Levy U, Lerer B. Synergistic psychedelic - NMDAR modulator treatment for neuropsychiatric disorders. Mol Psychiatry 2024; 29:146-152. [PMID: 37945694 DOI: 10.1038/s41380-023-02312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Modern research data suggest a therapeutic role for serotonergic psychedelics in depression and other neuropsychiatric disorders, although psychotomimetic effects may limit their widespread utilization. Serotonergic psychedelics enhance neuroplasticity via serotonin 2 A receptors (5HT2AR) activation and complex serotonergic-glutamatergic interactions involving the ionotropic glutamate receptors, tropomyosin receptor kinase B (TrkB) and the mammalian target of rapamycin (mTOR). N-methyl-d-aspartate receptors (NMDAR) channel antagonists, i.e. ketamine, and glycine modulatory site full and partial agonists, i.e., D-serine (DSR) and D-cycloserine (DCS), share some of these mechanisms of action and have neuroplastic and antidepressant effects. Moreover, procognitive effects have been reported for DSR and DCS and 5HT2AR-NMDAR interactions modulate neuronal excitability in prefrontal cortex and represent a target for new antipsychotics. We hypothesize that the synchronous administration of a psychedelic and a NMDAR modulator may increase the therapeutic impact of each of the treatment components and allow for dose adjustments and improved safety. We propose to initially focus research on the acute concurrent administration of psilocybin and DSR or DCS in depression.
Collapse
Affiliation(s)
- Uriel Heresco-Levy
- Department of Psychiatry, Herzog Medical Center; Hebrew University Faculty of Medicine, Jerusalem, Israel.
| | - Bernard Lerer
- Hadassah BrainLabs, Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
4
|
Kruyer A, Kalivas PW, Scofield MD. Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology 2023; 48:21-36. [PMID: 35577914 PMCID: PMC9700696 DOI: 10.1038/s41386-022-01338-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
Abstract
Over the last 15 years, the field of neuroscience has evolved toward recognizing the critical role of astroglia in shaping neuronal synaptic activity and along with the pre- and postsynapse is now considered an equal partner in tripartite synaptic transmission and plasticity. The relative youth of this recognition and a corresponding deficit in reagents and technologies for quantifying and manipulating astroglia relative to neurons continues to hamper advances in understanding tripartite synaptic physiology. Nonetheless, substantial advances have been made and are reviewed herein. We review the role of astroglia in synaptic function and regulation of behavior with an eye on how tripartite synapses figure into brain pathologies underlying behavioral impairments in psychiatric disorders, both from the perspective of measures in postmortem human brains and more subtle influences on tripartite synaptic regulation of behavior in animal models of psychiatric symptoms. Our goal is to provide the reader a well-referenced state-of-the-art understanding of current knowledge and predict what we may discover with deeper investigation of tripartite synapses using reagents and technologies not yet available.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
5
|
Nasyrova RF, Khasanova AK, Altynbekov KS, Asadullin AR, Markina EA, Gayduk AJ, Shipulin GA, Petrova MM, Shnayder NA. The Role of D-Serine and D-Aspartate in the Pathogenesis and Therapy of Treatment-Resistant Schizophrenia. Nutrients 2022; 14:5142. [PMID: 36501171 PMCID: PMC9736950 DOI: 10.3390/nu14235142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia (Sch) is a severe and widespread mental disorder. Antipsychotics (APs) of the first and new generations as the first-line treatment of Sch are not effective in about a third of cases and are also unable to treat negative symptoms and cognitive deficits of schizophrenics. This explains the search for new therapeutic strategies for a disease-modifying therapy for treatment-resistant Sch (TRS). Biological compounds are of great interest to researchers and clinicians, among which D-Serine (D-Ser) and D-Aspartate (D-Asp) are among the promising ones. The Sch glutamate theory suggests that neurotransmission dysfunction caused by glutamate N-methyl-D-aspartate receptors (NMDARs) may represent a primary deficiency in this mental disorder and play an important role in the development of TRS. D-Ser and D-Asp are direct NMDAR agonists and may be involved in modulating the functional activity of dopaminergic neurons. This narrative review demonstrates both the biological role of D-Ser and D-Asp in the normal functioning of the central nervous system (CNS) and in the pathogenesis of Sch and TRS. Particular attention is paid to D-Ser and D-Asp as promising components of a nutritive disease-modifying therapy for TRS.
Collapse
Affiliation(s)
- Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - Aiperi K. Khasanova
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| | - Kuanysh S. Altynbekov
- Republican Scientific and Practical Center of Mental Health, Almaty 050022, Kazakhstan
- Department of Psychiatry and Narcology, S.D. Asfendiarov Kazakh National Medical University, Almaty 050022, Kazakhstan
| | - Azat R. Asadullin
- Department of Psychiatry and Addiction, The Bashkir State Medical University, 450008 Ufa, Russia
| | - Ekaterina A. Markina
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - Arseny J. Gayduk
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks Management, 119121 Moscow, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| |
Collapse
|
6
|
Orzylowski M, Fujiwara E, Mousseau DD, Baker GB. An Overview of the Involvement of D-Serine in Cognitive Impairment in Normal Aging and Dementia. Front Psychiatry 2021; 12:754032. [PMID: 34707525 PMCID: PMC8542907 DOI: 10.3389/fpsyt.2021.754032] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Dementia, of which Alzheimer's disease (AD) is the most common form, is characterized by progressive cognitive deterioration, including profound memory loss, which affects functioning in many aspects of life. Although cognitive deterioration is relatively common in aging and aging is a risk factor for AD, the condition is not necessarily a part of the aging process. The N-methyl-D-aspartate glutamate receptor (NMDAR) and its co-agonist D-serine are currently of great interest as potential important contributors to cognitive function in normal aging and dementia. D-Serine is necessary for activation of the NMDAR and in maintenance of long-term potentiation (LTP) and is involved in brain development, neuronal connectivity, synaptic plasticity and regulation of learning and memory. In this paper, we review evidence, from both preclinical and human studies, on the involvement of D-serine (and the enzymes involved in its metabolism) in regulation of cognition. Potential mechanisms of action of D-serine are discussed in the context of normal aging and in dementia, as is the potential for using D-serine as a potential biomarker and/or therapeutic agent in dementia. Although there is some controversy in the literature, it has been proposed that in normal aging there is decreased expression of serine racemase and decreased levels of D-serine and down-regulation of NMDARs, resulting in impaired synaptic plasticity and deficits in learning and memory. In contrast, in AD there appears to be activation of serine racemase, increased levels of D-serine and overstimulation of NMDARs, resulting in cytotoxicity, synaptic deficits, and dementia.
Collapse
Affiliation(s)
- Magdalena Orzylowski
- Villa Caritas Geriatric Psychiatry Hospital, Edmonton, AB, Canada.,Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Esther Fujiwara
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Darrell D Mousseau
- Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Glen B Baker
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Cross-sectional analysis of plasma and CSF metabolomic markers in Huntington's disease for participants of varying functional disability: a pilot study. Sci Rep 2020; 10:20490. [PMID: 33235276 PMCID: PMC7686309 DOI: 10.1038/s41598-020-77526-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/04/2020] [Indexed: 01/24/2023] Open
Abstract
Huntington’s Disease (HD) is a progressive, fatal neurodegenerative condition. While generally considered for its devastating neurological phenotype, disturbances in other organ systems and metabolic pathways outside the brain have attracted attention for possible relevance to HD pathology, potential as therapeutic targets, or use as biomarkers of progression. In addition, it is not established how metabolic changes in the HD brain correlate to progression across the full spectrum of early to late-stage disease. In this pilot study, we sought to explore the metabolic profile across manifest HD from early to advanced clinical staging through metabolomic analysis by mass spectrometry in plasma and cerebrospinal fluid (CSF). With disease progression, we observed nominally significant increases in plasma arginine, citrulline, and glycine, with decreases in total and d-serine, cholesterol esters, diacylglycerides, triacylglycerides, phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins. In CSF, worsening disease was associated with nominally significant increases in NAD+, arginine, saturated long chain free fatty acids, diacylglycerides, triacylglycerides, and sphingomyelins. Notably, diacylglycerides and triacylglyceride species associated with clinical progression were different between plasma and CSF, suggesting different metabolic preferences for these compartments. Increasing NAD+ levels strongly correlating with disease progression was an unexpected finding. Our data suggest that defects in the urea cycle, glycine, and serine metabolism may be underrecognized in the progression HD pathology, and merit further study for possible therapeutic relevance.
Collapse
|
8
|
Dysfunctional d-aspartate metabolism in BTBR mouse model of idiopathic autism. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140531. [PMID: 32853769 DOI: 10.1016/j.bbapap.2020.140531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Autism spectrum disorders (ASD) comprise a heterogeneous group of neurodevelopmental conditions characterized by impairment in social interaction, deviance in communication, and repetitive behaviors. Dysfunctional ionotropic NMDA and AMPA receptors, and metabotropic glutamate receptor 5 activity at excitatory synapses has been recently linked to multiple forms of ASD. Despite emerging evidence showing that d-aspartate and d-serine are important neuromodulators of glutamatergic transmission, no systematic investigation on the occurrence of these D-amino acids in preclinical ASD models has been carried out. METHODS Through HPLC and qPCR analyses we investigated d-aspartate and d-serine metabolism in the brain and serum of four ASD mouse models. These include BTBR mice, an idiopathic model of ASD, and Cntnap2-/-, Shank3-/-, and 16p11.2+/- mice, three established genetic mouse lines recapitulating high confidence ASD-associated mutations. RESULTS Biochemical and gene expression mapping in Cntnap2-/-, Shank3-/-, and 16p11.2+/- failed to find gross cerebral and serum alterations in d-aspartate and d-serine metabolism. Conversely, we found a striking and stereoselective increased d-aspartate content in the prefrontal cortex, hippocampus and serum of inbred BTBR mice. Consistent with biochemical assessments, in the same brain areas we also found a robust reduction in mRNA levels of d-aspartate oxidase, encoding the enzyme responsible for d-aspartate catabolism. CONCLUSIONS Our results demonstrated the presence of disrupted d-aspartate metabolism in a widely used animal model of idiopathic ASD. GENERAL SIGNIFICANCE Overall, this work calls for a deeper investigation of D-amino acids in the etiopathology of ASD and related developmental disorders.
Collapse
|
9
|
Errico F, Cuomo M, Canu N, Caputo V, Usiello A. New insights on the influence of free d-aspartate metabolism in the mammalian brain during prenatal and postnatal life. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140471. [PMID: 32561430 DOI: 10.1016/j.bbapap.2020.140471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 01/08/2023]
Abstract
Free d-aspartate is abundant in the mammalian embryonic brain. However, following the postnatal onset of the catabolic d-aspartate oxidase (DDO) activity, cerebral d-aspartate levels drastically decrease, remaining constantly low throughout life. d-Aspartate stimulates both glutamatergic NMDA receptors (NMDARs) and metabotropic Glu5 receptors. In rodents, short-term d-aspartate exposure increases spine density and synaptic plasticity, and improves cognition. Conversely, persistently high d-Asp levels produce NMDAR-dependent neurotoxic effects, leading to precocious neuroinflammation and cell death. These pieces of evidence highlight the dichotomous impact of d-aspartate signaling on NMDAR-dependent processes and, in turn, unveil a neuroprotective role for DDO in preventing the detrimental effects of excessive d-aspartate stimulation during aging. Here, we will focus on the in vivo influence of altered d-aspartate metabolism on the modulation of glutamatergic functions and its involvement in translational studies. Finally, preliminary data on the role of embryonic d-aspartate in the mouse brain will also be reviewed.
Collapse
Affiliation(s)
- Francesco Errico
- Department of Agricultural Sciences, University of Naples "Federico II", 80055 Portici, Italy.
| | - Mariella Cuomo
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131 Naples, Italy
| | - Nadia Canu
- Department of System Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; Institute of Biochemistry and Cell Biology, National Research Council (CNR), 00015, Monterotondo Scalo, Rome, Italy
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Usiello
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy; Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
10
|
Yong SJ, Tong T, Chew J, Lim WL. Antidepressive Mechanisms of Probiotics and Their Therapeutic Potential. Front Neurosci 2020; 13:1361. [PMID: 32009871 PMCID: PMC6971226 DOI: 10.3389/fnins.2019.01361] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
The accumulating knowledge of the host-microbiota interplay gives rise to the microbiota-gut-brain (MGB) axis. The MGB axis depicts the interkingdom communication between the gut microbiota and the brain. This communication process involves the endocrine, immune and neurotransmitters systems. Dysfunction of these systems, along with the presence of gut dysbiosis, have been detected among clinically depressed patients. This implicates the involvement of a maladaptive MGB axis in the pathophysiology of depression. Depression refers to symptoms that characterize major depressive disorder (MDD), a mood disorder with a disease burden that rivals that of heart diseases. The use of probiotics to treat depression has gained attention in recent years, as evidenced by increasing numbers of animal and human studies that have supported the antidepressive efficacy of probiotics. Physiological changes observed in these studies allow for the elucidation of probiotics antidepressive mechanisms, which ultimately aim to restore proper functioning of the MGB axis. However, the understanding of mechanisms does not yet complete the endeavor in applying probiotics to treat MDD. Other challenges remain which include the heterogeneous nature of both the gut microbiota composition and depressive symptoms in the clinical setting. Nevertheless, probiotics offer some advantages over standard pharmaceutical antidepressants, in terms of residual symptoms, side effects and stigma involved. This review outlines antidepressive mechanisms of probiotics based on the currently available literature and discusses therapeutic potentials of probiotics for depression.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Tommy Tong
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Jactty Chew
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| |
Collapse
|
11
|
MacKay MAB, Kravtsenyuk M, Thomas R, Mitchell ND, Dursun SM, Baker GB. D-Serine: Potential Therapeutic Agent and/or Biomarker in Schizophrenia and Depression? Front Psychiatry 2019; 10:25. [PMID: 30787885 PMCID: PMC6372501 DOI: 10.3389/fpsyt.2019.00025] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/15/2019] [Indexed: 11/17/2022] Open
Abstract
D-Serine is a potent co-agonist at the NMDA glutamate receptor and has been the object of many preclinical studies to ascertain the nature of its metabolism, its regional and cellular distribution in the brain, its physiological functions and its possible clinical relevance. The enzymes involved in its formation and catabolism are serine racemase (SR) and D-amino acid oxidase (DAAO), respectively, and manipulations of the activity of those enzymes have been useful in developing animal models of schizophrenia and in providing clues to the development of potential new antipsychotic strategies. Clinical studies have been conducted in schizophrenia patients to evaluate body fluid levels of D-serine and/or to use D-serine alone or in combination with antipsychotics to determine its effectiveness as a therapeutic agent. D-serine has also been used in combination with DAAO inhibitors in preclinical investigations, and interesting results have been obtained. Genetic studies and postmortem brain studies have also been conducted on D-serine and the enzymes involved in its metabolism. It is also of considerable interest that in recent years clinical and preclinical investigations have suggested that D-serine may also have antidepressant properties. Clinical studies have also shown that D-serine may be a biomarker for antidepressant response to ketamine. Relevant to both schizophrenia and depression, preclinical and clinical studies with D-serine indicate that it may be effective in reducing cognitive dysfunction.
Collapse
Affiliation(s)
- Mary-Anne B MacKay
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Maryana Kravtsenyuk
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Rejish Thomas
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Nicholas D Mitchell
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Serdar M Dursun
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Subramanian K, Góra A, Spruijt R, Mitusińska K, Suarez-Diez M, Martins dos Santos V, Schaap PJ. Modulating D-amino acid oxidase (DAAO) substrate specificity through facilitated solvent access. PLoS One 2018; 13:e0198990. [PMID: 29906280 PMCID: PMC6003678 DOI: 10.1371/journal.pone.0198990] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/30/2018] [Indexed: 11/28/2022] Open
Abstract
D-amino acid oxidase (DAAO) degrades D-amino acids to produce α-ketoacids, hydrogen peroxide and ammonia. DAAO has often been investigated and engineered for industrial and clinical applications. We combined information from literature with a detailed analysis of the structure to engineer mammalian DAAOs. The structural analysis was complemented with molecular dynamics simulations to characterize solvent accessibility and product release mechanisms. We identified non-obvious residues located on the loops on the border between the active site and the secondary binding pocket essential for pig and human DAAO substrate specificity and activity. We engineered DAAOs by mutating such critical residues and characterised the biochemical activity of the resulting variants. The results highlight the importance of the selected residues in modulating substrate specificity, product egress and enzyme activity, suggesting further steps of DAAO re-engineering towards desired clinical and industrial applications.
Collapse
Affiliation(s)
- Kalyanasundaram Subramanian
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng WE, Wageningen, The Netherlands
| | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego, Gliwice, Poland
| | - Ruud Spruijt
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng WE, Wageningen, The Netherlands
| | - Karolina Mitusińska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego, Gliwice, Poland
- Department of Chemistry, Silesian University of Technology, ks. Marcina Strzody, Gliwice, Poland
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng WE, Wageningen, The Netherlands
| | - Vitor Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng WE, Wageningen, The Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng WE, Wageningen, The Netherlands
| |
Collapse
|
13
|
Campos-Beltrán D, Konradsson-Geuken Å, Quintero JE, Marshall L. Amperometric Self-Referencing Ceramic Based Microelectrode Arrays for D-Serine Detection. BIOSENSORS-BASEL 2018; 8:bios8010020. [PMID: 29509674 PMCID: PMC5872068 DOI: 10.3390/bios8010020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/15/2018] [Accepted: 03/02/2018] [Indexed: 01/29/2023]
Abstract
D-serine is the major D-amino acid in the mammalian central nervous system. As the dominant co-agonist of the endogenous synaptic NMDA receptor, D-serine plays a role in synaptic plasticity, learning, and memory. Alterations in D-serine are linked to neuropsychiatric disorders including schizophrenia. Thus, it is of increasing interest to monitor the concentration of D-serine in vivo as a relevant player in dynamic neuron-glia network activity. Here we present a procedure for amperometric detection of D-serine with self-referencing ceramic-based microelectrode arrays (MEAs) coated with D-amino acid oxidase from the yeast Rhodotorulagracilis (RgDAAO). We demonstrate in vitro D-serine recordings with a mean sensitivity of 8.61 ± 0.83 pA/µM to D-serine, a limit of detection (LOD) of 0.17 ± 0.01 µM, and a selectivity ratio of 80:1 or greater for D-serine over ascorbic acid (mean ± SEM; n = 12) that can be used for freely moving studies.
Collapse
Affiliation(s)
- Diana Campos-Beltrán
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| | - Åsa Konradsson-Geuken
- The Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden.
- The Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Jorge E Quintero
- CenMeT, University of Kentucky, Lexington, 40506 KY, USA.
- Quanteon LLC, Nicholasville, 40356 KY, USA.
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
14
|
Wei IH, Chen KT, Tsai MH, Wu CH, Lane HY, Huang CC. Acute Amino Acid d-Serine Administration, Similar to Ketamine, Produces Antidepressant-like Effects through Identical Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10792-10803. [PMID: 29161812 DOI: 10.1021/acs.jafc.7b04217] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
d-Serine is an amino acid and can work as an agonist at the glycine sites of N-methyl-d-aspartate receptor (NMDAR). Interestingly, both types of glutamatergic modulators, NMDAR enhancers and blockers, can improve depression through common targets, namely alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionaic acid receptors (AMPARs) and mammalian target of rapamycin (mTOR). To elucidate the cellular signaling pathway underlying this counterintuitive observation, we activated NMDARs in rats by using d-serine. Saline, ketamine (NMDAR antagonist), and desipramine (tricyclic antidepressant) were used as controls. The antidepressant-like effects of all agents were evaluated using the forced swim test. The activation of the AMPAR-mTOR signaling pathway, release of brain-derived neurotrophic factor (BDNF), and alteration of AMPAR and NMDAR trafficking in the hippocampus of rats were examined. A single high dose of d-serine exerted an antidepressant-like effect that was mediated by rapid AMPAR-induced mTOR signaling pathway and increased BDNF proteins, identical to that of ketamine. Furthermore, in addition to the increased protein kinase A phosphorylation of the AMPAR subunit GluR1 (an indicator of AMPAR insertion in neurons), treatment with individual optimal doses of d-serine and ketamine also increased adaptin β2-NMDAR association (an indicator of the intracellular endocytic machinery and subsequent internalization of NMDARs). Desipramine did not influence these processes. Our study is the first to demonstrate an association between d-serine and ketamine; following adaptative regulation of AMPAR and NMDAR may lead to common changes of them. These findings provide novel targets for safer antidepressant agents with mechanisms similar to those of ketamine.
Collapse
Affiliation(s)
| | | | | | - Ching-Hsiang Wu
- Department of Anatomy, College of Medicine, Taipei Medical University , 110 Taipei, Taiwan
| | - Hsien-Yuan Lane
- Brain Disease Research Center & Department of Psychiatry, China Medical University Hospital , 404 Taichung, Taiwan
| | - Chih-Chia Huang
- Brain Disease Research Center & Department of Psychiatry, China Medical University Hospital , 404 Taichung, Taiwan
| |
Collapse
|
15
|
Wang Q, Jie W, Liu JH, Yang JM, Gao TM. An astroglial basis of major depressive disorder? An overview. Glia 2017; 65:1227-1250. [DOI: 10.1002/glia.23143] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Qian Wang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Wei Jie
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Ji-Hong Liu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| |
Collapse
|
16
|
Zheng HF, Wang WQ, Li XM, Rauw G, Baker GB. Body fluid levels of neuroactive amino acids in autism spectrum disorders: a review of the literature. Amino Acids 2016; 49:57-65. [PMID: 27686223 PMCID: PMC5241332 DOI: 10.1007/s00726-016-2332-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/08/2016] [Indexed: 01/08/2023]
Abstract
A review of studies on the body fluid levels of neuroactive amino acids, including glutamate, glutamine, taurine, gamma-aminobutyric acid (GABA), glycine, tryptophan, d-serine, and others, in autism spectrum disorders (ASD) is given. The results reported in the literature are generally inconclusive and contradictory, but there has been considerable variation among the previous studies in terms of factors such as age, gender, number of subjects, intelligence quotient, and psychoactive medication being taken. Future studies should include simultaneous analyses of a large number of amino acids [including d-serine and branched-chain amino acids (BCAAs)] and standardization of the factors mentioned above. It may also be appropriate to use saliva sampling to detect amino acids in ASD patients in the future—this is noninvasive testing that can be done easily more frequently than other sampling, thus providing more dynamic monitoring.
Collapse
Affiliation(s)
- Hui-Fei Zheng
- Mental Health Research Laboratory, Xiamen Xianyue Hospital, Xiamen, Fujian, China.,Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Wen-Qiang Wang
- Mental Health Research Laboratory, Xiamen Xianyue Hospital, Xiamen, Fujian, China.
| | - Xin-Min Li
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Gail Rauw
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
17
|
Errico F, Mothet JP, Usiello A. d-Aspartate: An endogenous NMDA receptor agonist enriched in the developing brain with potential involvement in schizophrenia. J Pharm Biomed Anal 2015; 116:7-17. [DOI: 10.1016/j.jpba.2015.03.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/11/2015] [Accepted: 03/23/2015] [Indexed: 12/14/2022]
|
18
|
Clinical and electrophysiological effects of D-serine in a schizophrenia patient positive for anti-N-methyl-D-aspartate receptor antibodies. Biol Psychiatry 2015; 77:e27-9. [PMID: 25442007 DOI: 10.1016/j.biopsych.2014.08.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 11/22/2022]
|